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NONCOMMUTATIVE COUNTERPARTS

OF CELEBRATED CONJECTURES

GONÇALO TABUADA

Abstract. In this survey, written for the proceedings of the conference K-
theory in algebra, analysis and topology, Buenos Aires, Argentina (satellite
event of the ICM 2018), we give a rigorous overview of the noncommuta-
tive counterparts of some celebrated conjectures of Grothendieck, Voevodsky,
Beilinson, Weil, Tate, Parshin, Kimura, Schur, and others.
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Introduction

Some celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate,
Parshin, Kimura, Schur, and others, were recently extended from the realm of alge-
braic geometry to the broad noncommutative setting of differential graded (=dg)
categories. This noncommutative viewpoint led to a proof of these celebrated con-
jectures in several new cases. Moreover, it enabled a proof of the noncommutative
counterparts of the celebrated conjectures in many interesting cases. The purpose
of this survey, written for a broad mathematical audience, is to give a rigorous
overview of these recent developments.

Notations. Given a perfect base field k of characteristic p > 0, we will write
W (k) for its ring of p-typical Witt vectors and K := W (k)1/p for the fraction field
of W (k). For example, when k = Fp, we have W (k) = Zp and K = Qp.

1. Celebrated conjectures

In this section, we briefly recall some celebrated conjectures of Grothendieck,
Voevodsky, Beilinson, Weil, Tate, Parshin, and Kimura (concerning smooth proper
schemes), as well as a conjecture of Schur (concerning smooth schemes).
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2 GONÇALO TABUADA

1.1. Grothendieck standard conjecture of type C+. Let k be a perfect base
field of characteristic p ≥ 0 and X a smooth proper k-scheme of dimension d. When
p = 0, we will write H∗

dR(X) for the de Rham cohomology of X . In the same vein,
when p > 0, we will write H∗

crys(X) := H∗
crys(X/W (k))⊗W (k) K for the crystalline

cohomology of X . Given an integer 0 ≤ i ≤ 2d, consider the associated ith Künneth
projector πi : H∗

dR(X) → H∗
dR(X), resp. πi : H∗

crys(X) → H∗
crys(X), in de Rham

cohomology, resp. in crystalline cohomology. In the sixties, Grothendieck [17] (see
also [30, 31]) conjectured the following:

Conjecture C+(X): The even Künneth projector π+ :=
∑

i even π
i is algebraic1.

This conjecture is also usually called the “sign conjecture”. It holds when d ≤ 2,
when X is an abelian variety (see Kleiman [31]), and also when k is a finite field
(see Katz-Messing [26]). Besides these cases (and some other cases scattered in the
literature), it remains wide open.

Remark 1.1. Given smooth proper k-schemes X and Y , we have the implication of
conjectures C+(X) + C+(Y ) ⇒ C+(X × Y ).

1.2. Grothendieck standard conjecture of type D. Let k be a perfect base
field of characteristic p ≥ 0 and X a smooth proper k-scheme of dimension d.
Consider the graded Q-vector space Z∗(X)Q/∼hom of algebraic cycles on X up to
homological equivalence (when p = 0, resp. p > 0, we make use of de Rham
cohomology, resp. crystalline cohomology). Consider also the graded Q-vector
space Z∗(X)Q/∼num of algebraic cycles on X up to numerical equivalence. In the
sixties, Grothendieck [17] (see also [30, 31]) conjectured the following:

Conjecture D(X): The equality Z∗(X)Q/∼hom = Z∗(X)Q/∼num holds.

This conjecture holds when d ≤ 2, when d ≤ 4 and p = 0 (see Lieberman [39]),
and also when X is an abelian variety and p = 0 (see Lieberman [39]). Besides
these cases (and some other cases scattered in the literature), it remains wide open.

1.3. Voevodsky nilpotence conjecture. Let k be a base field of characteristic
p ≥ 0 and X a smooth proper k-scheme of dimension d. Following Voevodsky [64],
consider the graded Q-vector space Z∗(X)Q/∼nil of algebraic cycles on X up to
nilpotence equivalence. In the nineties, Voevodsky [64] conjectured the following:

Conjecture V(X): The equality Z∗(X)Q/∼nil = Z∗(X)Q/∼num holds.

This conjecture holds when d ≤ 2 (see Voevodsky [64] and Voisin [65]), and also
when X is an abelian threefold and p = 0 (see Kahn-Sebastian [25]). Besides these
cases (and some other cases scattered in the literature), it remains wide open.

Remark 1.2. Every algebraic cycle which is nilpotently trivial is also homologically
trivial. Hence, we have the implication of conjectures V(X) ⇒ D(X).

1.4. Beilinson conjecture. Let k = Fq be a finite field of characteristic p and
X a smooth proper k-scheme of dimension d. Consider the graded Q-vector space
Z∗(X)Q/∼rat of algebraic cycles on X up to rational equivalence. In the eighties,
Beilinson [4] conjectured the following:

Conjecture B(X): The equality Z∗(X)Q/∼rat = Z∗(X)Q/∼num holds.

This conjecture holds when d ≤ 1, and also when X is an abelian variety and
d ≤ 3 (see Kahn [24]). Besides these cases (and some other cases scattered in the
literature), it remains wide open.

1If π+ is algebraic, then the odd Künneth projector π− :=
∑

i odd πi is also algebraic.
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Remark 1.3. Every algebraic cycle which is rationally trivial is also nilpotently
trivial. Hence, in the case where k is a finite field, we have B(X) ⇒ V(X).

1.5. Weil conjecture. Let k = Fq be a finite field of characteristic p and X
a smooth proper k-scheme of dimension d. Recall that the zeta function of X is
defined as the formal power series Z(X ; t) := exp(

∑
n≥1 #X(Fqn)

tn

n ) ∈ Q[[t]], where

exp(t) :=
∑

n≥0
tn

n! . In the same vein, given an integer 0 ≤ i ≤ 2d, consider the

formal power series Zi(X ; t) := det(id−tFri|Hi
crys(X))−1 ∈ K[[t]], where Fr stands

for the Frobenius endomorphism of X and Fri for the induced automorphism of
Hi

crys(X). Thanks to the Lefschetz trace formula established by Grothendieck and
Berthelot (consult [6]), we have the following weight decomposition:

(1.4) Z(X ; t) =
Z0(X ; t)Z2(X ; t) · · ·Z2d(X ; t)

Z1(X ; t)Z3(X ; t) · · ·Z2d−1(X ; t)
∈ K[[t]] .

In the late forties, Weil [66] conjectured the following2:

Conjecture W(X): The eigenvalues of the automorphism Fri, with 0 ≤ i ≤ 2d,

are algebraic numbers and all their complex conjugates have absolute value q
i
2 .

In the particular case of curves, this famous conjecture follows from Weil’s pio-
neering work [67]. Later, in the seventies, it was proved in full generality by Deligne3

[12]. In contrast with Weil’s proof, which uses solely the classical intersection theory
of divisors on surfaces, Deligne’s proof makes use of several involved tools such as
the theory of monodromy of Lefschetz pencils. The Weil conjecture has numerous
applications. For example, when combined with the weight decomposition (1.4), it

implies that the polynomials det(id−tFri|Hi
crys(X)) have integer coefficients.

Recall that the Hasse-Weil zeta function of X is defined as the (convergent)
infinite product ζ(X ; s) :=

∏
x∈X0(1 − (qdeg(x))−s)−1, with Re(s) > d, where X0

stands for the set of closed points of X and deg(x) for the degree of the finite field
extension κ(x)/Fq. In the same vein, given an integer 0 ≤ i ≤ 2d, consider the

function ζi(X ; s) := det(id−q−s Fri|Hi
crys(X))−1. It follows from the Weil conjec-

ture that ζ(X ; s) = Z(X ; q−s), with Re(s) > d, and that ζi(X ; s) = Zi(X ; q−s),
with Re(s) > i

2 . Thanks to (1.4), we hence obtain the weight decomposition:

ζ(X ; s) =
ζ0(X ; s)ζ2(X ; s) · · · ζ2d(X ; s)

ζ1(X ; s)ζ3(X ; s) · · · ζ2d−1(X ; s)
Re(s) > d .(1.5)

Note that (1.5) implies automatically that the Hasse-Weil zeta function ζ(X ; s) of
X admits a (unique) meromorphic continuation to the entire complex plane.

Remark 1.6 (Analogue of the Riemann hypothesis). The above conjecture W(X)
is usually called the “analogue of the Riemann hypothesis” because it implies that
if z ∈ C is a pole of ζi(X ; s), then Re(z) = i

2 . Consequently, if z ∈ C is a pole,

resp. zero, of ζ(X ; s), then Re(z) ∈ {0, 1, . . . , d}, resp. Re(z) ∈ { 1
2 ,

2
3 , . . . ,

2d−1
2 }.

2The above conjecture W(X) is a modern formulation of Weil’s original conjecture; in the late
forties crystalline cohomology was not yet developed.

3Deligne worked with étale cohomology instead. However, as explained by Katz-Messing in
[26], Deligne’s results hold similarly in crystalline cohomology. More recently, Kedlaya [27] gave
an alternative proof of the Weil conjecture which uses solely p-adic techniques.
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1.6. Tate conjecture. Let k = Fq be a finite field of characteristic p and X a
smooth proper k-scheme of dimension d. Given a prime number l 6= p, consider the
associated Ql-linear cycle class map with values in l-adic cohomology:

(1.7) Z∗(X)Ql
/∼rat −→ H2∗

l-adic(Xk,Ql(∗))
Gal(k/k) .

In the sixties, Tate [60] conjectured the following:

Conjecture Tl(X): The cycle class map (1.7) is surjective.

This conjecture holds when d ≤ 1, when X is an abelian variety and d ≤ 3, and
also when X is a K3-surface; consult Totaro’s survey [62]. Besides these cases (and
some other cases scattered in the literature), it remains wide open.

1.7. p-version of the Tate conjecture. Let k = Fq be a finite field of character-
istic p and X a smooth proper k-scheme of dimension d. Consider the associated
K-linear cycle class map with values in crystalline cohomology (see §1.5):

(1.8) Z∗(X)K/∼rat −→ H2∗
crys(X)(∗)Fr

2∗

.

Following Milne [43], the Tate conjecture admits the following p-version:

Conjecture Tp(X): The cycle class map (1.8) is surjective.

This conjecture is equivalent to Tl(X) (for every l 6= p) when d ≤ 3. Hence,
it also holds in the cases mentioned in §1.6. Besides these cases (and some other
cases scattered in the literature), it remains wide open.

Remark 1.9. The p-version of the Tate conjecture can be alternatively formulated

as follows: the Qp-linear cycle class map Z∗(X)Qp
/∼rat → H2∗

crys(X)(∗)Fr
2∗
p , where

Fr2∗p stands for the crystalline Frobenius, is surjective.

1.8. Strong form of the Tate conjecture. Let k = Fq be a finite field of char-
acteristic p and X a smooth proper k-scheme of dimension d. Recall from §1.5 that
the Hasse-Weil zeta function of X is defined as the (convergent) infinite product
ζ(X ; s) :=

∏
x∈X0(1 − (qdeg(x))−s)−1, with Re(s) > d. Moreover, as mentioned in

loc. cit., ζ(X ; s) admits a meromorphic continuation to the entire complex plane.
In the sixties, Tate [60] also conjectured the following:

Conjecture ST(X): The order ords=jζ(X ; s) of the Hasse-Weil zeta function
ζ(X ; s) at the pole s = j, with 0 ≤ j ≤ d, is equal to −dimQZ

j(X)Q/∼num.

Remark 1.10. As proved by Tate in [59], resp. by Milne in [43], we have the
equivalence of conjectures ST(X) ⇔ B(X)+Tl(X), resp. ST(X) ⇔ B(X)+Tp(X).

Thanks to Remark 1.10, the conjecture ST(X) holds when d ≤ 1, and also when
X is an abelian variety and d ≤ 3. Besides these cases (and some other cases
scattered in the literature), it remains wide open.

1.9. Parshin conjecture. Let k = Fq be a finite field of characteristic p and
X a smooth proper k-scheme of dimension d. Consider the associated algebraic
K-theory groups Kn(X), n ≥ 0. In the eighties, Parshin conjectured the following:

Conjecture P(X): The groups Kn(X), with n ≥ 1, are torsion.

This conjecture holds when d ≤ 1 (see Quillen [16] and Harder [21]). Besides
these cases (and some other cases scattered in the literature), it remains wide open.

Remark 1.11. As proved by Geisser in [15], we have the implication of conjectures
B(X)+ ST(X) ⇒ P(X). This implies, in particular, that the conjecture P(X) also
holds when X is an abelian variety and d ≤ 3.
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1.10. Kimura-finiteness conjecture. Let k be a base field of characteristic p ≥ 0
and X a smooth proper k-scheme of dimension d. Consider the category of Chow
motives Chow(k)Q introduced by Manin in [40]. By construction, this category is
Q-linear, idempotent complete, symmetric monoidal, and comes equipped with a
symmetric monoidal functor h(−)Q : SmProp(k)op → Chow(k)Q defined on smooth
proper k-schemes. A decade ago, Kimura [29] conjectured the following:

Conjecture K(X): The Chow motive h(X)Q is Kimura-finite4.

This conjecture holds when d ≤ 1 and also when X is an abelian variety (see
Kimura [29] and Shermenev [46]). Besides these cases5 (and some other cases
scattered in the literature), it remains wide open.

1.11. Schur-finiteness conjecture. Let k be a perfect base field of characteristic
p ≥ 0 andX a smooth k-scheme of dimension d. Consider the triangulated category
of geometric mixed motives DMgm(k)Q introduced by Voevodsky in [63]. By con-
struction, this category is Q-linear, idempotent complete, symmetric monoidal, and
comes equipped with a symmetric monoidal functor M(−)Q : Sm(k) → DMgm(k)Q
defined on smooth k-schemes. Moreover, as proved in loc. cit., the classical cate-
gory of Chow motives Chow(k)Q may be embedded fully-faithfully into DMgm(k)Q.
An important conjecture in the theory of mixed motives is the following:

Conjecture S(X): The mixed motive M(X)Q is Schur-finite6.

This conjecture holds when d ≤ 1 (see Guletskii [19] and Mazza [42]) and also
when X is an abelian variety (see Kimura [29] and Shermenev [46]). Besides these
cases (and some other cases scattered in the literature), it remains wide open.

Remark 1.12. It is well-known that Kimura-finiteness implies Schur-finiteness. How-
ever, the converse does not holds. For example, O’Sullivan constructed a certain
smooth surfaceX whose mixed motiveM(X)Q is Schur-finite but not Kimura-finite;
consult [42]. An important open problem is the classification of all the Kimura-finite
mixed motives and the computation of the corresponding Kimura-dimensions.

2. Noncommutative counterparts

In this section we describe the noncommutative counterparts of the celebrated
conjectures of §1. We will assume some basic familiarity with the language of dif-
ferential graded (=dg) categories; consult Keller’s survey [28]. In particular, we
will use freely the notion of smooth proper dg category in the sense of Kontsevich
[32, 33, 34, 35, 36]. Examples include the finite-dimensional algebras of finite global

4Let (C,⊗, 1) be a Q-linear, idempotent complete, symmetric monoidal category. Following
Kimura [29], recall that an object a ∈ C is called even-dimensional, resp. odd-dimensional, if
∧n(a) ≃ 0, resp. Symn(a) ≃ 0, for some n ≫ 0. The biggest integer kim+(a), resp. kim−(a), for

which ∧kim+(a)(a) 6≃ 0, resp. Symkim
−
(a)(a) 6≃ 0, is called the even Kimura-dimension, resp. odd

Kimura-dimension, of a. Recall also that an object a ∈ C is called Kimura-finite if a ≃ a+ ⊕ a−,
with a+ even-dimensional and a− odd-dimensional. The integer kim(a) := kim+(a+)+kim−(a−)
is called the Kimura-dimension of a.

5In the particular case where k = k, p = 0, and X is a surface with pg(X) = 0, Guletskii and
Pedrini proved in [20] that the conjecture K(X) is equivalent to a celebrated conjecture of Bloch
[7] concerning the vanishing of the Albanese kernel.

6Let (C,⊗, 1) be a Q-linear, idempotent complete, symmetric monoidal category. Following
Deligne [11], every partition λ of an integer n ≥ 1 gives naturally rise to a Schur-functor Sλ : C → C.

For example, when λ = (1, . . . , 1), resp. λ = (n), we have S(1,...,1)(a) = ∧n(a), resp. S(1)(a) =

Symn(a). An object a ∈ C is called Schur-finite if Sλ(a) ≃ 0 for some partition λ.
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dimension A (over a perfect base field) as well as the dg categories of perfect com-
plexes perfdg(X) associated to smooth proper schemes X (or, more generally, to
smooth proper algebraic stacks X ). In addition, we will make essential use of the
recent theory of noncommutative motives; consult the book [51] and the survey [47].

2.1. Noncommutative Grothendieck standard conjecture of type C+. Let
k be a perfect base field of characteristic p ≥ 0 and A a smooth proper k-linear dg
category. In what follows, we will write dgcatsp(k) for the category of (essentially
small) k-linear dg categories. Recall from [41, §9] that, when p = 0, periodic cyclic
homology gives rise to a symmetric monoidal functor

(2.1) HP±(−) : dgcatsp(k) −→ vectZ/2(k)

with values in the category of finite-dimensional Z/2-graded k-vector spaces. In
the same vein, recall from [57, §2] that, when p > 0, topological periodic cyclic
homology7 gives rise to a symmetric monoidal functor

(2.2) TP±(−)1/p : dgcatsp(k) −→ vectZ/2(K)

with values in the category of finite-dimensional Z/2-graded K-vector spaces.

Remark 2.3 (Relation with de Rham cohomology and crystalline cohomology). The
above functor (2.1), resp. (2.2), may be understood as the noncommutative coun-
terpart of de Rham cohomology, resp. crystalline cohomology. Concretely, given a
smooth proper k-scheme X , we have the following natural isomorphisms of finite-
dimensional Z/2-graded vector spaces:

HP±(perfdg(X)) ≃ (
⊕

i even

Hi
dR(X),

⊕

i odd

Hi
dR(X))(2.4)

TP±(perfdg(X))1/p ≃ (
⊕

i even

Hi
crys(X),

⊕

i odd

Hi
crys(X)) .(2.5)

On the one hand, (2.4) follows from the classical Hochschild-Kostant-Rosenberg
theorem; see Feigin-Tsygan [14]. On the other hand, (2.5) follows from the recent
work of Scholze on integral p-adic Hodge theory; consult [13][56, Thm. 5.2].

Recall from [51, §4.1] the definition of the category of noncommutative Chow
motives NChow(k)Q. By construction, this category is Q-linear, idempotent com-
plete, symmetric monoidal, and comes equipped with a symmetric monoidal functor
U(−)Q : dgcatsp(k) → NChow(k)Q. Moreover, we have a natural isomorphism

(2.6) HomNChow(k)Q(U(k)Q, U(A)Q) ≃ K0(Dc(A))Q =: K0(A)Q ,

where D(A) stands for the derived category of A and Dc(A) for its full triangulated
subcategory of compact objects. As proved in [41, Thm. 9.2] when p = 0, resp. in
[57, Thm. 2.3] when p > 0, the above functor (2.1), resp. (2.2), descends to the
category of noncommutative Chow motives.

Consider the even Künneth projector

π+ : HP±(A) → HP±(A) resp. π+ : TP±(A)1/p → TP±(A)1/p

in periodic cyclic homology, resp. in topological periodic cyclic homology. This pro-
jector is algebraic if there exists an endomorphism π+ : U(A)Q → U(A)Q such that

7Topological periodic cyclic homology is defined as the Tate cohomology of the circle group
action on topological Hochschild homology; consult Hesselholt [22] and Nikolaus-Scholze [45].
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HP±(π+) = π+, resp. TP±(π+)1/p = π+. Under these definitions, the Grothendieck

standard conjecture of type C+ admits the following noncommutative counterpart:

Conjecture C+
nc(A): The even Künneth projector π+ is algebraic8.

Remark 2.7. Similarly to Remark 1.1, given smooth proper k-linear dg categories
A and B, we have the implication of conjectures C+

nc(A) + C+
nc(B) ⇒ C+

nc(A⊗ B).

The next result relates this conjecture with Grothendieck’s original conjecture:

Theorem 2.8. ([49, Thm. 1.1] and [56, Thm. 1.1]) Given a smooth proper k-scheme
X, we have the equivalence of conjectures C+(X) ⇔ C+

nc(perfdg(X)).

2.2. Noncommutative Grothendieck standard conjecture of type D. Let
k be a perfect base field of characteristic p ≥ 0 and A a smooth proper k-linear dg
category. Note that by combining the above isomorphism (2.6) with the functor
(2.1), resp. (2.2), we obtain an induced Q-linear homomorphism:

K0(A)Q −→ HP+(A) resp. K0(A)Q −→ TP+(A)1/p .(2.9)

The homomorphism (2.9) may be understood as the noncommutative counterpart
of the cycle class map. In what follows, we will write K0(A)Q/∼hom for the quotient
of K0(A)Q by the kernel of (2.9). Consider also the Euler bilinear pairing:

χ : K0(A)×K0(A) −→ Z ([M ], [N ]) 7→
∑

n∈Z

(−1)ndimkHomDc(A)(M,N [n]) .

This pairing is not symmetric neither skew-symmetric. Nevertheless, as proved in
[51, Prop. 4.24], the left and right kernels of χ agree. In what follows, we will write
K0(A)/∼num for the quotient of K0(A) by the kernel of χ and K0(A)Q/∼num for
the Q-vector space9 K0(A)/∼num ⊗Z Q. Under these definitions, the Grothendieck
standard conjecture of type D admits the following noncommutative counterpart:

Conjecture Dnc(A): The equality K0(A)Q/∼hom = K0(A)Q/∼num holds.

The next result relates this conjecture with Grothendieck’s original conjecture:

Theorem 2.10. ([49, Thm. 1.1] and [56, Thm. 1.1]) Given a smooth proper k-
scheme X, we have the equivalence of conjectures D(X) ⇔ Dnc(perfdg(X)).

2.3. Noncommutative Voevodsky nilpotence conjecture. Let k be a base
field of characteristic p ≥ 0 and A a smooth proper k-linear dg category. Similarly
to Voevodsky’s definition of the nilpotence equivalence relation, an element α of
the Grothendieck group K0(A)Q is called nilpotently trivial if there exists an integer
n ≫ 0 such that the associated element α⊗n of the Grothendieck group K0(A⊗n)Q
is equal to zero. In what follows, we will write K0(A)Q/∼nil for the quotient of
K0(A)Q by the nilpotently trivial elements. Under these definitions, the Voevodsky
nilpotence conjecture admits the following noncommutative counterpart:

Conjecture Vnc(A): The equality K0(A)Q/∼nil = K0(A)Q/∼num holds.

Remark 2.11. The image of a nilpotently trivial element α ∈ K0(A)Q under the
above Q-linear homomorphism (2.9) is equal to zero. Consequently, similarly to
Remark 1.2, we have the implication of conjectures Vnc(A) ⇒ Dnc(A).

8If π+ is algebraic, then the odd Künneth projector π− is also algebraic.
9As proved in [57, Thm. 5.1], K0(A)/∼num is a finitely generated free abelian group. Conse-

quently, K0(A)Q/∼num is a finite-dimensional Q-vector space.
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The next result relates this conjecture with Voevodsky’s original conjecture:

Theorem 2.12. ([5, Thm. 1.1]) Given a smooth proper k-scheme X, we have the
equivalence of conjectures V(X) ⇔ Vnc(perfdg(X)).

2.4. Noncommutative Beilinson conjecture. Let k = Fq be a finite field of
characteristic p and A a smooth proper k-linear dg category. The Beilinson con-
jecture admits the following noncommutative counterpart:

Conjecture Bnc(A): The equality K0(A)Q = K0(A)Q/∼num holds.

Remark 2.13. Similarly to Remark 1.3, note that in the case where k is a finite
field, we have the implication of conjectures Bnc(A) ⇒ Vnc(A).

The next result relates this conjecture with Beilinson’s original conjecture:

Theorem 2.14. ([54, Thm. 1.3]) Given a smooth proper k-scheme X, we have the
equivalence of conjectures B(X) ⇔ Bnc(perfdg(X)).

2.5. Noncommutative Weil conjecture. Let k = Fq be a finite field of charac-
teristic p and A a smooth proper k-linear dg category. As explained in [53, §6],
the topological periodic cyclic homology group TP0(A)1/p, resp. TP1(A)1/p, comes

equipped with an automorphism F0, resp. F1, called the “cyclotomic Frobenius”10.
Hence, we define the even/odd zeta function of A as the formal power series:

Zeven(A; t) := det(id−tF0|TP0(A)1/p)
−1 ∈ K[[t]]

Zodd(A; t) := det(id−tF1|TP1(A)1/p)
−1 ∈ K[[t]] .

Under these definitions, Weil’s conjecture admits the noncommutative counterpart:

Conjecture Wnc(A): The eigenvalues of the automorphism F0, resp. F1, are

algebraic numbers and all their complex conjugates have absolute value 1, resp. q
1
2 .

In contrast with the commutative world, the cyclotomic Frobenius is not in-
duced from an endomorphism11 of A. Consequently, in contrast with the com-
mutative world, it is not known if the polynomials det(id−tF0|TP0(A)1/p) and
det(id−tF1|TP1(A)1/p) have integer coefficients (or rational coefficients). Never-
theless, after choosing an embedding ι : K →֒ C, we define the even/odd Hasse-Weil
zeta function of A as follows:

ζeven(A; s) := det(id−q−s(F0 ⊗K,ι C) |TP0(A)1/p ⊗K,ι C)
−1

ζodd(A; s) := det(id−q−s(F1 ⊗K,ι C) |TP1(A)1/p ⊗K,ι C)
−1 .

Remark 2.15 (Analogue of the noncommutative Riemann hypothesis). Similarly to
Remark 1.6, the conjecture Wnc(A) may be called the “analogue of the noncommu-
tative Riemann hypothesis” because it implies that if z ∈ C is a pole of ζeven(A; s),
resp. ζodd(A; s), then Re(z) = 0, resp. Re(z) = 1

2 (independently of the chosen ι).

The next result relates the above conjecture with Weil’s original conjecture:

Theorem 2.16. ([53, Thm. 1.5]) Given a smooth proper k-scheme X, we have the
equivalence of conjectures W(X) ⇔ Wnc(perfdg(X)).

10The cyclotomic Frobenius is not compatible with the Z/2-graded structure of TP∗(A)1/p .
Instead, we have canonical isomorphisms Fn ≃ q · Fn+2 for every n ∈ Z.

11Note that in the particular case where A is a k-algebra A the Frobenius map a 7→ aq is a
k-algebra endomorphism if and only if A is commutative.
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2.6. Noncommutative Tate conjecture. Let k = Fq be a finite field of char-
acteristic p and A a smooth proper k-linear dg category. Given a prime number
l 6= p, consider the following abelian groups

Hom(Z(l∞), π−1(LKU (K(A⊗k Fqn)))) n ≥ 1 ,(2.17)

where Z(l∞) stands for the Prüfer l-group12, K(A⊗kFqn) for the algebraicK-theory
spectrum of the dg category A ⊗k Fqn , and LKU (−) for the Bousfield localization
functor with respect to topological complex K-theory KU . Under these notations,
the Tate conjecture admits the following noncommutative counterpart:

Conjecture Tl
nc(A): The abelian groups (2.17) are trivial.

Remark 2.18. Note that the conjecture Tl
nc(A) holds, for example, whenever the

abelian groups π−1(LKU (K(A⊗k Fqn))), n ≥ 1, are finitely generated.

The next result, obtained by leveraging the pioneering work of Thomason [61],
relates this conjecture with Tate’s original conjecture:

Theorem 2.19. ([54, Thm. 1.3]) Given a smooth proper k-scheme X, we have the
equivalence of conjectures Tl(X) ⇔ Tl

nc(perfdg(X)).

2.7. Noncommutative p-version of the Tate conjecture. Let k = Fq be a
finite field of characteristic p and A a smooth proper k-linear dg category. Recall
from §2.5 that the K-vector space TP0(A)1/p comes equipped with an automor-
phism F0 called the “cyclotomic Frobenius”. Moreover, as explained in [54, §3], the
right-hand side of (2.9) gives rise to a K-linear homomorphism:

(2.20) K0(A)K −→ TP0(A)F0

1/p .

Under these notations, the p-version of the Tate conjecture admits the following
noncommutative counterpart:

Conjecture Tp
nc(A): The homomorphism (2.20) is surjective.

The next result relates this conjecture with the original conjecture:

Theorem 2.21. ([54, Thm. 1.3]) Given a smooth proper k-scheme X, we have the
equivalence of conjectures Tp(X) ⇔ Tp

nc(perfdg(X)).

2.8. Noncommutative strong form of the Tate conjecture. Let k = Fq be
a finite field of characteristic p and A a smooth proper k-linear dg category. Re-
call from §2.5 the definition of the even Hasse-Weil zeta function ζeven(A; s) of
A. Under these notations, the strong of the Tate conjecture admits the following
noncommutative counterpart:

Conjecture STnc(A): The order ords=0ζeven(A; s) of the even Hasse-Weil zeta
function ζeven(A; s) at the pole s = 0 is equal to −dimQK0(A)Q/∼num.

Remark 2.22 (Alternative formulation). By definition of the even Hasse-Weil zeta
function of A, the integer −ords=0ζeven(A; s) agrees with the algebraic multiplic-
ity of the eigenvalue q0 = 1 of the automorphism F0 ⊗K,ι C (or, equivalently, of
F0). Hence, the conjecture STnc(A) may be alternatively formulated as follows:
the algebraic multiplicity of the eigenvalue 1 of F0 agrees with dimQK0(A)Q/∼num.
This shows, in particular, that the integer ords=0ζeven(A; s) is independent of the
embedding ι : K →֒ C used in the definition of ζeven(A; s).

12The functor Hom(Z(l∞),−) agrees with the classical l-adic Tate module functor.
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Remark 2.23. Similarly to Remark 1.10, as proved in [53, Thm. 9.3], we have the
equivalence of conjectures STnc(A) ⇔ Bnc(A) + Tp

nc(A).

The next result relates this conjecture with Tate’s original conjecture:

Theorem 2.24. ([53, Thm. 1.17]) Given a smooth proper k-scheme X, we have
the equivalence of conjectures ST(X) ⇔ STnc(perfdg(X)).

2.9. Noncommutative Parshin conjecture. Let k = Fq be a finite field of
characteristic p andA a smooth proper k-linear dg category. The Parshin conjecture
admits the following noncommutative counterpart:

Conjecture Pnc(A): The groups Kn(A), with n ≥ 1, are torsion.

The next result relates this conjecture with Parshin’s original conjecture:

Theorem 2.25. ([54, Thm. 1.3]) Given a smooth proper k-scheme X, we have the
equivalence of conjectures P(X) ⇔ Pnc(perfdg(X)).

2.10. Noncommutative Kimura-finiteness conjecture. Let k be a base field
of characteristic p ≥ 0 and A a smooth proper k-linear dg category. Recall from §2.1
that, by construction, the category of noncommutative Chow motives NChow(k)Q
is Q-linear, idempotent complete and symmetric monoidal. Hence, the Kimura-
finiteness conjecture admits the following noncommutative counterpart:

Conjecture Knc(A): The noncommutative Chow motive U(A)Q is Kimura-finite.

The next result relates this conjecture with Kimura’s original conjecture:

Theorem 2.26. ([52, Thm. 2.1]) Given a smooth proper k-scheme X, we have the
implication of conjectures K(X) ⇒ Knc(perfdg(X)).

2.11. Noncommutative Schur-finiteness conjecture. Let k be a perfect base
field of characteristic p ≥ 0 and A a smooth k-linear dg category. Recall from [51,
§8-§9] the definition of the triangulated category of noncommutative mixed motives

NMot(k)Q (denoted by NmotA
1

loc(k)Q in loc. cit.). By construction, this category
is Q-linear, idempotent complete, symmetric monoidal, and comes equipped with
a symmetric monoidal functor U(−)Q : dgcats(k) → NMot(k)Q defined on smooth
dg categories. Under these notations, the Schur-finiteness conjecture admits the
following noncommutative counterpart:

Conjecture Snc(A): The noncommutative mixed motive U(A)Q is Schur-finite.

The next result relates this conjecture with Schur’s original conjecture:

Theorem 2.27. ([51, Prop. 9.17]) Given a smooth k-scheme X, we have the equiv-
alence of conjectures S(X) ⇔ Snc(perfdg(X)).

3. Applications to commutative geometry

Morally speaking, the theorems of §2 show that the celebrated conjectures of
Grothendieck, Voevodsky, Beilinson, Weil, Tate, Parshin, and Schur, belong not
only to the realm of algebraic geometry but also to the broad setting of dg categories.
This noncommutative viewpoint, where one studies a scheme via its dg category of
perfect complexes, led to a proof13 of these celebrated conjectures in several new
cases. In this section, we describe some of these new cases.

13In what concerns the Weil conjecture (and the Grothendieck standard conjecture of type C+

over a finite field), the noncommutative viewpoint led to an alternative proof of this celebrated
conjecture in several new cases, which avoids all the involved tools used by Deligne.
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Notation 3.1. In order to simplify the exposition, we will often use the letter C to
denote one of the celebrated conjectures {C+,D,V,B,W,Tl,Tp, ST,P,K, S}.

3.1. Derived invariance. Let k be a base field of characteristic p ≥ 0. Note that
the theorems of §2 imply automatically the following result:

Corollary 3.2. Let X and Y be two smooth proper k-schemes (in the case of conjec-
ture S we assume solely that X and Y are smooth) with (Fourier-Mukai) equivalent
categories of perfect complexes perf(X) and perf(Y ). Under these assumptions, we
have the following equivalences of conjectures:

C(X) ⇔ C(Y ) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S}.

Roughly speaking, Corollary 3.2 shows that the celebrated conjectures of §1 are
invariant under derived equivalence. This flexibility is very useful and is often used
in the proofs of some theorems below.

3.2. Quadric fibrations. Let k be a perfect base field of characteristic p ≥ 0, B a
smooth proper k-scheme of dimension d (in the case of conjecture S we assume solely
that B is smooth), and q : Q → B a flat quadric fibration of relative dimension dq.

Theorem 3.3. Assume that all the fibers of q are quadrics of corank ≤ 1 and that
the locus Z →֒ B of critical values of q is smooth.
(i) When dq is even, we have the following equivalences of conjectures

C(B) + C(B̃) ⇔ C(Q) with C ∈ {C+,D,V,B,W,Tl (l 6= 2),Tp, ST,P, S} ,

where B̃ stands for the discriminant twofold cover of B (ramified over Z).
(ii) When dq is odd, p 6= 2, d ≤ 1, and k is algebraically closed or a finite field, we

have the following equivalences of conjectures:

C(B) + C(Z) ⇔ C(Q) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

(iii) When dq is odd and p 6= 2, we have the following implication of conjectures

{S(Uj)} + {S(Z̃j)} ⇒ S(Q) ,

where Uj is an affine open subscheme of B and Z̃j is a certain Galois twofold
cover of Zj := Z ∩ Uj induced by the restriction of q to Zj.

Roughly speaking, Theorem 3.3 relates the celebrated conjectures for the total
space Q with the celebrated conjectures for the base B. Items (i)-(ii) were proved
in [5, Thm. 1.2][55, Thm. 1.1(i)] in the case of the conjectures V and S. The proof
of the other cases is similar. Item (iii) was proved in [55, Thm. 1.1(ii)].

Corollary 3.4 (Low-dimensional bases). Let Q be as in Theorem 3.3.
(i) When dq is even and d ≤ 1, the following conjectures hold:

C(Q) with C ∈ {C+,D,V,B,W,Tl (l 6= 2),Tp, ST,P, S} .

Moreover, C+(Q) holds when d ≤ 2, D(Q) holds when d ≤ 2 or when d ≤ 4
and p = 0, and V(Q) holds when d ≤ 2.

(ii) When dq is odd, p 6= 2, d ≤ 1, and k is algebraically closed or a finite field,
the following conjectures hold:

C(Q) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

(iii) When dq is odd, p 6= 2, and d ≤ 1, the conjecture S(Q) holds. Moreover, when
d ≤ 2, we have the implication of conjectures S(B) ⇒ S(Q).
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Remark 3.5 (Kimura-finiteness conjecture). Assume that B is a smooth k-curve.
(i) When dq is even, it follows from Corollary 3.4(i) that the mixed motiveM(Q)Q

is Schur-finite. As proved in [50, Thm. 1.1(i)], M(Q)Q is moreover Kimura-

finite and kim(M(Q)Q) = dq · kim(M(B)Q) + kim(M(B̃)Q).
(ii) When dq is odd, p 6= 2, and k is algebraically closed or a finite field, it follows

from Corollary 3.4(ii) that the mixed motive M(Q)Q is Schur-finite. As proved
in [50, Thm. 1.1(ii)], the mixed motive M(Q)Q is moreover Kimura-finite and
kim(M(Q)Q) = (dq + 1) · kim(M(B)Q) + #Z.

Remark 3.6 (Bass-finiteness conjecture). Let k = Fq be a finite field and X a
smooth k-scheme of finite type. In the seventies, Bass [3] conjectured that the
algebraic K-theory groups Kn(X), n ≥ 0, are finitely generated. In the same vein,
we can consider the mod 2-torsion Bass-finiteness, where Kn(X) is replaced by
Kn(X)1/2. As proved in [55, Thm. 1.10], the above Theorem 3.3 (items (i)-(iii))
holds similarly for the mod 2-torsion Bass-finiteness conjecture.

3.3. Intersections of quadrics. Let k be a perfect base field of characteristic
p ≥ 0 and X a smooth complete intersection of m quadric hypersurfaces in Pn.
The linear span of these quadric hypersurfaces give rise to a flat quadric fibration
q : Q → Pm−1 of relative dimension n− 1.

Theorem 3.7. Assume that all the fibers of q are quadrics of corank ≤ 1 and that
the locus Z →֒ Pm−1 of critical values of q is smooth. Under these assumptions, we
have the following equivalences/implications of conjectures:

{
C(Q) ⇔ C(X) 2m ≤ n− 1

C(Q) ⇒ C(X) 2m > n− 1
with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

Intuitively speaking, Theorem 3.7 shows that in order to solve the celebrated con-
jectures for intersections of quadrics, it suffices to solve the celebrated conjectures
from quadric fibrations (and vice-versa). This result was proved in [55, Thm. 1.5]
in the case of the conjecture S. The proof of the other cases is similar.

Corollary 3.8 (Intersections of up-to-five quadrics). Let X be as in Theorem 3.7.
(i) When n is odd and m ≤ 2, the following conjectures hold:

C(X) with C ∈ {C+,D,V,B,W,Tl (l 6= 2),Tp, ST,P, S} .

Moreover, C+(X) holds when m ≤ 3, D(X) holds when m ≤ 3 or when m ≤ 5
and p = 0, and V(X) holds when m ≤ 3.

(ii) When n is even, p 6= 2, m ≤ 2, and k is algebraically closed or a finite field,
the following conjectures hold:

C(X) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

(iii) When n is even, p 6= 2, and m ≤ 3, the conjecture S(X) holds.

3.4. Families of sextic du Val del Pezzo surfaces. Let k be a perfect base
field of characteristic p ≥ 0, B a smooth proper k-scheme of dimension d (in the
case of conjecture S we assume solely that B is smooth), and f : X → B a family of
sextic du Val del Pezzo surfaces, i.e., a flat morphism such that for every geometric
point b ∈ B the associated fiber Xb is a sextic du Val del Pezzo surface14. Following

14Recall that a sextic du Val del Pezzo surface is a projective surface S with at worst du Val
singularities and whose ample anticanonical class KS is such that K2

S = 6.
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Kuznetsov [38, §5], let M2, resp. M3, be the relative moduli stack of semistable
sheaves on fibers of X over B with Hilbert polynomial h2(t) := (3t+2)(t+1), resp.
h3(t) := (3t+3)(t+1), and Z2, resp. Z3, the coarse moduli space of M2, resp. M3.

Theorem 3.9. Assume that p 6= 2, 3 and that X is smooth. Under these assump-
tions, we have the following equivalences of conjectures:

C(B) + C(Z2) + C(Z3) ⇔ C(X) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

Roughly speaking, Theorem 3.9 relates the celebrated conjectures for the total
space X with the celebrated conjectures for the base B. Theorem 3.9 was proved in
[55, Thm. 1.7] in the case of the conjecture S. The proof of the other cases is similar.

Corollary 3.10 (Low-dimensional bases). Let X be as in Theorem 3.9. When
d ≤ 1, the following conjectures hold:

C(X) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

Moreover, C+(X) holds when d ≤ 2, D(X) holds when d ≤ 2 or when d ≤ 4 and
p = 0, and V(X) holds when d ≤ 2.

3.5. Linear sections of Grassmannians. Let k be a base field of characteris-
tic p = 0, W a k-vector space of dimension 6 or 7, X := Gr(2,W ) the Grass-
mannian variety of 2-dimensional subspaces equipped with the Plücker embedding
Gr(2,W ) →֒ P(∧2(W )), and Y the Pfaffian variety Pf(4,W ∗) ⊂ P(∧2(W ∗)). Given
a linear subspace L ⊂ ∧2(W ∗), consider the associated linear sections

XL := X ×P(∧2(W )) P(L
⊥) YL := Y ×P(∧2(W∗)) P(L) ,

where L⊥ stands for the kernel of the induced homomorphism ∧2(W ) ։ L∗.

Theorem 3.11. Assume that XL and YL are smooth15, and that codim(XL) =
dim(L) and codim(YL) = dim(L⊥). Under these assumptions (which hold for a
generic choice of L), we have the following equivalences of conjectures:

C(XL) ⇔ C(YL) with C ∈ {C+,D,V, S} .

Intuitively speaking, Theorem 3.11 shows that in order to solve the celebrated
conjectures for the linear section XL, it suffices to solve the celebrated conjectures
for the linear section YL (and vice-versa). Theorem 3.11 was proved in [5, Thm. 1.7]
in the case of the conjecture V. The proof of the other cases is similar.

When dim(W ) = 6, we have dim(XL) = 8− dim(L) and dim(YL) = dim(L)− 2.
Moreover, in the case where dim(L) = 5, resp. dim(L) = 6, XL is a Fano threefold,
resp. K3-surface, and YL is a cubic threefold, resp. cubic fourfold.

When dim(W ) = 7, we have dim(XL) = 10−dim(L) and dim(YL) = dim(L)−4.
Moreover, in the case where dim(L) = 5, resp. dim(L) = 6, XL is a Fano fivefold,
resp. Fano fourfold, and YL is a curve of degree 42, resp. surface of degree 42.
Furthermore, in the case where dim(L) = 7, XL and YL are derived equivalent
Calabi-Yau threefolds. In this particular latter case, Theorem 3.11 follows then
from the above Corollary 3.2.

Corollary 3.12 (Low-dimensional sections). Let XL be as in Theorem 3.11.
(i) When dim(W ) = 6 and dim(L) ≤ 3, the following conjectures C(XL), with

C ∈ {C+,D,V, S}, hold. Moreover, C+(XL) holds when dim(L) ≤ 4, D(XL)
holds when dim(L) ≤ 6, and V(XL) holds when dim(L) ≤ 4.

15The linear section XL is smooth if and only if the linear section YL is smooth.
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(ii) When dim(W ) = 7 and dim(L) ≤ 5, the following conjectures C(XL), with
C ∈ {C+,D,V, S}, hold. Moreover, C+(XL) holds when dim(L) ≤ 6, D(XL)
holds when dim(L) ≤ 8, and V(XL) holds when dim(L) ≤ 6.

Remark 3.13 (Kimura-finiteness conjecture). Let XL be as in Theorem 3.11. When
dim(W ) = 6 and dim(L) ≤ 3 or when dim(W ) = 7 and dim(L) ≤ 5, it follows from
Corollary 3.12 that the Chow motive h(XL)Q is Schur-finite. As proved in [48,
Thm. 1.10], the Chow motive h(XL)Q is moreover Kimura-finite.

3.6. Linear sections of Lagrangian Grassmannians. Let k be a base field of
characteristic p = 0, W a k-vector space of dimension 6 equipped with a sym-
plectic form ω, and X := LGr(3,W ) the associated Lagrangian Grassmannian of
3-dimensional subspaces. The natural representation of the symplectic group Sp(ω)
on ∧3(W ) decomposes into a direct sum W ⊕ V . Moreover, the classical Plücker
embedding Gr(3,W ) →֒ P(∧3(W )) restricts to an embedding LGr(3,W ) →֒ P(V )
of the Lagrangian Grassmannian. Consider also the classical projective dual va-
riety LGr(3, 6)∨ ⊆ P(V ∗). This is a quartic hypersurface which is singular along
a closed subvariety Z of dimension 9. Let us denote by Y the open dense subset
LGr(3, 6)∨\Z. Given a linear subspace L ⊆ V ∗ such that P(L)∩Z = ∅, consider the
associated smooth linear sections XL := X ×P(V ) P(L

⊥) and YL := Y ×P(V ∗) P(L).

Theorem 3.14. Assume that codim(XL) = dim(L) and codim(YL) = dim(L⊥).
Under these assumption (which hold for a generic choice of L), we have the follow-
ing equivalences of conjectures:

C(XL) ⇔ C(YL) with C ∈ {C+,D,V, S} .

Intuitively speaking, Theorem 3.14 shows that in order to solve the celebrated
conjectures for the linear section XL, it suffices to solve the celebrated conjectures
for the linear section YL (and vice-versa). Theorem 3.14 was proved in [48, Thm. 1.5]
in the case of the conjecture S. The proof of the other cases is similar.

We have dim(XL) = 6 − dim(L) and dim(YL) = dim(L) − 2. Moreover, in the
case where dim(L) = 3, resp. dim(L) = 4, XL is a Fano threefold, resp. K3-surface
of degree 16, and YL is a plane quartic, resp. K3-surface of degree 4.

Corollary 3.15 (Low-dimensional sections). Let XL be as in Theorem 3.14. When
dim(L) ≤ 3, the following conjectures C(XL), with C ∈ {C+,D,V, S}, hold. More-
over, C+(XL) holds when dim(L) ≤ 4, D(XL) holds when dim(L) ≤ 6, and V(XL)
holds when dim(L) ≤ 4.

Remark 3.16 (Kimura-finiteness conjecture). Let XL be as in Theorem 3.14. When
dim(L) ≤ 3, it follows from Corollary 3.15 that the Chow motive h(XL)Q is Schur-
finite. As proved in [48, Thm. 1.10], h(XL)Q is moreover Kimura-finite.

3.7. Linear sections of spinor varieties. Let k be a base field of characteristic
p = 0, W a k-vector space of dimension 10 equipped with a nondegenerate quadratic
form q ∈ Sym2(W ∗), and X := OGr+(5,W ) and Y := OGr−(5,W ) the connected
components of the orthogonal Grassmannian of 5-dimensional subspaces. These
are called the spinor varieties. By construction, we have a canonical embedding
OGr+(5,W ) →֒ P(V ), where V stands for the corresponding half-spinor represen-
tation of the spin-group Spin(W ). In the same vein, making use of the isomorphism
P(V ) ≃ P(V ∗) induced by the nondegenerate quadratic form q, we have the em-
bedding OGr−(5,W ) →֒ P(V ∗). Given a linear subspace L ⊆ V ∗, consider the
associated linear sections XL := X ×P(V ) P(L

⊥) and YL := Y ×P(V ∗) P(L).
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Theorem 3.17. Assume that XL and YL are smooth, and that codim(XL) =
dim(L) and codim(YL) = dim(L⊥). Under these assumptions (which hold for a
generic choice of L), we have the following equivalences of conjectures:

C(XL) ⇔ C(YL) with C ∈ {C+,D,V, S} .

Intuitively speaking, Theorem 3.14 shows that in order to solve the celebrated
conjectures for the linear section XL, it suffices to solve the celebrated conjectures
for the linear section YL (and vice-versa). Theorem 3.17 was proved in [48, Thm. 1.6]
in the case of the conjecture S. The proof of the other cases is similar.

We have dim(XL) = 10 − dim(L) and dim(YL) = dim(L) − 6. Moreover, in
the case where dim(L) = 7, XL is a Fano threefold and YL is a curve of genus
7. Furthermore, in the case where dim(L) = 8, XL and YL are derived equivalent
K3-surfaces of degree 12. In this particular latter case, Theorem 3.17 follows then
from the above Corollary 3.2.

Corollary 3.18 (Low-dimensional sections). Let XL be as in Theorem 3.17. When
dim(L) ≤ 7, the following conjectures C(XL), with C ∈ {C+,D,V, S}, hold. More-
over, C+(XL) holds when dim(L) ≤ 8, D(XL) holds when dim(L) ≤ 10, and V(XL)
holds when dim(L) ≤ 8.

Remark 3.19 (Kimura-finiteness conjecture). Let XL be as in Theorem 3.17. When
dim(L) ≤ 7, it follows from Corollary 3.18 that the Chow motive h(XL)Q is Schur-
finite. As proved in [48, Thm. 1.10], h(XL)Q is moreover Kimura-finite.

3.8. Linear sections of determinantal varieties. Let k be a perfect base field of
characteristic p ≥ 0, U1 and U2 two finite-dimensional k-vector spaces of dimensions
d1 and d2, respectively, V := U1 ⊗ U2, and 0 < r < d1 an integer. Consider the
determinantal variety Zr

d1,d2
⊂ P(V ) defined as the locus of those matrices U2 → U∗

1

with rank ≤ r; recall that this condition can be described as the vanishing of the
(r + 1)-minors of the matrix of indeterminates:




x1,1 · · · x1,d2

...
. . .

...
xd1,1 · · · xd1,d2


 .

Example 3.20 (Segre varieties). In the particular case where r = 1, the determi-
nantal varieties reduce to the classical Segre varieties. Concretely, Z1

d1,d2
reduces

to the image of Segre homomorphism P(U1)× P(U2) → P(V ). For example, Z1
2,2 is

the classical quadric hypersurface:

{[x1,1 : x1,2 : x2,1 : x2,2] | det

(
x1,1 x1,2

x2,1 x2,2

)
= 0} ⊂ P3 .

In contrast with the Segre varieties, the determinantal varieties Zr
d1,d2

, with r ≥
2, are not smooth. The singular locus of Zr

d1,d2
consists of those matrices U2 → U∗

1

with rank < r, i.e. it agrees with the closed subvariety Zr−1
d1,d2

. Nevertheless, it
is well-known that Zr

d1,d2
admits a canonical Springer resolution of singularities

X := X r
d1,d2

→ Zr
d1,d2

. Dually, consider the variety Wr
d1,d2

⊂ P(V ∗), defined
as the locus of those matrices U∗

2 → U1 with corank ≥ r, and the associated
canonical Springer resolution of singularities Y := Yr

d1,d2
→ Wr

d1,d2
. Given a linear

subspace L ⊆ V ∗, consider the associated linear sections XL := X×P(V )P(L
⊥) and

YL := Y ×P(V ∗) P(L). Note that whenever P(L⊥) does not intersects the singular
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locus of Zr
d1,d2

, we have XL = P(L⊥) ∩ Zr
d1,d2

, i.e., XL is a linear section of the
determinantal variety Zr

d1,d2
.

Theorem 3.21. Assume that XL and YL are smooth, and that codim(XL) =
dim(L) and codim(YL) = dim(L⊥). Under these assumptions (which hold for a
generic choice of L), we have the following equivalences of conjectures:

C(XL) ⇔ C(YL) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

Intuitively speaking, Theorem 3.14 shows that in order to solve the celebrated
conjectures for the linear section XL, it suffices to solve the celebrated conjectures
for the linear section YL (and vice-versa). Theorem 3.21 was proved in [56, Cor. 2.4],
resp. in [54, Cor. 1.7], in the case of the conjectures C+ and D, resp. in the case of
the conjectures B, Tl, Tp, and P. The proof of the other cases is similar.

By construction, we have the following equalities:

dim(XL) = r(d1 + d2 − r) − 1− dim(L) dim(YL) = r(d1 − d2 − r)− 1 + dim(L) .

Moreover, in the case where dim(L) = d2r, the linear sections XL and YL are
derived equivalent Calabi-Yau varieties. In this particular latter case, Theorem
3.21 follows then from the above Corollary 3.2.

Corollary 3.22 (High-dimensional sections). Let XL be as in Theorem 3.21. When
dim(L) ≤ 2− r(d1 − d2 − r), the following conjectures hold:

C(XL) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .(3.23)

Moreover, C+(XL) holds when dim(L) ≤ 3 − r(d1 − d2 − r), D(XL) holds when
dim(L) ≤ 3 − r(d1 − d2 − r) or when dim(L) ≤ 5− r(d1 − d2 − r) and p = 0, and
V(XL) holds when dim(L) ≤ 3− r(d1 − d2 − r).

Example 3.24 (Segre varieties). Let r = 1. Thanks to Corollary 3.22, when dim(L) =
3− d1 + d2, the following conjectures hold:

C(XL) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

In all these cases, XL is a smooth linear section of the Segree variety Z1
d1,d2

. More-

over, XL is Fano if and only if dim(L) < d1. Furthermore, dim(XL) = 2d1 − 5.
Therefore, by letting d1 → ∞ and by keeping dim(L) fixed, we obtain infinitely
many examples of smooth proper k-schemes XL, of arbitrary high dimension, sat-
isfying the celebrated conjectures of §1. Note that in the particular case of the Weil
conjecture (and in the case of the Grothendieck standard conjecture of type C+

over a finite field) this proof avoids all the technical tools used by Deligne.

Example 3.25 (Rational normal scrolls). Let r = 1, d1 = 4 and d2 = 2. In this
particular case, the Segre variety Z1

4,2 ⊂ P7 agrees with the rational normal 4-fold
scroll S1,1,1,1. Choose a linear subspace L ⊆ V ∗ of dimension 1 such that the
hyperplane P(L⊥) ⊂ P7 does not contains any 3-plane of the rulling of S1,1,1,1; this
condition holds for a generic choice of L. In this case, the linear section XL agrees
with the 3-fold scroll S1,1,2. Hence, thanks to Example 3.24, we conclude that the
following conjectures hold:

C(S1,1,2) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .

Example 3.26 (Square matrices). Let d1 = d2. Thanks to Corollary 3.22, when
dim(L) = 2 + r2, the following conjectures hold:

C(XL) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S} .
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In all these cases, we have dim(XL) = 2r(d1− r)−3. Therefore, by letting d1 → ∞
and by keeping dim(L) fixed, we obtain infinitely many new examples of smooth
proper k-schemes XL, of arbitrary high dimension, satisfying the celebrated con-
jectures of §1. Similarly to Example 3.24, note that in the particular case of the
Weil conjecture (and in the case of the Grothendieck standard conjecture of type
C+ over a finite field) this proof avoids all the technical tools used by Deligne.

Remark 3.27 (Kimura-finiteness conjecture). Let XL be as in Theorem 3.21. When
dim(L) = 2 − r(d1 − d2 − r), it follows from Corollary 3.22 that the Chow motive
h(XL)Q is Schur-finite. A similar proof shows that h(XL)Q is Kimura-finite.

4. Applications to noncommutative geometry

The theorems of §2 enabled also a proof of the noncommutative counterparts
of the celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate,
Kimura, and Schur, in many interesting cases. In this section, we describe some of
these interesting cases. Similarly to §3, we will often use the letter C to denote one of
the celebrated conjectures {C+,D,V,B,W,Tl,Tp, ST,P,K, S}. Moreover, given a
smooth (proper) algebraic stack X , we will write Cnc(X ) instead of Cnc(perfdg(X )).

4.1. Finite-dimensional algebras of finite global dimension. Let k be a per-
fect base field of characteristic p ≥ 0 and A a finite-dimensional k-algebra of finite
global dimension. Examples include path algebras of finite quivers without oriented
cycles as well as their quotients by admissible ideals.

Theorem 4.1. The following conjectures hold:

Cnc(A) with C ∈ {C+,D,V,B,W,Tp, ST,P,K, S} .

Moreover, when k = k, the conjecture Tl
nc(A) also holds.

Theorem 4.1 was proved in [53, Thm. 3.1] in the case of the conjectures W and
ST. The proof of the other cases is similar.

4.2. Semi-orthogonal decompositions. Let k be a base field of characteristic
p ≥ 0 and B, C ⊆ A smooth proper k-linear dg categories inducing a semi-orthogonal
decomposition H0(A) = 〈H0(B),H0(C)〉 in the sense of Bondal-Orlov [8].

Theorem 4.2. We have the following equivalences of conjectures

Cnc(B) + Cnc(C) ⇔ Cnc(A) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P,K, S} .

Intuitively speaking, Theorem 4.2 shows that the noncommutative counterparts
of the celebrated conjectures are additive with respect to semi-orthogonal decom-
positions. Theorem 4.2 was proved in [53, Thm. 3.2] in the case of the conjectures
W and ST. The proof of the other cases is similar.

4.3. Calabi-Yau dg categories associated to hypersurfaces. Let k be a base
field of characteristic p ≥ 0 and X ⊂ Pn a smooth hypersurface of degree deg(X) ≤
n+ 1. Following Kuznetsov [37], we have a semi-orthogonal decomposition:

perf(X) = 〈T (X),OX , . . . ,OX(n− deg(X))〉 .
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Moreover, the associated k-linear dg category Tdg(X), defined as the dg enhance-
ment of T (X) induced from perfdg(X), is a smooth proper Calabi-Yau dg cate-

gory16 of fractional dimension (n+1)(deg(X)−2)
deg(X) . By combining Theorem 4.2 with

the Theorems of §2, we hence obtain the following result:

Corollary 4.3. We have the equivalences of conjectures

C(X) ⇔ Cnc(Tdg(X)) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S}

as well as the implication K(X) ⇒ Knc(Tdg(X)).

Roughly speaking, Corollary 4.3 shows that in what concerns the celebrated
conjectures, there is no difference between the hypersurface X and the associated
Calabi-Yau dg category Tdg(X).

4.4. Root stacks. Let k be a base field of characteristic p ≥ 0, X a smooth proper
k-scheme of dimension d (in the case of conjecture S we assume solely that X is
smooth), L a line bundle on X , ς ∈ Γ(X,L) a global section, and n ≥ 1 an integer.
Following Cadman [9, §2.2], the associated root stack is defined as the fiber-product

X := n
√
(L, ς)/X

f

��

// [A1/Gm]

θn

��

X
(L,ς)

// [A1/Gm] ,

where θn stands for the morphism induced by the nth power map on A1 and Gm.
As proved by Ishii-Ueda in [23, Thm. 1.6], whenever the zero locus Z →֒ X of ς is
smooth, we have a semi-orthogonal decomposition

perf(X ) = 〈perf(Z)n−1, . . . , perf(Z)1, f
∗(perf(X))〉 ,

where all the categories perf(Z)j are (Fourier-Mukai) equivalent to perf(Z). Hence,
by combining Theorem 4.2 with the Theorems of §2, we obtain the following results:

Corollary 4.4. Assume that the zero locus Z →֒ X of the global section ς is smooth.
Under this assumption, we have the equivalences of conjectures

C(X) + C(Z) ⇔ Cnc(X ) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P, S}

as well as the implication K(X) + K(Z) ⇒ Knc(X ).

Corollary 4.5 (Low-dimensional root stacks). Let X be as in Corollary 4.4. When
d ≤ 1, the following conjectures hold:

Cnc(X ) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P,K, S} .

Moreover, C+
nc(X ) holds when d ≤ 2, Dnc(X ) holds when d ≤ 2 or when d ≤ 4 and

p = 0, and Vnc(X ) holds when d ≤ 2.

16In the particular case where n = 5 and deg(X) = 3, the dg categories Tdg(X) obtained in
this way are usually called “noncommutative K3-surfaces” because they share many of the key
properties of the dg categories of perfect complexes of the classical K3-surfaces.
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4.5. Global orbifolds. Let k be a base field of characteristic p ≥ 0, G a finite
group of order n, X a smooth proper k-scheme of dimension d equipped with a
G-action (in the case of conjecture S we assume solely that X is smooth), and
X := [X/G] the associated global orbifold.

Theorem 4.6. Assume that p ∤ n and that k contains the nth roots of unity. Under
these assumptions, we have the following implications of conjectures

∑

σ⊆G

C(Xσ) ⇒ Cnc(X ) with C ∈ {C+,D,V,B,W,Tl (l ∤ n),Tp, ST,P,K, S} ,

where σ is a cyclic subgroup of G.

Intuitively speaking, Theorem 4.6 shows that in order to solve the noncommuta-
tive counterparts of the celebrated conjectures for the global orbifold X , it suffices
to solve the celebrated conjectures for the underlying scheme X . Theorem 4.6 was
proved in [58, Thm. 9.2][56, Thm. 3.1], resp. in [54, Thm. 1.16], in the case of the
conjectures C+, D, and V, resp. in the case of the conjectures B, Tl (l ∤ n), Tp, and
P. The proof of the other cases is similar.

Corollary 4.7 (Low-dimensional global orbifolds). Let X be as in Theorem 4.6.
When d ≤ 1, the following conjectures hold:

Cnc(X ) with C ∈ {C+,D,V,B,W,Tl (l ∤ n),Tp, ST,P,K, S} .

Moreover, C+
nc holds when d ≤ 2, Dnc(X ) holds when d ≤ 2 or when d ≤ 4 and

p = 0, Vnc(X ) holds when d ≤ 2 or when X is an abelian 3-fold and p = 0, and
Tl

nc(X ) (with l ∤ n) and Tp
nc(X ) hold when X is a K3-surface.

Corollary 4.8 (Abelian G-varieties). Let X be as in Theorem 4.6. When X is
an abelian variety and G acts by group homomorphisms17, the conjectures Cnc(X ),
with C ∈ {C+,D,W,K, S}, hold. Moreover, when d ≤ 3, the conjectures Cnc(X ),
with C ∈ {B,Tl (l ∤ n),Tp, ST,P}, also hold.

4.6. Twisted global orbifolds. Let k, G, X (of dimension d), and X := [X/G],
be as in §4.5. In this subsection we consider the case where the global orbifold
X is equipped with a sheaf of Azumaya algebras F of rank r. In other words,
F is a G-equivariant sheaf of Azumaya algebras of rank r over X . Similarly to
the dg category perfdg(X ), we can also consider the dg category perfdg(X ;F) of
perfect complexes of F -modules. In what follows, we will write Cnc(X ;F) instead
of Cnc(perfdg(X ;F)). The next result is the “twisted” version of the Theorem 4.6:

Theorem 4.9. Assume that p ∤ nr and that k contains the nth roots of unity.
Under these assumptions, we have the following implications of conjectures
∑

σ⊆G

C(Yσ) ⇒ Cnc(X ;F) with C ∈ {C+,D,V,B,W,Tl (l ∤ nr),Tp, ST,P,K, S} ,

where σ is a cyclic subgroup of G and Yσ is a certain σ∨-Galois cover of Xσ induced
by the restriction of F to Xσ.

Intuitively speaking, Theorem 4.9 shows that in order to solve the noncommu-
tative counterparts of the celebrated conjectures for the twisted global orbifold
(X ;F), it suffices to solve the celebrated conjectures for certain Galois covers of

17For example, in the case where G = Z/2, we can consider the canonical involution a 7→ −a.
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the underlying scheme X . Theorem 4.9 was proved in [54, Thm. 1.23] in the case
of the conjectures B, Tl (l ∤ nr), Tp, and P. The proof of the other cases is similar.

Corollary 4.10 (Low-dimensional twisted global orbifolds). Let X and F be as in
Theorem 4.9. When d ≤ 1, the following conjectures hold:

Cnc(X ;F) with C ∈ {C+,D,V,B,W,Tl (l ∤ nr),Tp, ST,P,K, S} .

Moreover, C+
nc(X ;F) holds when d ≤ 2, Dnc(X ;F) holds when d ≤ 2 or when d ≤ 4

and p = 0, and Vnc(X ;F) holds when d ≤ 2.

4.7. Intersections of bilinear divisors. Let k be a base field of characteristic
p ≥ 0 and V a finite-dimensional k-vector space. Consider the canonical action of
Z/2 on P(V )×P(V ) and the associated global orbifold X := [(P(V )×P(V ))/(Z/2)].
Note that by construction we have the following morphism:

f : X −→ P(Sym2(V )) ([v1], [v2]) 7→ [v1 ⊗ v2 + v2 ⊗ v1] .

Given a linear subspace L ⊂ Sym2(V ∗) of dimension ≤ 3 when dim(V ) is even,
resp. of dimension ≤ 6 when dim(V ) is odd, consider the associated linear section
XL := f−1(P(L⊥)). Note that such a linear section corresponds to the intersection
of dim(L) bilinear divisors in X parametrized by L.

Theorem 4.11. Assume that codim(XL) = dim(L). Under this assumption (which
holds for a generic choice of L), we have the following implications of conjectures

C(Y ) ⇒ Cnc(XL) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,K, S} ,

where Y is a certain double cover of P(L) induced by f .

Intuitively speaking, Theorem 4.11 shows that in order to solve the noncommuta-
tive counterparts of the celebrated conjectures for intersections of bilinear divisors,
it suffices to solve the celebrated conjectures for a certain double cover of the pro-
jective space P(L). Theorem 4.11 was proved in [49, Thm. 1.13] in the case of the
conjectures C+ and D. The proof of the other cases is similar.

Corollary 4.12 (Intersections of up-to-five bilinear divisors). Let XL be as in
Theorem 4.11. When dim(L) ≤ 2, the following conjectures hold:

Cnc(XL) with C ∈ {C+,D,V,B,W,Tl,Tp, ST,P,K, S} .

Moreover, Cnc(XL) holds when dim(L) ≤ 3, Dnc(XL) holds when dim(L) ≤ 3 or
when dim(L) ≤ 5 and p = 0, and Vnc(XL) holds when dim(L) ≤ 3.

4.8. Moishezon manifolds associated to quartic double solids. Let k = C
be the field of complex numbers and X → P2 one of the quartic double solids
introduced by Artin-Mumford in [2]. These are examples of unirational, but not
rational, conic bundles. Thanks to the work of Cossec [10], these conic bundles
can be alternatively described as those singular double coverings X → P3 which
are ramified over a quartic symmetroid Z. On the one hand, we can consider
the Enriques surface SZ obtained as the quotient of a natural involution (acting
without fixed points) on the blow-up of Z. On the other hand, we can consider
a small resolution of singularities X → X . Such a resolution is not an algebraic
variety, but rather a Moishezon manifold18.

18Recall that a Moishezon manifold X is a compact complex manifold whose field of mero-
morphic functions on each component has transcendence degree equal to the dimension of the
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Theorem 4.13. We have the equivalences of conjectures

C(SZ) ⇔ Cnc(X ) with C ∈ {C+,D,V, S}

as well as the implication K(SZ) ⇒ Knc(X ).

Roughly speaking, Theorem 4.13 shows that in what concerns the celebrated
conjectures, there is no difference between Enriques surfaces and Moishezon mani-
folds. Theorem 4.13 was proved in [5, Thm. 1.14] in the case of the conjecture V.
The proof of the other cases is similar.

Corollary 4.14. The conjectures Cnc(X ), with C ∈ {C+,D,V}, hold.
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