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Abstract

This paper clarifies a global structure of Stokes-Dirac struc-
tures used for describing interconnected port-Hamiltonian
systems defined on manifolds with non-trivial topology un-
der consistent boundary condition.

1 Introduction

Port-Hamilton systems [1] have been developed as an ex-
tended Hamiltonian system, and it is one of most essential
system representations for controlling complex physical sys-
tems. Port-Hamilton systems are defined by particular vari-
able pairs of an input and an output. The pair is called port,
and the variables are called effort and flow. The product
of an effort and the corresponding flow has the physical di-
mension of power, i.e., the time derivative of energy. Thus,
the sum of the products of all pairs is equivalent to the time
derivative of the total energy of a given system, i.e., Hamil-
tonian. Indeed, ports can be derived from derivatives of a
Hamiltonian. By using port-Hamiltonian systems, physical
network systems interconnected through the ports can be
described. Then, an energy balance equation can be defined
on the terminal of the port-interconnections by the port
variables. If the energy balance holds in any interaction
with environments, this property can be used for stability
analysis, because an energy of systems can be considered as
a Lyapunov function. Thus, various control methods using
energy flows on such a network, e.g., passivity-based con-
trols [1, 2], can be used.

Port-Hamilton systems have been extended for systems gov-
erned by partial differential equations, and it is called a dis-
tributed port-Hamilton system [2, 3]. In the system, ports
are defined on a boundary of a control system domain, and
they are called boundary ports. Then, the balance equation
can be augmented as that on the boundary. As a remarkable
property of distributed port-Hamilton systems, Stokes the-
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orem can applied to the boundary energy balance, i.e., an
internal energy variation can be transformed to a boundary
energy variation. Hence, a kind of boundary energy con-
trols can be realized. The boundary integrability can be
formulated by a particular case of Dirac structures called
the Stoke-Dirac structure [3,4], where the Dirac structure is
a generalized concept of Poisson and Symplectic structures.

The port interconnection of distributed port-Hamiltonian
systems determines a network of energy flows between sys-
tems domains through their boundaries. The union of
the domains with boundaries configures a particular shape;
therefore, the energy flow can be considered as a vector field
on a manifold if they are continuous. Manifolds may have
various topologies, and they can be classified and character-
ized by topological geometric concepts, homology and co-
homology groups [5, 6]. The homology of manifolds is in-
troduced from a triangulation of manifolds that is a decom-
position consisting of fundamental figures with an integer
dimension, called the simplicial complex [5], and it means
the number of closed loops that never divide a manifold
into two disjoint subdomains in the two-dimensional case.
The cohomology of manifolds is a dual concept of the ho-
mology, and it is equivalent to the difference between two
types of differential forms, i.e., closed and exact forms in the
de Rham complex [6] that consists of space of differential
forms and exterior derivatives. Differential forms are used
for defining of integrands over higher-dimensional surfaces,
i.e., manifolds [5], and they independent of coordinates in
multivariable calculus. In [7–9], port-representations of dis-
crete systems have been studied in terms of homology. Co-
homological approaches for port-representations were pro-
posed in [10, 11].

The purpose of this paper is to clarify the relationship be-
tween the Stokes-Dirac structure and the topological geom-
etry of the manifold on which the internal and boundary
energy flows of distributed port-Hamiltonian systems de-
fined. The Stoke-Dirac structure is defined by differential
forms, and a distributed port-Hamiltonian system with the
Stokes-Dirac structure is actually defined on a domain of a
manifold. Therefore, differential forms used for the Stoke-
Dirac structure must be affected by the shape of the man-
ifold. The original Stokes-Dirac structure has been defined
on a domain with a trivial topology, i.e., it is contractible
to a point.

This paper is organized in the following sections. In the sec-
ond section, the definition of manifolds with boundary, dif-
ferential forms on the manifolds are introduced from a typi-
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cal notation in topological geometry [5,6]. The third section
explains that, from these definitions, the Hodge-Morrey de-
composition [6], which is an extended Hodge-Kodaira decom-
position [5] for closed manifolds, can be considered on mani-
folds with boundary. Harmonic differential forms [5,6] must
be considered on manifolds with non-trivial topology, and
the topology of the manifolds can be characterized by the
harmonic forms given by the Hodge-Morrey decomposition.
Moreover, the harmonic forms can be classified as tangent
or orthogonal by Friedrichs decomposition [6]. As a result,
the fourth section shows that an essential property of an ex-
tended Stokes-Dirac structure for defining distributed port-
Hamiltonian systems on manifolds with non-trivial topology
can be derived from our previous results [4, 11].

2 Mathematical preliminary

The mathematical notation of this paper follows the refer-
ence [6]. Some basic concepts are explained in [5].

2.1 Manifold with boundary

LetM be a paracompact topological Hausdorff space, where
M is called paracompact if any open covering {Ua}a∈A of
M can be refined by locally finite covering, and a covering
U is called the refinement of a covering V if any set in U is
included in some set in V .
A surjective homeomorphism ϕa : Ua → R

n
ua

to an open
subset in R

n
ua

for a ∈ A is called a chart, where we have
defined a real half space R

n
u
= {x ∈ R

n | 〈x,u〉 ≥ 0} for
a fixed vector u 6= 0 in R

n. Hence, AM = {(Ua, ϕa)}a∈A

becomes an atlas on M .
Then, the boundary of M is defined by

∂M := {p ∈M | ∃ϕa s.t. 〈ϕa(p),ua〉 = 0

for some ua} , (1)

where ua may be different for each a ∈ A.

Definition 2.1. We call a manifold M with boundary ∂-
manifold if 1) M is equipped with a smooth atlas AM , 2)
AM is oriented, 3) M is complete as a metric space.

2.2 Differential forms on boundary

A differential k-form ω ∈ Ωk(M) is an anti-symmetric k-
linear map

ω : Γ(TM)×
k
· · · ×Γ(TM) → C∞(M);

(X1, · · · , Xk) 7→ ω(X1, · · · , Xk). (2)

In the same way of the decomposition of vector fields (see
Section 5.1) on ∂M , we can define

tω(X1, · · · , Xk) = ω(X
‖
1 , · · · , X

‖
k )

∀X1, · · · , Xk ∈ Γ(TM |∂M ), (3)

nω = ω|∂M − tω (4)

for k ≥ 1, and tω = ω for k = 0.

Proposition 2.1. The tangential component tω is uniquely
determined by the pull-back ι∗ : Ωk(M) → Ωk(∂M) of the
inclusion ι : ∂M → M . Thus, we get the identification
ι∗ω = ι∗tω = tω.

Definition 2.2. Let M be ∂-manifold. We define the ex-
terior product ∧ : Ωi(M) × Ωj(M) → Ωi+j(M), the Hodge
star operator ∗ : Ωi(M) → Ωn−i(M), the exterior deriva-
tive d : Ωi(M) → Ωi+1(M), and the co-differential operator
δ : Ωi(M) → Ωi−1(M); ω 7→ (−1)ni+n+1∗d(∗ω) that is ad-
joint to d with respect to L2-metric 〈〈ω, η〉〉 =

∫
M
ω ∧ ∗η.

Proposition 2.2. Let M be ∂-manifold, and let F be a
normal frame on U ⊂ M . Then, the normal and tangen-
tial components of ω ∈ Ωk(M) are adjoint to each other
in the sense of Hodge operator ∗ : Ωk(M) → Ωn−k(M),
i.e., ∗(nω) = t(∗ω), and ∗(tω) = n(∗ω). Moreover,
t(dω) = d(tω), and n(δω) = δ(nω) hold.

Definition 2.3. The Sobolev spaces W 0,pΩk(M) and
W s,2Ωk(M) (see Section 5.2) are denoted by LpΩk(M) and
HsΩk(M), respectively.

3 Important known results for de-

compositions of differential forms

Some useful results on the topological geometry of manifolds
with boundary are introduced from the reference [6].

3.1 Hodge decomposition on manifolds
with boundary

For differential forms on manifolds with boundary, the fol-
lowing well-known relation holds.

Theorem 3.1 (Stokes theorem). For all ω ∈
W 1,1Ωn−1(M) on a ∂-manifold M with compact boundary
∂M ,

∫

M

dω =

∫

∂M

ι∗ω. (5)

Theorem 3.2 (Green formula). Let us consider ω ∈
W 1,pΩk−1(M), and η ∈ W 1,qΩk(M) on a ∂-manifold M ,
where 1/p+ 1/q = 1. Then,

∫

M

dω ∧ ∗η =

∫

M

ω ∧ ∗δη +

∫

∂M

tω ∧ ∗nη. (6)

Definition 3.1. For the space of ω ∈ H1Ωk(M) on a ∂-
manifold M , the space of harmonic fields in H1Ωk(M) is
defined by

Hk(M) =
{
λ ∈ H1Ωk(M) | dλ = 0, δλ = 0

}
. (7)

The spaces of ω that vanish tangential or normal compo-
nents are defined by

H1Ωk
T (M) =

{
ω ∈ H1Ωk(M) | tω = 0

}
, (8)

H1Ωk
N (M) =

{
ω ∈ H1Ωk(M) | nω = 0

}
. (9)
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Then, the subspaces

Hk
T (M) = H1Ωk

T (M) ∩Hk(M), (10)

Hk
N (M) = H1Ωk

N (M) ∩Hk(M). (11)

are called Dirichlet and Neumann fields, respectively. If
∂M = ∅, H1Ωk

T (M) = H1Ωk
N (M) = H1Ωk(M).

Remark 3.1. By the Hodge duality in Proposition 2.2,
Hk

T (M) ∼= Hn−k
N (M) holds.

Definition 3.2. Let M be a ∂-manifold. The subspaces of
exact and co-exact k-forms with vanishing tangential and
normal component in L2Ωk(M) are defined by

Ek(M) =
{
dα | α ∈ H1Ωk−1

T (M)
}
, (12)

Ck(M) =
{
δβ | β ∈ H1Ωk+1

N (M)
}
, (13)

where E0(M) = {0} and Cn(M) = {0}.

Theorem 3.3 (Hodge-Morrey decomposition). The Hilbert
space L2Ωk(M) of square integrable k-forms on a compact
∂-manifold M can be split into the L2-orthogonal direct sum

L2Ωk(M) = Ek(M) � Ck(M) � L2Hk(M), (14)

where L2Hk(M) is the L2-closure of the space of harmonic
fields Hk(M).

When ∂M = ∅, the Hodge-Morrey decomposition includes
the Hodge-Kodaira decomposition for compact manifolds.

Theorem 3.4 (Friedrichs decomposition). The space
Hk(M) ⊂ H1Ωk(M) of harmonic fields on a compact ∂-
manifold M can be decomposed into

Hk(M) = Hk
T (M) � Hk

C(M), (15)

Hk(M) = Hk
N (M) � Hk

E(M), (16)

where the subspaces of Hk(M), i.e., the subspaces of exact
harmonic and co-exact harmonic fields have been defined as
follows:

Hk
E(M) :=

{
κ ∈ Hk(M) | κ = dǫ

}
, (17)

Hk
C(M) :=

{
κ ∈ Hk(M) | κ = δγ

}
. (18)

These decompositions are valid for W s,pHk(M), where s ∈
N0, and p ≥ 2.

3.2 De Rham complex on manifolds with
boundary

The de Rham complex consists of the set of the space of
differential forms and the exterior derivative. The cohomol-
ogy of the complex is related with the topology of manifolds
through harmonic forms according to Hodge theorem.
This section explains the relationship between the de Rham
complex and the previously discussed particular subspaces
of harmonic forms on ∂-manifolds obeying boundary condi-
tions.

Definition 3.3. A form ω ∈ Ωk(M) is called closed if dω =
0. A form ω ∈ Ωk(M) is called exact if there exist a form
η ∈ Ωk−1(M) such that dη = ω.

Definition 3.4. Let M be a ∂-manifold. The kth coho-
mology of the de Rham complex (Ω(M), d) of differential
forms over M without imposing boundary conditions is the
quotient space

Hk
DR(M,d) = Ker dk/ Imdk−1, (19)

where the exterior derivative d for k-forms is denoted by
dk : Ωk(M) → Ωk+1(M), and the spaces of all closed
k-forms and all exact k-forms are defined by the cycle
Zk(M) = Ker dk and the boundary Bk(M) = Im dk−1,
respectively. The kth cohomology of the dual complex
(Ω(M), δ) is

Hk
DR(M, δ) = Ker δk/ Im δk+1, (20)

where δk : Ωk(M) → Ωk−1(M) is the co-differential opera-
tor.

Theorem 3.5 (Hodge isomorphism). Let M be a compact
∂-manifold. Then,

Hk
DR(M,d) ∼= Hk

N (M), Hk
DR(M, δ) ∼= Hk

T (M). (21)

Corollary 3.6. On a compact ∂-manifold M ,

Hk
DR(M,d) ∼= Hn−k

DR (M, δ). (22)

4 Main results

4.1 Extension of Stokes-Dirac structures in
terms of topological geometry

The port-Hamiltonian representation of distributed param-
eter systems is derived from the Stokes-Dirac structure [3].
The Stokes-Dirac structure is one of Dirac structures that is
a generalized symplectic and poisson, and it inherits bound-
ary integrability from the Stokes theorem [5] in terms of dif-
ferential forms defined on manifolds that is an abstract ver-
sion of that in 3-dimensional vector analysis. Therefore, the
Stokes-Dirac structure clarifies the relation between vari-
ables distributed in the internal of a system domain and
variables restricted on its boundary in the sense of boundary
integration. Thus, a power balance equation on a bound-
ary of the system can be introduced from the relation, and
it can be used for boundary energy controls of distributed
parameter systems [2].
In this methodology, the domain is assumed to be con-
tractible, i.e., it is continuously shrunk to a point just like a
Euclidian space Then, the boundary is considered as smooth
regions surrounding such a domain. In other words, such
a domain with the boundary is called homeomorphic to a
point that means the simplest case of the shape of mani-
folds, so to say, topologically trivial (e.g., a donut or a cup
with a handle is not trivial). In general, the shapes of sys-
tem domains and their boundaries are complex. One of
understandable examples is an electrical circuit that may
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include non-contractible loops by regarding electrical ele-
ments and wirings as 1-dimensional domains. In such a case,
constraints that are Kirchhoff’s laws must be additionally
considered for describing interconnections.
This paper attempts to extend the domain of Stokes-Dirac
structures to be more general shape. Then, it is clarified
what conditions dynamics defined on domains with a non-
trivial topology must satisfy in their port-representations
and interconnections. In such an extension, a particular
differential form, called a Harmonic plays a central role,
and the form is closely related with the topology of man-
ifolds. Simply speaking, harmonic forms reflect the shape
of manifolds through their (co)homology groups (see also
Remark 4.1 for details). A harmonic form ω is defined by
dω = 0 and δω = 0 (see Definition 2.2), and it is included
in differential forms defined on manifolds with a non-trivial
topology. We shall first see a more basic result than Theo-
rem 3.3 for manifolds with boundary. Indeed, according to
the Hodge decomposition on a compact manifold without
boundary, an arbitrary k-form ω ∈ Ωk(M) can be written
as

ω = dα + δβ + ωH (23)

where α ∈ Ωk−1(M), β ∈ Ωk+1(M), and (dδ + δd)ωH = 0.
Harmonic forms are a generalization of harmonic functions
that means solutions of Poisson equations at equilibrium in,
e.g., eigenvalue problems of elliptic partial differential equa-
tions. Actually, ∆ = dδ + δd is called a Laplacian. On
the other hand, the topology of manifolds is described by
homology and cohomology. For instance, one of invariances
of manifolds, the Euler number χ(M) =

∑n

i=0(−1)iβi can
be calculated by the Betti number βk = dimHk(M), where
the dimension of the homology Hk(M) means the number
of the k-dimensional cycles in M , the cycle is a chain con-
sisting of k-simplexes without boundary, and simplexes are
elemental figures for dividing a whole figure, e.g., points, line
segments, triangles, and higher-dimensional counterparts.

Remark 4.1 ( [5] ). On an orientable compact manifold,
the following relations hold:

1. Let Hk(M) be a singular homology group with R coeffi-
cients that is derived from a triangulation of M given
by the union of simplicial complexes K, i.e., Hk(M) ∼=
Hk(K). Hence, the singular homology Hk(M) directly
represents the topology of M .

2. The dual of singular homology Hk(M) is the singular
cohomology Hk(M), and this correspondence can be de-
scribed by the isomorphism Hk(M) = (Hk(M))∗.

3. According to the De Rham theorem, the isomorphism
Hk(M) ∼= Hk

DR(M) exists, i.e., Hk(M) ∼= (Hk
DR(M))∗.

4. By the Hodge theorem, the identification Ωk
H(M) ∼=

Hk
DR(M) is given, where Ωi

H(M) is the space of har-
monic forms on M such that dωH = 0 and δωH = 0
for any form ωH ∈ Ωi(M).

5. Furthermore, if a manifold is closed, i.e., compact with-
out boundary, the isomorphism Hk(M) ∼= Hn−k

DR (M)

is obtained from the Poincaré duality Hn−k
DR (M) ∼=

(Hk
DR(M))∗. As a result, Hk(M) ∼= Ωn−k

H (M).

From the above discussion, one might immediately guess the
followings:

• The Stokes-Dirac structures on general manifolds
should include harmonic forms affected by a non-trivial
topology.

• Moreover, the harmonic forms may correspond with
flows of vector fields or differential forms.

• As a further consideration, one of important proper-
ties as a port-representation, port-interconnections may
change the topology of system domains.

These are actually true, and answers to the first and sec-
ond questions will be shown in the following sections. Con-
sequently, a global port-interconnection and decomposition
for preserving information regarding a global energy flow on
a whole domain is derived from harmonic forms, and it will
be possible that this concept is applied to attaching extra
domains with dynamics for a global energy flow shaping.

4.2 Stokes-Dirac strictures on manifolds
with boundary

We shall first recall the Stokes-Dirac structure. Let N be
an n-dimensional Riemannian manifold. Consider a com-
pact oriented subdomain M ⊂ N with a boundary ∂M .
Now, we assume thatM is a ∂-manifold (see Definition 2.1).
The purpose of this assumption is to subdivide fields of vec-
tors and differential forms into two types, i.e., normal and
tangential components that are related with two different
harmonic forms (see Definition 3.1). Note that this change
doesn’t affect the Stokes-Dirac structure itself, because the
restriction ω|M (and ω|∂M ) for differential forms ω ∈ Ωk(N)
can be treated in the same way of the conventional case [3,5];
therefore, we denote ω|M by ω simply. The Stokes-Dirac
structure on M can be implicitly described in the follow-
ing [4]:





fp
E = (−1)rdeqD ∈ Ωp

E(M),

epD = ∗fp
E ∈ Ωq−1

D (M),

f q
E = depD ∈ Ωq

E(M),

eqD = ∗f q
E ∈ Ωp−1

D (M)

(24)

with the boundary port

fb = epD|∂M , eb = (−1)peqD|∂M , (25)

where r = pq + 1, we have defined the spaces of exact and
co-exact forms as

Ωk
E(M) =

{
dα | α ∈ Ωk−1(M)

}
, (26)

Ωk
D(M) =

{
δβ | β ∈ Ωk+1(M)

}
, (27)

and δ = (−1)nk+n+1∗d∗ : Ωk(M) → Ωk−1(M) is the co-
differential operator that is the adjoint of d in the sense of
the pairing 〈ω, η〉 =

∫
M
ω∧ ∗η, and ∗ : Ωk(M) → Ωn−k(M)
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is the Hodge star operator. Then, the power balance of the
Hamiltonian H of a given system is given as

d

dt
H = −

∫

M

(ep ∧ fp + eq ∧ f q) =

∫

∂M

eb ∧ f b. (28)

The correspondence between variables in (28) and a Hamil-
tonian is ignored here, and we concentrate our interest on
its geometrical property.

4.3 Stokes-Dirac complex and cohomology

The spaces used in the definition of the Stokes-Dirac struc-
ture are related with each other as the following diagram.

Definition 4.1. The relation between the spaces of the vari-
ables in the Stokes-Dirac structure (24) on M can be illus-
trated by the following diagram [4]:

0
d

// Ωp−1
D
OO

∗

��

d
// Ωp
OO

∗
��

d
// Ωp+1

E

d
// 0

0 Ωq+1
E

d
oo Ωqd

oo Ωq−1
D

d
oo 0

d
oo .

(29)

Then, we call the above two parallel sequences that are equiv-
alent to short exact sequences of the de Rham complex the
Stokes-Dirac complex:

{(Ωp(M), d) , (Ωq(M), d)} . (30)

Next, we define the cohomologies of the Stokes-Dirac com-
plex are isomorphic to the spaces of harmonic forms, i.e., we
can know the availability of harmonic fields by checking the
cohomologies.

Definition 4.2. We define the cohomology HSD(M) of the
Stokes-Dirac complex by the set of the de Rham cohomolo-
gies {Hq

DR(M,d), Hp
DR(M, δ), Hp

DR(M,d), Hq
DR(M, δ)} for

the spaces {Ωp−1(M), Ωp(M), Ωq−1(M), Ωq(M)} used for
defining {eq, fp, ep, f q}, respectively.

Proposition 4.1. The cohomology HSD(M) of the Stokes-
Dirac complex on a compact ∂-manifold M is represented
by {Hq

N (M),Hp
T (M),Hp

N (M),Hq
T (M)}.

Proof. We have used the isomorphisms in Theorem 3.5 and
Corollary 3.6, where p− 1 = n− q and q − 1 = n− p.

4.4 Harmonic forms in Stokes-Dirac struc-
tures

In this section, the relation between the standard Stokes-
Dirac structure and harmonic forms is clarified.
The following fact is derived from a generalized Hodge de-
composition for manifolds with boundary.

Lemma 4.2. According to Hodge-Morrey-Friedrichs de-
composition (Theorems 3.3 and 3.4 ), a differential k-form
ω ∈ Ωk(M) on a ∂-manifold M has the unique splitting

ω = dα + δβ + δγ + λ, (31)

where dα ∈ Ek(M), δβ ∈ Ck(M), δγ ∈ Hk
C(M), and λ ∈

Hk
T (M).

The following inner product is equivalent to the pairing
between Hodge dual differential forms, ω ∈ Ωi(M) and
η ∈ Ωn−i(M), used for defining effort and flow variables
in distributed port-Hamiltonian systems.

Lemma 4.3. The following transformation of the inner
product is derived from Green formula (3.2):

〈〈f i, (−1)s∗ei〉〉 =

∫

M

dej ∧ ei =

∫

M

dej ∧ ∗f i

= (−1)i
∫

M

ej ∧ d∗f i +

∫

∂M

tej ∧ t∗f i

= (−1)i
∫

M

ej ∧ d∗f i +

∫

∂M

tej ∧ ∗nf i (32)

for {i, j} ∈ {{p, q}, {q, p}}, where s = i(n− i) = i(j − 1).

Proof. We have used the relation in Proposition 2.1.

Theorem 4.4. The boundary term in the power balance
equation (28) is extended that on a ∂-manifoldM as follows:

∫

∂M

eb ∧ f b =

∫

∂M

tej ∧ t∗dαi +

∫

∂M

tej ∧ ∗nλi, (33)

where dαi ∈ Ek(M), and λi ∈ Hk
T (M).

Proof. Because f i is closed: df i = 0, δβi = δγi = 0 in
the form f i = dαi + δβi + δγi + λi obtained from the de-
composition (4.2). The formula (32) admits the expression
f i = dαi + λi. Indeed, αi = ej . The sum of two appropri-
ate inner products (32) yield the boundary term in the last
equation in the same manner of the proof of the standard
Stokes-Dirac structure [3].

Then, the first term of the right-side in (33) corresponds to
the conventional boundary energy flow, the second is the
new boundary energy related with the topology of M . This
result is justified as following known fact.

Lemma 4.5 ( [6, p. 127]). Let M be a ∂-manifold. Con-
sider the problem of finding a solution ej ∈ Ωk−1(M) of the
equations

f i = dej on M, ej|∂M = ψ|∂M on ∂M (34)

for given f i ∈ Ωk(M) and ψ ∈ Ωk−1(M)|∂M . This problem
is solvable, if and only if f i and ψ satisfy the integrability
condition

df i = 0, tf i = tdψ, (35)

〈〈f i, λi〉〉 =

∫

∂M

tψ ∧ ∗nλi ∀λi ∈ Hk
T (M). (36)

Proposition 4.6. Consider the Stokes-Dirac structure on
a ∂-manifold M for fp ∈ Ωp(M), ep ∈ Ωq−1(M), f q ∈
Ωq(M), and eq ∈ Ωp−1(M). Then, there exists the har-
monic forms λp ∈ Hp

T (M) and λq ∈ Hq
T (M) satisfying

tfp = (−1)rdteq, 〈〈fp, λp〉〉 =

∫

∂M

teq ∧ ∗nλp, (37)

tf q = dtep, 〈〈f q, λq〉〉 =

∫

∂M

tep ∧ ∗nλq. (38)
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We call the boundary integrations (37) and (38) harmonic
boundary energy flows, and λp and λq harmonic boundary
energy variables.

Proof. By substituting φ = ej describing the free boundary
condition to Lemma 4.5, we can get the results.

Theorem 4.7. The cohomology HSD(M) of the Stokes-
Dirac structure on a ∂-manifold M is affected by the topol-
ogy of M .

Proof. By the Hodge isomorphism Theorem 3.5,
Hk

DR(M, δ) ∼= Hk
T (M). Moreover, by Corollary 3.6,

we have Hk
DR(M,d) ∼= Hn−k

DR (M, δ). The de Rham coho-
mology Hk

DR(M,d) is related with the singular homology
group representing the topology of M . On the other hand,
it is known that Hk

DR(M, δ) is isomorphic to the relative de
Rham cohomology and the relative homology [6, 11] that
is an alternate homological classification of manifolds with
boundary. Indeed, because Hk

DR(M,d) ∼= Hn−k
DR (M, δ) as

we have seen, the same result can be obtained from the
both.

5 Examples

The homology of M can be detected by harmonic forms as
we have seen before. From the viewpoint of topology, the
homology group Hi(M) can be interpreted, e.g., in the case
n = 3 as follows:

• H0(M) · · · The vector space generated by equivalence
classes of points in M such that two points are equiva-
lent if there exists a path connecting the points in M .
dimH0(M) is equivalent to the number of components
of M . Note that H0(M) ∼= R if M is connected, then
the element of H0(M) is a constant function.

• H1(M) · · · The vector space generated by equivalence
classes of oriented loops in M such that two loops are
equivalent if their difference is the boundary of an ori-
ented surface in M . dimH1(M) is equivalent to the
number of total genus of ∂M , where a genus means the
number of holes of closed surfaces.

• H2(M) · · · The vector space generated by equivalence
surfaces in M such that two surfaces are equivalent if
their difference is the boundary of some oriented subre-
gion of M . dimH2(M) is equivalent to the number of
the difference between components of ∂M and those of
M .

• H3(M) · · · dimH3(M) is always 0.

Because vector fields can be identified with 1-forms on man-
ifolds, the above decomposition of differential forms affects
the vector fields.

Theorem 5.1 ( [12] ). Let M be a compact domain with a
smooth boundary ∂M in three-dimensional space. Let X(M)
be the infinite dimensional vector space of all vector fields in
M . Consider L2 inner product 〈v, w〉 =

∫
M
v · w dx for any

v, w ∈ X(M), where dx is the volume form on M . The space

X(M) is the direct sum of the following mutually orthogonal
subspaces:

X(M) = XK(M) � XG(M), (39)

where v ∈ X(M), ϕ ∈ C∞(M),

XK(M) = {v ∈ X(M) | Div v = 0, 〈v,n〉 = 0} , (40)

XG(M) = {v ∈ X(M) | v = Gradϕ} , (41)

which are called knots and gradients, respectively, and n

means unit vector fields normal to ∂M . Furthermore, the
subspaces

XHK(M) = {v ∈ XK(M) | Curl v = 0} , (42)

XHG(M) = {v ∈ XG(M) | Div v = 0,

ϕ is locally constant on ∂M} , (43)

which are respectively called harmonic knots and harmonic
gradients, directly relate to the topology of M as follows:

dimH1(M) = dimXHK(M), dimH2(M) = dimXHG(M).
(44)

Example 5.1. The homology group of the two-dimensional
sphere M = S2 (see the left of Fig.1) consists of H2

∼= R,
H1

∼= 0, and H0
∼= R. There is no v ∈ XHK(M) in

S2, because dimH1(M) = dimXHK(M) = 0. However,
there exists v ∈ XHG(M) on S2, because dimH2(M) =
dimXHG(M) = 1. Then, XHG(M) means a radiational
vector field flowing from an internal point of the sphere.
The homology group of the two-dimensional torus M = T 2

(see the right of Fig.1) consists of H2
∼= R, H1

∼= R�R, and
H0

∼= R. Thus, dimXHK(M) = 2, and dimXHG(M) = 1.
Then, XHK(M) means circulative vector fields around loops
that are non-contractible. The difference between the above
two cases is H1.
Let us consider M = T 2 as a ∂-manfold. According to
the Lefschetz duality [6, pp. 105], Hk(M, δ) ∼= Hn−k(M).
Therefore, Hn−k(M) ∼= Hk

T (M). The degree of Stokes-
Dirac structures on these two dimensional domain may be
(p − 1, p, q − 1, q) ∈ {(0, 1, 2, 3), (1, 2, 1, 2), (2, 3, 0, 1)}.
Hence, in the case of p = 2 and q = 2, the extra terms in
(37) and (38) corresponding XHK(M) of H1 appear.

Figure 1: Two-dimensional sphere and torus

Appendix

5.1 Vector fields on boundary

A metric on a ∂-manifold is defined as a smooth map
g : TM × TM → R such that g|p : TpM × TpM → R is
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symmetric, bilinear and positive definite for all p ∈M . Let
(M, g) be a Riemannian ∂-manifold. Consider a vector field
Ei ∈ Γ(TU) such that g(Ei, Ej)|p = δij for any p ∈ U ⊂M ,
where 1 ≤ i, j ≤ n − 1 and the space of all smooth vector
field is denoted by Γ. The tuple (E1, · · · , En) is called a
g-orthonormal frame.
According to the collar theorem [6], a normal vector field
N : ∂M → TM |∂M defined on ∂M can be smoothly ex-

tended to a vector field N̂ on a neighborhood U of the
boundary ∂M . Then, by choosing Ñ = N̂/|N̂ |, any vec-
tor field X ∈ Γ(TM) in U can be uniquely decomposed
into its tangential component X‖ and its normal compo-
nent X⊥, i.e., X = X‖ + X⊥, where X‖ = g(X, Ñ )Ñ ,

and g(X⊥, Ñ ) = 0. This construction can determine a

g-orthonormal frame F = (Ñ , E1, · · · , En−1) on any suf-
ficiently small neighborhood U intersecting ∂M , where
Ñ |∂M = N and Ei|∂M ∈ T∂M .

5.2 Sobolev space of differential forms

Definition 5.1. Let M be a ∂-manifold. Consider a vector
bundle F over M with a fibre metric 〈 , 〉F and a connection
∇. Let {Ua}a∈A be an open cover of M , {ρa}a∈A be a sub-
ordinated partition unity, and (Ea

1 , · · · , E
a
n) be a family of

local frames. Then , W s,p-norm on Γ(F) is defined by

‖σ‖pW s,p =
∑

a∈A

∫

M

ρa|σ|
p

Js(F|Ua)
µ, (45)

‖σ‖p
W 1,p =

∫

M

|σ|p
J1(F)µ, (46)

where 1 ≤ p < ∞, s ∈ N0, µ ∈ Ωn(M) is the Riemannian
volume form on M , | · |p

Js(F|Ua)
: Γ(FU ) → C∞(U) is the fiber

norm such that

|σ|2J0(F) = 〈σ, σ〉F,

|σ|2Js(F) = |σ|2Js−1(F) +
∑

1≤j≤n

|∇Ej
σ|2Js−1(F), (47)

and the map ∇X = ∇(X, ·) for a fixed X ∈ Γ(TM) that is
called the covariant derivative in the direction X is induced
from the connection ∇.

The space of smooth compactly supported sections is de-
noted by Γc(F). The Sobolev space W s,pΓ(F) is defined as
the completion of Γc(F) with respect to the norm (45). If
M is compact, then Γc(F) = Γ(F).
Consider the exterior k-form bundle Λk(M) over a Rieman-
nian ∂-manifold M as F in the above definition. In this
case, the space Γc(Λ

k(M)) of smooth compactly supported
sections of Λk(M) is that of compactly supported differen-
tial forms on M . This space is equipped with a L2-inner
product 〈〈ω, η〉〉 =

∫
M
ω ∧ ∗η, and the corresponding fiber

metric on Λk(M) is 〈ω, η〉ΛkµM = ω ∧ ∗η.
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