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NON-UNIQUENESS OF WEAK SOLUTIONS TO THE 3D QUASI-GEOSTROPHIC

EQUATIONS

MATTHEW D. NOVACK

Abstract. We show that weak solutions to the 3D quasi-geostrophic system in the class C
ζ
t,x for ζ ă 1

5

are not unique and may achieve any smooth, non-negative energy profile. Our proof follows a convex
integration scheme which utilizes in a crucial way the stratified nature of the quasi-geostrophic velocity
field, providing a link with the 2D Euler equations. In fact we observe that under particular circumstances
our construction coincides with the convex integration scheme for the 2D Euler equations introduced by
Choffrut, De Lellis, and Szekélyhidi [14] and recovers a result which can already be inferred from the
arguments of Buckmaster, De Lellis, Isett, and Székelyhidi [7] or Buckmaster, Shkoller, and Vicol [5].
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1. Introduction

The inviscid three-dimensional quasi-geostrophic equation, or 3D QG, is a system of equations used
to describe oceanic and atmospheric circulation. In this paper, we pose the equations for pt, x, y, zq P
RˆT2ˆ r0, 2πs, which corresponds to the physical setting of a stratified, rotating fluid with solid walls at
z “ 0 and z “ 2π [34]. The velocity field is given in terms of the stream function Ψ : RˆT2 ˆr0, 2πs Ñ R

by

∇
K
Ψpt, x, y, zq :“ p´ByΨpt, x, y, zq, BxΨpt, x, y, zq, 0q.

We use the notation BνΨ to denoted the outward pointing normal derivatives of Ψ at z “ 0, 2π. The
following set of equations then governs the evolution of ∇Ψ:
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Btp∆Ψq ` ∇
K
Ψ ¨ ∇p∆Ψq “ 0 pt, x, y, zq P R ˆ T2 ˆ r0, 2πs

BtpBνΨq ` ∇
K
Ψ ¨ ∇pBνΨq “ 0 pt, x, y, zq P R ˆ T2 ˆ t0, 2πu.

The above equations state that the potential vorticity ∆Ψ and Neumann derivative BνΨ are transported

by the velocity field ∇
K
Ψ. In this paper, we shall exclusively use the following reformulation due to Puel

and Vasseur [51].
#

Btp∇Ψq ` ∇
K
Ψ ¨ ∇p∇Ψq “ curlpQq pt, x, y, zq P R ˆ T3

curlpQq ¨ p0, 0, 1q “ 0 pt, x, y, zq P R ˆ T2 ˆ t0, 2πu.
Weak solutions to the reformulated problem are defined via the following equality for all test functions φ
in C8

`

R ˆ T3
˘

which are compactly supported in time ([51]):
ż

R

ż

T3

Btp∇φq ¨ ∇Ψ ` ∇Ψ ¨
´

∇
K
Ψ ¨ ∇∇φ

¯

dt dx dy dz “ 0.

The original equations should be understood as analogous to the vorticity formulation of the Euler
equations, while the reformulation corresponds to the Euler equations in their standard form. As the
purpose of this paper is a non-uniqueness theorem, it is then natural that the weak solutions we construct
will be defined at the level of the reformulation. Under sufficient integrability assumptions on ∆Ψ and
BνΨ (not satisfied by the solutions we construct in this paper), it is shown in [51] and [48] that weak
solutions to the reformulated problem are weak solutions to the original system of equations, and vice
versa. The vector field curlpQq plays a role analogous to that of the pressure in the Euler equations and

is therefore defined in terms of a projection operator applied to the nonlinear term ∇
K
Ψ ¨ ∇p∇Ψq, with

Q itself solving the elliptic equation

´∆Q “ curl
´

∇
K
Ψ ¨ ∇p∇Ψq

¯

.

Since weak solutions are defined via integration against vector fields ∇φ, curlpQq does not appear in
the weak formulation. In this paper, we prove the first result demonstrating anomalous behavior of the
energy profile for such weak solutions (in fact for any type of weak solutions) to 3D QG.

Theorem 1.1. Let e : R Ñ r0,8q be a smooth, compactly supported function and ζ P
`

0, 1
5

˘

. Then there

exist vector fields ∇Ψ P Cζ
`

R ˆ T3
˘

and Q P L8
`

R;C2ζpT3q
˘

such that ∇Ψ is a weak solution to 3D
QG and

ż

T3

|∇Ψpt, x, y, zq|2 dx dy dz “ eptq.

The proof of Theorem 1.1 proceeds via a convex integration scheme. While we shall postpone a more
detailed description of the proof for the time being, we pause to make two remarks. First, the methods
used in the proof of Theorem 1.1 can be adapted with minimal effort to demonstrate the existence of
infinitely many weak solutions sharing the same smooth initial data. We outline the adjustments needed
to prove such a statement in subsection Section 7.1 in the appendix. Such pathological behavior has been
investigated using convex integration methods in the literature, and we refer to the works of De Lellis and
Székelyhidi [32], Székelyhidi and Wiedemann [57], Daneri [28], Daneri and Székelyhidi [29], Colombo, De
Lellis, and De Rosa [17], and De Rosa [54] for further discussion of this question and related phenomena.

Secondly, we point out that the stratification provides a link between 3D QG and the two-dimensional
Euler equations. Convex integration for 2D Euler equations was first considered by Choffrut, De Lellis
and Székelyhidi in the class of continuous solutions [14]. In [5], Buckmaster, Shkoller, and Vicol observe
that by replacing the Beltrami waves used in [7] with Beltrami plane waves as in [14], the following
theorem can be shown using either the methods from their paper or those of Buckmaster, De Lellis, Isett
and Székelyhidi [7].

2



Theorem 1.2. Consider the two-dimensional Euler equations
#

Btu ` u ¨ ∇u ` ∇p “ 0 pt, x, yq P R ˆ T2

∇ ¨ u “ 0 pt, x, yq P R ˆ T2.

Given a smooth, compactly supported energy profile e : R Ñ r0,8q and ζ P
`

0, 1
5

˘

, there exists pu, pq which

solves the equations in the sense of distributions with u P CζpR ˆ T2q, p P L8
`

R;C2ζpT3q
˘

, and
ż

T2

|upt, x, yq|2 dx dy “ eptq.

We demonstrate that Theorem 1.2 follows as well from our proof of Theorem 1.1 to emphasize the
connection between the 2D Euler equations and three-dimensional, stratified, rotating fluids.

1.1. An Outline of the Scheme. While the reader will likely recognize in our proof shared attributes
with recent convex integration schemes, 3D QG presents several particular difficulties. Therefore, in this
section we provide a road map for our argument, along the way highlighting the new aspects of our
construction and introducing some terminology and notation we will use throughout the paper which is
specific to 3D QG.

1.1.1. Handling the Solid Walls and Finding Stationary Solutions. An immediate obstacle to adapting
standard convex integration schemes to 3D QG is the presence of physical boundary conditions at the
solid walls z “ 0 and z “ 2π. To our knowledge, a significant majority of the existing arguments, with
the exception of a work of Isett and Oh [39] which we discuss in Section 1.2, apply to systems with
periodic boundary conditions. At the level of the reformulation, the physical boundary conditions are
manifest in the requirement that the third component of curlpQq vanishes at z “ 0 and z “ 2π. We
are able to circumvent this issue by building solutions which vanish in a neighborhood of z “ 0 and
z “ 2π. A convenient upshot of this approach is that the solutions we construct are in fact periodic
in z as well, allowing access to the Fourier analytic tools which have become commonplace in convex
integration arguments.

Let us now explain why we handled the solid boundaries in this manner by searching for a stationary
solution to 3D QG which can serve as a building block for a convex integration scheme. Throughout

the ensuing discussion and the rest of the paper, we identify ∇Wq`1 b ∇
K
Wq`1 with a matrix whose

rows are specified by the components of ∇Wq`1 and whose columns are specified by the components of

∇
K
Wq`1. Differential operators with a bar such as ∇¨ include derivatives in x and y only. For example,

the divergence ∇¨ of the above matrix is taken row by row and differentiates in x and y only, thus ignoring
the third column (which is already zero). We seek ∇Wq`1 which solves

$

&

%

∇ ¨
´

∇Wq`1 b ∇
K
Wq`1

¯

“ curlpQq px, y, zq P T2 ˆ r0, 2πs

curlpQq ¨ p0, 0, 1q “ 0 px, y, zq P T2 ˆ t0, 2πu.
A straightforward calculation (Lemma 2.7) shows that eigenfunctions of the Laplacian will satisfy the
first equation. Therefore, a natural candidate for a stationary solution would be a linear combination
of T3-periodic complex exponentials eik¨x supported on a sphere on frequency. The second equation,
however, requires specific behavior of the eigenfunctions at the boundary. A natural way to achieve this
would be to impose that BzWq`1 vanishes at z “ 0, 2π. Therefore, if the Fourier series of Wq`1 contains

the term cke
ipk1,k2,k3q¨px,y,zq, it should also contain the term cke

ipk1,k2,´k3q¨px,y,zq. Then

BzWq`1 “ cke
ipk1,k2,0q¨px,y,0qik3

´

eik3z ´ e´ik3¨z
¯

will vanish at z “ 0, 2π. The reader may recall that the cancellation in convex integration schemes is
predicated on building blocks for which the mean of the tensor product of high-frequency blocks cancels
low-frequency errors. This means that the Fourier series of Wq`1 must additionally contain the terms
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c̄ke
´ipk1,k2,k3q¨px,y,zq and c̄ke

´ipk1,k2,´k3q¨px,y,zq. However, this has the effect of annihilating the low frequency

portion of ∇
K
Wq`1BzWq`1 in the entirety of T3. Indeed, choosing modes

pk1, k2, k3q , p´k1,´k2,´k3q , pk1, k2,´k3q , p´k1,´k2, k3q ,
denoting k̄K “ p´k2, k1, 0q, and writing out the low frequency portion of the third row of ∇Wq`1 b
∇

K
Wq`1, we obtain

|ck|2pk3qk̄K ` |ck|2p´k3qk̄K “ 0.

So we should find another way to enforce the boundary conditions at z “ 0 and z “ 2π.
Towards the goal of producing stationary solutions, we instead introduce a cutoff function Lq`1 which

depends on z only and consider the function ∇ pWq`1Lq`1q. The viability of the cutoff function is visible
in the equality

∇ ¨
´

∇ pLq`1Wq`1q b ∇
K pLq`1Wq`1q

¯

“ L2
q`1∇ ¨

´

∇Wq`1 b ∇
K
Wq`1

¯

“ L2
q`1 curlpQq

“ curlpL2
q`1Qq ´ lower order terms

We prove and discuss this equality in Lemma 2.7 and Eq. (4.1), with the basic idea being that we have
constructed solutions which are stationary to leading order.

1.1.2. The Iterative Scheme. With appropriate building blocks in hand, we build a solution ∇Ψ through
an iterative process which specifies the behavior of∇Ψ at higher and higher frequencies in each subsequent
stage. After q stages of this iteration, we have vector fields ∇Ψq, curlpQqq and Eq which solve

Btp∇Ψqq ` ∇ ¨
´

∇Ψq b ∇
K
Ψq

¯

“ curlpQqq ` Eq.

At this stage, each function is supported in frequency in a ball of radius λq around the origin (ignoring
the effect of the localizer Lq`1 for the moment). The goal is to send Eq to 0 as q Ñ 8, thus obtaining
a solution to 3D QG in the limit. In order to minimize Eq, we essentially add a linear combination of
building blocks ∇pLq`1Wq`1q in the hopes of making

∇ ¨
´

∇pLq`1Wq`1q b ∇
KpLq`1Wq`1q

¯

´ Eq(1.1)

vanish at low frequencies. In order to facilitate this cancellation, we first require an inverse divergence
operator D satisfying

Eq “ ∇ ¨ M̊q “ ∇ ¨ pDpEqqq .
In order for (1.1) to hold, D must output a matrix field M̊q which resembles a tensor product

∇pLq`1Wq`1q b ∇
KpLq`1Wq`1q.

Therefore, we must define the range of D to consist of matrices which have zeroes in the third row. In
addition, considering that the divergence ∇¨ is in x and y only, it is natural for D to be a convolution
operator in x and y only as well. After constructing such a D (see Proposition 2.5), it is clear that the
amount of regularity it gains will depend on only the first two components of the frequency modes of Eq.
We will refer to these modes throughout the paper as the “x and y frequency modes.” We emphasize that
for vector fields v “ pv1, v2, v3q, the phrase “x and y frequency modes” refers to the first two components
of the active frequencies (which are vectors with 3 components) in v1, v2, and v3 rather than the active
frequencies of v1 and v2.

One also notices that since ∇pLq`1Wq`1q vanishes in a neighborhood of z “ 0 and z “ 2π, DpEqq must
vanish there as well. We therefore introduce an additional inductive assumption (see (3.3)); namely, that
the spatial supports of ∇Ψq, curlpQqq, and Eq are contained in the region where Lq`1 “ 1. Since the

inverse divergence is a convolution in x and y only, M̊q “ DpEqq will only be supported in the region
4



where Lq`1 ” 1 as well. Furthermore, the advection operator Dt,q :“ Bt ` ∇
K
Ψq ¨ ∇ applied to Lq`1

satisfies
BtLq`1 ` ∇

K
Ψq ¨ ∇Lq`1 “ 0.

Thus, multiplication by Lq`1 commutes with the important operators in our scheme and does not interfere
with the oscillatory term, making its implementation rather simple.

1.1.3. Connection to 2D Euler. Suppose that one were to construct a solution to 3D QG which did
not depend on z. While such a solution would then ignore all the important physical aspects of three-
dimensional quasi-geostrophic dynamics, under this condition the equation becomes

Bt
`

∇Ψ
˘

` ∇
K
Ψ ¨ ∇

`

∇Ψq
˘

“ ∇
K
Q,

which after setting u “ ∇
K
Ψ and p “ Q becomes 2D Euler. To construct solutions to 2D Euler using

our scheme, we simply lift all restrictions on the spatial support, discard the localizer Lq`1, and choose
frequency modes with vanishing third component at each stage of the iteration so that BzΨ ” 0. Thus,
it is natural that our scheme for 3D QG should produce Hölder continuous solutions in classes Cζ for
ζ P

`

0, 1
5

˘

, as the Onsager conjecture for 2D Euler remains open in between 1
5
and 1

3
.

1.1.4. An Onsager Conjecture for 3D QG. In [48], it was shown that weak solutions to 3D QG conserve

the energy }∇Ψptq}2
L2 when ∇Ψ belongs to the space L8

t,z

´

B̊s
3,8

`

R2
x,y

˘

¯

for s ą 1
3
. The stratification of

the velocity field allows for the lower regularity in the z variable; essentially, one only needs to integrate
by parts in x and y to show that the energy flux cannot contribute to the spontaneous production or
dissipation of energy. This leads us to conjecture the following dichotomy concerning the flexibility of
weak solutions to 3D QG:

For any ζ P
`

0, 1
3

˘

, there exists infinitely many weak solutions which do not

conserve the energy }∇Ψptq}L2. In Hölder classes above 1
3
, the energy of a weak

solution is constant in time.

Therefore, Theorem 1.1 addresses the Onsager conjecture for 3D QG only in the regime ζ P p0, 1
5
q.

1.1.5. Relation of Our Result to Non-Uniqueness for 2D SQG. The Onsager threshold for the inviscid
SQG equation is conjectured to correspond to BzΨ P L8 and is not fully resolved yet (see [5] for a
thorough discussion). As our solutions vanish at z “ 0 and z “ 2π, Theorem 1.1 does not imply any
results for 2D SQG. Nor does our result follow from the non-uniqueness of 2D SQG shown in [5]. In 2D
SQG, one has that ∆Ψptq ” 0 for all time t. Physically, this represents an atmosphere which is at rest in
the interior, and in which all the dynamics occur at the boundary. However, for 3D QG, one does not rule
out the possibility of interior vorticity, allowing for the addition of high frequency oscillations not only
at the boundary, but in the interior as well. The solutions we construct are not harmonic. Therefore, it
is natural that they should be more regular than the dissipative solutions to 2D SQG.

1.2. Background and Previous Results. Non-uniqueness of weak solutions to the Euler equations
has been known for some time, with proofs given by Scheffer [55] and Shnirelman [56]. The modern
convex integration techniques were developed by De Lellis and Székelyhidi in [44], [33], and [43]. After a
number of results investigating the flexibility of solutions and obtaining partial progress towards Onsager’s
conjecture for the 3D Euler equations (cf. [16], [15], [6], [7], [8]), [30], [43], [37], [35]), a proof of the full
conjecture was given by Isett [36]. In a subsequent work, Buckmaster, De Lellis, Székelyhidi, and Vicol
[9] treat the case of dissipative solutions in the full Onsager regime. In [38], Isett constructed Hölder
continuous solutions obeying the local energy inequality. In [40], Isett and Vicol demonstrate non-
uniqueness of Hölder continuous weak solutions to active scalar equations with velocity determined by a
Fourier multiplier which is not odd. Non-uniqueness for 2D SQG (an example of an active scalar equation
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with an odd multplier) was shown by Buckmaster, Shkoller, and Vicol [5]. In addition, non-uniqueness of
3D Navier-Stokes has been demonstrated by Buckmaster and Vicol [10], and Buckmaster, Colombo, and
Vicol [4]. Stationary solutions to the 4D Navier-Stokes equations have been constructed by Luo [45], and
the 3D Navier-Stokes equations by Cheskidov and Luo [13]. Examples of other settings in which convex
integration has also been applied include the ideal MHD equations (by Beekie, Buckmaster, and Vicol
[1]) or Hall-MHD equations (Dai [27]). For a more thorough summary of these and other results, we refer
the reader to the survey papers of Buckmaster and Vicol [11] and De Lellis and Székelyhidi [31].

Compactly supported Hólder continuous solutions to the Euler equations on R ˆ R3 have been con-
structed by Isett and Oh in [39]. One of the main difficulties of constructing such solutions lies in finding
an anti-divergence operator which yields a smooth, symmetric tensor with compact support. Isett and Oh
provide a formula and derivation for such an operator, which in fact coincides with a formula introducted
by Bogovskii [2]. Application of this operator requires that special attention be paid to the angular mo-
mentum of the objects involved in the construction, as any weak solution to the Euler equations on RˆRn

conserves linear and angular momentum (cf. Proposition 3.1) [39]. The authors thus build a framework
to ensure conservation of angular momentum throughout the scheme, in turn ensuring a good control
over the spatial support of the stress at each stage of the iteration. In constrast, the difficulties with
spatial support in the current paper lie not in solving the divergence equation, but in finding stationary
solutions to the system which in addition are capable of cancelling the stress.

There are by now a number of significant results for both inviscid and viscous quasi-geostrophic flows
on bounded, unbounded, or periodic domains. Derivations of the three dimensional system in the upper
half space have been offered by Bourgeois and Beale in the inviscid case [3] and Desjardins and Grenier in
the viscous case [34]. Existence of global weak solutions in the inviscid case was first shown by Puel and
Vasseur [51] for initial data belonging to Hilbert spaces. In [48], several different notions of weak solutions
were considered and shown to be equivalent under appropriate assumptions, with an existence proof being
offered in the most general setting. In [47], a formal derivation of the three dimensional system on a
bounded cylindrical domain with appropriate lateral boundary conditions was given, with global weak
solutions shown to exist satisfying those boundary conditions. Local-in-time classical solutions to this
model were shown to exist in [49]. Global existence of a unique classical solution in the viscous case with
spatial domain given by R3

` was shown in [50].
The closely related 2D surface quasi-geostrophic equation (SQG) can be considered as a special case of

the 3D QG system when ∆Ψptq ” 0 for all times t. In this case, the dynamics is described by the active
scalar equation for the unknown function θ :“ ´BzΨ|z“0 with velocity given by u “ RKθ, (R being the
perpendicular vector of two dimensional Riesz transforms):

Btθ ` u ¨ ∇θ ` p´∆qαθ “ 0.

The physical cases correspond to α “ 0 and α “ 1
2
. Study of this system, particularly the inviscid version,

is extensive due to similarities with the 3D Euler equations and was initiated by Constantin, Majda, and
Tabak [19]. Global weak solutions in the inviscid case has been shown by Resnick [53] and Marchand
[46]. Global existence of smooth solutions has been shown by a number of different methods by Kiselev,
Nazarov, and Volberg [42], Caffarelli and Vasseur [12], Constantin and Vicol [20], Constantin, Vicol, and
Tarfulea [26], and Kiselev and Nazarov [41]. On bounded domains, a version of the equation defined using
the spectral Riesz transform has been considered by Constantin and Ignatova in [23], [22], Constantin
and Nguyen in [24], [25], Nguyen [52], and Constantin, Ignatova, and Nguyen [18]. Non-uniqueness for
both inviscid and viscous SQG on the spatial domain T2 was shown by Buckmaster, Shkoller, and Vicol
[5].

2. Preliminaries

We begin with definitions and some facts about Hölder spaces. At various points in these preliminaries,
we use the notation À as a shorthand for inequalities with implicit constants which depend on only on
fixed quantities such as dimension and the notation « to denote boundedness above and below up to fixed
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constants. We emphasize that any usage of the symbol À or « in Sections 3-6 will denote dependence on
implicit constants which are independent of q, the parameter corresponding to the stage of the inductive
convex integration procedure.

Definition 2.1 (Hölder Spaces). Let α P p0, 1q and k a non-negative integer and f : R ˆ Tn Ñ R a
function of time and space with mean value zero on Tn for each fixed time.

(1) The integer spatial Hölder norms are defined by

}f}Ck “ sup
t,x

ˇ

ˇ

ˇ
∇

k
xfpt, xq

ˇ

ˇ

ˇ
.

(2) The non-integer spatial Hölder norms are defined by

}f}Ck,α “ sup
t,x,y

ˇ

ˇ∇k
xfpt, xq ´ ∇k

xfpt, yq
ˇ

ˇ

|x ´ y|α ` }f}Ck .

(3) The following interpolation inequality holds for 0 ď r ď 1.

}f}Crα ď Cpαq }f}1´r
C0 }f}rCα .

We now define the convolution and projection operators we shall make use of and record some in-
equalities. We divide them into two categories: kernels that depend on x, y, and z and therefore act on
functions whose domain is T3, and kernels that depend only on x and y and therefore act on functions
defined on T2. At various points throughout the discussion, we will freely substitute definitions and proofs
for operators defined on Rn rather than Tn. Standard transference arguments then provide analogous
results for the periodic operators. In addition, all periodic functions are assumed to have mean zero. To
simplify notation, we shall write sums over Z3zt0u as simply being over Z3, and analogously for Z2. We
shall require a Bernstein inequality.

Lemma 2.1 (Bernstein Inequality). Let f : Rn Ñ R be a smooth function whose Fourier transform

f̂ vanishes in a neighborhood of the origin. If K̂ is a Fourier multiplier which is smooth away from the
origin and homogeneous of degree s and one of the following holds for λ ą 0,

(1) supp f̂ Ă t|ξ| ď λu and s ą 0

(2) supp f̂ Ă t|ξ| ě λu and s ă 0

(3) supp f̂ Ă t|ξ| « λu and s P R,

then
›

›

›

´

K̂f̂
¯_›

›

›

C0

À λs}f}C0.

Definition 2.2 (T3 Operators). Let f : T3 Ñ R, g : T3 Ñ R3 be smooth, mean-zero functions.

(1) The vector of T3-Riesz transforms, denoted R3, acts on Fourier series via

R
3 pfq “

ÿ

Z3

ik

|k| f̂pkqeik¨x

and satisfies
›

›R
3pfq

›

›

Cα ď Cpαq}f}Cα

for non-integer α ą 0 or for f with frequency support in an annulus. If k is an integer, then
›

›R
3pfq

›

›

Ck ď Cpk, αq }f}Ck`α .

(2) The projector onto gradients P∇ is defined by

P∇ pgq :“ ´
`

R
3 b R

3
˘

pgq
and satisfies the same estimates as R3.

7



(3) The projector onto curls Pcurl is defined by

Pcurlpgq “ pId´P∇q pgq “
´

curl ˝ p´∆q´1 ˝ curl
¯

pgq

and satisfies the same estimates as R3 and P∇.
(4) Let λ P N and k P S2 X Q such that λk P Z3. The projector P∇

λ,k is defined by

P∇
λ,kpgq “ eiλk¨x ik

|k| b ik

|k| ĝpkq

and satisfies
›

›P∇
λ,kpgq

›

›

C0
ď }g}C0 ,

›

›P∇
λ,kpgq

›

›

Cα ď Cpαq}g}C0λα.

For λ “ λq`1, we will denote this operator by P∇
q`1,k.

We note that by our convention that all periodic functions have mean zero, we can identify P∇pgq with
the gradient ∇G of a uniquely defined mean-zero function G. Similar properties hold for the operators
Pcurl and P∇

q`1,k.

Definition 2.3 (T2 Operators). Let f : T2 Ñ R, g : T2 Ñ R2 be smooth, mean-zero functions.

(1) The vector of T2-Riesz transforms, denoted R2, acts on Fourier series via

R2 pfq “
ÿ

Z2

ik

|k| f̂pkqeik¨x

and satisfies
›

›R2pfq
›

›

Cα À }f}Cα

for non-integer α ą 0 or for f with frequency support in an annulus. If k is an integer, then
›

›R2pfq
›

›

Ck À }f}Ck`α

where the implicit constant depends on α ą 0.

(2) The projector onto gradients P∇ is defined by

P∇ pgq “ ´
`

R2 b R2
˘

pgq

and satisfies the same estimates as R2. When g “ pg1, g2, g3q : T3 Ñ R3, P∇pgq projects on the
first two components and is the identity on the third component.

(3) The projector onto perpendicular gradients P∇
K

is defined by

P∇
K

pgq “
´

Id´P∇

¯

pgq “
´

∇
K ˝

`

´∆
˘´1 ˝ p∇K¨q

¯

pgq

and satisfies the same estimates as R2 and P∇. When g “ pg1, g2, g3q : T3 Ñ R3, P∇
K

pgq projects
on the first two components and is zero in the third component.

(4) The inverse of ∇
K
, denoted

´

∇
K
¯´1

, is defined by

´

∇
K
¯´1

pgq “
`

´∆
˘´1 ˝

´

∇
K¨
¯

pgq.

If the frequency support of g is contained in an annulus of radius λ, then
›

›

›

›

´

∇
K
¯´1

g

›

›

›

›

C0

À 1

λ
}g}C0 .
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(5) Let λ ą 0 and define P«λ by

P«λ pfq “
ÿ

λ
2

ď|k|ď2λ

f̂pkqeik¨x.

Define Pďλ by

Pďλ pfq “
ÿ

|k|ď2λ

f̂pkqeik¨x

and Pěλ similarly. Each operator is bounded from Cα to Cα for any α ě 0.

We shall frequently apply the T2 operators to functions f : T3 Ñ R. If K is a T2 convolution operator,
then by definition

Kpfqpx, y, zq “
ż

T2

K px ´ s, y ´ tq fps, t, zq ds dt.

The following lemma will be applied repeatedly throughout the paper.

Lemma 2.2. Let f : T3 Ñ R be a smooth function. Denote k P Z3 by
`

k̄, k3
˘

and let λ ą 0. Then

P«λpfq is supported in frequency in the cylinder

Cλ “
 

k P Z3 : |k̄| “ |pk1, k2q| « λ, k3 P Z
(

.

If supp f̂ Ă Cλ, then P«λpfq “ f . Furthermore, analogous statements hold for Pďλ and Pěλ by replacing
« with ď and ě, respectively.

Proof. Fix z P r0, 2πs. For px, y, zq P T3, we denote px, y, 0q by x̄. Then

P«λpfqpx, y, zq “
ÿ

k«λ

f̂pk, zqeik¨x̄

where

f̂
`

k̄, z
˘

“ 1

p2πq2
ż

T2

fpx, y, zqeik¨x̄ dx dy.

Letting z vary, we have that f̂
`

k̄, z
˘

is a smooth function of z and can therefore be written as

f̂
`

k, z
˘

“
ÿ

k3PZ

â
`

k, k3
˘

eik3¨z.

Combining the series, we have

P«λpfqpx, y, zq “
ÿ

|k|«λ

ÿ

k3PZ

âpk, k3qeik3¨zeik¨x̄ “:
ÿ

kPCλ

âpkqeik¨x.

By the uniqueness of T3 Fourier coefficients, if supp f̂ Ă Cλ, then âpkq “ f̂pkq, and P«λpfq “ f . �

We now define our inverse divergence operator D, which will be a convolution kernel in x and y only.
We define the operator on functions whose spatial domain is T3, however, since it will only be applied
to such functions in this paper. The amount of regularity gained by D depends only on the x and y

frequency modes.

Proposition 2.3 (Inverse Divergence of ∇). Let ∇f : T3 Ñ R3 have zero mean on each slice tzuˆT2

for z P r0, 2πs. Define Ep∇fq by

Ep∇fq “
„

B22p´∆q´1f ´ B11p´∆q´1f ´2B12p´∆q´1f

´2B12p´∆q´1f B11p´∆q´1f ´ B22p´∆q´1f



Then ∇ ¨ Ep∇fq “ ∇f , and Ep∇fq is symmetric and traceless. If supp f̂ Ă
 

|k| ě λ
(

, then

›

›Ep∇fq
›

›

C0
À 1

λ
}∇f}C0 .

9



Proof. The equality of ∇ ¨ Ep∇fq and ∇f proceeds by direct computation. The estimate on the C0 norm
follows from first applying Lemma 2.2 to see that for each z P r0, 2πs, ∇fp¨, ¨, zq has frequency support

outside the set tpk1, k2q P Z2 :
a

k21 ` k22 ě λu. Then using Lemma 2.1 and the fact that the multiplier is
homogeneous of degree ´1 gives the claim. Notice that E is identical to the inverse divergence operator
defined in [5] after switching the rows and changing the sign of the new second row. �

Proposition 2.4 (Inverse Divergence of Scalar Functions). Let g : T3 Ñ R have zero mean for
each slice tzu ˆ T2 for z P r0, 2πs. Define Ipgq by

Ipgq “ ´p´∆q´1∇g.

Then ∇ ¨ Ipgq “ g. If supp ĝ Ă
 

|k| ě λ
(

, then

}Ipgq}C0 À 1

λ
}g}C0 .

Proof. As before, the equality proceeds by direct computation and the estimate is a corollary of Lemma 2.2,
Lemma 2.1 and the homogeneity of the symbol. �

The inverse divergence we use will be applied to vector fields for which the first two components are
the gradient of a scalar-valued function, while the third component is a (different) scalar-valued function.

Proposition 2.5 (Inverse Divergence of X :“ pBxf, Byf, gq). Let X “ p∇f, gq : T3 Ñ R3 have zero
mean for each slice tzu ˆ T2 for z P r0, 2πs. Define DpXq to be the 3 ˆ 3 matrix

DpXq “ p´∆q´1

»

–

pB22 ´ B11q pfq ´2B12 pfq 0
´2B12 pfq pB11 ´ B22q pfq 0

´B1g ´B2g 0

fi

fl

Then ∇ ¨ DpXq “ X. If supp X̂ Ă
 

|k| ě λ
(

ˆ Z, then

}DpXq}C0 À 1

λ
}X}C0 .

Proof. The equality of ∇ ¨ DX and X proceeds by direct computation. The estimate follows from
Lemma 2.2 and Lemma 2.1 as previously. �

The following lemma is the analogue of the so-called geometric lemma from [5] and describes the
mechanism by which we can cancel out errors with the addition of high-frequency waves. The choice of
two disjoint sets of frequencies Ω1 and Ω2 ensures that high-frequency waves V1 and V2 defined on time
intervals which overlap do not produce unwanted low-frequency interactions. Choosing V1 to oscillate
at frequencies belonging to Ω1 and V2 to oscillate at frequencies belonging to Ω2 means that even if
V1 b V2 ‰ 0, it is at least high-frequency and will enjoy a strong gain from the application of the
anti-divergence operator.

Lemma 2.6 (Choosing Frequency Modes). Define

M “

$

&

%

»

–

m1 m2 0
m3 ´m1 0
m4 m5 0

fi

fl : mi P R

,

.

-

Then there exist matrices M1,M2 P M, ǫ ą 0, disjoint finite subsets Ωj P Q3 X S2 for j “ 1, 2, and
smooth positive functions defined in a neighborhood of Mj and indexed by k P Ωj which we call cj,k P
C8 pBǫ,MpMjqq such that

(1) Both of the sets Ωj are at positive distance from the z-axis
(2) Ωj “ ´Ωj and cj,k “ cj,´k

(3) 13Ωj P Z3 for j “ 1, 2
10



(4) For j “ 1, 2 and @M P BǫpMjq, we have

M “ 1

2

ÿ

kPΩj

pcj,kpMqq2k b k̄K.

(5) Furthermore, if M “ Mj ` N where N P M satisfies N12 “ N21 (i.e., the top left block of N is
symmetric in addition to being traceless), then

ÿ

kPΩj

pcj,kpMqq2 “ 1.(2.1)

Proof. We begin by constructing Ω`
1 , where Ω´

1 will be defined as ´Ω`
1 and Ω1 “ Ω`

1 Y Ω´
1 . We choose

the following vectors (inspired by the fact that p5, 12, 13q and p3, 4, 5q are Pythagorean triples):

k1 “ 1

13
p5, 0, 12q, k2 “ 1

13
p3, 4,´12q, k3 “ 1

13
p3,´4, 12q,

k4 “ 1

13
p0, 5, 12q k5 “ 1

13
p3, 4, 12q.

Then it is clear that (1) and (3) hold for Ω`
1 . Constructing the corresponding matrices ki b k̄K

i , denoted
mki , we have

mk1 “ 1

169

»

–

0 25 0
0 0 0
0 60 0

fi

fl , mk2 “ 1

169

»

–

´12 9 0
´16 12 0
48 ´36 0

fi

fl , mk3 “ 1

169

»

–

12 9 0
´16 ´12 0
48 36 0

fi

fl

mk4 “ 1

169

»

–

0 0 0
´25 0 0
´60 0 0

fi

fl , mk5 “ 1

169

»

–

´12 9 0
´16 12 0
´48 36 0

fi

fl

Furthermore, one can check that the set tmkiu is a linearly independent set within M. After identifying
M with R5, define the function f1 : R

5 Ñ R5 by

f1px, y, z, s, tq “ xmk1 ` ymk2 ` zmk3 ` smk4 ` tmk5 .

Then f1 P C8 and Df1|p 1

10
, 1

10
, 1

10
, 1

10
, 1

10
q is invertible. Define M1 :“ f1

`

1
10
, 1
10
, 1
10
, 1
10
, 1
10

˘

. Applying the

inverse function theorem, we obtain ǫ1 and coefficient functions c1,k. Then adding the set of vectors
Ω´
1 “ Yip´kiq, we have Ω1 such that (1)-(4) are satisfied. To show that (5) is satisfied, we note that

given M of such a form, then
M12 ´ M21 “ M12

1 ´ M21
1 ,

and that

m12
ki

´ m21
ki

“ 25

169
for each ki P Ω1. Therefore,

ÿ

kPΩ1

pc1,kpMqq2 “ 169

25

ÿ

kPΩ1

pc1,kpMqq2 25

169

“ 169

25

ÿ

kPΩ1

pc1,kpMqq2
`

m12
k ´ m21

k

˘

“ 169

25

ÿ

kPΩ1

pc1,kpM1qq2
`

m12
k ´ m21

k

˘

“ 2
ÿ

kPΩ`
1

pc1,kpM1qq2

“ 2 ¨ 5 ¨ 1

10
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“ 1,

and thus (1)-(5) are satisfied for Ω1. To construct Ω2, replace each vector k “ pk1, k2, k3q with k1 “
p´k2, k1, k3q. Repeating the previous steps and taking the minimum of ǫ1 and ǫ2 finishes the proof. �

With the choice of frequency modes in hand, we can build the following approximately stationary
solutions.

Lemma 2.7 (Stationary Solutions). For a finite family of vectors Ω P S2 where Ω “ ´Ω, λ P N such
that λΩ P Z3, and constants ck P C indexed by k P Ω such that ck “ c´k, define

Vpxq :“
ÿ

kPΩ

1

λ
cke

iλk¨x.

Then V is real-valued and there exists Q such that ∇¨
´

∇V b ∇
K
V

¯

“ curlpQq, with Q obeying the bounds

}Q}C0 À
›

›p∇Vq2
›

›

C0 , }curlpQq}C0 À λ
›

›p∇Vq2
›

›

C0 .

The mean of ∇V b ∇
K
V is given by

1

2
∇V b ∇

K
V “

ÿ

kPΩ

|ck|2
´

k b k
K
¯

.

Furthermore, if Lpzq is a smooth function depending only on z, then

∇ ¨
´

∇pLVq b ∇
KpLVq

¯

“ L2∇ ¨
´

∇V b ∇
K
V

¯

“ curl
`

L2Q
˘

´
`

Q2BzpL2q,´Q1BzpL2q, 0
˘t
.

Proof. First note that V is real-valued by the assumptions on ck. Then, we have that

∆pckeiλk¨xq “ ´λ2cke
iλk¨x;

that is, V is an eigenfunction of ∆ with eigenvalue ´λ2. In order to show that

∇ ¨
´

∇V b ∇
K
V

¯

is the curl of a vector field, it suffices to show that the divergence is zero. Calculating the divergence, we
have

∇ ¨
´

∇ ¨
´

∇V b ∇
K
V

¯¯

“ ∇∇V : ∇
K
∇V ` ∇

K
V ¨ ∇p∆Vq “ ´λ2

∇
K
V ¨ ∇V “ 0.

After writing out ∇V and ∇
K
V in terms of Fourier series with modes k and k1, respectively, we can

restate this fact in the form of the following algebraic identity which will be crucial later in the paper.
ÿ

k,k1PΩ

ckck1eiλpk`k1q¨xpik1K ¨ ikqpik ¨ ipk ` k1qqλ2 “ 0 @x P T3.(2.2)

The bounds on Q come from noticing that Q solves the elliptic equation

Q “ p´∆q´1 curl
´

∇ ¨
´

∇V b ∇
K
V

¯¯

and using the frequency support of V in conjunction with Lemma 2.1 to conclude that the singular
integral operator p´∆q´1 ˝ curl ˝∇¨ is bounded on C0. By direct calculation, the low frequency portion

of ∇V b ∇
K
V is given as stated.

Given a smooth function Lpzq, it is clear that

∇ ¨
´

pL∇V q b ∇
KpLVq

¯

“ L2∇ ¨
´

∇V b ∇
K
V

¯

since L depends only on z. We calculate the third component by writing

∇ ¨
´

∇
KpLVqBzpLVq

¯

“ ∇ ¨
´

∇
KpLVqBzLV ` ∇

KpLVqLBzV
¯

12



“ LBzL
´

∇
K
V ¨ ∇V

¯

` L2∇
K
V ¨ ∇pBzVq

“ L2∇ ¨
´

BzV∇K
V

¯

.

Therefore,

∇ ¨
´

∇pLVq b ∇
KpLVq

¯

“ L2∇ ¨
´

∇V b ∇
K
V

¯

“ L2 curlpQq
“ curlpL2Qq ´

`

Q2BzpL2q,´Q1BzpL2q, 0
˘t

after recalling that L depends on z only. �

3. Convex Integration Scheme

3.1. Inductive Assumptions. We assume the existence of a triple p∇Ψq, Qq, M̊qq solving

Btp∇Ψqq ` ∇ ¨
´

∇Ψq b ∇
K
Ψq

¯

“ curlpQqq ` ∇ ¨ M̊q.(3.1)

The gradient of the stream function ∇Ψq, the curl Qq, and the matrix field M̊q are assumed to be
supported in frequency in the set

tk P Z3 : |pk1, k2q| ď λq, k3 P Zu(3.2)

The gradient of the stream function ∇Ψq, the curl Qq, and the matrix field M̊q are assumed to be
supported in space in the set

T2 ˆ
„

1

lq
, 2π ´ 1

lq



.(3.3)

for a strictly positive number lq. We assume that

}∇Ψq}
C0 À 1, }∇Ψq}

Cn ď δ
1

2
q λ

n
q @n ě 1.(3.4)

We assume that M̊q satisfies
›

›

›
M̊q

›

›

›

C0

ď ηδq`1,
›

›

›
M̊q

›

›

›

C1

ď δq`1λq.(3.5)

In addition, we assume that the material derivative of M̊q satisfies
›

›

›

´

Bt ` ∇
K
Ψq ¨ ∇

¯

M̊q

›

›

›

C0

ď δq`1δ
1

2

q λq.(3.6)

We assume that Qq satisfies

}Q}C0 À 1, }∇Q}C0 ď δqλq.(3.7)

Concerning the prescribed energy profile eptq, we assume that

0 ď eptq ´
ż

T3

|∇Ψqptq|2 dx ď δq`1(3.8)

and

eptq ´
ż

T3

|∇Ψqptq|2 dx ď δq`1

8
ñ M̊qp¨, tq ” 0.(3.9)

The bulk of the paper consists of verifying that we can construct a triple p∇Ψq`1, Qq`1, M̊q`1q satisfying
(3.1)-(3.9) with q replaced with q`1 and parameters δq`1 ă δq, λq`1 ą λq, and lq`1 ă lq, where δq, lq Ñ 0
and λq Ñ 0 as q Ñ 8 at rates implying the desired level of Hölder regularity.

3.2. Velocity Perturbation.
13



3.2.1. A Spatial Localizer, Time Partition, Transport. Define the cutoff function Lq`1 to be a smooth
function depending only on z which satisfies

0 ď Lq`1pzq ď 1, Lq`1 “ 1 @px, y, zq P T2 ˆ r 1

lq`1

, 2π ´ 1

lq`1

s,(3.10)

}BzLq`1}C0 À lq`1, suppLq`1 Ă T2 ˆ r 1

lq`2

, 2π ´ 1

lq`2

s.

Let X P C8
c

`

p´3
4
, 3
4
q
˘

be a smooth positive cutoff function such that
ÿ

lPZ

X 2px ´ lq “ 1

for all t P R. Let the support of the energy profile eptq be contained in a ball of radius R. For µq`1 a
large parameter to be specified later and l P Z X r´Rµq`1, Rµq`1s, define (we neglect to indicate the
dependence on q for ease of notation)

Xlptq :“ X pµq`1t ´ lq.
Define

ρptq :“
ˆ
ż

T3

L2
q`1

˙´1

max

ˆ

eptq ´
ż

T3

}∇Ψq}2 ´ δq`2

2
, 0

˙

, ρl “ ρp l

µq`1

q.(3.11)

By the assumption (3.8), we have that

0 ď ρl ď δq`1.(3.12)

Let φqpzq be a mollifier in z which is compactly supported in a ball of radius ℓ “ λ
´ 3

4
q λ

´ 1

4

q`1. Define

M̊q,ℓ “ M̊q ˚ φq

so that the spatial support of M̊q,ℓ is still contained in the region where Lq`1 ” 1 and
›

›

›
M̊q,ℓ

›

›

›

C0

ď ηδq`1,
›

›

›
M̊q,ℓ

›

›

›

C1

ď δq`1λq,
›

›

›
M̊q,ℓ

›

›

›

Cn
ď δq`1λqℓ

1´n @n ě 2.

Let M̊q,l be the unique solution to the transport equation
$

’

&

’

%

BtM̊q,l ` ∇
K
Ψq ¨ ∇M̊q,l “ 0

M̊q,lpx,
l

µq`1

q “ M̊q,ℓpx,
l

µq`1

q,

and set

Mq,l :“ ρlMj ´ M̊q,l

where Mj comes from Lemma 2.6, and j is chosen so that the parity of l and j matches. Next, let
Φl : R ˆ R3 Ñ R3 be the solution of

$

’

&

’

%

BtΦl ` ∇
K
Ψq ¨ ∇Φl “ 0

Φl

ˆ

x,
l

µ

˙

“ x

so that Φlp¨, tq is a diffeomorphism of T3 onto itself, and for pt, xq P R ˆ T3 the map

px, tq Ñ eiλq`1k¨Φlpx,tq

is well-defined.
14



3.2.2. The Perturbation. Note that by Proposition 2.5 and Lemma 2.6, Mq,l “ ρlMj ´ M̊q,l takes values
in M. Let k P Ω “ Ω1 Y Ω2 denote a chosen frequency mode. Now define

Xlptq :“ X pµq`1pt ´ lqq

aklpx, tq :“

$

&

%

?
ρlcj,k

ˆ

Mq,lpx, tq
ρl

˙

if ρl ‰ 0

0 if ρl “ 0

wklpx, tq :“ aklpx, tqeiλq`1k¨Φlpx,tqik.

where j “ 1 and k P Ω1 if l is odd, and j “ 2 and k P Ω2 if l is even. We must check that akl is
well-defined when ρl ‰ 0. Therefore we must check that given ǫ as in Lemma 2.6,

ˇ

ˇ

ˇ

ˇ

ˇ

M̊q,l

ρl

ˇ

ˇ

ˇ

ˇ

ˇ

ă ǫ.

Since M̊q,l satisfies a transport equation, it suffices to check that
›

›

›

›

M̊q,ℓ

ˆ

x,
l

µq`1

˙›

›

›

›

C0

ρ´1
l ď ǫ.

By (3.9), we have that

(3.13) ρl ď δq`1

16
ñ M̊q ” 0.

So we move to the case ρl ą δq`1

16
. Then

M̊q,l

ρl
ď ηδq`1

δq`1

16

which is less than ǫ as long as η is small enough. ∇Wq`1 is now well-defined by (using the definition of
P∇
q`1,k given in Definition 2.2 and recalling that Wq`1 is chosen to have mean zero)

∇Wq`1px, tq :“
ÿ

l odd,kPΩ1

P∇
q`1,k

`

Xlptqwklpx, tq
˘

`
ÿ

l even,kPΩ2

P∇
q`1,k

`

Xlptqwklpx, tq
˘

.

Throughout the rest of the paper, we will simply write

∇Wq`1px, tq “
ÿ

l,k

P∇
q`1,k

`

Xlptqwklpx, tq
˘

for the sake of simplicity. The perturbation is then defined by ∇pWq`1Lq`1q.
3.3. Adding the Perturbation. Define ∇Ψq`1 “ ∇Ψq ` ∇pWq`1Lq`1q. Using that ∇Ψq solves

Btp∇Ψqq ` ∇ ¨
´

∇Ψq b ∇
K
Ψq

¯

“ curlpQqq ` ∇ ¨ M̊q,

we have that ∇Ψq`1 solves

Btp∇Ψq`1q ` ∇ ¨
´

∇Ψq`1 b ∇
K
Ψq`1

¯

“ curlpQqq

` Btp∇pWq`1Lq`1qq ` ∇
K
Ψq ¨ ∇∇pWq`1Lq`1q(Transport Error)

` ∇
KpWq`1Lq`1q ¨ ∇∇Ψq(Nash Error)

` ∇ ¨
´

∇pWq`1Lq`1q b ∇
KpWq`1Lq`1q

¯

` ∇ ¨ M̊q(Oscillation Error)

“ curlpQq`1q ` ∇ ¨
´

M̊q`1

¯

.

The definition of the matrix field M̊q`1 and the vector field Qq`1 will be specified in the following sections.
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3.4. Choice of Parameters. We define the parameters λq, δq, µq`1, and lq for all q P N in terms of a
real number c ą 5

2
, a real number b ą 1, and a large integer a P 13Z. The numbers c, b, and a are chosen

in that order after first fixing a desired Hölder regularity level ζ P p0, 1
5
q.

λq :“ acb
q

, δq :“ a´bq , µq`1 :“ δ
1

4
q δ

1

4

q`1λ
1

2
q λ

1

2

q`1, lq :“
1

2q`1

In addition, a will be chosen to be large enough to absorb universal constants coming from many of the
steps of the argument. We also implement small parameters

0 ă α ! β ! 1

which are essentially used to control singular integral operators on L8 and to quantify the super-
exponential growth of the λq’s. With these choices, the following inequalities hold.

Lemma 3.1 (Parameter Inequalities). Given λq, δq, µq`1, and lq as defined above, the following
inequalities are true for satisfactory choices of c, b, a, β, and α.

(1)
δ
1
2
q λq

µq`1
ď λ

´β
q`1

(2) µq`1δ
1

2

q`1 ď δq`2λq`1.

(3) lq`1
δq`1

λq`1
ď ηδq`2

(4) δq`1δ
1

2
q λq ď δq`2δ

1

2

q`1λq`1

(5) λq ď λ
1´β
q`1

(6) λ1`α
q ď λ1´α

q`1

(7) ℓλq ď 1

Proof. Writing out (1), we see that it is satisfied provided that

a´ 1

2
bqacb

q

a´ 1

4
bqa

1

2
cbqa´ 1

4
bq`1

a
1

2
cbq`1

ď a´βcbq`1

.

Taking the logarithm in a of both sides and dividing by bq yields

´ 1

2
` c ` 1

4
` 1

4
b ´ 1

2
c ´ 1

2
cb ď ´βcb

ðñ b

ˆ

1

4
´
ˆ

1

2
´ β

˙

c

˙

` 1

2
c ´ 1

4
ď 0,

which is true if β is small enough. The second inequality is true provided that

a´ 1

4
bqa

1

2
cbqa´ 1

4
bq`1

a
1

2
cbq`1

a´ 1

2
bq`1 ď a´bq`2

acb
q`1

.

Taking logarithms in a and dividing by bq again gives

´ 1

4
` 1

2
c ´ 1

4
b ` 1

2
cb ´ 1

2
b ď ´b2 ` cb

ðñ b2 ´ b

ˆ

3

4
` 1

2
c

˙

´ 1

4
` 1

2
c ď 0,

which is true provided b is close enough to 1. The inequality in (3) follows from the (merely) exponential
growth of lq`1. The proof of (4) proceeds similarly to that of (2). (5) follows from the super exponential
growth of λq provided β is small enough, and (6) follows from (5) provided α ! β. The final inequality

follows from the definition of ℓ “ λ
´ 3

4
q λ

´ 1

4

q`1. �
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3.5. Inductive Step. The proofs of Theorem 1.1 and Theorem 1.2 will require the following inductive
propositions.

Proposition 3.2 (3D QG Inductive Proposition). Let eptq : R Ñ r0,8q be a smooth, compactly
supported energy profile. Then given c ą 5

2
, there exists b ą 1, a " 1 such that the following holds.

Given a triple
´

∇Ψq, M̊q, Qq

¯

satisfying the inductive assumptions (3.1)-(3.9) with parameters δq, λq, lq

defined in terms of a, b, and c, there exists a new triple
´

∇Ψq`1, M̊q`1, Qq`1

¯

satisfying (3.1)-(3.9) with

q replaced by q ` 1.

Proposition 3.3 (2D Euler Inductive Proposition). With the additional assumption that the matrix

field M̊q is of the block form

M̊q “

»

–

m1 m2 0
m2 ´m1 0
0 0 0

fi

fl

and the elimination of any restrictions on the spatial support, the outcome of Proposition 3.2 can be
achieved while simultaneously prescribing that

Bz pΨq`1 ´ Ψqq ” 0.

In particular, if M̊1 is of such a block form, then one can impose that BzΨq ” 0 for all q P N.

4. Error Estimates

Before estimating the transport, Nash, and oscillation errors, we show the following bounds on the
perturbation and ∇Ψq. Aside from the minor adjustment needed to prove (6) due to the spatial localizer,
the following estimates all of course have exact analogues in previous convex integration arguments (for
example Lemmas 4.3 and 4.4 from [5]). Any usage of the symbol À indicates dependence only on universal
constants (in particular not on q) and will be rectified later by a large choice of the parameter a.

Lemma 4.1 (Preliminary Estimates). Using the definitions given in the previous section for each
function and parameter, the following hold.

(1)
›

›∇kakl
›

›

C0psuppXlq
À δ

1

2

q`1λqℓ
k´1 for k P N.

(2) For t P suppXl, }DΦl ´ Id}C0 À δ
1
2
q λq

µq`1
and

›

›∇NΦl

›

›

C0 À δ
1
2
q λN

q

µq`1
when N ě 2.

(3) }∇eiλq`1pΦl´xq¨k}C0psuppXlq À λ
1´β
q`1 and

›

›∇keiλq`1pΦl´xq¨k
›

›

C0 À λ
kp1´βq
q`1 for k P N.

(4) }Dt,q p∇Ψqq}
C0 À δqλq.

(5) }wkl}C1psuppXlq À δ
1

2

q`1λq`1.

(6) }∇ pLq`1Wq`1q}Cn À δ
1

2

q`1λ
n
q`1.

Proof. (1) Using the chain rule estimates in Lemma 7.2, we can write

}∇akl}C0psuppXlq
“
›

›

›

›

∇

ˆ?
ρlcj,k

ˆ

Mq,l

ρl

˙˙›

›

›

›

C0

ď ?
ρl
`

}∇cj,k}C0}∇Mq,l}C0ρ´1
l

˘

.

We first note that either Mq,l is constant or ρl ě δq`1

16
(observed in (3.13)), and thus we can reduce

to the case that ρl ě δq`1

16
. Then to estimate ∇Mq,l, we use that M̊q,l solves the equation

Dt,qM̊q,l “ BtM̊q,l ` ∇
K
Ψq,l ¨ ∇M̊q,l “ 0.

17



Then the transport estimates Lemma 7.1, the inductive assumptions (3.4) and (3.5), and the
parameter assumptions from Lemma 3.1 yield

}∇akl}C0psuppXlq
ď Cpcj,kq?

ρl

ˆ

ηδq`1λq

ρl

˙

À δ
1

2

q`1λq.

For the second bound, arguing as before and using the Ck bounds on ∇Ψq and M̊q,ℓ, and therefore

M̊q,l and Mq,l, gives the claim.
(2) Applying Lemma 7.2 and the transport estimates in Lemma 7.1 , we have that

}DΦl ´ Id }C0 ď pt ´ t0q}∇∇
K
Ψq}C0ept´t0q}∇∇

K
Ψq}

C0 ď δ
1

2
q λq

µq`1

.

The last estimate follows again from Lemma 7.1 and the Cn bounds of the velocity ∇
K
Ψq.

(3) We can use (2) and Lemma 7.2 to calculate
›

›

›
∇

´

eiλq`1pΦlpx,tq´xq¨k
¯›

›

›

C0psuppXlq
ď
`

}∇eix}C0 }∇ piλq`1k ¨ pΦl ´ xqq}
C0

˘

ď λq`1 }DΦl ´ Id}C0

ď λq`1

δ
1

2
q λq

µq`1

ď λ
1´β
q`1 .

The second claim follows from the Cn bounds on ∇
K
Ψq, the chain rule Lemma 7.2, and the

transport estimates Lemma 7.1.
(4) We have that ∇Ψq satisfies the transport equation

Btp∇Ψqq ` ∇
K
Ψq ¨ ∇∇Ψq “ ∇Q3,p ` ∇ ¨ M̊q.

By the inductive assumptions (3.5) and (3.7),

}∇Q3,p} ď δqλq, }Mq}C1 ď 4ηδq`1λq

which yields the claim since δq`1 ď δq.

(5) Using that Dt,qwkl “ 0 and that wkl “ akle
iλq`1k¨xik at t “ l

µq`1
, we apply Lemma 7.1 to obtain

that

}wkl}C1 ď p}akl}C1 ` }akl}C0λq`1q e
}∇

K
Ψq}

C1

µq`1 ď δ
1

2

q`1λq ` δ
1

2

q`1λq`1,

proving the result.
(6) Applying the Leibniz rule to ∇ pLq`1Wq`1q, using the compact frequency support of ∇Wq`1, and

noticing that ∇nLq`1 “ pBzqnLq`1 ! λn
q`1 due to the fact that lq`2 ! λq`1 gives the claim.

�

4.1. Transport Error.

Lemma 4.2. The transport error

Bt p∇pWq`1Lq`1qq ` ∇
K
Ψq ¨ ∇∇pWq`1Lq`1q

is equal to

curl pQT q ` ∇ ¨ M̊T

with the estimates
}QT }C0 ď δq`1, }QT }C1 ď δq`1λq`1

18



}M̊T }C0 ď ηδq`2, }M̊T }C1 ď δq`2λq`1, }Dt,qM̊T }C0 ď δq`2δ
1

2

q`1λq`1.

Furthermore, QT and M̊T are supported in the set

T2 ˆ
„

1

lq`1

, 2π ´ 1

lq`1



.

Proof. By the compact support in x and y frequency modes of ∇Ψq and the support in frequency of
∇ pLWq`1q in a cylinder whose base is an annulus in x and y centered around λq`1, the x and y frequency
modes of the transport error are supported in the cylinder above an annulus of radius λq`1 in Z2.
Therefore, we can apply the x and y frequency localizer P̄«λq`1

and Lemma 2.2 to write the transport
error as

P̄«λq`1

´

Btp∇pWq`1Lq`1qq ` ∇
K
Ψq ¨ ∇∇pWq`1Lq`1q

¯

“ P̄«λq`1

`

Lq`1Dt,q∇Wq`1 ` p0, 0, BzLq`1BtWq`1qt
˘

:“ MT,1 ` MT,2.

Beginning with MT,1, we can commute Lq`1 and P̄«λq`1
and introduce the commutator

”

Dt,q,P
∇
q`1,k

ı

to

write

}MT,1}
C0 ď

›

›P̄«λq`1

`“

Dt,q,P
∇
q`1,k

‰

pXlwklq ` BtXlwkl

˘›

›

C0

ď

›

›

›

›

›

›

P̄«λq`1

ÿ

k,l

”

∇
K
Ψq ¨ ∇,P∇

q`1,k

ı

pwklXlq

›

›

›

›

›

›

C0

`

›

›

›

›

›

›

P̄«λq`1

ÿ

k,l

P∇
q`1,k pBtXlwklq

›

›

›

›

›

›

C0

À
›

›

›
∇

K
Ψq

›

›

›

C1

}wklXl}C0 `
›

›

›
BtXlakle

iλq`1Φl¨x
›

›

›

C0

À δ
1

2
q λqδ

1

2

q`1 ` µq`1δ
1

2

q`1

À µq`1δ
1

2

q`1

ď ηδq`2λq`1

after applying the commutator estimate (7.1). We then decompose MT,1 using P∇ and P∇
K

as

MT,1 “ P∇ pMT,1q ` P∇
K

pMT,1q .

After applying D, we can absorb the first piece into M̊T , while the second piece becomes part of QT

after inverting ∇
K
. The desired C0 bounds on MT and QT follow from the presence of the frequency

localizer P̄«λq`1
, the fact that D and

´

∇
K
¯´1

are operators of order ´1 in x and y, and an application

of Lemma 2.1. To show the C1 bounds, we write

∇

´”

∇
K
Ψq ¨ ∇,P∇

q`1,k

ı

pXlwklq
¯

“
”

∇∇
K
Ψq ¨ ∇,P∇

q`1,k

ı

pXlwklq `
”

∇
K
Ψq ¨ ∇,P∇

q`1,k

ı

p∇wklXlq .

}∇MT,1}
C0 ď }∇Lq`1Dt,q∇Wq`1}

C0 ` }Lq`1∇ pDt,q∇Wq`1q}
C0

À }BzLq`1}
C0 }Dt,q∇Wq`1}

C0 `
›

›

›

”

∇∇
K
Ψq ¨ ∇,P∇

q`1,k

ı

pXlwklq
›

›

›

C0

`
›

›

›

”

∇
K
Ψq ¨ ∇,P∇

q`1,k

ı

p∇wklXlq
›

›

›

C0

`
›

›P∇
q`1,k pBtXl∇wklq

›

›

C0

ď lq`1

δ2q`2

δq`1

λq`1 `
›

›

›
∇

K
Ψq

›

›

›

C2

}Xlwkl}C0 ` }∇K
Ψq}C1}Xlwkl}C1 `

›

›P∇
q`1,k pBtXl∇wklq

›

›

C0
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ď δq`2λq`1 ` δ
1

2
q λ

2
qδ

1

2

q`1 ` δ
1

2
q λqδ

1

2

q`1λq`1 ` µq`1δ
1

2

q`1λq`1

ď δq`2λ
2
q`1.

Then using the fact that differentiating and multiplying by Lq`1 or ∇Lq`1 commutes with D and
´

∇
K
¯´1

and applying Lemma 2.1 due to the x and y frequency support allows us to divide by λq`1, proving the
claim. The spatial support of each term is satisfactory using the inductive hypothesis (3.3) and the fact
that multiplication by Lq`1 commutes with convolution operators in x and y.

The entirety of the second term MT,2 will be absorbed into M̊T by applying D. Since multiplication
by Lq`1 and BzLq`1 commutes with DP̄«λq`1

, we have that

}MT,2}C0 À 1

λq`1

}BzLq`1}C0}BtWq`1}C0 .

Since Bt∇Wq`1 “ Dt,q∇Wq`1 ´ ∇
K
Ψq ¨ ∇∇Wq`1, we have that

}Bt∇Wq`1}C0 À µq`1δ
1

2

q`1 ` δ
1

2

q`1λq`1 À δ
1

2

q`1λq`1.

Noticing that Wq`1 “ p´∆q´1∇ ¨ p∇Wq`1q and using the frequency support of Wq`1, we can apply
Lemma 2.1 to obtain

}BtWq`1}C0 À δ
1

2

q`1.

Plugging in this estimate, we obtain

}MT,2}C0 À 1

λq`1

lq`1δ
1

2

q`1

ď ηδq`2.

The C1 bound follows from estimating

}BzLq`1BtWq`1}
C1 ď }BzLq`1}C1}BtWq`1}C0 ` }BzLq`1}C0}BtWq`1}C1

ď l2q`1δ
1

2

q`1 ` lq`1δ
1

2

q`1λq`1

applying D, using the frequency support in x and y to divide by a factor of λq`1, and recalling that

lq`1 ď δ
1

2

q`1λq`1.

Before beginning to estimate the material derivative Dt,qM̊T , note that Dt,qLq`1 “ 0. The material
derivative of the transport error can then be decomposed as

Dt,q

ˆ

D ˝ P̄«λq`1

ˆ

Btp∇pWq`1Lq`1qq ` ∇
K
Ψq ¨ ∇p∇pWq`1Lq`1qq

˙˙

“

Lq`1

“

Dt,q,DP̄«λq`1

‰

pDt,qp∇Wq`1qq

` Lq`1DP̄«λq`1

˜

Dt,q

˜

ÿ

kl

P∇
q`1,k pBtXlwklq

¸¸

` Lq`1DP̄«λq`1

˜

Dt,q

˜

ÿ

kl

“

Dt,q,P
∇
q`1,k

‰

pXlwklq
¸¸

` BzLq`1Dt,q

`

DP̄«λq`1
p0, 0, BtWq`1qt

˘

:“ T1 ` T2 ` T3 ` T4.
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Beginning with T1, we have that by the commutator estimate (7.1) and the estimate on the amplitude
given above,

}T1}C0 À 1

λq`1

}∇K
Ψq}C1}Dt,qp∇Wq`1q}C0

À 1

λq`1

δ
1

2
q λqµq`1δ

1

2

q`1.

Using that δ
1

2
q λq ď µq`1 and

µ2

q`1

λq`1
δ

1

2

q`1 ď δq`2δ
1

2

q`1λq`1, we obtain

}T1}C0 ď δq`2δ
1

2

q`1λq`1.

Moving on to T2, we apply (7.1) and estimate the parameters as in T1 to obtain

}T2}C0 “
›

›

›

›

›

DP̄«λq`1

«

Dt,q

˜

ÿ

kl

P∇
q`1,k pBtXlwklq

¸ff›

›

›

›

›

C0

“
›

›

›

›

›

DP̄«λq`1

«

ÿ

kl

“

Dt,q,P
∇
q`1,k

‰

pBtXlwklq `
ÿ

kl

P∇
q`1,k

`

B2tXlwkl

˘

ff›

›

›

›

›

C0

À 1

λq`1

´

}∇K
Ψq}C̄1}BtXlwkl}C0 ` }B2tXlwkl}C0

¯

À 1

λq`1

ˆ

δ
1

2
q λqµq`1δ

1

2

q`1 ` µ2
q`1δ

1

2

q`1

˙

À 1

λq`1

µ2
q`1δ

1

2

q`1

ď δq`2δ
1

2

q`1λq`1.

We now estimate the material derivative of T3. As everything is localized in x and y frequencies in an
annulus of radius λq`1, we estimate the terms inside parentheses directly and then divide by 1

λq`1
at the

end. We write

Dt,q

˜

ÿ

kl

“

Dt,q,P
∇
q`1,k

‰

pXlwklq
¸

“
«

Dt,q,
ÿ

kl

“

Dt,q,P
∇
q`1,k

‰

ff

pXlwklq `
“

Dt,q,P
∇
q`1,k

‰

pDt,q pXlwklqq

“: T3,1 ` T3,2.

We can estimate T3,2 using the commutator estimate (7.1) as

T3,2 ď }∇Ψq}C1}BtXlwkl}C0

ď δ
1

2
q λqµq`1δ

1

2

q`1

ď µ2
q`1δ

1

2

q`1.

Applying D and dividing by λq`1 gives the desired estimate. For T3,1, we apply the iterated commutator
estimate (7.2) to obtain

T3,1 ď 1

λq`1

}∇Ψq}2
C1 }Xlwkl}C1 ` }Xlwkl}C0

ˆ

λq`1

›

›

›
Dt,q∇

K
Ψq

›

›

›

C0

`
›

›

›
∇

K
Ψq

›

›

›

2

C1

˙

ď 1

λq`1

δqλ
2
qδ

1

2

q`1λq`1 ` δ
1

2

q`1

`

λq`1δqλq ` δqλ
2
q

˘

À δqδ
1

2

q`1λqλq`1.

Applying D and dividing again by λq`1, we obtain the desired estimate.
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Finally, we write T4 as

T4 “ BzLq`1

“

Dt,q,DP̄«λq`1

‰

pBtWq`1q ` BzLq`1DP̄«λq`1
pDt,qpBtWq`1qq .

We can estimate the first term using the commutator estimate (7.1) by

lq`1

1

λq`1

δ
1

2
q λqδ

1

2

q`1 ď δq`2δ
1

2

q`1λq`1

as desired. For the second term, first note that

BtWq`1 “ Dt,qWq`1 ´ ∇
K
Ψq ¨ ∇Wq`1.

Handling the second piece of the second term first, we then have that
›

›

›
BzLq`1DP̄«λq`1

´

Dt,q

´

∇
K
Ψq ¨ ∇Wq`1

¯¯›

›

›

C0

ď
›

›

›
BzLq`1DP̄«λq`1

´

Dt,q

´

∇
K
Ψq

¯

¨ ∇Wq`1

¯›

›

›

C0

`
›

›

›
BzLq`1DP̄«λq`1

´

∇
K
Ψq ¨ Dt,q

`

∇Wq`1

˘

¯›

›

›

C0

À lq`1

1

λq`1

ˆ

δqλqδ
1

2

q`1 ` µq`1δ
1

2

q`1

˙

ď δq`2δ
1

2

q`1λq`1.

Before beginning to estimate the first piece of the second term, note that

Wq`1 “ p´∆q´1
`

∇ ¨
`

P∇
q`1,kXlwkl

˘˘

.

Denoting the operator p´∆q´1 ˝ p∇¨q ˝ P∇
q`1,k by K, we have that K is an order ´1 convolution kernel.

Therefore, we can write that

BzLq`1DP̄«λq`1
pDt,q pDt,q pWq`1qqq
“ BzLq`1DP̄«λq`1

pDt,q rDt,q,Ks pXlwklqq ` BzLq`1DP̄«λq`1
pDt,q pKpBtXlwklqqq .

The second term is bounded as follows:
›

›BzLq`1DP̄«λq`1
pDt,q pKpBtXlwklqqq

›

›

C0
ď
›

›BzLq`1DP̄«λq`1
prDt,q,Ks pBtXlwklqq

›

›

C0

`
›

›BzLq`1DP̄«λq`1
KpB2tXlwklq

›

›

C0

À lq`1

1

λq`1

1

λq`1

δ
1

2
q λqµq`1δ

1

2

q`1 ` lq`1

1

λq`1

1

λq`1

µ2
q`1δ

1

2

q`1

ď δq`2δ
1

2

q`1λq`1.

Here we have used the presence of P̄«λq`1
and Lemma 2.2 to see that K gains a factor of 1

λq`1
. Then for

the first term, we will use the iterated commutator estimate (7.2) again. We can then write
›

›BzLq`1DP̄«λq`1
pDt,q rDt,q,Ks pXlwklqq

›

›

C0
ď
›

›BzLq`1DP̄«λq`1
prDt,q, rDt,q,Kss pXlwklqq

›

›

C0

`
›

›BzLq`1DP̄«λq`1
prDt,q,Ks pBtXlwklqq

›

›

C0

ď }BzLq`1}
C0 λ

´1
q`1

´

λ´2
q`1 }∇Ψq}2

C1 }Xlwkl}C1 ` }Xlwkl}C0

´

}Dt,q∇Ψq} ` λ´1
q`1}∇Ψq}2C1

¯¯

` }BzLq`1}C0λ´1
q`1λ

´1
q`1}∇Ψq}C1}BtXlwkl}C0

ď lq`1

1

λq`1

ˆ

λ´2
q`1pδ

1

2
q λqq2δ

1

2

q`1λq`1 ` δ
1

2

q`1

ˆ

δqλq ` λ´1
q`1pδ

1

2
q λqq2

˙˙

` lq`1

1

λ2
q`1

δ
1

2

q λqµq`1δ
1

2

q`1
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ď δq`2δ
1

2

q`1λq`1,

concluding the proof. �

4.2. Nash Error.

Lemma 4.3. The Nash error

∇ ¨
´

∇
K pLq`1Wq`1q b ∇Ψq

¯

is equal to

curl pQN q ` ∇ ¨ M̊N

with the estimates
}QN}C0 ď δq`1, }QN}C1 ď δq`1λq`1

}M̊N}C0 ď ηδq`2, }M̊N }C1 ď δq`2λq`1, }Dt,qM̊N}C0 ď δq`2δ
1

2

q`1λq`1.

Furthermore, QN and M̊N are supported in the set

T2 ˆ
„

1

lq`1

, 2π ´ 1

lq`1



.

Proof. Due to the spatial support of ∇Ψq and ∇
KpWq`1Lq`1q, the Nash error is equal to

∇ ¨
´

∇Ψq b ∇
K
Wq`1

¯

and the claim on the spatial support is immediate since we shall only ever convolve in x and y. We
calculate the amplitude by writing

›

›

›
∇ ¨

´

∇Ψq b ∇
K
Wq`1

¯›

›

›

C0

ď
›

›

›
∇p∇Ψqq∇K

Wq`1

›

›

›

C0

ď δ
1

2
q λqδ

1

2

q`1

ď ηδq`2λq`1.

Decomposing into P∇ and P∇
K

and using Bernstein’s inequality as for the transport error shows the
desired C0 bounds on QN and M̊N . The C1 bounds follow by applying ∇ to the Nash error and noticing

that the x and y frequency support ∇
K
Wq`1 ¨ ∇∇Ψq is contained in an annulus of radius λq`1, allowing

us to divide by λq`1 after applying D and
´

∇
K
¯´1

.

Moving now to the material derivative, we use (7.1) to write that
›

›

›
Dt,q

´

DP̄«λq`1
∇ ¨

´

∇Ψq b ∇
K
Wq`1

¯¯›

›

›

C0

ď
›

›

›
DP̄«λq`1

´

Dt,q

´

∇
K
Wq`1 ¨ ∇∇Ψq

¯¯›

›

›

C0

`
›

›

›

“

DP̄«λq`1
,Dt,q

‰

´

∇
K
Wq`1 ¨ ∇∇Ψq

¯›

›

›

C0

À 1

λq`1

´›

›

›
Dt,q

´

∇
K
Wq`1 ¨ ∇∇Ψq

¯›

›

›

C0

`
›

›

›
∇

K
Ψq

›

›

›

C1

›

›

›
∇

K
Wq`1 ¨ ∇∇Ψq

›

›

›

C0

¯

ď 1

λq`1

ˆ

›

›

›
Dt,q∇

K
Wq`1

›

›

›

C0

›

›∇∇Ψq

›

›

C0 `
›

›

›
∇

K
Wq`1

›

›

›

C0

›

›Dt,qp∇∇Ψqq
›

›

C0

`
›

›

›
∇

K
Ψq

›

›

›

C1

›

›

›
∇

K
Wq`1 ¨ ∇∇Ψq

›

›

›

C0

˙

ď 1

λq`1

ˆ

›

›

›
Dt,q∇

K
Wq`1

›

›

›

C0

›

›∇∇Ψq

›

›

C0
`
›

›

›
∇

K
Wq`1

›

›

›

C0

›

›∇Dt,qp∇Ψqq
›

›

C0

`
›

›

›
∇

K
Wq`1

›

›

›

C0

}∇Ψq}2
C1 `

›

›

›
∇

K
Ψq

›

›

›

C1

›

›

›
∇

K
Wq`1 ¨ ∇∇Ψq

›

›

›

C0

˙
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ď 1

λq`1

ˆ

µq`1δ
1

2

q`1δ
1

2
q λq ` δ

1

2

q`1δqλ
2
q ` δ

1

2

q`1δqλ
2
q ` δ

1

2

q`1δqλ
2
q ` δ

1

2
q λqδ

1

2

q`1δ
1

2
q λq

˙

À 1

λq`1

µ2
q`1δ

1

2

q`1

ď δq`2δ
1

2

q`1λq`1.

�

4.3. Oscillation Error. Before defining and estimating the oscillation error, we address the effect of
the localizer Lq`1. As discussed earlier, Lq`1 factors out of the oscillation error. The interaction of the
perturbation ∇pWq`1Lq`1q with itself is given in the term

∇ ¨
´

∇pLq`1Wq`1q b ∇
KpLq`1Wq`1q

¯

.

Since Lq depends only on z, the first two components are equal to

L2
q`1∇ ¨

´

∇Wq`1 b ∇
K
Wq`1

¯

.

In the third row, we can write that

∇ ¨
´

∇
K pLq`1Wq`1q Bz pLq`1Wq`1q

¯

“ ∇ ¨
´

∇
K pLq`1Wq`1q pWq`1BzLq`1 ` Lq`1BzWq`1q

¯

“ Lq`1BzLq`1∇
K
Wq`1 ¨ ∇Wq`1 ` L2

q`1∇
K
Wq`1 ¨ ∇pBzWq`1q

“ L2
q`1∇

K
Wq`1 ¨ ∇BzWq`1,

showing that

∇ ¨
´

∇pLq`1Wq`1q b ∇
KpLq`1Wq`1q

¯

“ L2
q`1∇ ¨

´

∇Wq`1 b ∇
K
Wq`1

¯

.(4.1)

By the inductive assumption (3.3) on the spatial support of M̊q, we have also that

∇ ¨ M̊q “ L2
q`1∇ ¨ M̊q.

Therefore

∇ ¨
´

∇pLq`1Wq`1q b ∇
KpLq`1Wq`1q

¯

` ∇ ¨ M̊q “ L2
q`1∇ ¨

´

∇Wq`1 b ∇
K
Wq`1 ` M̊q

¯

.(4.2)

We will decompose the right hand side into several terms. The definition of this decomposition as well
as the estimates for each piece comprise the remainder of this section. We first collect some preliminary
estimates.

Lemma 4.4. The following estimates hold.

(1) For θ P r0, 1s, }wkl}Cθ À δ
1

2

q`1λ
θ
q`1.

(2) For θ P r0, 2s,
›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

Cθ
À δ

1

2

q`1λ
θ´β
q`1 .

(3)
›

›

›
Dt,q

´”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

`

eiλq`1k¨xik
˘

¯›

›

›

C0

À µq`1δ
1

2

q`1.

Proof. The proof of (1) follows from interpolating

}wkl}C0 ď δ
1

2

q`1, }wkl}C1 ď δ
1

2

q`1λq`1

using Lemma 4.1 and Definition 2.1. To prove (2), recall that by Lemma 4.1, each derivative on

akle
iλq`1pΦl´xq¨k costs a factor of λ1´β

q`1 . Then we can apply the commutator estimate (7.3) to obtain
›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

Ck
À 1

λq`1

ÿ

0ďjďk

›

›

›
∇akle

iλq`1pΦl´xq¨k
›

›

›

Cj

›

›

›
eiλq`1k¨xik

›

›

›

Ck´j
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À δ
1

2

q`1λ
k´β
q`1 .

The non-integer bounds then follow from interpolation. To prove (3), observe that
”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı ´

eiλq`1k¨xik
¯

“ Dt,q

`

P∇
q`1,kpwklq

˘

´ Dt,qwkl.

and use the estimates in the section on the transport error. �

4.3.1. Estimates for Ohigh.

Lemma 4.5. The high frequency portion of the oscillation error

L2
q`1∇ ¨

˜

ÿ

k`k1‰0

XlXl1
`

P∇
q`1,k pwklq

˘

b
ˆ

P∇
q`1,k1

K `

wk1l1
K
˘

˙

¸

is equal to

curl pQhighq ` ∇ ¨ M̊O,high

with the estimates

}Qhigh}C0 ď δq`1, }Qhigh}C1 ď δq`1λq`1

}M̊O,high}C0 ď ηδq`2, }M̊O,high}C1 ď δq`2λq`1, }Dt,qM̊O,high}C0 ď δq`2δ
1

2

q`1λq`1.

Furthermore, Qhigh and ∇ ¨ M̊O,high are supported in the set

T2 ˆ
„

1

lq`1

, 2π ´ 1

lq`1



.

Proof. Towards obtaining a decomposition, we can apply the frequency localizer P«λq`1
since k ‰ k1 and

Lemma 2.2 to write

L2
q`1∇ ¨

ÿ

k`k1‰0

XlXl1P
∇
q`1,k pwklq b P∇

q`1,k1

K `

wk1l1
K
˘

“ L2
q`1∇ ¨ P«λq`1

ÿ

k`k1‰0

XlXl1

ˆ

´”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq ` wkl

¯

b
ˆ„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik

1Kq ` wk1l1
K

˙˙

“ L2
q`1∇ ¨ P«λq`1

ÿ

k`k1‰0

XlXl1

ˆ

´”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
¯

b
ˆ

P∇
q`1,k1

K `

wk1l1
K
˘

˙˙

` L2
q`1∇ ¨ P«λq`1

ÿ

k`k1‰0

XlXl1

ˆ

pwklq b
ˆ„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik

1Kq
˙˙

` L2
q`1∇ ¨ P«λq`1

ÿ

k`k1‰0

XlXl1

ˆ

pwklq b
`

wk1l1
K
˘

˙

:“ L2
q`1∇ ¨ pOhigh,1 ` Ohigh,2 ` Ohigh,3q

The terms Ohigh,1 and Ohigh,2 are simpler to analyze, while the analysis of Ohigh,3 is more delicate and
will be separated into its own lemma.

Calculating the amplitude of Ohigh,1 and Ohigh,2, we apply Lemma 4.4 to see that

}Ohigh,1}
C0 ` }Ohigh,2}

C0 À
›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

C0

›

›

›

›

P∇
q`1,k1

K `

wk1l1
K
˘

›

›

›

›

C0

` }wkl}C0

›

›

›

›

„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik

1Kq
›

›

›

›

C0
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À δq`1λ
´β
q`1

ď ηδq`2.

Then we separate ∇ ¨ Ohigh,1 and ∇ ¨ Ohigh,2 using the projection operators P∇ and P∇
K

as

L2
q`1∇ ¨ pOhigh,1 ` Ohigh,2q “ L2

q`1

´

P∇
`

∇ ¨ pOhigh,1 ` Ohigh,2q
˘

` P∇
K `

∇ ¨ pOhigh,1 ` Ohigh,2q
˘

¯

.

Since applying P∇ gives a vector field with three components, the first two of which are the horizontal
gradient ∇ of a scalar function, the first term can be plugged into the inverse divergence D and absorbed

in M̊O,high. Applying P∇
K

yields a vector field with no third component whose first two components are

the perpendicular gradient ∇
K
of a scalar function, and so we absorb this term into curlpQhighq. Since

multiplication by Lq`1 commutes with both operators, the claims on the spatial supports of Qhigh and

M̊O,high follow. The claims on the C0 and C1 norm follow as for the transport and Nash errors after

using Lemma 4.4, applying D and
´

∇
K
¯´1

, and using Bernstein’s inequality in x and y to divide by λq`1

due to the presence of the P̄«λq`1
.

We must now calculate the material derivative of the M̊O,high portion. Using that multiplication by

Lq`1 commutes with ∇¨, D, and Dt,q, we can write that

Dt,q

´

L2
q`1D ˝ P∇

`

∇ ¨ pOhigh,1q
˘

¯

“ L2
q`1

”

Dt,q,D ˝ P∇ ˝ p∇¨q ˝ P«λq`1

ı

˜

ÿ

k`k1‰0

XlXl1

´”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
¯

b
ˆ

P∇
q`1,k1

K `

wk1l1
K
˘

˙

¸

` L2
q`1

´

D ˝ P∇ ˝ p∇¨q ˝ P«λq`1

¯

Dt,q

˜

ÿ

k`k1‰0

XlXl1

´”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
¯

b
ˆ

P∇
q`1,k1

K `

wk1l1
K
˘

˙

¸

“: I ` II.

Since
´

D ˝ P∇ ˝ p∇¨q ˝ P«λq`1

¯

is an order zero operator in x and y satisfying the kernel assumptions of

the commutator estimate (7.1), we can write

}I}C0 À }∇Ψq}C1

›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

C0

›

›

›

›

P∇
q`1,k1

K pwk1l1q
›

›

›

›

C0

À δ
1

2
q λqδq`1λ

´β
q`1

ď δq`2δ
1

2

q`1λq`1.

Recalling that }Dt,qXl}C0 ď µq`1, using parts (2) and (3) of Lemma 4.4, and noticing that the sin-

gular integral operator
´

D ˝ P∇ ˝ p∇¨q ˝ P«λq`1

¯

is bounded on L8 due to the frequency localizer and

Lemma 2.1, we can estimate II by

}II}C0 À }Dt,qXl}C0

›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

C0

›

›

›

›

P∇
q`1,k1

K pwk1l1q
›

›

›

›

C0
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`
›

›

›
Dt,q

´”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
¯›

›

›

C0

›

›

›

›

P∇
q`1,k1

K pwk1l1q
›

›

›

›

C0

`
›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

C0

›

›

›

›

Dt,qP
∇
q`1,k1

K
pwk1l1q

›

›

›

›

C0

À µq`1δq`1λ
´β
q`1 ` µq`1δq`1

ď δq`2δ
1

2

q`1λq`1.

The estimate for the material derivative of Ohigh,2 is similar, and we omit it. �

We must now show that the conclusions of Lemma 4.5 hold for the third piece Ohigh,3 of the Ohigh

error. Before analyzing the Ohigh,3 term, we must carefully compute the divergence and determine which
pieces of the resulting expression can be absorbed into the error MO,high and which must be absorbed into

curl pQhighq. The problematic terms arise when the differential operators fall on eiλq`1k¨x, since picking
up a λq`1 makes the resulting term too large to be canceled out by future perturbations. In the context
of the Euler equations, the fact that Beltrami flows are stationary solutions provides an algebraic identity
which, when deployed at the right time, shows that the problematic terms can be absorbed into the new
pressure. In our setting, the same principle holds, although its manifestation appears more technical for
two reasons. First, the vector field Q from Lemma 2.7 is defined as the solution to an elliptic equation
via a composition of several differential and integral operators which we must account for. Secondly,
we must carefully keep track of the spatial localizer Lq`1 throughout the decomposition and subsequent
estimates. The localizer gives us building blocks which are only stationary solutions to leading order,
leaving some extra error terms to estimate.

Lemma 4.6. The conclusions of Lemma 4.5 hold for L2
q`1∇ ¨ Ohigh,3.

Proof. Calculating the divergence (in x and y, i.e. ∇¨) and setting

fklk1l1 “ akle
iλq`1pΦl´xq¨kak1l1e

iλq`1pΦl1 ´xq¨k1
,

we have

L2
q`1∇ ¨ Ohigh,3 “ L2

q`1∇ ¨ P«λq`1

˜

ÿ

k`k1‰0

XlXl1fklk1l1e
iλq`1k¨xik b eiλq`1k

1¨xik
1K

¸

“ L2
q`1P«λq`1

ÿ

k`k1‰0

XlXl1

´´

eiλq`1k¨xik
¯

b
´

eiλq`1k
1¨xik

1K
¯¯

¨ ∇ pfklk1l1 q

` L2
q`1P«λq`1

ÿ

k`k1‰0

XlXl1fklk1l1∇ ¨
´

eiλq`1k¨xik b eiλq`1k
1¨xik

1K
¯

“: L2
q`1Ohigh,3,1 ` L2

q`1Ohigh,3,2.

The analysis of Ohigh,3,1 is simpler due to the fact that the differential operators have landed on fklk1l1 .
Estimating its amplitude, we have that

›

›L2
q`1Ohigh,3,1

›

›

C0
À }∇fklk1l1}C0

À }∇akl}C0}akl}C0 ` }akl}2C0

›

›

›
∇eiλq`1pΦl´xq¨k

›

›

›

C0

À δq`1λq ` δq`1λ
1´β
q`1

ď ηδq`2λq`1.
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Recalling that multiplication by L2
q`1 commutes with convolution operators and differentiation in x and

y, we then decompose L2
q`1Ohigh,3,1 using the P∇ and P∇

K

operators into

L2
q`1Ohigh,3,1 “ L2

q`1P
∇ pOhigh,3,1q ` L2

q`1P
∇

K

pOhigh,3,1q .

The first term can be plugged into the inverse divergence D and then absorbed into the error M̊O,high,
while the second term has zero third component and can be absorbed into curlpQhighq. The desired C0

and C1 estimates then follow arguing as before.

We now estimate the material derivative of D ˝ P∇
`

L2
q`1Ohigh,3,1

˘

. We write

Dt,q

´

L2
q`1D ˝ P∇ pOhigh,3,1q

¯

“ L2
q`1Dt,q

˜

DP∇
ÿ

k`k1‰0

P«λq`1
XlXl1

´

ik b ik
1K
eiλq`1pk`k1q¨x

¯

∇fklk1l1

¸

“ L2
q`1

”

Dt,q,D ˝ P∇ ˝ P«λq`1

ı

˜

ÿ

k`k1‰0

XlXl1

´

ik b ik
1K
eiλq`1pk`k1q¨x

¯

∇fklk1l1

¸

` L2
q`1D ˝ P∇ ˝ P«λq`1

˜

Dt,q

˜

ÿ

k`k1‰0

XlXl1

´

ik b ik
1K
eiλq`1pk`k1q¨x

¯

∇fklk1l1

¸¸

“: I ` II.

We bound I using (7.1) and the fact that D ˝ P∇ ˝ P«λq`1
is an order ´1 convolution operator in x and

y localized in frequency at λq`1, obtaining

}I}C0 À }∇Ψq}C1

1

λq`1

}∇fklk1l1}C0

À δ
1

2

q λq
1

λq`1

δq`2λq`1

ď δq`2δ
1

2

q`1λq`1.

Before bounding II, we write out

XlXl1∇fklk1l1e
iλq`1pk`k1q¨x “ XlXl1

`

akl∇ak1l1 ` ak1l1∇akl
˘

eiλq`1pk`k1q¨x

` iλq`1XlXl1aklak1l1

´

pDΦl ´ Idq k ` pDΦl1 ´ Idq k1
¯

eiλq`1pk`k1q¨x.

Then computing Dt,q of this quantity gives

Dt,q

´

∇fklk1l1e
iλq`1pk`k1q¨xXlXl1

¯

“ pXlXl1q1 `akl∇ak1l1 ` ak1l1∇akl
˘

eiλq`1pk`k1q¨x

` iλq`1pXlXl1q1aklak1l1

´

pDΦl ´ Idq k ` pDΦl1 ´ Idq k1
¯

eiλq`1pk`k1q¨x

´ XlXl1

´

akl∇∇
K
Ψq : ∇ak1l1 ` ak1l1∇∇

K
Ψq : ∇akl

¯

eiλq`1pk`k1q¨x

´ iλq`1XlXl1aklak1l1

´

∇∇
K
Ψq : DΦl ¨ k ` ∇∇

K
Ψq : DΦl1 ¨ k1

¯

eiλq`1pk`k1q¨x.

Then we can bound II by

}II}C0 À 1

λq`1

ˆ

µq`1δq`1λq`1 ` λq`1µq`1δq`1 ` δ
1

2
q λqδq`1λq ` λq`1δq`1δ

1

2
q λq

˙

ď δq`2δ
1

2

q`1λq`1.
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We now move to the decomposition and estimation of L2
q`1Ohigh,3,2. While in general projecting a

vector field onto gradients using P∇ induces no gain in regularity, the highest frequency terms in Ohigh,3,2

belong to the kernel of the divergence operator. To see this, let us compute the divergence (now in x, y,
and z, i.e. ∇¨) of Ohigh,3,2:

∇¨
˜

P«λq`1

ÿ

k`k1‰0

fklk1l1∇ ¨
´

eiλq`1k¨xik b eiλq`1k
1¨xik

1K
¯

¸

“ P«λq`1

ÿ

k`k1‰0

fklk1l1

´

ik
1K ¨ ik

¯

pλq`1q2eiλq`1pk`k1q¨xik ¨ ipk ` k1q

` P«λq`1

ÿ

k`k1‰0

ik
1K ¨ ik

´

λq`1e
iλq`1pk`k1q¨x

¯

∇ pfklk1l1q ¨ ik

“: I ` II.

Since the sum is over k P Ω1, k1 P Ω2 where the parity of l1 and l matches that of the corresponding sets
Ωi to which k and k1 belong, the coefficients fklk1l1 allow for the application of the algebraic identity (2.2)
from Lemma 2.7. Therefore, I is equal to zero pointwise in T3, showing that the problematic terms are
annihilated by the divergence. Then we can write that

∇F :“ P∇ pOhigh,3,2q
“ ∇ ˝ p´∆q´1 ˝ p∇¨q pOhigh,3,2q
“ ∇ ˝ p´∆q´1pIIq.

Although the third component of the frequency support of F is not compact, the first two components
are supported in an annulus centered around λq`1, and so Bernstein’s inequality gives that

}∇F}C0 À 1

λq`1

}II}C0

À 1

λq`1

λq`1}fklk1l1 }C1

ď ηδq`2λq`1.

Conversely, after setting G :“ PcurlpOhigh,3,2q, we have that

}curlpGq}C0 “ }PcurlpOhigh,3,2q}
C0

ď }Ohigh,3,2}
C0 ` }∇F}C0

À λq`1}fklk1l1}C0 ` }∇F}C0

À δq`1λq`1.

Furthermore, since G “ p´∆q´1 ˝ curlpOhigh,3,2q is given by an operator of order ´1 applied to Ohigh,3,2,

by the presence of P«λq`1
and Bernstein’s inequality we see that }G}C0 À δq`1.

We are now ready to decompose L2
q`1Ohigh,3,2.

L2
q`1Ohigh,3,2 “ L2

q`1P∇ pOhigh,3,2q ` L2
q`1PcurlpOhigh,3,2q

“ L2
q`1∇F ` L2

q`1 curlpGq

“

»

–

Bx
`

L2
q`1F

˘

By
`

L2
q`1F

˘

L2
q`1BzF

fi

fl `

»

–

´G2BzpL2
q`1q

G1BzpL2
q`1q

0

fi

fl ` curl
`

L2
q`1G

˘

.

The first term can now be absorbed into the error MO,high after applying D, while the third term can be
absorbed into curlpQhighq. The estimates on the amplitudes, C1 norms, and spatial supports follow from
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the above estimates on F and G. Before addressing the second term, which we shall denote

L :“

»

–

´G2BzpL2
q`1q

G1BzpL2
q`1q

0

fi

fl

let us calculate the material derivative of the first.

Dt,q

`

D
`

L2
q`1∇F

˘˘

“ L2
q`1Dt,q pDp∇Fqq

“ L2
q`1 rDt,q,Ds p∇Fq ` L2

q`1D pDt,qp∇Fqq .
We can bound the first term using (7.1) and the fact that ∇F is supported in an annulus of radius λq`1

in x and y frequencies by
›

›L2
q`1 rDt,q,Ds p∇Fq

›

›

C0
À 1

λq`1

}∇Ψq}C1}∇F}C0

À δ
1

2
q λq

1

λq`1

δq`2λq`1

ď δq`2δ
1

2

q`1λq`1.

We decompose the second term further as

L2
q`1D pDt,qp∇Fqq “ L2

q`1D prDt,q,P∇s pOhigh,3,2qq ` L2
q`1D pP∇ pDt,qpOhigh,3,2qqq .

Using the fact that Ohigh,3,2 is supported in an annulus of size λq`1 in x and y frequencies, we can bound
the first term using the commutator estimate from Proposition 7.3 by

›

›L2
q`1D prDt,q,P∇s pOhigh,3,2qq

›

›

C0
À 1

λq`1

}∇Ψq}C1`α}Ohigh,3,2}Cα

À 1

λq`1

δ
1

2
q λ

1`α
q δq`1λ

1`α
q`1

ď δq`2δ
1

2

q`1λq`1

if α is small enough. Then for the second term, we can write
›

›L2
q`1D pP∇ pDt,qpOhigh,3,2qqq

›

›

C0

“
›

›

›

›

›

L2
q`1D ˝ P∇

˜

“

Dt,q,P«λq`1

‰

˜

ÿ

k`k1‰0

aklak1l1e
iλq`1Φl¨keiλq`1Φl¨k

1
λq`1k b k

1Kpk ` k1q
¸¸›

›

›

›

›

C0

À 1

λq`1

}∇Ψq}C1λq`1}akl}2C0

ď 1

λq`1

δ
1

2
q λqλq`1δq`1

ď δq`2δ
1

2

q`1λq`1.

We now return to L. Since L has derivatives on Lq`1 rather than G, it is significantly smoother than
curlpGq. We decompose L as

L “ P∇ pLq ` P∇
K

pLq .
Then P∇ pLq is absorbed into the error MO,high after applying D, while P∇

K

pLq can be absorbed into the
curl since it has zero third component. Estimating the amplitude of L, we can write

}L}C0 À }BzLq`1}C0}G}C0 ď lq`1δq`1 ď ηδq`2λq`1,

and thus the desired C0 and C1 estimates follow from Bernstein’s inequality and the fact that L is
compactly supported in frequency in x and y.
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Finally, it remains to estimate the material derivative of DP∇L.
›

›

›

›

›

BzpL2
q`1qDt,q

˜

D ˝ P∇ ˝ p´∆q´1 ˝ curl ˝P«λq`1

˜

ÿ

k`k1‰0

aklak1l1e
iλq`1pΦl¨k`Φl¨k

1qk b k
1Kpkq

¸¸›

›

›

›

›

C0

ď lq`1

›

›

›

›

›

”

Dt,q,D ˝ P∇ ˝ p´∆q´1 ˝ curl ˝P«λq`1

ı

˜

ÿ

k`k1‰0

aklak1l1e
iλq`1pΦl¨k`Φl¨k

1qk b k
1Kpkq

¸›

›

›

›

›

C0

À lq`1

1

λ2
q`1

}∇Ψq}C1`α}Ohigh,3,2}Cα

À lq`1

1

λ2
q`1

δ
1

2
q λ

1`α
q δq`1λ

1`α
q`1

ď δq`2δ
1

2

q`1λq`1.

We remark that estimating the commutator of Dt,q and D ˝ P∇ ˝ p´∆q´1 ˝ curl ˝P̄«λq`1
can be done

following the ideas of the proof of (7.1) if one is willing to pay a Cα norm on ∇
2
Ψq and Ohigh,3,2, which

is acceptable considering that lq`1 is much smaller than λq`1. �

4.3.2. Estimates for Olow. Olow is given by

Olow “ L2
q`1∇ ¨

˜

ÿ

k`k1“0

XlXl1P
∇
q`1,k pwklq b P∇

q`1,k1

K `

wk1l1
K
˘

¸

` L2
q`1∇ ¨ M̊q.

Recall that the choice of vectors k implies that if k “ ´k1, then l and l1 have the same parity. For l and
l1 with the same parity,

ř

l1 XlXl1 “ X 2
l . In order to isolate the terms which cancel out ∇ ¨ M̊q, we rewrite

Olow as

Olow “ L2
q`1∇ ¨

˜

ÿ

k`k1“0

X 2
l

´”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq ` wkl

¯

b
ˆ„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik1q ` wk1l1

K

˙

¸

` L2
q`1∇ ¨ M̊q

“: Olow,1 ` Olow,2 ` Olow,3 ` Olow,4 ` Olow,5

where

Olow,1 :“ L2
q`1∇ ¨

˜˜

ÿ

k`k1“0

X
2
l

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
¸

b P∇
q`1,k

K
pwk1l1

Kq
¸

,

Olow,2 :“ L2
q`1∇ ¨

˜

ÿ

k`k1“0

X 2
l wkl b

ˆ„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik

1Kq
˙

¸

,

Olow,3 “ L2
q`1∇ ¨

´

M̊q ´ M̊q,ℓ

¯

Olow,4 :“ L2
q`1∇ ¨

˜

ÿ

k`k1“0

X
2
l

`

wkl b wk1l1
K ´ Mq,l

˘

¸

Olow,5 :“ L2
q`1∇ ¨

˜

ÿ

l

X 2
l

´

M̊q,ℓ ´ M̊q,l

¯

¸

.
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We see that by construction,

Olow,4 “ L2
q`1∇ ¨

˜

1

2

ÿ

k

X 2
l

´

|akl|2k b k
K ´ Mq,l

¯

¸

“ 0,

giving us the required cancellation. Thus, it remains to decompose and estimate Olow,1, Olow,2, and
Olow,3, and Olow,5. We state the results as follows.

Lemma 4.7. The low frequency portion of the oscillation error Olow is equal to

curl pQlowq ` ∇ ¨ M̊O,low

with the estimates
}Qlow}C0 ď δq`1, }Qlow}C1 ď δq`1λq`1

}M̊O,low}C0 ď ηδq`2, }M̊O,low}C1 ď δq`2λq`1, }Dt,qM̊O,low}C0 ď δq`2δ
1

2

q`1λq`1.

Furthermore, Qlow and M̊O,low are supported in the set

T2 ˆ
„

1

lq`1

, 2π ´ 1

lq`1



.

Proof. We start by decomposing Olow,1 as

Olow,1 “ P∇ pOlow,1q ` P∇
K

pOlow,1q .

As P∇ and P∇
K

are convolution operators in x and y only, they commute with multiplication by L2
q`1,

and the claim on the spatial supports follows. The first term is absorbed into MO,low after applying D,

while the second term is absorbed into curlpQlowq by inverting ∇
K
. We estimate the P∇ portion now.

}DP∇Olow,1}C0

ď sup
k`k1“0

›

›

›

›

DP∇∇ ¨
ˆ

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xkq b P∇
q`1,k1

Kpwk1l1
Kq
˙›

›

›

›

C0psuppXl1 q

ď
›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xkq
›

›

›

C0

›

›

›

›

P∇
q`1,k1

K `

wk1l1
K
˘

›

›

›

›

Cα

`
›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xkq
›

›

›

Cα

›

›

›

›

P∇
q`1,k1

K `

wk1l1
K
˘

›

›

›

›

C0

À δq`1λ
α´β
q`1

ď ηδq`2

after using Lemma 4.1 and assuming α is sufficiently small. The estimate for the P∇
K

portion follows by

simply replacing D ˝ P∇ with p´∆q´1 ˝ p∇K¨q in the above argument.
To calculate the C1 norms, we write

›

›

›
∇DP∇Olow,1

›

›

›

C0

À
›

›BzpL2
q`1q

›

›

C0

ˆ sup
k`k1“0

›

›

›

›

DP∇∇ ¨
ˆ

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xkq b P∇
q`1,k1

K
pwk1l1

Kq
˙›

›

›

›

C0psuppXl1 q

` sup
k`k1“0

›

›

›

›

DP∇∇ ¨
ˆ

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xkq b P∇
q`1,k1

K
pwk1l1

Kq
˙›

›

›

›

C1psuppXl1 q

ď ηδq`2λq`1

after arguing as above. The decomposition and estimate for Olow,2 is analogous, and we omit the calcu-
lation.
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Note that Olow,3 “ L2
q`1∇ ¨

´

M̊q ´ M̊q,ℓ

¯

is already the divergence of a suitable matrix. To estimate

the C0 norm, standard mollification estimates give
›

›

›
M̊q ´ M̊q,ℓ

›

›

›

C0

ď δq`1λqλ
´ 3

4

q λ
´ 1

4

q`1

ď ηδq`2.

The C1 norm is then easily controlled by 2
›

›

›
M̊q

›

›

›

C1

“ 2δq`1λq ď δq`2λq`1, showing the desired result.

For Olow,5 we recall that for t “ l
µq`1

,

M̊q,ℓptq “ M̊q,lptq
for all x P T3, and that

Dt,qpM̊q,ℓ ´ M̊q,lq “ Dt,qM̊q,ℓ.

Before calculating the C0 and C1 norm, let us calculate the material derivative of M̊q,ℓ.

Dt,qM̊q,ℓ “
´

Dt,qM̊q

¯

˚ φq ` ∇
K
Ψq ¨ ∇M̊q,ℓ ´

´

∇
K
Ψq ¨ ∇M̊q

¯

˚ φq

A simple calculation shows that the commutator
›

›

›

”

∇
K
Ψq ¨ ∇, φq˚

ı

pM̊qq
›

›

›

C0

ď }∇K
Ψq}C1}M̊q}C1ℓ,

thus showing that
›

›

›
Dt,qM̊q,ℓ

›

›

›

C0

ď δq`1λqδ
1

2

q λqℓ ď δq`2δ
1

2

q`1λq`1.

In addition, we obtain that
›

›

›
Dt,qM̊q,ℓ

›

›

›

C1

ď δq`1δ
1

2

q λ
2
q .

Applying the transport estimate from Lemma 7.1 and the inductive assumption (3.6), we find
›

›

›

›

›

L2
q`1

ÿ

l

X 2
l

´

M̊q,ℓ ´ M̊q,l

¯

›

›

›

›

›

C0

ď sup
l

›

›

›
M̊q,ℓ ´ M̊q,l

›

›

›

C0psuppXlq

ď 1

µq`1

δq`1δ
1

2
q λq

ď ηδq`2.

Applying the transport estimate Lemma 7.1 then shows that
›

›

›
M̊q,ℓ ´ M̊q,l

›

›

›

C1

ď 1

µq`1

δq`1δ
1

2
q λ

2
q

“ δ
3

4

q`1δ
1

4
q λ

3

2
q λ

´ 1

2

q`1

ď δq`2λq`1,

providing the desired C1 bound after recalling that BzLq`1 is small.
Moving now to the material derivative, we have that

Dt,qMO,low “ Dt,qDP∇∇ ¨
˜

L2
q`1

ÿ

k`k1“0

X 2
l

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq b P∇
q`1,k1

K
pwk1l1

Kq

` L2
q`1

ÿ

k`k1“0

X
2
l wkl b

„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik

1Kq
¸
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` Dt,q

˜

M̊q ´ M̊q,ℓ ` L2
q`1

ÿ

l

X
2
l

´

M̊q,ℓ ´ M̊q,l

¯

¸

“: Dt,qDP∇
∇ ¨ Ω ` Dt,q

˜

M̊q ´ M̊q,ℓ ` L2
q`1

ÿ

l

X
2
l

´

M̊q,ℓ ´ M̊q,l

¯

¸

.

The second and third terms are the easiest to analyze and we dispense with it first. Since Dt,qL
2
q`1 “

Dt,qM̊q,l “ 0, we can write that
›

›

›

›

›

Dt,q

˜

L2
q`1

ÿ

l

X
2
l

´

M̊q,ℓ ´ M̊q,l

¯

¸›

›

›

›

›

C0

ď
›

›Dt,qX
2
l

›

›

C0

›

›

›
M̊q ´ M̊q,l

›

›

›

C0

`
›

›

›
Dt,qM̊q,ℓ

›

›

›

C0

ď δq`2δ
1

2

q`1λq`1

after applying the previous estimate on Dt,qM̊q,ℓ. In addition, we have that
›

›

›
Dt,q

´

M̊q ´ M̊q,ℓ

¯›

›

›

C0

ď δq`2δ
1

2

q`1λq`1

after applying the inductive assumption and the estimate on Dt,qM̊q,ℓ.

The first step towards estimating the other term is to estimate the commutator of Dt,q and DP∇∇¨
applied to Ω using Proposition 7.3. We can write

›

›

›

”

Dt,q,DP∇∇¨
ı

pΩq
›

›

›

C0

ď }∇Ψq}C1`α}Ω}Cα

ď }∇Ψq}C1`α

˜

›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

Cα

›

›

›

›

P∇
q`1,k1

K
pwk1l1

Kq
›

›

›

›

C0

`
›

›

›

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq
›

›

›

C0

›

›

›

›

P∇
q`1,k1

K
pwk1l1

Kq
›

›

›

›

Cα

`
›

›

›

›

„

P∇
q`1,k1

K
, akle

iλq`1pΦl´xq¨k



peiλq`1k¨xik1q
›

›

›

›

Cα

}wkl}C0

`
›

›

›

›

„

P∇
q`1,k1

K
, akle

iλq`1pΦl´xq¨k



peiλq`1k¨xik1q
›

›

›

›

C0

}wkl}Cα

¸

À δ
1

2

q λ
1`α
q δq`1λ

α
q`1

ď δq`2δ
1

2

q`1λq`1

if α is small enough. Therefore, it remains to estimate

DP∇
∇ ¨ Dt,q

˜

L2
q`1

ÿ

k`k1“0

X
2
l

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq b P∇
q`1,k1

K
pwk1l1

Kq
¸

` DP∇∇ ¨ Dt,q

˜

L2
q`1

ÿ

k`k1“0

X 2
l wkl b

„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik

1Kq
¸

.

We first simplify the above expression by noticing that

Dt,q

˜

L2
q`1

ÿ

k`k1“0

X 2
l

”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq b P∇
q`1,k1

K
pwk1l1

Kq

` L2
q`1

ÿ

k`k1“0

X
2
l wkl b

„

P∇
q`1,k1

K
, ak1l1e

iλq`1pΦl1 ´xq¨k1



peiλq`1k
1¨xik

1Kq
¸
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“ Dt,q

˜

L2
q`1

ÿ

k`k1“0

X
2
l

ˆ

P∇
q`1,k pwklq b P∇

q`1,k1

K `

wk1l1
K
˘

´ wkl b wk1l1
K

˙

¸

“ L2
q`1

ÿ

k`k1“0

Dt,q

`

X 2
l

˘

ˆ

P∇
q`1,k pwklq b P∇

q`1,k1

K `

wk1l1
K
˘

´ wkl b wk1l1
K

˙

` L2
q`1

ÿ

k`k1“0

X 2
l

ˆ

Dt,q

ˆ

P∇
q`1,k pwklq b P∇

q`1,k1

K `

wk1l1
K
˘

˙˙

.

Notice that the terms with the projection operators P∇
q`1,k and P∇

q`1,k1

K
are supported in an annulus in

x and y frequencies, and so the singular integral operator DP∇∇¨ is bounded on L8 for these terms by
Lemma 2.1. Then the entire expression is bounded by

›

›Dt,q

`

X 2
l

˘›

›

C0

ˆ›

›

›

›

P∇
q`1,k pwklq b P∇

q`1,k1

K `

wk1l1
K
˘

›

›

›

›

C0

` }wkl b wk1l1}Cα

˙

`
›

›

›

›

Dt,q

ˆ

P∇
q`1,k pwklq b P∇

q`1,k1

K `

wk1l1
K
˘

˙›

›

›

›

C0

ď µq`1

`

δq`1 ` δq`1λ
α
q`1

˘

` µq`1δq`1

ď δq`2δ
1

2

q`1λq`1,

finishing the proof. �

5. Energy Increment

In this section, we show that the inductive assumptions (3.8) and (3.9) hold with q replaced by q ` 1.
The proof follows estimates of the Hamiltonian increment from [4] and is thus split up into a preliminary
lemma and subsequent proposition.

Lemma 5.1. If t P suppXl, then
ˇ

ˇ

ˇ

ˇ

ż

T3

ˆ

|∇Ψqptq|2 ´ |∇Ψq

ˆ

l

µq`1

˙

|2
˙ ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

eptq ´ e

ˆ

l

µq`1

˙ ˇ

ˇ

ˇ

ˇ

ď δq`2

16
.

Furthermore, for ρl ‰ 0

|ρptq ´ ρl| ď δq`2

16
and

eptq ´
ż

T3

|∇Ψqptq|2 ě 7δq`2

16
.

If ρl “ 0, then

e

ˆ

l

µq`1

˙

´
ż

T3

|∇Ψqptq|2 ď 9δq`2

16
and M̊qp¨, tq ” 0.

Proof. Using that ∇Ψq solves (3.1) and multiplying by ∇Ψq and integrating by parts, we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

ż

T3

˜

|∇Ψqptq|2 ´
ˇ

ˇ

ˇ

ˇ

∇Ψq

ˆ

l

µq`1

˙ˇ

ˇ

ˇ

ˇ

2
¸ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

T3

ż t

l
µq`1

M̊q : ∇∇Ψq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ˆ

t ´ l

µq`1

˙

δq`1δ
1

2
q λq

À 4

µq`1

δq`1δ
1

2
q λq
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ď δq`2

32
.

The bound
ˇ

ˇ

ˇ

ˇ

eptq ´ e

ˆ

l

µq`1

˙ˇ

ˇ

ˇ

ˇ

À 1

µq`1

ď δq`2

32

follows from the smoothness of eptq. Summing both estimates, the first claim is shown. The second claim
follows from the first and the definition of ρptq. The final bound follows from the definition of ρptq, the
first bound, and (3.9). �

Proposition 5.2. If ρl ‰ 0 and t P suppXl, then

δq`2

4
ď eptq ´

ż

T3

|∇Ψq`1ptq|2 ď 3δq`2

4
.

If not, however, then

eptq ´
ż

T3

|∇Ψq`1ptq|2 ď 9δq`2

16
and M̊q`1p¨, tq ” 0.

Proof. Beginning with the case when ρl “ 0 and t P suppXl, we have that ∇Wq`1ptq “ 0, which implies

that M̊q`1ptq “ M̊qptq “ 0 and

eptq ´
ż

T3

|∇Ψq`1ptq|2 “ eptq ´
ż

T3

|∇Ψqptq|2 ď 9δq`2

16
.

Moving to the case when ρl ‰ 0 and t P suppXl, then by the frequency and spatial support of ∇Ψq

and ∇Wq`1, we have that

eptq ´
ż

T3

|∇Ψq`1ptq|2 “ eptq ´
ż

T3

|∇Ψqptq|2

´
ż

T3

|∇pLq`1Wq`1qptq|2 ´ 2

ż

T3

∇Ψqptq ¨ ∇pLq`1Wq`1qptq

“ eptq ´
ż

T3

|∇Ψq`1ptq|2

´
ż

T3

|∇pLq`1Wq`1qptq|2 ´ 2

ż

T3

∇Ψqptq ¨ ∇Wq`1ptq.

We have to estimate
ż

T3

|∇pLq`1Wq`1qp tq|2 ` 2

ż

T3

∇Ψqptq ¨ ∇Wq`1ptq “: I ` II.

Using (3.2) and the definition of P∇
q`1,k to see that ∇Ψq and ∇Wq`1 are supported in disjoint sets in

frequency, we see that II “ 0. Writing out I gives
ż

T3

|∇pLq`1Wq`1qptq|2 “
ż

T3

L2
q`1∇Wq`1ptq ¨ ∇Wq`1ptq

` 2

ż

T3

Lq`1BzLq`1Wq`1BzWq`1 `
ż

T3

pBzLq`1q2 pWq`1q2

“ I1 ` I2 ` I3.

We can control I2 by
ˇ

ˇ

ˇ

ˇ

2

ż

T3

Lq`1BzLq`1Wq`1BzWq`1

ˇ

ˇ

ˇ

ˇ

ď lq`1

δq`1

λq`1

and I3 by
ˇ

ˇ

ˇ

ˇ

ż

T3

pBzLq`1q2 pWq`1q2
ˇ

ˇ

ˇ

ˇ

ď l2q`1

δq`1

λ2
q`1

.
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Writing out I1 gives

I1 “
ÿ

kl

ż

T3

L2
q`1P

∇
q`1,kpXlwklq ¨ P∇

q`1,´kpXlw´klq

“
ÿ

kl

ż

T3

L2
q`1X

2
l

„

wkl ¨ w´kl `
”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq ¨ w´kl

` wkl ¨
”

P∇
q`1,´k, a´kle

iλq`1pΦl´xq¨k
ı

pe´iλq`1kikq

`
”

P∇
q`1,k, akle

iλq`1pΦl´xq¨k
ı

peiλq`1k¨xikq ¨
”

P∇
q`1,´k, a´kle

iλq`1pΦl´xq¨k
ı

pe´iλq`1kikq


“
ÿ

kl

ż

T3

L2
q`1X

2
l |akl|2 ` O

´

δq`1λ
´β
q`1

¯

“
ÿ

l

X 2
l ρl

ż

T3

L2
q`1 ` O

´

δq`1λ
´β
q`1

¯

.

after applying the commutator estimate (7.1) and (2.1). Then applying the definition of ρl given in (3.11)
finishes the proof. �

6. Proof of Main Results

Proof of Proposition 3.2. We show that each inductive step holds with q replaced by q ` 1. Referring to
the statements of Lemma 4.2, Lemma 4.3, Lemma 4.5, and Lemma 4.7, we have that ∇Ψq`1 solves

Bt∇Ψq`1 ` ∇
K
Ψq`1 ¨ ∇∇Ψq`1 “ curlpQq`1q ` ∇ ¨ M̊q`1

where

Qq`1 “ QT ` QN ` Qhigh ` Qlow, M̊q`1 “ M̊T ` M̊N ` M̊high ` M̊low

and thus (3.1) is satisfied. The inductive step (3.2) follows from the frequency support of Wq`1Lq`1.
(3.3)-(3.7) follow directly from the statements of Lemma 4.1, Lemma 4.2, Lemma 4.3, Lemma 4.5, and
Lemma 4.7. Finally, (3.8) and (3.9) follow from Proposition 5.2. �

Proof of Proposition 3.3. Towards the purpose of constructing solutions to 2D Euler, one first eliminates
the inductive assumption (3.3) on the spatial support and defines Lq`1 ” 1 for all q. Next, choose the first

set of frequency modes to have zero third component. Then it is easy to see that M̊1 is of the specified
block form. Continuing to apply Lemma 2.6 by choosing modes with zero third component since the
third row of M̊q is empty gives immediately that BzpΨq`1 ´Ψqq ” 0, and therefore Ψ depends only on x,
y, and t. �

Proof of Theorem 1.1. From the estimate }wkl}C1 ` }Lq`1}C1 ď δ
1

2

q`1λq`1, we have that

}∇ p∇Ψq`1 ´ ∇Ψqq}C0 “
›

›∇
2 pLq`1Wq`1qq

›

›

C0

ď δ
1

2

q`1λq`1.

We claim that the time derivative Bt∇ pLq`1Wq`1q satisfies the same bound. Indeed,

}Bt∇ pLq`1Wq`1q}C0 “ }Dt,q pLq`1∇Wq`1q}C0 `
›

›

›
∇

K
Ψq ¨ ∇∇Wq`1

›

›

›

C0

ď µq`1δ
1

2

q`1 ` δ
1

2

q`1λq`1

À δ
1

2

q`1λq`1.
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Interpolation then shows that

}∇ pLq`1Wq`1q}
C

ζ
x,t

ď }∇ pLq`1Wq`1q}1´ζ

C0
x,t

}∇ pLq`1Wq`1q}ζ
C1

x,t

À
ˆ

δ
1

2

q`1

˙1´ζ ˆ

δ
1

2

q`1

˙ζ

λ
ζ
q`1

“ δ
1

2

q`1λ
ζ
q`1

“ ap´ 1

2
`cζqbq`1

.

By the assumption that c ą 5
2
, we have that ´1

2
` cζ is negative provided that ζ ă 1

2c
ă 1

5
. Then

∇Ψq is a convergence sequence in C
ζ
t,x. The bounds on the pressure follow immediately from (3.7) and

interpolation. �

Proof of Theorem 1.2. Given that the extra assumption of Proposition 3.3 is satisfied at each stage q,
every subsequent perturbation ∇Wq`1 can be taken to have zero third component, producing a solution
to 2D Euler as desired after repeating the steps of the previous proof. �

7. Appendix

Here we collect several types of estimates which shall be necessary throughout the construction. All
have become essentially standard in recent convex integration schemes. We begin with the following
estimates for solutions to transport equations. For a proof, we refer the reader to [7].

Lemma 7.1 (Transport Estimates). Consider the transport equation

Btf ` u ¨ ∇f “ g, f |t0 “ f0

where f, g : Tn Ñ R and u : Tn Ñ Rn are smooth functions. Let Φ be the inverse of the flow X of u
defined by

d

dt
X “ upX, tq, Xpx, t0q “ x.

Then the following hold:

(1) }fptq}C0 ď }f0}C0 `
şt

t0
}gpsq}C0 ds

(2) }Dfptq}C0 ď }Df0}C0ept´t0q}Du}
C0 `

şt

t0
ept´sq}Du}

C0 }Dgpsq}C0 ds

(3) For any N ě 2, there exists a constant C “ CpNq such that

}DNfptq}C0 ď
`

}DNf0}C0 ` Cpt ´ t0q}Dnu}C0}Df}C0

˘

eCpt´t0q}Du}
C0

`
ż t

t0

eCpt´sq}Du}
C0

`

}DNgpsq}C0 ` Cpt ´ sq}DNu}C0}Dgpsq}C0

˘

ds

(4) }DΦptq ´ Id }C0 ď ept´t0q}Du}
C0 ´ 1 ď pt ´ t0q}Du}C0ept´t0q}Du}

C0

(5) For N ě 2 and a constant C “ CpNq,
}DNΦptq}C0 ď Cpt ´ t0q}DNu}C0eCpt´t0q}Du}

C0

The following estimate controls the norms of compositions of functions, particularly the perturbation.

Lemma 7.2 (Chain Rule). Let Ω Ă RD f : Ω Ñ R, g : Rd Ñ Ω be smooth functions. Then for every
integer N ě 1, there is a constant C “ CpN, d,Dq such that

}DN pf ˝ gq}C0 ď C
´

}Df}C0}DNg}C0 ` }Df}CN´1}g}N´1
C0 }DNg}C0

¯

and

}DNpf ˝ gq}C0 ď C
`

}Df}C0}DNg}C0 ` }Df}CN´1}Dg}NC0

˘

.
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We shall make use of the following commutator estimates. The estimate in Proposition 7.3 is essentially
contained in [21], although the version stated here is a slight alteration whose statement and proof can
be found in [9]. The commutator estimate (7.1) for convolution operators localized in frequency can be
found in [40] or [5]. The estimates (7.2) and (7.3) follow the methods of proof given in [40] and [5].

Proposition 7.3. Let α P p0, 1q and N ě 0. Let TK be a Rn-Calderón-Zygmund operator with kernel
K. Let b P CN`1,αpTnq be a vector field and f P CN,αpTnq. Then there exists a constant C “ Cpα,N,Kq
such that

} rTK , b ¨ ∇s f}N`α ď C}b}1`α}f}N`α ` }b}N`1`α}f}α.
Proposition 7.4. Let s P R, λ ě 1, and let TK be an order s convolution operator localized at length
scale λ´1 whose action on smooth functions is given by convolution with a kernel K satisfying the bounds

}|x|a∇bKpxq}L1pRnq ď Cpa, bqλb´a`s

for all 0 ď a, |b|. Then the following hold.

(1) For f : Tn Ñ C a smooth function and u : Tn Ñ Rn a smooth vector field with ∇ ¨ u “ 0, we have

} ru ¨ ∇, TK s f}C0 ď λs}∇u}C0}f}C0(7.1)

(2) For f : Tn Ñ C a smooth function and u : Tn Ñ Rn a smooth vector field with ∇ ¨ u “ 0, the
iterated commutator

“

Bt ` u ¨ ∇,
“

u ¨ ∇, TK

‰‰

pfq obeys the estimate
›

›

“

Bt ` u ¨ ∇,
“

u ¨ ∇, TK

‰‰

pfq
›

› À λs´1}u}2C1}f}C1 ` }f}C0

`

λs`1}Btu ` u ¨ ∇u}C0 ` λs}u}2C1

˘

.(7.2)

(3) For f, g : Tn Ñ C smooth functions, we have (for an implicit constant depending on k as well)

} rg, TK s f}Ck À λs´1
ÿ

0ďjďk

}∇g}Cj }f}Ck´j .(7.3)

Proof. The proof of (1) is contained in the appendix of [5]. Moving on to the iterated commutator
estimate of (2), we first write

“

u ¨ ∇, TK

‰

pfq “ upxq ¨ ∇
ż

R3

Kpyqfpx ´ yq dy ´
ż

R3

Kpyqupx ´ yq ¨ ∇fpx ´ yq dy

“
ż

R3

fpx ´ yq∇Kpyq ¨ pupxq ´ upx ´ yqq .

Now expanding the iterated commutator, we have
“

Bt ` u ¨ ∇,
“

u ¨ ∇, TK

‰‰

pfq “
`

Bt ` upxq ¨ ∇
˘

ˆ
ż

R3

fpx ´ yq∇Kpyq ¨ pupxq ´ upx ´ yqq
˙

dy

´
ż

R3

`

Btfpx ´ yq ` upx ´ yq ¨ ∇fpx ´ yq
˘

∇Kpyq ¨ pupxq ´ upx ´ yqq dy

“
ż

R3

`

pupxq ´ upx ´ yqq ¨ ∇fpx ´ yq
˘

∇Kpyq ¨ pupxq ´ upx ´ yqq dy

`
ż

R3

fpx ´ yq∇Kpyq ¨
`

Btupxq ` upxq ¨ ∇upxq ´ Btupx ´ yq ´ upxq ¨ ∇upx ´ yq
˘

dy

“: I ` II.

Estimating I first, we write

I ď
ż

R3

|∇Kpyq|}u}2C1 |y|2}f}C1 dy

ď }u}2C1}f}C1λs´1.
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Before estimating II, note that

Btupx ´ yq ` upxq ¨ ∇upx ´ yq “
``

Bt ` u ¨ ∇
˘

u
˘

px ´ yq `
`

pupxq ´ upx ´ yqq ¨ ∇upx ´ yq
˘

.

Therefore,

II2 ď
ż

R3

}f}C0|∇Kpyq|
`

}Btu ` u ¨ ∇u}C0 ` |y|}u}2C1

˘

dy

À }f}C0

`

λs`1}Btu ` u ¨ ∇u}C0 ` λs}u}2C1

˘

.

Combining the estimates gives the result.
To prove (3), we follow the idea from [5] and write that

ˇ

ˇ

ˇ
∇

k pTKpbfqpxq ´ bpxqTKfpxqq
ˇ

ˇ

ˇ
“
ˇ

ˇ

ˇ

ˇ

ż

Rn

∇
k ppbpxq ´ bpx ´ yqqfpx ´ yqqKpyq dy

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ż

Rn

∇
k

ˆˆ
ż 1

0

∇bpx ´ syq ds
˙

¨ yfpx ´ yq
˙

Kpyq dy
ˇ

ˇ

ˇ

ˇ

.

Applying the Leibniz rule and using the integrability assumption on K finishes the proof. �

7.1. Infinitely Many Weak Solutions Sharing the Same Initial Data. In this subsection, we state
and outline the adjustments necessary to prove that infinitely many weak solutions may arise out of a
single smooth initial data. We present and outline the proof of the following theorem.

Theorem 7.5. Let Ψ0 P C8pT2 ˆ r0, 2πsq be a given mean-zero, smooth initial datum with an associated
unique classical solution ∇Ψ of 3D QG on the time interval r0, T0s, with T0 ă Tmax where Tmax is the
maximal time of existence. Then given ζ P p0, 1

5
q, there exist infinitely many weak solutions t∇ΨθuθPΘ

each belonging to Cζpr0, T0s ˆ T2 ˆ r0, 2πsq such that for all θ P Θ and all t P
“

0, T0

2

˘

and all px, y, zq P
T2 ˆ r0, 2πs,

∇Ψθpt, x, y, zq “ ∇Ψpt, x, y, zq.
We now briefly outline the proof of such a theorem using the techniques used to prove Theorem 1.1.

First, the existence of a unique classical solution on a time interval r0, T0s dependent on the initial datum
follows from standard methods. Now consider smooth functions c1pt, zq : r0, T0s ˆ r0, 2πs Ñ R and
c2ptq : r0, T0s Ñ R which will later be chosen to satisfy several criteria. Considering that Ψ is a solution
to 3D QG and repeating the calculation from Lemma 2.7 which shows that functions of z factor out of
the nonlinear term, we have that Ψpt, x, y, zqc1pt, zq ` c2ptq is a solution to

Bt∇pΨc1 ` c2q ` ∇
K pΨc1 ` c2q ¨ ∇∇ pΨc1 ` c2q “ c1

´

Bt∇Ψ ` ∇
K
Ψ ¨ ∇∇Ψ

¯

` Btc1∇Ψ ` BtΨ∇c1 ` BtBzc1Ψ `
`

c21 ´ c1
˘

∇
K
Ψ ¨ ∇∇Ψ

“ c1 curlQ

` P∇

´

Btc1∇Ψ ` BtΨ∇c1 ` BtBzcΨ `
`

c21 ´ c1
˘

∇
K
Ψ ¨ ∇∇Ψ

¯

` P∇
K ´

Btc1∇Ψ ` BtΨ∇c1 ` BtBzcΨ `
`

c21 ´ c1
˘

∇
K
Ψ ¨ ∇∇Ψ

¯

“ curlpc1Qq ´ P∇p∇c1 ˆ Qq ´ P∇
K

p∇c1 ˆ Qq

` P∇

´

Btc1∇Ψ ` BtΨ∇c1 ` BtBzcΨ `
`

c21 ´ c1
˘

∇
K
Ψ ¨ ∇∇Ψ

¯

` P∇
K ´

Btc1∇Ψ ` BtΨ∇c1 ` BtBzcΨ `
`

c21 ´ c1
˘

∇
K
Ψ ¨ ∇∇Ψ

¯

.

We now show that after choosing c1 and c2 carefully and making some simple observations, the convex
integration procedure can be applied starting from Ψc1 ` c2, thus proving Theorem 7.5. We choose c1 to
be uniformly equal to one except on a compact subset of r0, 2πs ˆ pT0

2
, T0q, with additional assumptions
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to follow later. We describe step-by-step how to verify the inductive assumptions for Ψc1 ` c2 at level
q “ 0.

(1) Assumption (3.1) follows after application of the inverse divergence operator to the P∇ terms,
noticing that curlpc1Qq has vanishing third component at the boundary, and noting that since c1

is equal to one except on a compact set in z and t, the P∇
K

terms have compact support in z

and vanish at z “ 0, 2π, so that they may be absorbed into the curl. We also choose c2 so that
Ψc1 ` c2 has mean zero in space for each time t P r0, T0sq

(2) Assumption (3.2) can be ensured by applying a Littlewood-Paley projector in x and y only to the
equation satisfied by Ψc1 ` c2, which will produce a commutator stress after hitting the nonlinear
terms. Assuming that the projector acts as the identity on frequencies less than λ0 and that λ0 is
sufficiently large, this commutator stress can be made arbitrarily small uniformly in time by the
smoothness of Ψ

(3) Assumption (3.3) is satisfied for the matrix field M̊q due to c1 equalling one except on a compact

set in z and t and the fact that the P∇ and inverse divergence operators involve only convolution in
x and y. While Ψc1`c2 and the new curl will not be compactly supported in z, these assumptions
are not strictly necessary to the convex integration scheme (the compact support in z of M̊q was
required to ensure that we can cancel it by adding perturbations compactly supported in z)

(4) Assumption (3.4) can be ensured by a sufficiently large choice of λ0, the Littlewood-Paley projector
in x and y acting as the identity on frequencies ď λ0, and a mollification in z at sufficiently fine
spatial scale inversely proportional to λ0

(5) Assumption (3.5) can be ensured by choosing the derivatives in t and z of c1 to be small
(6) Assumption (3.6) can be ensured by a sufficiently large choice of λ0

(7) Assumption (3.7) can again be ensured by a large choice of λ0

(8) Assumptions (3.8) and (3.9) can be ensured by choosing the energy profile eptq to be constant

on r0, T0

2
q and to be slightly larger on the support of c1 so that there is room for the addition of

subsequent perturbations with non-zero energy

Thus we can construct a weak solution verifying the inductive assumptions of the convex integration
procedure at level q “ 0. Since there is no error on the time interval r0, T0

2
q, the final weak solution

constructed will agree with ∇Ψ for those times. The Hölder regularity follows as well. Producing
infinitely many such solutions follows from translating the support of the function c1 in time and space.
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equations. Archive for Rational Mechanics and Analysis, 224(2):471–514, February 2017.
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