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Uniform One-Dimensional Fragment over

Ordered Structures

Jonne Iso-Tuisku∗, Antti Kuusisto†

Abstract

The uniform one-dimensional fragment U1 is a recently introduced exten-

sion of the two-variable fragment FO2. The logic U1 enables the use of

relation symbols of all arities and thereby extends the scope of applications

of FO2. In this article we show that the satisfiability and finite satisfiabil-

ity problems of U1 over linearly ordered models are NExpTime-complete.

The corresponding problems for FO2 are likewise NExpTime-complete,

so the transition from FO2 to U1 in the ordered realm causes no increase

in complexity. To contrast our results, we also establish that U1 with an

unrestricted use of two built-in linear orders is undecidable.

1 Introduction

Two-variable logic FO2 and the guarded fragment GF are currently probably the
most widely studied sublogics of first-order logic. Two-variable logic was shown
NExpTime-complete in [6] and the guarded fragment 2NExpTime-complete in
[7]. The guarded-fragment was extended in [1] to the guarded negation fragment
GNFO, and it was likewise shown to be 2NExpTime-complete in the same
article. The recent paper [9] introduced the uniform one-dimensional fragment
U1 as an extension of FO2, and U1 was shown NExpTime-complete in [13].

The uniform one-dimensional fragment extends FO2 in a canonical way to
contexts with relation symbols of all arities. Indeed, FO2 does not cope well with
higher-arity relations, and this limits the scope of related research in relation to
potential applications. In database theory contexts, for example, this limitation
can be crucial. The idea of U1 is based on the notions of one-dimensionality
and uniformity. One-dimensionality means that quantification is limited to
blocks of existential (universal) quantifiers that leave at most one variable free.
Uniformity asserts that a Boolean combination of higher arity (i.e., at least
binary) atoms R(x1, ... , xk) and S(y1, ... , yn) is allowed only if {x1, ... , xk} =
{y1, ... , yn}; see Section 2 for the formal definition. The article [9] shows that if
either of these two restrictions—one-dimensionality or uniformity—is lifted in a
canonically minimal way, the resulting logic is undecidable.

While U1 has the same complexity as FO2, it was established in [9, 20]
that it is incomparable in expressivity with both GNFO and two-variable logic
with counting FOC2. Another interesting result on expressivity was obtained
in [20], which showed that if the uniformity condition is applied also to the
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equality symbols in addition to other relation symbols, the resulting logic is
equi-expressive with FO2 over models with at most binary relations. While
standard U1 is more expressive than FO2 even over empty vocabularies, this
equi-expressivity result can be taken as an argument for canonicity of U1 as
an extension of FO2. Recent results on U1 include, e.g., [21], which shows
that the symmetric model counting problem for formulae of U1 is computable
in polynomial time. See also [15], which gives an Ehrenfeucht-Fräıssé game
characterization of U1.

Research on two variable logics has been very active in recent years, see,
e.g., [2, 3, 5, 12, 23, 16, 26]. The focus has been especially on questions related
to built-in relations and operators that increase the expressivity of the base
language. The significance of FO2 from the point of view of applications is at
least partially explained by its close links to XML (in this connection, see e.g.
[4]) as well as the fact that typical systems of modal logic translate into FO2.
The link with modal logic makes investigations on two-variable logic relevant
to various different fields from verification and temporal logic to knowledge
representation, description logics, and even distributed computing. For more or
less recent works relating to links between logic and distributed computing, see,
e.g., [8, 19, 18, 25, 17]

In this article we obtain the first results on U1 over models with a built-in
linear order (abbr. U1(<)). We prove three related complexity results: we show
that U1(<) is NExpTime-complete over linearly ordered models, well-ordered
models and finite linearly ordered models. In comparison with the complexity
of FOC2 with a linear order, which was shown to be VAS-complete in [5], U1

with a linear order is more efficient. Furthermore, we show undecidability of U1

with two linear orders that can be used freely, i.e., the uniformity condition does
not apply to the linear orders. This result contrasts with the result of Zeume
and Harwath [26] showing that FO2 in the finite case with two linear orders is
decidable and in fact in 2NExpTime. Also, U1 with two freely usable built-in
equivalence relations has been shown 2NExpTime-complete in [15]. We note
that FO2 with a single linear order was shown NExpTime-complete by Otto
already in [24]. The proofs below use fresh methods together with notions from
[13] and [24].

Our objectives in this article are two-fold. Firstly, we provide the first results
on U1 over models with a built-in linear order. Secondly, we wish to promote
U1 as a potential framework for expanding the scope of the active research
programme on two-variable logics to the context of higher arity relations. From
the point of view of applications, inter alia (and especially) database theory,
the restriction to binary relations can indeed be undesirable. The article [20]
contains a brief survey on U1 and argues how U1 can serve as a framework for
building (expressive) n-ary description logics.

The structure of the paper is the following. The next section, Section 2,
introduces general concepts and notations used throughout this paper. Section
3 also introduces concepts, but they are very specific, technical, and mostly used
in Section 4. It is recommended to use Section 3 as a reference while reading
Section 4 which presents the main results of this paper. Section 5 presents the
undecidability result, forming a contrast with the main results. The results of
this paper have appeared in the thesis [10].
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2 Preliminaries

First we introduce general concepts used in this paper. Then we introduce the
uniform one-dimensional fragment U1 of first-order logic and related concepts.

We let Z+ denote the set of positive integers. If f is a function with a
domain S, we define img(f) := { f(s) | s ∈ S }. An ordered set is a structure
(A,<) where A is a set and < a linear order on A. We call a subset I of A
an interval if for all a, c ∈ I and all b ∈ A, it holds that if a < b < c, then
b ∈ I. A permutation of a tuple (u1, ... , uk) is a tuple (uf(1), ... , uf(k)) for some
bijection f : {1, ... , k} → {1, ... , k}. A trivial tuple is a tuple (u1, ... , uk) such
that ui = uj for all i, j ∈ {1, ... , k}.

We let VAR denote the set {v1, v2, ... } of first-order variable symbols. We
mostly use metavariables x, y, z, x1, y1, z1, etc., to denote the variables in VAR.
Note that for example the metavariables x and y may denote the same variable
symbol vi, while vi and vj for i 6= j are always different symbols. Let R be
a k-ary relation symbol. An atomic formula Rx1...xk is called an X-atom if
X = {x1, ... , xk}. For example, if x, y, z are distinct variables, then Syx and
Rxyxxy are {x, y}-atoms while Px and Txzy are not. Txyz and Syyxz are
{x, y, z}-atoms. For technical reasons, atoms x = y with an equality symbol are
not {x, y}-atoms.

Let τ be a relational vocabulary. A k-ary τ -atom is an atomic τ -formula
that mentions exactly k variables: for example, if x, y, z are distinct variables
and R, T ∈ τ relation symbols with arities 5 and 3, respectively, then the atoms
Txxy and x = y are binary τ -atoms and Rxxyzx and Txyz ternary τ -atoms. If
P, S ∈ τ are relation symbols of arities 1 and 2, respectively, then Px and x = x

are unary τ -atoms and Sxy a binary τ -atom.
Let τm denote a countably infinite relational vocabulary in which every rela-

tion symbol is of the arity m. Let V be a complete relational vocabulary, that is
V =

⋃

m∈Z+
τm. In this paper we consider models and logics with relation sym-

bols only; function and constant symbols will not be considered. (The identity
symbol is considered a logical constant and is therefore not a relation symbol.)
We denote models by A, B, et cetera. The domain of these models is then de-
noted by A and B, respectively. If τ is a vocabulary, then a τ -model interprets
all the relation symbols in τ and no other relation symbols. A τ -formula is a
formula whose relation symbols are contained in τ . If A is a τ -model and B a
τ ′-model such that τ ⊆ τ ′ and A = B ↾ τ , then B is an expansion of A and A

is the τ-reduct of B. The notion of a substructure is defined in the usual way,
and if A is a substructure of B (written: A ⊆ B), then B is an extension of A.

Consider a vocabulary τ ⊆ V . The set of τ -formulae of the equality-free
uniform one-dimensional fragment U1(no=) is the smallest set F such that the
following conditions hold.

1. Every unary τ -atom is in F .

2. If ϕ ∈ F , then ¬ϕ ∈ F .

3. If ϕ, ψ ∈ F , then (ϕ ∧ ψ) ∈ F .

4. Let X ′ := {x0, ..., xk} ⊆ VAR and X ⊆ X ′. Let ϕ be a Boolean combi-
nation of X-atoms and formulae in F whose free variables (if any) are in
the set X ′. Then the formulae ∃x1...∃xkϕ and ∃x0...∃xkϕ are in F .

3



For example, ∃x∃y∃z(¬Rxyzxy ∧ ¬Tyxz ∧ Px ∧Qy) and ∃x∀y∀z(
¬Sxy → ∃u∃vTuvz) are formulae of U1(no=). If ψ(y) is a formula of U1(no=),
then ∃y∃z(Txyz∧Rzxyzz∧ψ(y)) is as well. However, the formula ∃x∃y∃z(Sxy∨
Sxz) is not a formula of U1(no=) because {x, y} 6= {x, z}. The formula is said to
violate the uniformity condition, i.e., the syntactic restriction that the relational
atoms of higher arity bind the same set of variables. The formula ∀y(Py ∧
∃xTxyz) is not a formula of U1(no=) because it violates one-dimensionality, as
∃xTxyz has two free variables. Perhaps the simplest formula of U1(no=) that
can be expressed in neither two-variable logic with counting quantifiers FOC2

nor in the guarded negation fragment GNFO is the formula ∃x∃y∃z¬Txyz.
The set of formulae of the fully uniform one-dimensional fragment FU1 is

obtained from the set of formulae of U1(no=) by allowing the substitution of
any binary relation symbols in a formula of U1(no=) by the equality symbol
=. If restricted to vocabularies with at most binary symbols, FU1 is exactly as
expressive as FO2 [20].

The set of τ -formulae of the uniform one-dimensional fragment U1 is the
smallest set F obtained by adding to the four above clauses that define U1(no=)
the following additional clause:

5. Every equality atom x = y is in F .

For example ∃y∃z(Txyz∧Qy∧x 6= y) as well as the formula ∃x∃y∃z(x 6= y∧y 6=
z ∧ z 6= x) are U1-formulae. The latter formula is an example of a (counting)
condition that is well known to be undefinable in FO2. A more interesting
example of a condition not expressible in FO2 (cf. [20]) is defined by the U1-
formula ∃x∀y∀z(Syz → (x = y ∨ x = z)), which expresses that some element is
part of every tuple of S. For more examples and background intuitions, see the
survey [20].

Let x̄ be a tuple of variables. Let ∃x̄ϕ be a U1-formula which is formed
by applying the rule 4 of the syntax above. Recall the set X used in the
formulation. If ϕ does not contain any relational atom (other than equality)
with at least two distinct variables, we define Lϕ := ∅, and otherwise we define
Lϕ := X . We call the set Lϕ the set of live variables of ϕ. For example, in
∃y∃z∃u(Txyz ∧Rxxyyz ∧ x = u ∧Q(u)) the set of live variables is {x, y, z}.

A quantifier-free subformula of a U1-formula is called a U1-matrix. Let
ψ(x1, ... , xk) be a U1-matrix with exactly the distinct variables x1, ... , xk. Let
A be a model with domain A, and let a1, ... ,
ak ∈ A be (not necessarily distinct) elements. Let T be the smallest subset of
{a1, ..., ak} such that for every xi ∈ Lψ, we have ai ∈ T , i.e. T = {ai | xi ∈ Lψ}.
We denote T by live

(

ψ(x1, ..., xk)[a1, ..., ak]
)

. For example, if ψ(v1, v2, v3, v4) :=
(Rv2v3v2 ∧ Pv4 ∧ v1 = v2), then
live

(

ψ(v1, v2, v3, v4)[a, b, c, b]
)

= {b, c}. We shall shorten the notation

live
(

ψ(x1, ..., xk)[a1, . . . , ak]
)

to live
(

ψ[a1, ..., ak]
)

when there is no possibility of confusion.
A U1-formula ϕ is in generalized Scott normal form, if

ϕ =
∧

1≤i≤m∃

∀x∃y1 . . . ∃ykiϕ
∃
i (x, y1, . . . , yki) ∧

∧

1≤i≤m∀

∀x1 . . .∀xliϕ
∀
i (x1, . . . , xli),
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where the formulae ϕ∃
i and ϕ∀

i are U1-matrices. Henceforth by a normal form
we always mean generalized Scott normal form. The formulae

∀x∃y1...∃ykiϕ
∃
i (x, y1, ..., yki)

are called existential conjuncts and the formulae

∀x1...∀xliϕ
∀
i (x1, ..., xli)

universal conjuncts of ϕ. The quantifier-free part of an existential (universal)
conjunct is called an existential (universal) matrix. We often do not properly
differentiate between existential conjuncts and existential matrices when there
is no risk of confusion. The same holds for universal matrices and universal
conjuncts. The width of ϕ is the maximum number of the set {ki + 1}1≤i≤m∃

∪
{li}1≤i≤m∀

. We shall usually denote the width of ϕ by n and we assume w.l.o.g.
that n ≥ 2.

Proposition 2.1 ([13]). Every U1-formula ϕ can be translated in polynomial
time to a U1-formula ϕ′ in generalized Scott normal form that is equisatisfiable
with ϕ in the following sense. If A |= ϕ, then A

∗ |= ϕ′ for some expansion A
∗

of A, and vice versa, if B |= ϕ′, then B′ |= ϕ for some reduct B′ of B. The
vocabulary of ϕ′ expands the vocabulary of ϕ with fresh unary relation symbols
only.

Let A be a model satisfying a normal form sentence ϕ of U1. Let

a, a1, ... , aki ∈ A,

and let ∀x∃y1...∃ykiϕ
∃
i (x, y1, ..., yki) be an existential conjunct of ϕ such that

A |= ϕ∃
i (a, a1, ..., aki). Then we define Aa,ϕ∃

i
:= A ↾ {a, a1, . . . , aki} and we

call Aa,ϕ∃
i

a witness structure for the pair (a, ϕ∃
i ). The elements of the wit-

ness structure are called witnesses. In addition, we define Āa,ϕ∃
i

:= Aa,ϕ∃
i
↾

live(ϕ∃
i [a, a1, . . . , aik ]) and we call it the live part of Aa,ϕ∃

i
. If the live part

Āa,ϕ∃
i

does not contain a, then it is called free. The remaining part Aa,ϕ∃
i
↾

(Aa,ϕ∃
i
\ Āa,ϕ∃

i
) of Aa,ϕ∃

i
is called the dead part of the witness structure. In

other words, the witness structure consists of the two parts: the live part and
the dead part.

The next two subsections 2.1 and 2.2 introduce concepts which abstract a
treatment of relational structures in a convenient way.

2.1 Structure classes

Fix a binary relation <. Throughout the article, we let O denote the class of all
structures A such that A is a τ -structure for some τ ⊆ V with <∈ τ , and the
symbol < is interpreted as a linear order over A. Intuitively, < can be regarded
as an interface “implemented” by the structures in O.1 This abstraction enables
us to study the structures in O without interfering with other relational infor-
mation which the structures may have. (Note that thus the vocabulary is not
required to be the same for all models in O.) The class WO is defined similarly,

1Cf. object-oriented programming theory
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but this time < is interpreted as a well-ordering of A, i.e., a linear order over A
such that each nonempty subset of A has a least element w.r.t. <. Similarly,
Ofin is the subclass of O where every model is finite.

Consider a class K ∈ {O,WO,Ofin}. The satisfiability problem of U1 over
K, denoted by satK(U1), asks, given a formula of U1, whether ϕ has a model in
K.2 The set of relation symbols in the input formula ϕ is not limited in any way.
The standard (general case) satisfiability problem of U1 is denoted by sat(U1).

If R1 and R2 are binary relation symbols, we let U1[R1, R2] be the extension
of U1 such that ϕ is a formula of U1[R1, R2] iff it can be obtained from some
formula of U1 by replacing any number of equality symbols with R1 or R2;
for example ∀x∀y∀z((R1xy ∧ R1yz) → R1xz) is obtained from the U1-formula
∀x∀y∀z((x = y ∧ y = z) → x = z) this way. Such extensions of U1 are said
to allow non-uniform use of R1 and R2 in formulae. At the end of this paper
we investigate U1[<1, <2] over structures where <1 and <2 both denote linear
orders.

2.2 Types and tables

Let τ be a finite relational vocabulary. A 1-type (over τ) is a maximally con-
sistent set of unary τ -atoms and negated unary τ -atoms in the single variable
v1. We denote 1-types by α and the set of all 1-types over τ by ατ . If there is
no risk of confusion, we may write α instead of ατ . The size of ατ is clearly
bounded by 2|τ |. We often identify a 1-type α with the conjunction of its el-
ements, thereby considering α(x) as simply a formula in the single variable x.
(Note that here we used x instead of the official variable v1 with which the
1-type α was defined.)

Let A be a τ -model and α a 1-type over τ . The type α is said to be realized
in A if there is some a ∈ A such that A |= α(a). We say that the point a realizes
the 1-type α in A and write tpA(a) = α. Note that every element of A realizes
exactly one 1-type over τ . We let αA denote the set of all 1-types over τ that
are realized in A. It is worth noting that 1-types do not only involve unary
relations: for example an atom Rxxx can be part of a 1-type.

Let k ≥ 2 be an integer. A k-table over τ is a maximally consistent
set of {v1, ... , vk}-atoms and negated {v1, ... , vk}-atoms over τ . Recall that
a {v1, ... , vk}-atom must contain exactly all the variables in {v1, ... , vk}. Recall
also that v1 = v2 is not {v1, v2}-atom, and thus 2-tables do not contain identity
atoms or negated identity atoms.3

Example 2.2. Using the metavariables x, y instead of v1, v2, the set

{Rxxy,Rxyx,¬Ryxx,Ryyx,¬Ryxy,Rxyy, x < y,¬ y < x}

is a 2-table over {R,<, P}, where R is a ternary, < binary and P a unary
symbol. The set {¬Rxxx, Pxx,¬(x < x), x = x} is a 1-type over the same
vocabulary.

2 By the complexity of a logic L we mean the complexity of the satisfiability problem of

the logic L.
3Alternatively, we could define 2-tables such that they always contain ¬v1 = v2 and ¬v2 =

v1.
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We denote k-tables by β. Similarly to what we did with 1-types, a k-table β
can be identified with the conjunction of its elements, denoted by β(x1, ... , xk).
If a1, ... , ak ∈ A are distinct elements such that A |= β(a1, . . . , ak), we say that
(a1, ... , ak) realizes the table β and write tbA(a1, ... , ak) = β. Every tuple of k
distinct elements in the τ -structure A realizes exactly one k-table β over τ .

Note that 1-types and k-tables encapsulate relational information, enabling
us to construct relational structures in the following way. Let m be the maxi-
mum arity of symbols in τ . To fully define a τ -structure A over a given domain
A, we first specify a 1-type for each element in A. Then for each subset B ⊆ A

for which 2 ≤ |B| ≤ m, we choose an enumeration (b1, . . . , b|B|) of the elements
of B and specify a |B|-table tbA(b1, . . . , b|B|).

Lastly we define some notions derived from the concept of 1-type. Let α be a
1-type. We define the formulae minα(x) := α(x) ∧ ∀y

(

(α(y) ∧ x 6= y) → x < y
)

and maxα(x) := α(x) ∧ ∀y
(

(α(y) ∧ x 6= y) → y < x
)

for later use. An element
a ∈ A is called a minimal (resp., maximal) realization of α in A iff A |= minα(a)
(resp., A |= maxα(a)). This definition holds even if A interprets < as a binary
relation that is not a linear order; at a certain very clearly marked stage of
the investigations below, the symbol < is used over a model B where it is not
necessarily interpreted as an order but is instead simply a binary relation.

Let ϕ be a normal form sentence of U1 over τ and let A be a τ -model. Let n
be the width of ϕ. A 1-type α over τ is called royal (in A and w.r.t. ϕ) if there
are at most n− 1 elements in A realizing α. Elements in A that realize a royal
1-type are called kings (w.r.t. ϕ). Other elements in A are pawns (w.r.t. ϕ). If
KA denotes the set of kings in A, then KA is bounded by (n−1)|α| = (n−1)2|τ |,
where α is the set of all 1-types over τ . It is important to distinguish kings
from pawns in structures. In U1 we can express, for example, that there are
exactly three elements satisfying a unary relation P . In symbols:

ψ :=∃x1...∃x3(
∧

i6=j

(xi 6= xj) ∧
∧

i

Pxi )∧

∀x1...∀x4
(

(
∧

i

Pxi ) →
∨

j 6=k

xj = xk
)

.

Let A be a model of ψ. Cloning or copying kings, and thus extending the
structure A by new kings, would directly contravene the sentence ψ. However,
cloning pawns, even in ordered structures, would do no harm. This fact is
established in the next section. Note that ψ is in normal form and its width is
4.

Now recall the notion of a witness structure Aa,ϕ∃
i

in a model A for a pair

(a, ϕ∃
i ), where a ∈ A is an element and ϕ∃

i an existential conjunct of a normal
form formula. Let α be a 1-type. By a witness structure of (α, ϕ∃

i ) we mean a
witness structure Aa′,ϕ∃

i
for some pair (a′, ϕ∃

i ) such that a′ ∈ A realizes α.

3 Analysing ordered structures

We begin this section by showing the fact that, if we have a structure (particu-
larly an ordered one) and it has pawns, then these pawns can be cloned as many
times as one wishes. This is the property that will be seen to be very convenient

7



not only in this section, but also when we are proving the main result in Section
4.

Let ϕ be a normal form sentence of U1 and τ the set of relation symbols in
ϕ. Assume that the symbol < occurs in ϕ. Let r be the highest arity occurring
in the symbols in τ , and let n be the width of ϕ. Denote min{r, n} by m. Let
A ∈ O be a τ -model that satisfies ϕ. Let P ⊆ A be the set of all pawns (w.r.t.
ϕ) of A. Thus, for every p ∈ P , there are at least n elements in A realizing the
1-type of p. Let c ≥ 3 be an integer. The c-cloning extension of A with respect
to ϕ is a linearly ordered extension A′ of A defined by the following process.

1. Defining an ordered domain for A′: For each p ∈ P , let Cl(p)
be a set {p0} ∪ {p2, ... , pc−1} of fresh elements. The domain of A

′ is the set
A′ = A ∪

⋃

p∈P Cl(p). For each p ∈ P , the elements {p2, ... , pc−1} are placed
immediately after p while the element p0 is inserted immediately before p, so
{p0} ∪ {p} ∪ {p2, ... , pc−1} becomes an interval with c elements such that p0 <
p < p2 < ... < pc−1. The reason why we place the element p0 before p and the
other elements after it will become clear later on. Note that the ordering of the
domain A′ is completed in the next stage.

2. Cloning stage: For every p ∈ P , every p′ ∈ Cl(p), and every subset
S ⊆ A \ {p} such that 1 ≤ |S| ≤ m − 1, we define tpA′(p′) := tpA(p) and
tbA′(p′, s̄) := tbA(p, s̄), where s̄ is an |S|-tuple that enumerates the elements of
S.

3. Completion stage: For each p ∈ P , let Ip denote the interval {p0} ∪
{p} ∪ {p2, ... , pc−1}. We call the intervals Ip clone intervals and define I :=
⋃

p∈P Ip. Now define P2 to be the set of all pairs (α1, α2) of 1-types such that
we have A′ |= α1(u) ∧ α2(u′) ∧ u < u′ for some elements u, u′ ∈ A′. (Note
that α1 and α2 are allowed to be the same type.) Then define a function
t2 : P2 → A2 that maps every pair (α1, α2) in P2 to some pair (w,w′) ∈ A2 such
that tpA(w) = α1, tpA(w′) = α2 and w <A w′. We then do the following.

Assume u, u′ ∈ I such that u <A
′

u′. Let α1 and α2 denote the 1-types of u
and u′, respectively, and assume no table has been defined over (u, u′) or (u′, u)
in the cloning stage. Then we define tbA′(u, u′) := tbA(t2(α1, α2)).

Now recall m = min{n, r}. Assume k ∈ {3, ... ,m}, and let Pk be the
set of tuples (α1, ... , αk) of 1-types (repetitions of types allowed) such that
A′ |= α1(u1) ∧ ... ∧ αk(uk) for some elements u1, ... , uk ∈ A′ such that u1 <

A
′

u2 <A
′

... <A
′

uk. Define a function tk : Pk → Ak that maps every tuple
(α1, ... , αk) in Pk to some tuple (w1, ... , wk) ∈ Ak of distinct elements such
that tpA(wj) = αj for each j ∈ {1, ... , k}. Note that the order of the elements
w1, ... , wk in A does not matter, and note also that it is indeed always possible
to find k suitable elements because each pawn in A has at least n ≥ m ≥ k

occurrences in A. Now consider every tuple (u1, ... , uk) ∈ A′k of elements such
that u1 <

A
′

u2 <
A

′

... <A
′

uk and such that we have not defined any table in
the cloning stage over (u1, ... , uk) or over any permutation of (u1, ... , uk), and
define tbA′(u1, ... , uk) := tbA(tk(α1, ... , αk)), where αj denotes the type of uj
for each j. Do this procedure for each k ∈ {3, ... ,m}. Finally, over tuples with
more than m distinct elements, we define arbitrarily the interpretations (in A′)
of relation symbols of arities greater than m. This completes the definition of
A′.

Lemma 3.1. Let A ∈ O be a model and A′ its c-cloning extension w.r.t. ϕ.
Now, if A |= ϕ, then A′ |= ϕ.
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Proof. It is easy to show that the existential conjuncts are dealt with in the
cloning stage of the construction of A′, so we only need to argue that for all
universal conjuncts χ of ϕ, if A |= χ, then A

′ |= χ. To see that A
′ satisfies

the universal conjuncts, consider such a conjunct ∀x1...∀xkψ(x1, ... , xk), where
ψ(x1, ... , xk) is quantifier free, and let (a1, ... , ak) be a tuple of elements from
A′, with possible repetitions. We must show that A′ |= ψ(a1, ... , ak). Let
{u1, ... , uk′} := live(ψ(x1, ... , xk)[a1, ... , ak]) and call V := {a1, ... , ak}. The
table tbA′(u1, ... , uk′) has been defined either in the cloning stage or the com-
pletion stage to be tbA(b1, ... , bk′) for some distinct elements b1, ... , bk′ ∈ A.
Furthermore, since A′ and A have exactly the same number of realizations of
each royal 1-type and since both models have at least n ≥ k realizations of each
pawn, it is easy to define an injection f from V into A that preserves 1-types
and such that f(ui) = bi for each i ∈ {1, ... , k′}. Therefore A′ |= ψ(a1, ... , ak)
iff A |= ψ(f(a1), ... , f(ak)). Since A |= ϕ, we have A |= ψ(f(a1), ... , f(ak)) and
therefore A′ |= ψ(a1, ... , ak).

We now fix a normal form sentence ϕ of U1 with the set τ (with <∈ τ) of
relation symbols occurring in it. We also fix a τ -model A ∈ O. We assume
A |= ϕ and fix a 3-cloning extension A′ of A w.r.t. ϕ. We let n be the width
of ϕ and m∃ the number of existential conjuncts in ϕ. The models A and A′

as well as the sentence ϕ will remain fixed in the next two subsections (3.1 and
3.2). In the two subsections we will study these two models and the sentence ϕ
and isolate some constructions and concepts that will be used later on.

3.1 Identification of a court

Let K denote the set of kings of A′ (w.r.t. ϕ). Thus K is also the set of kings
of A ⊆ A′. We next identify a finite substructure C of A called a court of A

with respect to ϕ. We note that a court of A w.r.t. ϕ can in general be chosen
in several ways.

Before defining C, we construct a certain set D ⊆ A. Consider a pair (α, ϕ∃
i ),

where α is a 1-type (over τ) and ϕ∃
i an existential conjunct of ϕ. If there

exists a free witness structure in A for ϕ∃
i and some element a ∈ A realizing

1-type α, then pick exactly one such free witness structure Aa,ϕ∃
i

and define

D(α, ϕ∃
i ) := Āa,ϕ∃

i
, i.e., D(α, ϕ∃

i ) is the live part of Aa,ϕ∃
i
. Otherwise define

D(α, ϕ∃
i ) = ∅. Define D to be the union of the sets D(α, ϕ∃

i ) for each 1-type
α (over τ) and each existential conjunct ϕ∃

i of ϕ. The size of D is bounded by
m∃|α|n.

Now, for each a ∈ (K ∪ D) ⊆ A and each ϕ∃
i , let Ca,ϕ∃

i
be some witness

structure for the pair (a, ϕ∃
i ) in A. Define the domain C of C as follows:

C :=
⋃

a∈K∪D, 1≤i≤m∃

Ca,ϕ∃
i

Note that K and D are both subsets of C. We define C to be the substructure
of A induced by C, i.e., C := A ↾ C. Thus C is also a substructure of A′. An
upper bound for the size of C is obtained as follows, where α denotes ατ .

|C| ≤ |D ∪K|nm∃ ≤ (nm∃|α| + n|α|)nm∃

≤ (|ϕ|2|α| + |ϕ||α|)|ϕ|2 ≤ 2|ϕ|4|α|.
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We call C the court of A (w.r.t. ϕ). Note that we could have chosen the court
C in many ways from A. Here we choose a single court C for A ⊆ A′ and fix it
for Subsection 3.2. Note also that if p ∈ C ⊆ A ⊆ A′ is a pawn, then it forms
the interval Ip = {p0} ∪ {p} ∪ {p2} in the 3-cloning extension A′, where p0 and
p2 are of the same 1-type as p, and they are in A′ but not in A. Therefore,
choosing elements from A guarantees that no pawn in C of a 1-type α satisfies
either minα(x) or maxα(x) in the 3-cloning extension A′.

3.2 Partitioning cloning extensions into intervals

In this subsection we partition the 3-cloning extension A′ of the ordered struc-
ture A into a finite number of non-overlapping intervals. Roughly speaking,
the elements of the court C of A will all create a singleton interval and the re-
maining interval bounds will indicate the least upper bounds and greatest lower
bounds of occurrences of 1-types in A′. We next define the partition formally;
we call the resulting family of intervals Is ⊆ A′ the canonical partition of A′

with respect to C.
We begin with some auxiliary definitions. Recall that αA denotes the set of

1-types realized in A, and thus αA = αA′ . For each non-royal 1-type α in αA,
define the sets

A′
α = {a ∈ A′ | tpA′(a) = α}, D−

α =
⋃

a∈A′
α

{b ∈ A′ | a ≤ b},

and D+
α =

⋃

a∈A′
α

{b ∈ A′ | b ≤ a}.

In an ordered set (L,<), an interval bound is defined to be a nonempty set
S ( L that is downwards closed (u′ < u ∈ S ⇒ u′ ∈ S). A finite number
of interval bounds define a partition of an ordered set into a finite number of
intervals in a natural way. We define the following finite collection of interval
bounds for A′.

• Every c ∈ C defines two interval bounds, {u ∈ A′ | u < c} and {u ∈
A′ |u ≤ c}. Thereby each c ∈ C forms a singleton interval {c}.

• Each non-royal 1-type α creates two interval bounds: the sets A′ \D−
α and

D+
α .

This creates a finite family of intervals (Is)1≤s≤N that partitions A′. Here N is
the finite total number of intervals in the family. The intervals Is in the family
are enumerated in the natural way, so if s < s′ for some s, s′ ∈ {1, ... , N}, then
u < u′ for all u ∈ Is and u′ ∈ Is′ .

We obtain an upper bound for N as follows. Observe that the number of
interval bounds is bounded from above by 2(|C| + |α|), where α denotes the
set ατ of all 1-types over τ . Thus the number of intervals is definitely bounded
from above by 2(|C| + |α|) + 1. Since we know from the previous section that
|C| = 2|ϕ|4|α|, we obtain that

N ≤ 2(2|ϕ|4|α| + |α|) + 1 = (4|ϕ|4 + 2)|α| + 1 ≤ 6|ϕ|4|α|.

The next two subsections (3.3 and 3.4) provide two quite specific construc-
tions used later in the formulation of Lemma 4.1. Intuitively, the first construc-
tion can be regarded as some sort of data structure derived from the analysis
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done in the previous subsections and the second is in fact simply a set of ax-
ioms derived from this data structure. It is recommended to use especially
Subsections 3.3 and 3.4 as a reference while reading Section 4.

3.3 Defining admissibility tuples

Let χ be a normal form sentence of U1 with the set σ of relation symbols.
Assume <∈ σ. We now define the notion of an admissibility tuple for χ. At
this stage we only give a formal definition of admissibility tuples. The point
is to capture enough information of ordered models of χ to the admissibility
tuples for χ so that satisfiability of U1 over ordered structures can be reduced
to satisfiability of U1 over general structures in Section 4. In particular, our
objective is to facilitate Lemma 4.1. Once we have given the formal definition
of an admissibility tuple, we provide an example (see Lemma 3.5) how a concrete
linearly ordered model of a U1-sentence can be canonically associated with an
admissibility tuple for that sentence, thereby providing background intuition
related to admissibility tuples. Indeed, the reader may find it helpful to refer
to that part while internalising the formal definitions.

Consider a tuple

Γχ := (C∗, (ασ,s)1≤s≤N∗ ,α
K
σ ,α

⊥
σ ,α

⊤
σ , δ, F )

such that the following conditions hold.

• C∗ is a linearly ordered σ-structure, and the size of the domain C∗ of C∗ is
bounded by 2|χ|4|ασ|. Compare this to the bound 2|ϕ|4|ατ | for the size
of C from Section 3.1. We call C∗ the court structure of Γχ.

• N∗ ∈ Z+ is an integer such that |C∗| ≤ N∗ ≤ 6|χ|4|ασ|, and (ασ,s)1≤s≤N∗

is a family of sets ασ,s ⊆ ασ of 1-types such that we have ασ,s ⊆ {α ∈
ασ | ¬(v1 < v1) ∈ α} for each s ∈ {1, ... , N∗}; recall here that v1 is the
variable with which we formally speaking specify 1-types, and recall also
that in addition to ordered models, we will ultimately also consider model
classes where < is simply a binary symbol not necessarily interpreted as
an order. Compare the bound 6|χ|4|ασ| to the bound 6|ϕ|4|ατ | for N
from Section 3.2. We call N∗ the index of Γχ.

• αK
σ ⊆ ασ and also α⊥

σ ⊆ ασ and α⊤
σ ⊆ ασ

• δ is an injective mapping from C∗ to {1, . . . , N∗}.

• F is a subset of the set ασ × Φ∃, where Φ∃ is the set of all existential
conjuncts of χ.

Note that we could have chosen the tuple Γχ above in multiple ways. We

denote the set of all tuples Γχ that satisfy the above conditions by Γ̂χ. The

tuples in Γ̂χ are called admissibility tuples for χ.

Lemma 3.2. The length of the (binary) description of Γχ is bounded exponen-
tially in |χ|.
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Proof. Let χ be a sentence and σ the set of relation symbols in χ with <∈ σ.
Consider an arbitrary tuple

Γχ = (C∗, (ασ,s)1≤s≤N∗ ,α
K
σ ,α

⊥
σ ,α

⊤
σ , δ, F )

such that Γχ ∈ Γ̂χ. To prove Lemma 3.2, we show that each of the seven
elements in Γχ has a binary description whose length is exponentially bounded
in |χ|. This clearly suffices to prove the lemma.

For describing the model C∗, we use the straightforward convention from
Chapter 6 of [22] according to which the unique description of C∗ with some

ordering of σ is of the length |C∗| + 1 +
∑|σ|

i=1 |C∗|ar(Ri) where ar(Ri) is the
arity of Ri ∈ σ. Since we have |C∗| ≤ 2|χ|4|ασ| by definition of the tuples in
Γ̂χ, and since we clearly have |ασ| ≤ 2|χ|, we observe that |C∗| is exponentially
bounded in |χ|. Since ar (Ri) ≤ |χ|, each term |C∗|ar(Ri) is likewise exponen-
tially bounded in |χ|. Furthermore, as |σ| ≤ |χ|, we conclude that the length of
the description of C∗ is exponentially bounded by |χ|.

As |ασ| ≤ 2|χ|, and as each 1-type α ∈ ασ can clearly be encoded by a string
whose length is polynomial in |χ|, we can describe ασ with a description that
is exponentially bounded in |χ|, and as αK

σ , α⊥
σ , and α⊤

σ are subsets of ασ,
their descriptions are also exponentially bounded in |χ|. Moreover, the same
upper bound bounds each member ασ,s of the family (ασ,s)1≤s≤N∗ . Therefore,

as we have N∗ ≤ 6|χ|4|ασ| by the definition of tuples in Γ̂χ, we observe that
N∗ ≤ 6|χ|4 · 2|χ|, and therefore the length of the description of (ασ,s)1≤s≤N∗ is
also exponentially bounded in |χ|.

Due to the bounds for |C∗| and N∗ identified above, the function δ : C∗ →
{1, . . . , N∗} can clearly be encoded by a description bounded exponentially in
|χ|.

Let m∃ denote the number of existential conjuncts in χ. Thus we have
|F | ≤ m∃|ασ| ≤ |χ| · 2|χ|, so the description of F can clearly be bounded
exponentially in |χ|.

For each s ∈ {1, ... , N∗}, let α−
σ,s and α+

σ,s be the subsets of ασ,s defined as
follows: α−

σ,s := ασ,s \
⋃

i<sασ,i and α+
σ,s := ασ,s \

⋃

i>sασ,i. The following
definition provides an important classification of admissibility tuples.

Definition 3.3. Consider the set Γ̂χ of admissibility tuples for χ. We define
the following six conditions, called admissibility conditions for χ, in order to
classify the set Γ̂χ into different sets of admissibility tuples.

i. The sets αK
σ , α⊤

σ and α⊥
σ are subsets of

⋃

1≤s≤N∗ ασ,s.

ii. If ασ,s ∩ αK
σ 6= ∅, then s = δ(c) for some c ∈ C∗. Also, for every

c ∈ C∗, it holds that ασ,δ(c) = {tpC∗(c)}, and furthermore, tpC∗(c) ∈αK
σ

or α−
σ,δ(c) = ∅ = α+

σ,δ(c).

iii. |α−
σ,s| ≤ 1 for all s ∈ {1, ... , N∗}

iv. α⊥
σ =

⋃

1≤s≤N∗ ασ,s

v. |α+
σ,s| ≤ 1 for all s ∈ {1, ... , N∗}

vi. α⊤
σ =

⋃

1≤s≤N∗ ασ,s
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Definition 3.4. An admissibility tuple Γχ is admissible for O if the conditions
i and ii in Definition 3.3 are satisfied. It is admissible for WO if the four
conditions i-iv in Definition 3.3 are satisfied. Finally, it is admissible for Ofin

if all the six conditions i-vi in Definition 3.3 are satisfied. We call admissibility
for O the lowest degree of admissibility and admissibility for Ofin the highest.

Let ϕ be a normal form U1-sentence containing < and A |= ϕ a model. Let
C be a court of A w.r.t. ϕ and A

′ a 3-cloning extension of A w.r.t. ϕ. Let
(Is)1≤s≤N be the canonical partition of A′ w.r.t. C. We will next specify a
tuple

ΓC,A,A′

ϕ := (C, (αA
′,s)1≤s≤N ,α

K
A

′ ,α
⊥
A

′ ,α
⊤
A

′ , δ, F )

which we call a canonical admissibility tuple of A′ w.r.t (C,A, ϕ) (cf. Lemma
3.5 below).

We now specify the elements of the tuple ΓC,A,A′

ϕ above; note that C has
already been specified to be a court of A. Recall that (Is)1≤s≤N is the canonical
partition of A′ w.r.t. C and define the family (αA′,s)1≤s≤N such that αA

′,s :=
{tpA′(a) | a ∈ Is} for all s ∈ {1, ... , N}. Let αK

A′ ⊆ αA′ be the set of the
royal 1-types realized in A

′, and define α⊥
A′ ⊆ αA′ (respectively, α⊤

A′ ⊆ αA′)
to be the set of 1-types that have a minimal (resp., maximal) realization in A′.
Note that if A′ is in WO, we have α⊥

A′ = αA′ , and if A′ is also in Ofin, then
α⊥

A′ = α⊤
A′ = αA′ . For every c in the domain C of C, we define δ(c) := j ∈

{1, ... , N} such that Ij = {c}. We let F be the set of those pairs (α, ϕ∃
i ) that

have a witness structure in A′ whose live part is free.

Lemma 3.5. Let A ∈ K ∈ {O,WO,Ofin} and suppose ΓC,A,A′

ϕ is a canonical

admissibility tuple for A
′ w.r.t (C,A, ϕ). Then ΓC,A,A′

ϕ ∈ Γ̂ϕ and ΓC,A,A′

ϕ is
admissible for K.

Proof. Note that by definition, since ΓC,A,A′

ϕ is canonical admissibility tuple for
A′ w.r.t. (C,A, ϕ), the structure C is a court of A w.r.t. ϕ and we have A |= ϕ,
and furthermore, the set of relation symbols in ϕ (to be denoted by τ) contains
<. We let N denote the index of ΓC,A,A′

ϕ . We note that N is the number of
intervals in the canonical partition of A′ w.r.t. C.

By the discussion in Section 3.1, C is an ordered structure whose size is
bounded by 2|ϕ|4|α| where α is the set of all 1-types over τ . By Section 3.2,
we have |C| ≤ N ≤ 6|ϕ|4|α|. Thus the admissibility condition ii from Definition
3.3 is the only non-trivial remaining condition to show in order to conclude that
ΓC,A,A′

ϕ is an admissibility tuple in Γ̂ϕ admissible for each K ∈ {O,WO,Ofin}
such that A ∈ K. We next argue that this condition indeed holds.

First assume that αA′,s ∩αK
A′ 6= ∅. Thus α ∈ αA′,s for some royal 1-type

α realized in A′. Therefore the interval Is ⊆ A′ contains a king c of A′ that
realizes α. Since kings of A′ are in singleton intervals of the family (It)1≤t≤N ,
we have Is = {c}. Furthermore, since kings of A′ are all in C, we have c in the
domain of δ, and thus, by the definition of δ, we have Iδ(c) = {c}. Thus we have
Is = {c} = Iδ(c), whence s = δ(c). Thus the first part of admissibility condition
ii is satisfied.

To prove the second condition, assume c ∈ C. Therefore the set {c} was
appointed, as described in Section 3.2, to be a singleton interval Iδ(c) in the
family (Is)1≤s≤N . Thus αA′,δ(c) = {tpC(c)}. To show that, furthermore, we

have tpC(c) ∈ αK
A′ or α−

A′,δ(c) = ∅ = α+
A′,δ(c), we consider two cases, the case
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where c is a king and the case where it is a pawn. If c is a king, then tpC(c) ∈αK
A′

by the definition of αK
A′ . On the other hand, if c ∈ C is a pawn, we argue as

follows. Now, as C ⊆ A ⊆ A′, we know that c has two elements u, u′ ∈ A′ of the
same 1-type (as c itself) immediately before and after c that were introduced
when constructing the 3-cloning extension A′ of A (see the beginning of Section
3). Therefore every 1-type has neither its first nor last realization in A′ in the
interval Iδ(c) = {c}, and hence α−

A′,δ(c) = ∅ = α+
A′,δ(c), as required.

3.4 Pseudo-ordering axioms

Let χ be a normal form sentence of U1 with the set σ of relation symbols. We
assume that the symbol < occurs in χ. Let r be the highest arity occurring
in the symbols in σ, and let n be the width of χ. Let m∃ be the number of
existential conjuncts in χ. Assume

Γχ = (C, (ασ,s)1≤s≤N ,α
K
σ ,α

⊥
σ ,α

⊤
σ , δ, F )

is some admissibility tuple in Γ̂χ. In this subsection we construct a certain
large sentence Ax (Γχ) that axiomatizes structures with properties given by Γχ.
The ultimate use of the sentence Ax(Γχ) will be revealed by the statement of
Lemma 4.1, which is one of our main technical results. Note that in that lemma,
satisfiability of Ax(Γχ) is considered in relation to classes of models where the
symbol < is not necessarily interpreted as a linear order.

Let K, D, P⊥, P⊤, and Us for each s ∈ {1, ... , N} be fresh unary relation
symbols, where N is the size of the family (ασ,s)1≤s≤N in Γχ. Intuitively, the
relation symbols K and D correspond to a set of kings and a set of domains
of free witness structures, respectively, as we shall see. The symbols Us, for
1 ≤ s ≤ N , correspond to intervals, but this intuition is not precise as we
shall interpret the predicates Us over models where < is not assumed to be
a linear order. The predicates P⊥ and P⊤ will be axiomatized to contain the
minimal and the maximal realization of each 1-type belonging to α⊥

σ and α⊤
σ ,

respectively.
Let σ′ be the vocabulary σ ∪ {K,D,P⊥, P⊤} ∪ {Us | 1 ≤ s ≤ N}. We

define the pseudo-ordering axioms for Γχ (over σ′) as follows. For most axioms
we also give an informal description of its meaning (when interpreted together
with the other pseudo-ordering axioms). Each of the 16 axioms is a U1-sentence
in normal form.

1. χ

2. The predicates Us partition the universe:
∧

s

∃xUsx ∧ ∀x
(
∨

s

(Usx ∧
∧

t6=s

¬Utx)
)

3. For all s ∈ {1, ... , N}, the elements in Us realize exactly the 1-types (over
σ) in ασ,s:
∧

1≤s≤N

∀x(Usx ↔
∨

α∈α σ,s
α(x) )

Note indeed that the 1-types α in ασ,s are with respect to the vocabu-
lary σ, and thus are definitely not 1-types with respect to the extended
vocabulary σ′.
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4. Each predicate Uδ(c), where c is an element in the domain C of C, is a
singleton set containing an element that realizes α = tpC(c) :

∧

c∈C,α=tpC(c)

(

∃y(Uδ(c)y ∧ α(y) ) ∧ ∀x∀y( (Uδ(c)x ∧ Uδ(c)y )

→ x = y )
)

5. Each α ∈ (
⋃

ασ,s \αK
σ ) is realized at least n times (recall that n is the

width of χ):
∧

α∈(
⋃
ασ,s\αK

σ )

∃x1...∃xn(
∧

i6=j

(xi 6= xj) ∧
∧

i

α(xi) )

6. Each α ∈ αK
σ is realized at least once but at most n− 1 times:

∧

α∈αK
σ

∃y α(y) ∧ ∀x1...∀xn
(

(
∧

i

α(xi) ) →
∨

j 6=k

xj = xk
)

7. K is the set of realizations of types in αK
σ :

∀x
(

(
∨

α∈αK
σ

α(x) ) ↔ Kx
)

8. In order to define the next axiom, we begin with an auxiliary definition.
For each existential matrix χ∃

i (x, y1, ... , yki) in χ, let the set {z1, ... , zli} ⊆
{x, y1, ... , yki} be the set of live variables of χ∃

i (x, y1, ... , yki). We then
define the following axiom which asserts that the set F is the set of all
pairs (α, χ∃

i ) that have a witness structure whose live part is free, and
furthermore, the set D contains, for each pair (α, χ∃

i ) ∈ F , the live part
of at least one free witness structure for (α, χ∃

i ).
∧

(α,χ∃
i
)∈F

∃x∃y1...∃yki
(

α(x) ∧ χ∃
i (x, y1, ..., yki ) ∧

∧

1≤j≤li

( zj 6= x ∧Dzj )
)

∧
∧

(α,χ∃
i
) 6∈F

∀x∀y1...∀yki
(

¬ (α(x) ∧ χ∃
i (x, y1, ..., yki )

∧
∧

1≤j≤li

zj 6= x )
)

9. Axioms 6 and 7 define the setK, andD is described by the previous axiom.
The next axiom says that every element c ∈ (K ∪ D) is in

⋃

c∈C Uδ(c):
∀x( (Kx ∨Dx ) →

∨

c∈C

Uδ(c)x )

10. There is a witness structure for every c ∈ (K ∪D) such that each element
of the witness structure is in

⋃

c∈C Uδ(c):
∧

1≤i≤m∃

∀x∃y1...∃yki
(

(Kx ∨Dx) →

( (
∧

1≤j≤ki

∨

c∈C

Uδ(c)yj ) ∧ χ∃
i (x, y1, ... , yki) )

)

11. The next axiom ensures that there exists an isomorphic copy of C in the
model considered. Let m = min{n, r}, where r is the maximum arity of
relation symbols that occur in χ. For each k ∈ {1, ... ,m}, let Ck denote
the set of all subsets of size k of the domain C of C. Let C̄k denote the
set obtained from Ck by replacing each set Ck ∈ Ck by exactly one tuple
(c1, ... , ck) that enumerates the elements of Ck in some arbitrarily chosen
order. (Thus |Ck| = |C̄k|.) For each tuple (c1, ... , ck) ∈ C̄k, let β[(c1,...,ck)]
denote the table tbC(c1, ... , ck). We define the required axiom as follows:
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∧

1≤k≤m

∧

(c1,...,ck)∈ C̄k

∀x1...∀xk
(

(
∧

cj ∈ (c1,...,ck)

Uδ(cj)xj ) → β[(c1,...,ck)](x1, ... , xk)
)

Note that strictly speaking the axiom ignores sets of size greater than m.

12. The relation symbol < is interpreted to be a tournament:
∀x∀y(x < y ∨ y < x ∨ x = y ) ∧ ∀x∀y ¬(x < y ∧ y < x )

13. Together with the previous axiom, the first three big conjunctions of the
next axiom imply that for all α ∈ α⊥

σ there exists a point in P⊥ that
realizes α, and furthermore, P⊥ is true at a point u iff there exists a 1-type
α such that α ∈ α⊥

σ and u is the unique minimal realization of that 1-
type. The last big conjunction of the axiom implies that if α ∈α−

σ,s∩α⊥
σ

for some s ∈ {1, ... , N}, then there exists a point u′ which is the minimal
realization of α and satisfies Us:

∧

α∈ασ\α⊥
σ

∀x¬ (α(x) ∧ P⊥(x) )

∧
∧

α∈α⊥
σ

(

∃x(α(x) ∧ P⊥x )
)

∧
∧

α∈α⊥
σ

∀x∀y
(

(P⊥x ∧ α(x) ∧ α(y) ∧ y 6= x ) → x < y
)

∧
∧

α∈α−
σ,s∩α⊥

σ

∃x(P⊥x ∧ α(x) ∧ Usx )

The above axiom could be expressed simply as: For all α ∈ α−
σ,s ∩α⊥

σ :
∃x(minα(x) ∧ Usx). However, this is not in normal form, and translating
it into normal form makes it look somewhat cumbersome.

14. The next axiom is analogous to the previous one:
∧

α∈ασ\α⊤
σ

∀x¬ (α(x) ∧ P⊤(x) )

∧
∧

α∈α⊤
σ

(

∃x(α(x) ∧ P⊤x )
)

∧
∧

α∈α⊤
σ

∀x∀y
(

(P⊤x ∧ α(x) ∧ α(y) ∧ y 6= x ) → x > y
)

∧
∧

α∈α+
σ,s∩α⊤

σ

∃x(P⊤x ∧ α(x) ∧ Usx)

Or equivalently but not in normal form: For all α ∈α+
σ,s∩α

⊥
σ : ∃x(maxα(x)∧

Usx).

The last two axioms below are technical assertions about the predicates Us, the
relation < and 1-types. The significance of these axioms becomes clarified in
the related proofs.

15.
∧

s,t∈{1,...,N}, s<t

∀x∀y
(

(Usx ∧ Uty ) → x < y
)

16.
∧

s∈{1,...,N}\img(δ)

∧

α∈α+
σ,s

∧

α′ ∈ασ,s

∃x∃y
(

α(x) ∧ α′(y) ∧ Usx ∧ Usy ∧ y < x
)

We denote the conjunction of the above 16 pseudo-ordering axioms over σ′ for
the admissibility tuple Γχ by Ax(Γχ). We note that Ax(Γχ) is a normal form
sentence of U1 over the vocabulary σ′ which expands the vocabulary σ of χ. The
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formulae Ax(Γχ) play a central role in the reduction of ordered satisfiability to
standard satisfiability based on Lemma 4.1.

Lemma 3.6. Let ϕ be a normal form U1-sentence with the set τ of relation
symbols, <∈ τ . Let A |= ϕ be a τ-model. Let C be a court of A w.r.t. ϕ and
A′ a 3-cloning extension of A w.r.t. ϕ. Let ΓC,A,A′

ϕ be a canonical admissibility

tuple for A′ w.r.t. (C,A, ϕ) and N the index of ΓC,A,A′

ϕ . Then the τ-model A′

has an expansion A′′ to the vocabulary τ ∪ {K,D,P⊥, P⊥} ∪ {Us | 1 ≤ s ≤ N}
such that A′′ |= Ax(ΓC,A,A′

ϕ ).

Proof. Recall the τ -sentence ϕ and the τ -model A |= ϕ fixed in Section 3. Recall
also the 3-cloning extension A

′ of A w.r.t. ϕ and the court C of A w.r.t. ϕ fixed
in that Section. Let ΓC,A,A′

ϕ be the canonical admissibility tuple of A′ w.r.t.

(C,A, ϕ). Note that by Lemma 3.5, we have ΓC,A,A′

ϕ ∈ Γ̂ϕ, and furthermore,

ΓC,A,A′

ϕ is admissible for each K ∈ {O,WO,Ofin} such that A ∈ K. We will

show that A′ has an expansion A′′ such that A′′ |= Ax (ΓC,A,A′

ϕ ). As ϕ, A, A′

and C were fixed arbitrarily, this proves the current lemma ( Lemma 3.6).
Let N be the index of ΓC,A,A′

ϕ , in other words, N is the size of the family
(Is)1≤s≤N of intervals fixed in Section 3.2. Thus we now must prove that A

′

has an expansion A′′ to the vocabulary τ ∪ {K,D,P⊥, P⊥} ∪ {Us | 1 ≤ s ≤ N}
such that A′′ |= Ax(ΓC,A,A′

ϕ ). We let A′′ be the expansion of A′ obtained by
interpreting the extra predicates {K,D,P⊥, P⊤}∪ {Us | 1 ≤ s ≤ N} as follows.

1. KA
′′

and DA
′′

are defined as K and D in the Section 3.1, respectively.
Thus KA

′′

⊆ A is the set of kings in A′ (and A) and DA
′′

⊆ A is a set
that contains, for every pair (α, ϕ∃

i ) that has a free witness structure in
A, the free part of at least one such witness structure (cf. Section 3.1).

2. PA
′′

⊥ is defined to satisfy the pseudo-ordering axiom 13; we let PA
′′

⊥ be
true at a point u iff there is some 1-type α such that u is the minimal
realization of α. PA

′′

⊤ is defined analogously to satisfy axiom 14.

3. Each predicate UA
′′

s is defined to be the interval Is ⊆ A′ identified in
Section 3.2.

Next we show that A′′ |= Ax(ΓC,A,A′

ϕ ). As it is easy to see that A′′ satisfies
axioms 1-7 and 9-16, it suffices to show that A′′ satisfies axiom 8. Recalling
the definition of DA

′′

, this can clearly be done by proving the following claim.
(Recall (cf. Section 3.3) that F is the set of those pairs (α, ϕ∃

i ) that have a free
witness structure in A′.)

Claim: A has a free witness structure for a pair (α, ϕ∃
i ) iff (α, ϕ∃

i ) ∈ F .
As A

′ is a 3-cloning extension of A, it is clear that A
′ has a free witness

structure for a pair (α, ϕ∃
i ) if A has. Suppose now that for some a ∈ A′,

A′ has a free witness structure A′
a,ϕ∃

i

for some (α, ϕ∃
i ) ∈ F and A does not

have a free witness structure for this pair. Let A
′
a,ϕ∃

i

|= ϕ∃
i (a, a1, ... , aki) for

some points a1, ... , aki ∈ A′, which are not necessarily distinct. Let u1, ... , ul ∈
(A′

a,ϕ∃
i

\ {a}) be the distinct points forming the live part of A′
a,ϕ∃

i

. Thus some

points a1, ... , ak′ ∈ (A′
a,ϕ∃

i

\ {u1, ... , ul}) together with a form the dead part of

A′
a,ϕ∃

i

.
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The table tbA′(u1, ... , ul) has been defined either in the cloning stage or the
completion stage to be tbA(b1, ... , bl) for some distinct elements b1, ... , bl ∈ A.
Furthermore, since A

′ and A have exactly the same number of realizations
of each royal 1-type and since both models have at least n ≥ ki + 1 real-
izations of each pawn, it is easy to define an injection f from A′

a,ϕ∃
i

into A

that preserves 1-types and such that f(ui) = bi for each i ∈ {1, ... , l}. There-
fore A′ |= ϕ∃

i (a, a1, ... , aki) iff A |= ϕ∃
i (f(a), f(a1), ... , f(aki)), whence we have

A |= ϕ∃
i (f(a), f(a1), ... , f(aki)). Therefore, as f is injective, we see that A has a

free witness structure for (α, ϕ∃
i ). This contradicts the assumption that A does

not have a free witness structure for the pair (α, ϕ∃
i ).

4 Reducing ordered satisfiability to standard sat-

isfiability

In this section we establish decidability of the satisfiability problems of U1 over
O, WO and Ofin. The next lemma (Lemma 4.1) is the main technical result
needed for the decision procedure. Note that satisfiability in the case (b) of the
lemma is with respect to general rather than ordered models. In the lemma we
assume w.l.o.g. that ϕ contains <.

Lemma 4.1. Let ϕ be a U1-sentence containing the symbol <. Let K ∈
{O,WO,Ofin}. The following conditions are equivalent:

(a) ϕ ∈ satK(U1).

(b) Ax(Γϕ) ∈ sat(U1) for some admissibility tuple Γϕ ∈ Γ̂ϕ that is admissible
for K.

Proof. In order to prove the implication from (a) to (b), suppose that ϕ ∈
satK(U1). Thus there is a structure A ∈ K such that A |= ϕ. As A |= ϕ, there
exists a court C of A w.r.t. ϕ. Now let A′ be a 3-cloning extension of A w.r.t.
ϕ, and let ΓC,A′

A
′

ϕ be the canonical admissibility tuple of A
′ w.r.t. (C,A, ϕ).

By Lemma 3.5, the canonical tuple is in Γ̂ϕ and admissible for K. By Lemma

3.6, A
′ has an expansion A

′′ such that A
′′ |= Ax(ΓC,A,A′

ϕ ). The proof for the
direction from (b) to (a) is given in Appendix A.

The following gives a brief description of the decision process which is also
outlined in Figure 1. A complete and rigorous treatment of related details is
given in Appendix B which is devoted to the proof of Theorem 4.2.

1. An input to the problem is a sentence ψ′ of U1, which is immediately
converted into a normal form sentence ψ of U1 (cf. Proposition 2.1).

2. Based on ψ, an admissibility tuple Γψ ∈ Γ̂ψ is guessed non-deterministically.
The size of the tuple is exponential in |ψ| (cf. Lemma 3.2). It is then
checked whether the tuple is admissible for the class K ∈ {O,WO,Ofin}
whose decision problem we are considering.

3. Based on Γψ, the sentence Ax(Γψ) is produced. The length of Ax(Γψ) is
exponential in |ψ| (cf. Lemma B.1 in Appendix B).
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4. Then a model B, whose description is exponential in |ψ| (cf. Lemma B.4
in Appendix B), is guessed. It is then checked whether B |= Ax (Γψ),
which can be done in exponential time in |ψ| (cf. the end of Appendix B).

1: procedure Satisfiability(ψ′) over K. ⊲ The U1-sentence ψ
′ is an

input to the algorithm. Here K ∈ {O,WO,Ofin}, so we are outlining three
procedures in parallel.

2: Construct a normal form sentence ψ of U1 from ψ′. Let τ be the vocab-
ulary consisting of all the relation symbols occurring in ψ. ⊲ By
Proposition 2.1, it holds that ψ is satisfiable iff ψ′ is satisfiable.

3: Guess Γψ ∈ Γ̂ψ and check that Γψ is an admissibility tuple admissible
for K.

4: Let τ ′ := τ ∪ {Us | s ∈ {1, ... , N}} ∪ {K,D,P⊥, P⊤}. Formulate the
pseudo-ordering axioms for Γψ over τ ′ and let Ax(Γψ) be the conjunction
of these axioms. ⊲ Note that Ax(Γψ) is in normal form.

5: Guess a potential model B of Ax(Γψ) whose size is exponentially
bounded in |ψ|. ⊲ In the next lines it is checked whether B |= Ax(Γψ).
Note that by Lemma 4.1, if B |= Ax(Γψ), then ψ ∈ satK(ψ).

6: for all b ∈ B do
7: for all existential conjuncts χ :=

∀x∃y1...∃yiβ(x, y1, ..., yi) of Ax(Γψ) do
8: Guess elements b′1, ... , b

′
l in B to form a witness

structure Bb,χ and
9: check whether B |= β(b, b′1, ... , b

′
l).

10: end for
11: end for
12: for all universal conjuncts ∀x1...∀xl′β′(x1, ... xl′)

of Ax(Γψ) do
13: for all tuples (b1, ... , bl′) of elements of B, do
14: Check whether B |= β′(b1, . . . , bl′).
15: end for
16: end for
17: end procedure

Figure 1: Solving satisfiability of U1 over K ∈ {O,WO,Ofin}. The symbol ⊲
indicates comment.

Theorem 4.2. Let K ∈ {O,WO,Ofin}. The satisfiability problem for U1 over
K is NExpTime-complete.

Proof. The lower bound (for each of the three decision problems) follows im-
mediately from [24]. The remaining part of the proof is given in Appendix
B.

5 Undecidable extensions

The satisfiability problem for FO2 over structures with three linear orders is
undecidable [11]. On the other hand, while the finite satisfiability problem for
FO2 over structures with two linear orders is decidable and in 2NExpTime [26],

19



the general satisfiability problem for FO2 with two linear orders (and otherwise
unrestricted vocabulary) is open. These results raise the question whether the
satisfiability problem for the extension U1[<1, <2] of U1 (see Section 2.1) over
structures with two linear orders is decidable. We use tiling arguments to an-
swer this question in the negative; see Appendix C for a proof of the following
theorem.

Theorem 5.1. The satisfiability problem for U1[<1, <2] over structures with
two built-in linear orders is undecidable.

We note that U1[∼1,∼2], where ∼1 and ∼2 denote built-in equivalence re-
lations, is decidable and complete for 2NExpTime [15].

6 Conclusion

We have shown that U1 is NExpTime-complete over ordered, well-ordered and
finite ordered structures. To contrast these results, we have established that
U1[<1, <2] is undecidable. The results here are the first results concerning U1

with built-in linear orders. Several open problems remain, e.g., investigating
U1 with combinations of equivalence relations and linear orders. Such results
would contribute in a natural way to the active research program concerning
FO2 with built-in relations and push the field towards investigating frameworks
with relation symbols of arbitrary arity.
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A Proof of Lemma 4.1

Please note that the proof of Lemma 4.1 below spans all of the current section,
ending at the end of Subsection A.4.

Proof. The implication from (a) to (b) was proved in the main text, so we
prove the implication from (b) to (a) here. We deal with the three cases K ∈
{O,WO,Ofin} in parallel. We let τ denote the set of relation symbols in ϕ.

To prove the implication from (b) to (a), assume that B |= Ax (Γϕ) for some
τ ′-model B and some admissibility tuple

Γϕ = (C, (ατ,s)1≤s≤N ,α
K
τ ,α

⊥
τ ,α

⊤
τ , δ, F ) ∈ Γ̂ϕ

that is admissible for the class K. Here τ ′ = τ ∪ {K,D,P⊥, P⊤} ∪ {Us|1 ≤ N ≤
Us}. Note that while B interprets the symbol <, it is not assumed to be an
ordered model. Based on B and Γϕ, we will construct an ordered τ -model A ∈ K
such that A |= ϕ. The construction of A consists of the following (informally
described) four steps; each step is described in full detail in its own subsection
below.

1) We first construct the domain A of A and define a linear order < over it. We
also label the elements of A with 1-types in ατ . After this stage the relations of
A (other than <) contain no tuples other than trivial tuples, i.e., tuples (u, ... , u)
with u repeated.

2) We then copy a certain substructure C of B into A; the structure C is the
set of points in B that satisfy some predicate Us with s ∈ img(δ). This step
introduces fresh non-trivial tuples into the relations of A.

3) We then define a witness structure for each element a ∈ A and each existen-
tial conjunct ϕ∃

i of ϕ. As the above step, this step introduces non-trivial tuples
into the relations of A.
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4) Finally, we complete the construction of A by making sure that A also
satisfies all universal conjuncts ϕ∀

i of ϕ. Also this step involves introducing
non-trivial tuples.

A.1 Constructing an ordered and labelled domain for A

Before defining an ordered domain (A,<) for A, we construct an ordered set
(Is, <) for each s ∈ {1, ... , N} based on the set ατ,s ∈ (ατ,s)1≤s≤N of Γϕ. Once
we have the ordered sets defined, the ordered domain (A,<) is defined to be the
ordered sum (A,<) = Σ1≤s≤N (Is, <), i.e., the ordered sets (Is, <) are simply
concatenated so that the elements of It are before the elements of It′ iff t < t′.
Thus the ordered sets (Is, <) become intervals in (A,<).

However, we will not only construct an ordered domain (A,<) in the current
subsection (Subsection A.1), we will also label the elements of A by 1-types
over τ . Thus, by the end of the current subsection, the structure A will be a
linearly ordered structure with the 1-types over τ defined. Each interval Is will
be labelled such that exactly all the 1-types in the set ατ,s given in Γϕ are
satisfied by the elements of Is.

Let s ∈ {1, ... , N}. We now make use of the admissibility tuple Γϕ as follows.
If ατ,s ∩αK

τ 6= ∅, then by the admissibility condition ii from Definition 3.3, we
have s = δ(c) for some c ∈ C where C is the domain of the structure C from Γϕ.
Furthermore, we infer, using the admissibility condition ii, that ατ,δ(c) must in
fact be a singleton {αs} such αs = tpC(c). We define Is to be a singleton set, and
we label the unique element u in Is by the type αs by defining lab(u) = αs where
lab denotes a labelling function lab : A→ ατ whose definition will become fully
fixed once we have dealt with all the intervals (Is, <).

Having discussed the case where ατ,s∩αK
τ 6= ∅, we assume that ατ,s∩αK

τ =
∅. We divide the analysis of this case into three subcases (see below) depending
on the degree of admissibility of Γϕ (cf. Definition 3.4). Before dealing with
the cases, we define some auxiliary ordered sets that will function as building
blocks when we construct the intervals (Is, <).

Fix n to be the width of ϕ and m∃ the number of existential conjuncts in ϕ.
By a 3(m∃ + n)-block we mean a finite ordered set that consists of 3(m∃ + n)
elements. A 3(m∃ + n)-block divides into into three disjoint sets that we call
the E-part, F -part and G-part. Each of the parts contains m∃ + n consecutive
elements in the block such that the sets E, F and G appear in the given order.
We will define the remaining intervals (Is, <) below using 3(m∃ +n)-blocks. For
each 3(m∃ + n)-block (U,<) we use, the elements in U will be labelled with a
single 1-type, i.e., we will define lab(u) = lab(u′) for all u, u′ ∈ U . Therefore
we in fact (somewhat informally) talk about about 3(m∃ + n)-blocks (U,<) of
1-type α. This means that while (U,<) is strictly speaking only an (unlabelled)
ordered set with 3(m∃ + n) elements, we will ultimately set lab(u) = α for all
u ∈ U .

Let (J,<) be a finite, ordered set consisting of several 3(m∃ +n)-blocks such
that there is one 3(m∃ +n)-block for each 1-type α ∈ατ,s and no other blocks;
the order in which the blocks (U,<) for different 1-types appear in (J,<) is
chosen arbitrarily. Similarly, let (J−, <) contain a 3(m∃ + n)-block for each
α ∈ α−

τ,s in some order and no other blocks. Let (J+, <) contain a block for
each α ∈ α+

τ,s in some order and no other blocks. Note that J− and J+ may
be empty. We define the ordered interval (Is, <) as follows:
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1. Assume Γϕ is admissible for O but not for WO. We define (Is, <) to be
the ordered set consisting of three parts (Is, <)1, (Is, <)2 and (Is, <)3 in
the given order and defined as follows.

(a) (Is, <)1 consists of a countably infinite number of copies of (J−, <)
such that the different copies are ordered as the negative integers,
i.e., (Is, <)1 can be obtained by ordering Zneg ×J− lexicographically,
where Zneg denotes the negative integers; schematically, (Is, <)1 :=
... · (J−, <) · (J−, <) · (J−, <) where “ · ” denotes concatenation.

(b) (Is, <)2 := (J,<).

(c) (Is, <)3 consists of a countably infinite number of copies of (J+, <)
such that the different copies are ordered as the positive integers.

Schematically, (Is, <) is therefore the structure

... · (J−, <) · (J−, <) · (J,<) · (J+, <) · (J+, <) · ...

2. Assume Γϕ is admissible for WO but not for Ofin . Again the interval
(Is, <) is the concatenation of three parts (Is, <)1, (Is, <)2, (Is, <)3 in
that order, but while (Is, <)2 and (Is, <)3 are the same as above, now
(Is, <)1 := (J−, <). Thus, (Is, <) is the structure

(J−, <) · (J,<) · (J+, <) · (J+, <) · ...

3. Assume Γϕ is admissible for Ofin. In this case we define (Is, <) to be the
structure

(J−, <) · (J,<) · (J+, <).

Note that since we already associated each 3(m∃ + n)-block in each of the
structures (J,<), (J−, <), (J+, <) with a labelling with 1-types, we have now
also defined the 1-types over the interval (Is, <). Therefore we have now shown
how to construct an ordered domain (A,<) for A and also defined a labelling of
A with 1-types.

A.2 Copying C into A

Due to axiom 11, the structure B contains an isomorphic copy CB of the struc-
ture C from Γϕ, that is, B has a substructure C′

B
such that C′

B
↾ τ is isomorphic

to C and CB := C′
B

↾ τ . The domain CB of CB is the union of the sets UB

δ(c) for

all c ∈ C; recall that by axiom 4, each UB

δ(c), for c ∈ C, is a singleton.

Let g be the isomorphism from CB to C. (The isomorphism is unique since C

is an ordered set.) We shall create an isomorphic copy of C into A by introducing
tuples to the relations of A; no new points will be added to A. We first define
an injective mapping h from CB to A as follows. Let b ∈ CB, and denote
δ(g(b)) by s. Now, if b realizes a 1-type α ∈ ατ,s ∩αK , then we recall from
Section A.1 that Is ⊆ A is a singleton interval that realizes the type α. We
let h map b to the element in Is ⊆ A. Otherwise b realizes a 1-type α ∈ ατ,s

such that α 6∈ αK . Then, by admissibility condition ii, (see Definition 3.3),
α−
τ,s and α+

τ,s are empty. Therefore, using the notation from Section A.1, we
have (Is, <) = (J,<) as J− and J+ are empty. Therefore, and since ατ,s is

24



a singleton (by admissibility condition ii), we observe that (Is, <) consists of
a single 3(m∃ + n)-block of elements realizing α. We let h map b to the first
element in Is ⊆ A.

Denote the set img(h) by CA. Hence h is a bijection from CB onto CA that
preserves 1-types over τ . Due to the construction of the order <A and axiom 15,
it is easy to see that h also preserves order, i.e., we have b < b′ iff h(b) < h(b′)
for all b, b′ ∈ CB.

Now let r′ denote the highest arity of the relation symbols in ϕ. Let
{b1, . . . , bj} ⊆ CB be a set with j ∈ {2, ... , r′} elements. We define

tbA(h(b1), ... , h(bj)) := tbB↾τ (b1, ... , bj)

and repeat this for each subset of CA of size from 2 up to r′. By construction,
h is an isomorphism from CB ↾ τ to CA.

A.3 Finding witness structures

Recalling the function h from the previous section, we define KA := {h(k) |
k ∈ KB} and DA := {h(d) | d ∈ DB}. By axiom 9 and due to the definition
of the domain CB (cf. Subsection A.2), we have (KB ∪ DB) ⊆ CB ⊆ B.
Moreover, by axiom 10 and how CB was defined, there is a witness structure
in CB for every b ∈ (KB ∪ DB) ⊆ CB and every existential conjunct ϕ∃

i of
ϕ. As CA is isomorphic to CB, there is a witness structure in CA for every
a ∈ (KA ∪DA) ⊆ CA and every conjunct ϕ∃

i of ϕ. In this section we show how
to define, for each element a ∈ A \ (KA ∪ DA) and each existential conjunct
ϕ∃
i of ϕ, a witness structure in A. This consists of the following steps, to be

described in detail later on.

1. We first choose, for each a ∈ A \ (KA ∪DA), a pattern element ba of the
same 1-type (over τ) from B.

2. We then locate, for each pattern element ba and each existential conjunct
ϕ∃
i , a witness structure Bba,ϕ

∃
i

in B.

3. We then find, for each element b′ of the live part B̄ba,ϕ
∃
i

of Bba,ϕ
∃
i
, a

corresponding 3(m∃ + n)-block of elements from A. The elements of the
block satisfy the same 1-type as b′. We denote the block by bl(b′).

4. After this, we locate from each block bl(b′) an element corresponding to
b′. We then construct from these elements a live part Āa,ϕ∃

i
of a witness

structure for a and ϕ∃
i .

5. These live parts are then, at the very end of our procedure, completed to
full witness structures by locating suitable dead parts from A.

Let a ∈ A\(KA∪DA) and let sa ∈ {1, ... , N} denote the index of the interval
Isa such that a ∈ Isa . Let α ∈ ατ,sa \αK be the 1-type of a over τ . We next
show how to select a pattern element ba for a. The pattern element ba will be
selected from the set UB

sa
⊆ B.

1. Firstly, if a ∈ CA, then we let ba := h−1(a) ∈ CB, where h is the bijection
from CB to CA. Otherwise we consider the following cases 2-4.
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2. Assume Γϕ is admissible for O but not for WO (and thus not for Ofin

either). Then we let ba be an arbitrary realization of α in UB
sa

.

3. Assume that Γϕ is admissible for WO but not for Ofin. Then, if α 6∈α−
τ,sa

,

we let ba be an arbitrary realization of α in UB
sa

. If α ∈ α−
τ,sa

, we let

ba be the element in UB
sa

that satisfies minα(x); this is possible due to
admissibility condition iv and axiom 13.

4. Assume Γϕ is admissible for Ofin. Now, if we have α 6∈ α−
τ,sa

∪ α+
τ,sa

, we

let ba be an arbitrary realization of α in UB
sa

. If α ∈α−
τ,sa

\α+
τ,sa

, then we

let ba be the element in UB
sa

that satisfies minα(x), which is possible due to
the admissibility condition iv and axiom 13. If α ∈ α+

τ,sa
\α−

τ,sa
, then we

let ba be the element in UB
sa

that satisfies maxα(x), which is possible due to
the admissibility condition vi and axiom 14. Finally, if α ∈α−

τ,sa
∩α+

τ,sa
,

then there are the following two cases: If a is not in the last 3(m∃ + n)-
block in Isa , then we choose ba as in the case α ∈ α−

τ,sa
\ α+

τ,sa
. If a

is in the last 3(m∃ + n)-block in Isa , then we choose ba as in the case
α ∈α+

τ,sa
\α−

τ,sa
.

We have now a pattern element ba for each a in A\ (KA∪DA). Let a denote
an arbitrary element in A \ (KA ∪ DA) and let ϕ∃

i be an arbitrary existential
conjunct of ϕ. By axiom 1, we have B |= ϕ, and thus we find a witness structure
Bba,ϕ

∃
i

in B for the pair (ba, ϕ
∃
i ). Next we consider a number of cases based on

what the live part B̄ba,ϕ
∃
i

of the witness structure Bba,ϕ
∃
i

is like and how the
live part is oriented in relation to Bba,ϕ

∃
i
. In each case, we ultimately define a

live part Āa,ϕ∃
i

for some witness structure Aa,ϕ∃
i
. The dead part of the witness

structure Aa,ϕ∃
i

will be found at a later stage of our construction. In many of

the cases, the identification of the live part Āa,ϕ∃
i

requires that we first identify

suitable 3(m∃ + n)-blocks bl(b′) for the elements b′ of B̄ba,ϕ
∃
i
, and only after

finding the blocks, we identify suitable elements from the blocks in order to
construct Āa,ϕ∃

i
.

Case ‘empty live part ’ : If the live part B̄ba,ϕ
∃
i

of the witness structure

Bba,ϕ
∃
i

is empty, we let the live part Āa,ϕ∃
i

of a witness structure for (a, ϕ∃
i ),

whose dead part will be constructed later, be empty.
Case ‘free live part ’ : Assume that ba does not belong to the (non-empty)

live part B̄ba,ϕ
∃
i

of the witness structure Bba,ϕ
∃
i
. By axiom 8, there is a witness

structure for (α, ϕ∃
i ) in B whose live part is in the set DB ⊆ CB ⊆ B. Let

d1, ... , dk ∈ DB be the elements of B̄ba,ϕ
∃
i

(so B̄ba,ϕ
∃
i

contains exactly k ≥ 1

elements). According to axiom 8, as CB and CA are isomorphic (via the bijection
h), it is clear that tbA(h(d1), ... , h(dk)) = tbB↾τ(d1, ... , dk). Therefore we let
{h(d1), ... , h(dk)} be the domain of the live part Āa,ϕ∃

i
of a witness structure for

(a, ϕ∃
i ), whose dead part will be constructed later; we note that a 6∈ DA due to

our assumption that a 6∈ KA ∪DA, so Āa,ϕ∃
i

is free w.r.t. a, i.e., a 6∈ Āa,ϕ∃
i
.

Case ‘local singleton live part ’ : Assume that ba is alone in the live
part B̄ba,ϕ

∃
i

of the witness structure Bba,ϕ
∃
i
, i.e., |B̄ba,ϕ∃

i
| = 1. We recall that

tbA(a) = tbB↾τ (ba), and we let {a} be the domain of the live part Āa,ϕ∃
i

of a

witness structure for (a, ϕ∃
i ), whose dead elements will be identified later.

Case ‘local doubleton live part ’ : Assume that ba and some other element
b′ 6= ba in B form the live part B̄ba,ϕ

∃
i

of the witness structure Bba,ϕ
∃
i
. Thus
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|B̄ba,ϕ∃
i
| = 2. Let tb′ ∈ {1, ... , N} be the index such that b′ ∈ UB

tb′
⊆ B. Next

we consider several subcases of the case local doubleton live part.
In the following subcases 1 and 2, we assume that tb′ 6= sa; recall that

ba ∈ UB
sa

and b′ ∈ UB
tb′

. We first note that if tb′ < sa (respectively, if sa < tb′),
then by axiom 15, we have B |= b′ < ba (resp., B |= ba < b′).

1. If b′ ∈ CB, then we define tbA(a, h(b′)) := tbB↾τ (ba, b
′). We note that in

the special case where a ∈ CA, as we have b′ ∈ CB, both elements a and
h(b′) are in CA, and therefore we have actually already defined the table
tbA(a, h(b′)) when CB was copied into A.

2. If b′ 6∈ CB, then we select some 3(m∃+n)-block bl(b′) of elements in Itb′ ⊆
A realizing the 1-type tpB↾τ (b′); this is possible as for all s ∈ {1, ... , N},
the interval Is ⊆ A has been constructed so that it realizes exactly the
same 1-types over τ as the set UB

s , and furthermore, for the following
reason: Since b′ 6∈ CB, we have b′ 6∈ KB, and thus (by axiom 7) we have
tpB↾τ(b′) 6∈αK

τ , whence it follows from the construction of the domain A
that the interval Itb′ contains at least one 3(m∃ + n)-block of each 1-type
realized in the interval. With the block bl(b′) chosen, we will later on show
how to choose an element a′ ∈ bl(b′) ⊆ A in order to construct a full live
part of a witness structure for (a, ϕ∃

i ). After that we will identify related
dead elements in order to ultimately complete the live part into a full
witness structure. (Strictly speaking, rather than seeking full definitions
of witness structures, we will always define only a table for the live part
of a witness structure in addition to making sure that suitable elements
for the dead part can be found.)

In the following subcases 3 and 4 of the case local doubleton free-part, we assume
that tb′ = sa, i.e., ba, b

′ ∈ UB
sa

. It follows from axiom 12 that either B |= ba < b′

or B |= b′ < ba but not both. In both subcases 3 and 4, we locate only a
3(m∃ + n)-block bl(b′) ⊆ A of elements of 1-type tpB↾τ (b′). Once again we will
only later find elements from the block bl(b′) in order to identify a live part of
a witness structure for (a, ϕ∃

i ), and after that we ultimately complete the live
part to a full witness structure by finding suitable dead elements.

Note that since ba and b′ 6= ba are both in UB
sa

, the set UB
sa

is not a singleton
and thus UB

sa
∩ CB = ∅. Therefore, b′ 6∈ KB and by axiom 7, tpB↾τ (b′) 6∈ αK

τ .
Now it follows from the construction of the domain A that the interval Isa
contains at least one 3(m∃ + n)-block of 1-type tpB↾τ (b′).

3. Assume that B |= b′ < ba. Let α′ denote the 1-type tpB↾τ (b′) of b′. If
α′ 6∈ α−

τ,sa
, then we must have α′ ∈ ατ,t for some t < sa. Thus, and

as tpB↾τ (b′) 6∈ αK
τ , It ⊆ A contains at least one block bl(b′) of elements

realizing the 1-type α′. We choose the block bl(b′) to be the desired block
to be used later. If, on the other hand, we have α′ ∈α−

τ,sa
, we proceed as

follows.

a) Assume Γϕ is admissible only for O and not for WO (and thus not
for Ofin either). Then, due to the way we have defined the interval
Isa ⊆ A and labelled its elements by 1-types, there exists a 3(m∃+n)-
block bl(b′) ⊆ Isa of elements of type α′ such that bl(b′) precedes the
block in Isa that contains a. We appoint bl(b′) to be the desired block
to be used later.
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b) Assume Γϕ is admissible for WO and not for Ofin. Assume first that
α 6∈ α−

τ,sa
(where we recall that α is the 1-type of a and ba over τ).

Since α′ ∈ α−
τ,sa

and α 6∈ α−
τ,sa

, we observe that the interval Isa ⊆ A

has been defined such that there exists a 3(m∃ +n)-block bl(b′) ⊆ Isa
of elements of type α′ such that bl(b′) precedes the block in Isa that
contains a. We appoint bl(b′) to be the block to be used later.

Assume then that α ∈α−
τ,sa

. In this case, we have chosen the pattern
element ba to be the minimal realization of α in B. Since B |=
b′ < ba, we must have tpB↾τ (b′) 6= tpB↾τ (ba). Thus we must have
α′ = tpB↾τ(b′) 6∈α−

τ,sa
by the admissibility condition iii (which states

that |α−
τ,sa

| ≤ 1). This contradicts the assumption that α′ ∈ α−
τ,sa

,
so this case is in fact impossible and can thus be ignored.

c.1) Assume Γϕ is admissible for Ofin. Furthermore, assume that one of
the following conditions holds.

c.1.1) α 6∈α−
τ,sa

(but α may be in α+
τ,sa

).

c.1.2) α ∈α−
τ,sa

∩α+
τ,sa

and a is in the last block in Isa .

Now, since α′ ∈α−
τ,sa

we observe that the interval Isa ⊆ A has been
defined such that there is a 3(m∃ + n)-block bl(b′) ⊆ Isa of elements
of type α′ such that bl(b′) precedes the block in Isa that contains a.
We appoint bl(b′) to be the block to be used later.

c.2) Now assume Γϕ is admissible for Ofin, and furthermore, assume that
one of the following conditions holds.

c.2.1) α ∈α−
τ,sa

\α+
τ,sa

.

c.2.2) α ∈α−
τ,sa

∩α+
τ,sa

and a is not in the last block in Isa .

In these cases we have chosen the pattern element ba to be the
minimal realization of α in B. Since B |= b′ < ba, we must have
tpB↾τ (b′) 6= tpB↾τ (ba). Thus we must have α′ = tpB↾τ (b′) 6∈α−

τ,sa
by

the admissibility condition iii (which states that |α−
τ,sa

| ≤ 1). This
contradicts the assumption that α′ ∈ α−

τ,sa
, so this case is in fact

impossible and can thus be ignored.

4. Assume that B |= ba < b′. Again we let α′ denote tpB↾τ (b′). If α′ 6∈α+
τ,sa

,
then we have α′ ∈ατ,t for some t > sa. We choose bl(b′) to be some block
of elements realizing the 1-type α′ from the interval It ⊆ A. If α′ ∈α+

τ,sa
,

we proceed as follows.

a) Assume that Γϕ is not admissible for Ofin but is admissible for O
or even for WO. Then, due to the way we defined 1-types over the
interval Isa , there exists a block bl(b′) ⊆ Isa of type α′ following the
block that contains a in Isa . We appoint the block bl(b′) to be used
later.

b.1) Assume that Γϕ is admissible for Ofin. Furthermore, recall that α
is the 1-type of a and assume that one of the following conditions
holds.

b.1.1) α 6∈α−
τ,sa

∪α+
τ,sa

b.1.2) α ∈α−
τ,sa

\α+
τ,sa

b.1.3) α ∈α−
τ,sa

∩α+
τ,sa

and a is not in the last block in Isa .
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Now, since α′ ∈ α+
τ,sa

and due to admissibility condition v and the
way we defined 1-types over the interval Isa , the last block in Isa is of
1-type α′. Clearly this last block comes after the block that contains
a in Isa . We call this last block bl(b′) and appoint it for later use.

b.2) Assume Γϕ is admissible for Ofin and that one of the following cases
holds.

b.2.1) α ∈α+
τ,sa

\α−
τ,sa

b.2.2) α ∈α−
τ,sa

∩α+
τ,sa

and a is in the last block in Isa .

Then we have chosen the pattern element ba to be the maximal real-
ization of α in B, i.e., it satisfies maxα(x). As admissibility for Ofin

implies that |α+
τ,sa

| ≤ 1, we have α = α′. As we have assumed that
B |= ba < b′, we observe that this case is in fact impossible and can
thus be ignored.

Now recall that when constructing the domain A of A using 3(m∃+n)-blocks,
we defined the E-part of a 3(m∃ + n)-block to be the set that contains the first
(m∃ + n) elements of the block. Similarly, we defined the F -part to be the set
with the subsequent (m∃ + n) elements immediately after the E-part, and the
G-part was defined to be the set with the last (m∃ +n) elements. Below, we let
E ⊆ A denote the union of the E-parts of all the 3(m∃ + n)-blocks used in the
construction of A. Similarly, we let F and G denote the unions of the F -parts
and G-parts, respectively.

Now, in the subcases 2-4 of the case doubleton live part, we located a 3(m∃ +
n)-block bl(b′) ⊆ A of elements of type α′ = tpB↾τ (b′). Let t ∈ {1, ... , N} be
the index of the interval It ⊆ A where the block bl(b′) is. Next we will select
an element a′ from bl(b′) ⊆ It in order to define the domain of a live part of a
witness structure for (a, ϕ∃

i ) in A; note that in the subcase 1, such an element
was already chosen. Now, if a ∈ E, we let a′ be the i-th element (where i is
the index of ϕ∃

i ) realizing α′ in F ∩ bl(b′). Similarly, if a ∈ F (respectively, if
a ∈ G ∪ (CA \ (KA ∪DA))), we choose a′ to be the i-th element in G ∩ bl(b′)
(resp., in E ∩ bl(b′)). Then we define tbA(a, a′) := tbB↾τ (b, b′), thereby possibly
creating new tuples into the relations of A. Now {a, a′} is the domain of the
live part of a witness structure for (a, ϕ∃

i ). Assigning 2-tables in this cyclic way
prevents conflicts, as each pair (a, a′) ∈ A2 is considered at most once.

We then proceed to considering the case where ba and at least two other
elements in B form the live part B̄ba,ϕ

∃
i

of the witness structure Bba,ϕ
∃
i
. The

sets E,F,G ⊆ A defined above will play a role here as well.
Case ‘local large live part ’ : Assume indeed that the live part B̄ba,ϕ

∃
i

has

at least three elements, i.e., |B̄ba,ϕ∃
i
| ≥ 3. Let r1, ... , rk (possibly k = 0) be the

elements in B̄ba,ϕ∃
i

that belong also to KB, and let ba, b1, ... , bl (possibly l = 0)

be the remaining elements of B̄ba,ϕ∃
i
. As |B̄ba,ϕ∃

i
| ≥ 3, we have k + l ≥ 2. Now

let j ∈ {1, ... , l} and identify, in an arbitrary way, a 3(m∃ + n)-block bl(bj) ⊆ A

of elements that realize the same 1-type as bj does. We let αj be the 1-type of
bj , i.e., αj = tpB↾τ (bj), and we also let tbj ∈ {1, ... , N} denote the index of the
interval where bl(bj) is. Then, with the blocks bl(bj) chosen for each j, we move
on to considering the following subcases of the case local large live part in order
to define a live part of a witness structure for (a, ϕ∃

i ) in A.

1. Assume l = 0 and a ∈ CA (whence k ≥ 2). We let {a, h(r1), ... ,
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h(rk)} (where h is the bijection from CB to CA we defined above) be the
domain of the desired live part. We note that tbA(a, h(r1), ... , h(rk)) has
already been defined when CB was copied into A.

2. Assume l = 0 and a 6∈ CA (whence k ≥ 2). Let {a, h(r1), ... ,
h(rk)} be the domain of the desired live part and define

tbA(a, h(r1), ... , h(rk)) := tbB↾τ(ba, r1, ... , rk).

Note here that the mapping h is injective and a 6∈ img(h) = CA.

3. Assume l > 0 and a ∈ E. We will next define elements a1, ... , al ∈ A

corresponding to b1, ... , bl. We first let a1 be the i-th (where i ≤ m∃ is
the index of ϕ∃

i ) element in bl(b1) ∩ F . Then, if l > 1, we define the
elements a2, ... , al to be distinct elements such that aj is, for an arbitrary
p ∈ {m∃ + 1, ... ,m∃ + n}, the p-th element in bl(bj)∩F . Note that l < n,
so it is easy to ensure the elements a2, ... , al are distinct even if chosen
from a single block. We let {a, h(r1), ... ,
h(rk), a1, ... , al} be the domain of the desired live part of a witness struc-
ture, and we define tbA(a, h(r1), ... , h(rk), a1, ... ,
al) := tbB↾τ (ba, r1, ... , rk, b1, ... , bl), thereby possibly creating new tuples
to the relations of A.

4. Assume l > 0 and a ∈ F . Then we proceed as in the previous case,
but we take the elements a1, ... , al from G. Similarly, if l > 0 and a ∈
G ∪ (CA \ (KA ∪DA)), we take the elements a1, ... , al from E. As before,
we let {a, h(r1), ... , h(rk), a1, ... ,
al} be the domain of the desired live part of a witness structure, and we
then define tbA(a, h(r1), ... , h(rk), a1, ... , al) :=
tbB↾τ(ba, r1, ... , rk, b1, ... , bl), thus again possibly creating new tuples to
relations.

We have now considered several cases and defined the live part Āa,ϕ∃
i

of a

witness structure Aa,ϕ∃
i

in each case (or rather a table over the elements of the

live part). We next show how to complete the definition of Aa,ϕ∃
i

by finding a

suitable dead part for it. We have defined Āa,ϕ∃
i

in each case so that there is a

bijection from B̄ba,ϕ∃
i
∪{ba} onto Āa,ϕ∃

i
∪{a}; note that ba (respectively, a) may

or may not be part of the live part B̄ba,ϕ
∃
i

(resp., Āa,ϕ∃
i
) depending on whether

the live part is free, and it holds that ba ∈ B̄ba,ϕ∃
i
⇔ a ∈ Āa,ϕ∃

i
. The task is now

to extend this bijection to a map that maps injectively from Bba,ϕ∃
i

into A and
preserves 1-types over τ . This will complete the construction of Aa,ϕ∃

i
. This is

very easy to do: Note first that since n is the width of ϕ, we have |Bba,ϕ∃
i
| ≤ n.

Now recall that in A, each pawn is part of some 3(m∃ + n)-block of elements
of the same 1-type, so there are at least 3(m∃ + n) elements of that type in A.
Furthermore, the elements of B with a 1-type (over τ) that is royal in A are all
in KB ⊆ CB, and A contains the copy CA of CB as a substructure. Thus it is
easy to extend the bijection in the required way.

A.4 Completion procedure

Let r be the highest arity occurring in the symbols in τ and n the width of ϕ.
Define m := min{r, n} and k ∈ {2, ... ,m}. Let S ⊆ A be a set with k-elements.
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Assume that tbA(s) has not been defined for any k-tuple s enumerating the
elements of S when copying C into A and when finding witness structures in A;
thus we still need to define some k-table for some tuple s that enumerates the
points in S. We do this next.

Assume first that k = 2. Assume S = {a1, a2} such that a1 < a2 and such
that tpA(a1) = α1 and tpA(a2) = α2. Let s, t ∈ {1, ... , N} be the indices such
that a1 ∈ Is and a2 ∈ It. Due to the way we constructed the intervals of A in
Section A.1, we know that α1 ∈ ατ,s and α2 ∈ ατ,t. Furthermore, as a1 < a2,
we know that either Is is an interval preceding the interval It and thus s < t,
or Is and It are the same interval and thus s = t.

If s < t, then by axioms 3 and 15, we find from B a point b1 ∈ UB
s realizing

α1 and a point b2 ∈ UB
t realizing α2 such that b1 <

B b2. We set tbA(a1, a2) :=
tbB↾τ (b1, b2).

Now assume that s = t. We consider the two cases where α2 6∈ α+
τ,s and

α2 ∈ α+
τ,s. If α2 6∈ α+

τ,s, then there is some t′ ∈ {1, ... , N} such that s < t′

and α2 ∈ ατ,t′ . Thus, again by axioms 3 and 15, we find from B a point
b1 ∈ UB

s realizing α1 and a point b2 ∈ UB

t′ realizing α2 such that b1 <
B b2.

We set tbA(a1, a2) := tbB↾τ (b1, b2). Assume then that α2 ∈ α+
τ,s. We consider

the two subcases where s 6∈ img(δ) and s ∈ img(δ); recall the definition of
δ from Section 3.3. If s 6∈ img(δ), then by axioms 3 and 16, there is in B

a point b1 ∈ UB
s realizing α1 and a point b2 ∈ UB

s realizing α2 such that
b1 <

B b2. Once again we set tbA(a1, a2) := tbB↾τ(b1, b2). If s ∈ img(δ), then,
by admissibility condition ii, either Is is a singleton with an element with a royal
type or α−

τ,s = ∅ = α+
τ,s. If Is is a singleton, then the assumption a1 < a2 fails,

so we must have α−
τ,s = ∅ = α+

τ,s. Thus the assumption α2 ∈ α+
τ,s fails, and

thus this case is in fact impossible and can thus be ignored.
Assume then that k > 2. We select distinct elements b1, ... , bk in B such that

tpA(ai) = tpB↾τ (bi) for each i ∈ {1, ... , k}; this is possible because every king of
A is in CA and thus there exists a corresponding point in CB, and furthermore,
by axiom 5, for each pawn u of A, there exist at least n ≥ k points of the 1-type
(over τ) of u in B. Now we set tbA(a1, ... , ak) := tbB↾τ (b1, ... , bk).

Finally, if the maximum arity r of relations in τ is greater than n, then
the tables of A over sets with more than n elements are defined arbitrarily.
The model A is now fully defined. To finish the proof of Lemma 4.1, we ar-
gue that A |= ϕ. The fact that A satisfies all the existential conjuncts of ϕ
was established in Section A.3. To see that A satisfies also the universal con-
juncts, consider such a conjunct ∀x1...∀xkψ(x1, ... , xk), and let (a1, ... , ak) be
a tuple of elements from A, with possible repetitions. We must show that
A |= ψ(a1, ... , ak). Let {u1, ... , uk′} := live(ψ(x1, ... , xk)[a1, ... , ak]), and let
V := {a1, ... , ak} \ {u1, ... , uk′}. The table tbA(u1, ... , uk′) has been defined ei-
ther when finding witness structures or in the above completion construction
based on some table tbB↾τ (b1, ... , bk′) of distinct elements. We now observe the
following.

1. All the kings of A are in CA and thereby have corresponding elements in
CB that satisfy the same 1-type over τ .

2. For each pawn u of A, there exist at least n elements of the same 1-type
over τ as u in B (by axiom 5).

3. The set V ∪ {u1, ... , uk′} = {a1, ... , ak} has at most n elements.
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Based on the above, it is easy to see that we can define an injection f from
{u1, ... , uk′} ∪ V into B that preserves 1-types (over τ) and satisfies f(ui) = bi
for each i ∈ {1, ... , k′}. Therefore A |= ψ(a1, ... , ak) iff B |= ψ(f(a1), ... , f(ak)).
Since B |= ϕ, we have B |= ψ(f(a1), ... , f(ak)) and therefore A |= ψ(a1, ... , ak).

B Proof of Theorem 4.2

In this section we study the complexity of the algorithm outlined in Figure
1 (in Section 4) and establish that it runs in NExpTime in all cases K ∈
{O,WO,Ofin}. We now fix some K ∈ {O,WO,Ofin} and study only the
algorithm for the class K; below we call the algorithm Algorithm 1.

Let ψ′ be a U1-sentence given as an input to Algorithm 1. It follows from
Proposition 2.1 that ψ′ can be translated in polynomial time in |ψ′| to a normal
form sentence ψ such that ψ′ is satisfiable in some model M ∈ K iff ψ is
satisfiable in some expansion M

∗ ∈ K of M. The formula ψ is the normal form
sentence of U1 constructed at line 2 of Algorithm 1. Let τ be the vocabulary
consisting of the relation symbols in ψ. We assume w.l.o.g. that <∈ τ .

At line 3 we guess some Γψ ∈ Γ̂ψ and check that Γψ is indeed an admissibility
tuple admissible for K. The length of Γψ is bounded exponentially in |ψ| by
Lemma 3.2, and checking admissibility of Γψ for K can be done in polynomial
time in |Γψ|.

At line 4 we let τ ′ be the vocabulary τ∪{Us | s ∈ {1, ... , N}}∪{K,D,P⊥, P⊤}
and formulate the conjunction Ax(Γψ) of the pseudo-ordering axioms for Γψ over
τ ′.

Lemma B.1. Consider a normal form sentence χ of U1 and a related admis-
sibility tuple. The size of the sentence Ax(Γχ) is exponentially bounded in |χ|.

Proof. Let N be the index of Γχ and C the domain of the court structure
of Γχ. Let σ be the vocabulary of χ. Now let β be some axiom from the
list of 16 axioms that make Ax (Γχ), see Section 3.4. The sentence β is a
normal form sentence with some number m∃,β of existential conjuncts and some
number m∀,β of universal conjuncts. Now, by inspection of the pseudo-ordering
axioms, the sum m∃,β + m∀,β is bounded above by the very generous4 bound
const · |χ| · N2 · |ασ|2 · |C||χ| + const for some constant const. Recalling from
Section 3.3 that |C| ≤ 2|χ|4|ασ| and N ≤ 6|χ|4|ασ|, we get that m∃,β + m∀,β

is bounded by const · |χ| · (6|χ|4|ασ|)2 · |ασ|2 · (2|χ|4|ατ |)|χ| + const . Since
|ασ| ≤ 2|χ|, it is therefore easy to see that this bound is exponential in |χ|.
Therefore, to conclude our proof, it suffices to find some bound B exponential
in |χ| such that the length of each existential conjunct as well as the length of
each universal conjunct in Ax(Γχ) is bounded above by B.

To find such a bound B, we first investigate axiom 11. We note that each
formula β[c1,... ,ck](x1, ... , xk) in axiom 11 is a k-table and therefore consists of
a conjunction over a set such as—to give a possible example—the one given
in Example 2.2. The number of conjuncts in β[c1,... ,ck](x1, ... , xk) is therefore

definitely bounded above by the bound |χ| · |χ||χ|. Thus it is easy to see that

4We shall not seek minimal or in any sense canonical bounds. Instead we settle with

”clearly sufficient” bounds. This applies here as well as later on.
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there exists a term B(11) exponential in |χ| such that the length of each universal
conjunct of axiom 11 is bounded above by B(11). To cover the existential and
universal conjuncts in the other axioms, we investigate each axiom individually
and easily conclude that there exists a term B(i) for each axiom i ∈ {1, ... , 16}
such that the length of each existential and universal conjunct in the axiom (i)
is bounded above by Bi, and furthermore, Bi is exponential in |χ|. By taking the
product of the terms B(i), we find a uniform exponential bound for the length
of all existential and universal conjuncts in Ax(Γχ).

At line 5 of Algorithm 1 we guess a τ ′-model B whose domain size is ex-
ponential in |ψ| (rather than exponential in |Ax(Γψ)|); a sufficient bound is
established below (Lemma B.4), and furthermore, it is shown that not only the
domain size but even the full description of B can be bounded exponential in
|ψ|. (Recall that B does not have to interpret the binary relation symbol < as
and order.) We now begin the process of finding an exponential upper bound
(in |ψ|) for the size of B and show that this bound is indeed sufficient. We also
establish that, indeed, the full description of B likewise has a bound exponen-
tial in |ψ|. To achieve these goals, we first analyze below the proof of Theorem
B.2; this theorem is Theorem 2 in the article [13] (and Theorem 3.4 in [14] due
to different numbering). The original proof is given in detail in Section 3 of
both [13] and [14]. We state the theorem exactly as in [13] and [14], and thus
note that UF=

1 denotes U1 in the theorem. (Note that obviously the theorem
concerns general U1 as opposed to U1 over ordered structures.)

Theorem B.2 ([13]). UF=
1 has the finite model property. Moreover, every

satisfiable UF=
1 -formula ϕ has a model whose size is bounded exponentially in

|ϕ|.

It follows from Theorem B.2 that Ax(Γψ) has a model M whose size is
exponential in |Ax (Γψ)|, but since |Ax (Γψ)| is exponential in |ψ|, the size of the
model M is double exponential in |ψ|. This is not the desired result. To lower
the bound to exponential, we now analyze the proof of Theorem B.2 given in
Section 3 of [13] and [14]. This will result in the following lemma which follows
directly and very easily from [13, 14] but is implicit there, i.e., not stated as an
explicit lemma. Recall here that αA denotes the 1-types realized in A.

Lemma B.3. Let ϕ be a normal form sentence of U1. Let m∃ > 0 be the
number of existential conjuncts in ϕ. Let n ≥ 2 be the width of ϕ and σ the
vocabulary of ϕ. If ϕ is satisfiable, then it is satisfiable in some model M such
that |M | ≤ 8m2

∃n
2αM where αM ⊆ ασ.

Proof. Let ϕ, n ≥ 2, σ andm∃ 6= 0 be as specified above. Assume ϕ is satisfiable.
The claim of the current lemma follows directly by inspection of the relatively
short argument in Section 3 of [13, 14], but we shall anyway outline here why
there exists a model M with the given limit 8m2

∃n
2αM on domain size.

Assume A is a σ-model such that A |= ϕ. The original proof constructs from
the σ-model5 A of ϕ a new σ-model A′ whose domain A′ consists of the union
of four sets C,E, F,G, where the set C is constructed with the help of two sets
K and D. Now, while it is stated in [13] that |K| ≤ (n − 1)|ασ| and |D| ≤

5The vocabulary used in the original proof is denoted by τ instead of σ. We use σ here

because τ is in ’global’ use by Algorithm 1.
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(n− 1)m∃|ασ|, it is straightforward to observe that in fact |K| ≤ (n− 1)|αA|
and |D| ≤ (n − 1)m∃|αA|. (Note that we use αA instead of αA′ here.) It is
also easily seen that |C| ≤ n|K ∪ D|m∃, and thus we can calculate, using the
above bounds for K and D, that

C ≤n|K ∪D|m∃ ≤ n((n− 1)|αA| + (n− 1)m∃|αA|)m∃

≤ (n2|αA| + n2m∃|αA|)m∃ ≤ 2n2m2
∃|αA|.

We then consider the sets E,F,G. The article [13] gives a bound (n +
m∃)|ασ| for each of these sets, but it is immediate that in fact (n + m∃)|αA|
suffices.

Putting all the above together, we calculate

|C ∪ E ∪ F ∪ E| ≤ 2n2m2
∃|αA| + 3(n+m∃)|αA|

≤ 8n2m2
∃|αA|.

It is also immediate that αA′ ⊆αA, so the domain of A′, i.e., the set C ∪ E ∪
F ∪ E, is bounded above by 8n2m2

∃|αA
′ |.

Lemma B.4. Let Γϕ ∈ Γ̂ϕ be some tuple admissible for K ∈ {O,WO,
Ofin} such that Ax(Γϕ) is satisfiable. Then Ax(Γϕ) has a model A whose size
is bounded exponentially in |ϕ|. Moreover, even the length of the description of
A is bounded exponentially in |ϕ|.

Proof. Let σ be the vocabulary of ϕ. Let n be the width of ϕ and m∃ the
number of existential conjuncts in ϕ. Let N be the index of Γϕ and σ′ :=
σ ∪ {Us | 1 ≤ s ≤ N} ∪ {K,D,P⊥, P⊤} the vocabulary of Ax(Γϕ). Let C be
the domain of the court structure in Γϕ. Assume M |= Ax(Γϕ). Recalling from
Section 3.3 that N ≤ 2|ϕ|4|ασ| and thus clearly N ≤ 2|ϕ|4 · 2|ϕ|, we have

|σ′| = |σ| + |{Us | 1 ≤ s ≤ N}| + |{K,D,P⊥, P⊤}| = |σ| +N + 4 ≤
|ϕ| + 2|ϕ|4 · 2|ϕ| + 4

Thus |ασ′ | is bounded by 2|ϕ|+2|ϕ|4·2|ϕ|+4. This is double exponential in |ϕ|.
However, the upper bound for |αM| (i.e., the number of 1-types over σ′ realized
in M) is exponentially bounded in |ϕ| for the following reason.

Since the predicates Us, where s ∈ {1, ... , N}, partition the domain M ,
each element in M satisfies exactly one of the predicates Us. Therefore, letting
σ′′ := σ′ \ {Us | 1 ≤ s ≤ N}, we have |αM| ≤ N |ασ′′ |. On the other hand,
|ασ′′ | ≤ 2|σ|+4 ≤ 2|ϕ|+4. Combining these, we obtain that |αM| ≤ N · 2|ϕ|+4.
Recalling (from a few lines above) that N ≤ 2|ϕ|4 · 2|ϕ|, we get |αM| ≤ 2|ϕ|4 ·
2|ϕ| · 2|ϕ|+4 = 2|ϕ|4 · 22|ϕ|+4. This is exponential in |ϕ|.

As Ax(Γϕ) is satisfiable, it follows from Lemma B.3 that A |= Ax (Γϕ) for
some σ′-structure A whose size is bounded by
8m̂∃n̂

2|αA|, where m̂∃ is the number of existential conjuncts in Ax(Γϕ) and n̂

is the width of Ax(Γϕ). On the other hand, by the result from the previous
paragraph, we have |αA| ≤ 2|ϕ|4 · 22|ϕ|+4. Therefore, to show that the domain
of A is bounded exponentially in |ϕ|, it suffices to show that m̂∃ and n̂ are
exponentially bounded in |ϕ|. This follows immediately by Lemma B.1.

We then show that even the length of the description of A is, likewise, ex-
ponentially bounded in |ϕ|. For describing models, we use the straightforward
convention from Chapter 6 of [22], according to which the unique description of
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A with some ordering of σ′ is of the length |A|+1+
∑|σ′|
i=1 |A|ar(Ri) where ar(Ri)

is the arity of Ri ∈ σ′. Since |A| is exponential in |ϕ| and ar (Ri) ≤ |ϕ|, each
term |A|ar(Ri) is likewise exponentially bounded in |ϕ|. Furthermore, at the
beginning of the current proof we calculated that |σ′| ≤ |ϕ| + 2|ϕ|4 · 2|ϕ| + 4.
Thus we conclude that the description of A exponentially bounded in |ϕ|.

Once we have guessed the exponentially bounded model B at line 5 of Al-
gorithm 1, the remaining part of the algorithm is devoted for checking that
B |= Ax(Γψ). At lines 6-11 we scan each b ∈ B and each existential conjunct
of Ax(Γψ). Then at lines 12-16 we check the universal conjuncts by checking
all tuples of length at most n′ in B, where n′ is the width of Ax(Γψ). Noting
that n′ ≤ n + 1, where n is the width of ψ, the procedure at lines 5-16 can be
carried out in exponential time in |ψ|.

We have now proved the following theorem, which is a restatement of Theo-
rem 4.2. (Recall that the lower bound is obtained because FO2 is NExpTime-
complete for all the classes K ∈ {O,WO,Ofin} [24].)

Theorem B.5. (Restatement of Theorem 4.2):
Let K ∈ {O,WO,Ofin}. The satisfiability problem for U1 over K is NExpTime-
complete.

C Proof of Theorem 5.1

Before giving the proof, we introduce some definitions and lemmas used in the
proof.

A domino system D is a structure (D,Hdo, Vdo), where D is a finite set (of
dominoes) and Hdo, Vdo ⊆ D ×D. We say that a mapping τ : N× N → D is a
D-tiling of N × N, if for every i, j ∈ N, it holds that (τ(i, j), τ(i + 1, j)) ∈ Hdo

and (τ(i, j), τ(i, j + 1)) ∈ Vdo. The tiling problem asks, given a domino system
D as an input, whether there exists a D-tiling of N × N. It is well known that
the tiling problem is undecidable.

Let GN = (N× N, H, V ) be the standard grid, where H = {
(

(i, j),

(i+ 1, j)
)

| i, j ∈ N} and V = {
(

(i, j), (i, j + 1)
)

| i, j ∈ N} are binary relations.
Let A = (A,H, V ) and B = (B,H, V ) be {H,V }-structures, where H and

V are binary relations. The structure A is homomorphically embeddable into B,
if there is a homomorphism h : A→ B defined in the usual way.

Definition C.1. A structure G = (G,H, V ) is called grid-like, if there exists a
homomorphism from GN to G, i.e., GN is homomorphically embeddable into G.

Let G be a {H,V }-structure with two binary relations H and V . We say that
H is complete over V , if G satisfies the formula ∀xyzt( (Hxy ∧ V xt ∧ V yz ) →
Htz ).

The following lemma is from [24]. Note that FO2 is contained in U1.

Lemma C.2 ([24]). Let G = (G,H, V ) be a structure satisfying the FO2-axiom
∀x(∃yHxy ∧ ∃yV xy ). If H is complete over V, then G is grid-like.

Let D be a domino system, and let (Pd)d∈D be a set of unary relation
symbols. Assume that there is a D-tiling of N × N. The correctness of the D-
tiling can be expressed by the FO2-sentence ϕD := ∀x(

∨

d Pdx ∧
∧

d 6=d′ ¬(Pdx ∧
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Pd′x) ) ∧ ∀xy(Hxy →
∨

(d,d′)∈Hdo
(Pdx ∧ Pd′y ) ) ∧ ∀xy(V xy →

∨

(d,d′)∈Vdo
(Pdx ∧ Pd′y ) ).

Lemma C.3. Let D be a domino system, and let G be a class of grid-like
structures such that GN ∈ G. Then there exists a D-tiling of N×N iff there exists
G ∈ G that can be expanded to G′ = (G,H, V, (Pd)d∈D) such that G′ |= ϕD.

Proof. Assume first that there exists a D-tiling of N × N. Then, as GN ∈ G,
we expand GN to G′

N
= (N × N, H, V, (Pd)d∈D) in the obvious way, whence

G
′
N
|= ϕD.
Assume then that there exists G ∈ G that can be expanded to G′ =

(G,H, V, (Pd)d∈D) such that G′ |= ϕD. As G is grid-like, it follows from Defini-
tion C.1 that there is a homomorphism h : GN → G. We define τ : N× N → D

such that τ(i, j) = d, if h(i, j) ∈ Pd for some d ∈ D. Now the mapping τ is a
D-tiling of N× N.

Proof of Theorem 5.1. Let τ = {H,V }. Recall that the standard grid GN is a τ -
structure. Let τ ′ = τ∪{<1, <2, N}, where <1 and <2 are binary symbols and N
is a 4-ary symbol. Let us first informally outline the proof. First the standard
grid GN is expanded to τ ′-structure G

′
N. Expanding GN to G

′
N amounts to

describing how the new symbols <1, <2, and N are interpreted in G′
N. A

fragment of the intended structure can be seen in Figure2. Then we axiomatize
some important properties of G′

N such that the structures that interpret <1

and <2 as linear orders and satisfy the axioms, resemble G′
N closely enough.

Now, let G be the class of τ -reducts of τ ′-structures that interpret <1 and <2

as linear orders and satisfy the axioms. In particular, GN is in G. We show that
every structure in G satisfies the local criterion that H is complete over V . It
will then follow from Lemma C.2 that every structure in G is grid-like. Then the
undecidability of the general satisfiability problem for U1[<1, <2] follows from
Lemma C.3.

We now go to the details of the proof. We define the τ ′-expansion G
′
N of

GN as follows. The linear order <1 follows a lexicographical order such that for
all (i, j), (i′, j′) ∈ N2, we have (i, j) <1 (i′, j′) if and only if j < j′ or (j = j′

and i < i′). In the linear order <2, the roles of i and j are swapped, i.e., for
all (i, j), (i′, j′) ∈ N2, we have (i, j) <2 (i′, j′) if and only if i < i′ or (i = i′ and
j < j′).

The symbol N is defined as follows. For all points a, b, c, d in N2, we have
Nabdc if and only if Hab, Hcd, V ac, and V bd; see Figure2.

Next we define a few auxiliary formulae. For i ∈ {1, 2}, let x ≤i y := x =
y ∨ x <i y. Define also σi(x, y, z) := x <i y ∧ (z ≤i x ∨ y ≤i z).

We are now ready to give the desired axioms defining a class of τ ′-structures.
Let η be the conjunction of the following sentences.

ηG = ∀x(∃yHxy ∧ ∃yV xy ).

ηH = ∀xyz
(

Hxy → σ1(x, y, z)
)

. Together with the previous axiom, this axiom
forces H to be a kind of an ”induced successor relation” of the linear order
<1. It is worth noting that H is subject to the uniformity condition of
U1, i.e., H cannot be used freely in quantifier-free U1[<1, <2]-formulae,
but the order symbols <1, <2 can.

ηV = ∀xyz
(

V xy → σ2(x, y, z)
)

. This is analogous to ηH .
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ηN∃ = ∀x∃yzt(Nxyzt ). This axiom states that each point is a first coordinate
in some 4-tuple in N . We call the 4-tuples in N quasi-squares.

ηN∀ = ∀xyztu
(

Nxyzt→ (σ1(x, y, u)∧σ2(x, t, u)∧σ2(y, z, u)∧σ1(t, z, u))
)

. The
points of the quasi-squares are connected via the induced successors of <1

and <2; see the green curves representing tuples in N , Figure 2.

Thus we have η := ηG ∧ ηH ∧ ηV ∧ ηN∃
∧ ηN∀

. It is readily checked that the
expansion G′

N of the standard grid GN satisfies the sentence η. Let G = {G′ ↾

τ | G′ is τ ′-model s.t. <G
′

1 and
<G

′

2 are linear orders and G′ |= η}. Next we need to show that every structure
G ∈ G is grid-like. This can be done by applying Lemma C.2: as every structure
G ∈ G satisfies ηG, it suffices to show that for every structure G ∈ G, H is
complete over V .

a b

c d

Figure 2: A finite fragment of the intended structure. The blue arrows represent
the H-relations and the red ones the V-relations. The green curves represent
the N -relations, e.g. Nabdc.

To show that H is complete over V in every structure in G, let G′ be a
τ ′-structure interpreting <1 and <2 as linear orders and satisfying η. For con-
venience, for i ∈ {1, 2}, let βi(x, y) := ∀z (σi(x, y, z)).

Let a ∈ G′. From ηG, we get points b, c, d ∈ G′ such that Hab∧ V ac ∧ V bd.
As Hab∧V ac∧ V bd, we conclude that β1(a, b)∧β2(a, c)∧β2(b, d) from ηH and
ηV . From ηN∃, we get Nab′d′c′ for some b′, c′, d′ ∈ G′. As Nab′d′c′, we conclude
that β1(a, b′) ∧ β2(a, c′) ∧ β2(b′, d′)∧ β1(c′, d′) from ηN∀. The following claim is
clear.

Claim. If β1(a, b) ∧ β1(a, b′), then b = b′.
As β1(a, b)∧β1(a, b′), it follows from the claim that b = b′. We then conclude

similarly that c = c′ and d = d′ (recalling that b = b′). From ηG, we get a point
d′′ ∈ G′ such that Hcd′′ and then conclude that β1(c, d′′) from ηH . Furthermore,
as β1(c′, d′), c = c′ and d = d′, we have β1(c, d) ∧ β1(c, d′′). Now, analogously
to the claim, we have d = d′′. Therefore, as Hcd′′, we have Hcd.

Let G := G′ ↾ τ . Thus for G ∈ G, it holds that H is complete over V . Now
it follows from Lemma C.2 that G is grid-like.

As G′
N
|= η, the standard grid GN is also in G. It now follows from Lemma

C.3 that the (general) satisfiability problem for U1[<1, <2] over structures with
linear orders <1 and <2 is undecidable.
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