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On finding all positive integers a, b such that b± a and ab are

palindromic

Wang Pok Lo, Yuval Paz

Abstract

It is proven that the only integer solutions (a, b) such that a+ b and ab are palindromic
are (2, 5·10k−3), (3, 24) and (9, 9), and in a similar fashion, b−a and ab are only palindromic

at (a, b) = (3, 147 · 104(k+1)+5247
∑k

i=0 10
4i), (3, 161 247 · 104k+7+5247

∑k

i=0 10
4i+3+387),

(3, 147) and (3, 161 247 387) for k = 0, 1, 2, · · · . Note a ≤ b without loss of generality.

1 Introduction

The challenge to determine all positive integers a, b such that b+ a and ab are palindromic has
been explored by a few people, but none has yet provided a rigorous proof of all the solutions.
In 2009, the conjectured solutions were posted on OEIS by Mark Nandor [2]. More recently,
there was a question on Quora [3] asking this, and we have even done so on Mathematics Stack
Exchange where a user Michael Lugo [4] conjectured the same as Nandor. In this paper, we
will prove their claims, and will also generalise this to the case where b−a and ab are palindromic.

Definition:
Two integers are palindromic if the digits of one integer are the same as the reverse of the

digits of the other, and if they both have the same number of digits.

That is, if one integer a has digit representation anan−1 · · · a1 and the other integer b has digit
representation bnbn−1 · · · b1, then they are palindromic if and only if

a1 = bn, a2 = an−1, · · · , an−1 = b2, an = b1

Furthermore, a2, · · · , an−1, b2, · · · , bn−1 ∈ {0, 1, 2, · · · , 9} but a1, an, b1, bn ∈ {1, 2, · · · , 9}. This
is so that the the first and last digits of a and b are not zero; otherwise, they would not have
the same number of digits.

2 When a+ b and ab are palindromic

2.1 Formulating the problem

Without loss of generality assume that a ≤ b. Then ab

a+b
> ab

2b = a

2 and this must be less than
10. Hence a < 20.

For n > 1, let b have the above digit representation, and let

a+ b = cncn−1 · · · c2c1 = 10n−1cn + 10n−2cn−1 + · · ·+ 10c2 + c1 (1)

ab = c1c2 · · · cn−1cn = 10n−1c1 + 10n−2c2 + · · ·+ 10cn−1 + cn (2)

Substituting b from (1) into (2), we get

(a · 10n−1 − 1)cn + (a · 10n−2 − 10)cn−1 + · · · + (10a − 10n−2)c2 + (a− 10n−1)c1 = a2 (3)

Note that to preserve the same number of digits in each expression, acn < 10, except for extreme
cases highlighted in §2.3.

2.2 Finding the solutions

In this section it will be assumed that cn = bn. Exceptions to this are also discussed in §2.3.
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2.2.1 Solutions when a = 2

If n = 1, we can immediately solve the equation 2+b = 2b =⇒ b = 2 so (2, 2) is a trivial solution.

From (3), the equation becomes

(2 · 10n−1 − 1)cn + (2 · 10n−2 − 10)cn−1 + · · ·+ (20 − 10n−2)c2 + (2− 10n−1)c1 = 4 (4)

Clearly cn is even, and since 2 ·6 > 10, cn = 2, 4. If cn is the former, then bn = 2 so the first digit
of 2b is c1 = 4 or 5. If c1 = 4, then b1 = c1 − 2 = 2 so the last digit of 2b must be 4 = cn which
is a contradiction. Similarly, if c1 = 5, then b1 = 3 so the last digit of 2b must be 6 = cn, again,
a contradiction. Therefore cn = 4, meaning that 2b starts with either c1 = 8, 9 =⇒ b1 = 6, 7.
If b1 = 6 then the last digit of 2b is 2 contradicting the fact that the first digit of b is 4. Hence
b1 = 7 =⇒ c1 = 9.

Dividing equation (4) by 2, the RHS is still even, so to fulfill that on the LHS, we must have
that −5cn−1 + c1 is even since all other terms on that side have at least one even factor. Since
c1 is odd, so is cn−1. Notice that c1 = 2cn + 1, implying that there is carrying. This narrows
cn−1 down to either being 5, 7 or 9.

If cn−1 = 5, then 2b ends in the digits 54 so b must end in the digits 27 or 77, implying
that c2 = 2, 7. However the second digit of 2b is c2 = 2cn−1 = 0, 1 which is a contradiction.
Similarly, if cn−1 = 7, then 2b ends in the digits 74 so b must end in the digits 37 or 87, implying
that c2 = 3, 8. However the second digit of 2b is c2 = 2cn−1 = 4, 5 which is a contradiction.
Finally, if cn−1 = 9, then 2b ends in the digits 94 so b must end in the digits 47 or 97, implying
that c2 = 4, 9. However the second digit of 2b is c2 = 2cn−1 = 8, 9 which forces c2 = 9.

We have now arrived at b = 49 · · · 97 =⇒ 2 + b = 49 · · · 99 and 2b = 99 · · · 94 so c3 ≥ 5.
Again, we previously showed that c1 is odd so cn−2 is also odd. This is a cycle, so the only
solutions when a = 2 are b = 2, 47, 497, 4997, · · · which can be generalised to 5 · 10k − 3 for
k = 0, 1, 2, · · · .

2.2.2 Solutions when a = 3

In this section, equation (3) will be used for n > 2. That said, the cases n = 1, 2 will
firstly be considered. Of course, 3 + b = 3b gives no integer solutions so this eliminates the
first one. If n = 2, equation (3) can be modified to give 29c2 − 7c1 = 9 which is a stan-
dard Diophantine equation. Solving using the Euclidean Algorithm gives the general solution
(c1, c2) = (9 + 7t, 36 + 29t) for an integer t. But since c1, c2 < 10, the only possible solution is
when t = −1, so (c1, c2) = (2, 7) =⇒ b = 24.

For n > 2, we have

1 + (3 · 10n−1 − 1)cn + (3 · 10n−2 − 10)cn−1 + · · ·+ (30− 10n−2)c2 + (3− 10n−1)c1 = 10

so 1− cn + 3c1 is a multiple of 10. As 3cn < 10, cn is restricted to 1, 2, 3.

If cn = 1, 10 divides 1− 1 + 3c1 which is impossible.

If cn = 2, 10 divides 3c1 − 1. This can be achieved only if c1 = 7, so 3b starts with 7. Since
the first digit of 3 + b is 2, this indicates carrying, and in particular, that cn−1 = 3, 4, 5, 6. If
cn−1 = 3, 3b ends in 32 so b ends in 44. This means that b+3 ends in 47 and in turn, 3b ends in
74. A contradiction arises as 3 · 23 < 74. If cn−1 = 4, 3b ends in 42 so b ends in 14. This means
that b+3 ends in 17 and in turn, 3b starts with 71. However this is impossible as 3 · 24 > 71. If
cn−1 = 5, 3b ends in 52 so b ends in 84. This means that b+ 3 ends in 87 and in turn, 3b starts
with 78. Again this is contradictory since 3 · 25 < 78. Finally, if cn−1 = 6, 3b ends in 62 so b
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ends in 54. This means that b+ 3 ends in 57 and in turn, 3b starts with 75 which is impossible
as 3 · 26 > 75. No solutions exist in this category.

If cn = 3, 10 divides 3c1 − 2. This can be achieved only if c1 = 4. Now 3cn = 9 = c1
only since carrying will increase the number of digits so immediately there is a contradiction.
Therefore the only solution when a = 3 is b = 24.

2.2.3 Solutions when a = 4, 5

If n = 1 then it is easy to show that no solutions exist for a = 4, 5.

For a = 4, cn = 1, 2 and we have that

(4 · 10n−1 − 1)cn + (4 · 10n−2 − 10)cn−1 + · · · + (40− 10n−2)c2 + (4− 10n−1)c1 = 16

and clearly cn must be even to keep the parities consistent on both sides of the equation. Thus
if cn = 2, c1 = 8, 9 including carrying leading to b1 = 4, 5. However, 4b1 ends in 6, 0 respectively,
not cn = 2, which is a contradiction.

Similarly, for a = 5, cn = 1 and we have that

(5 · 10n−1 − 1) + (5 · 10n−2 − 10)cn−1 + · · · + (50 − 10n−2)c2 + (5− 10n−1)c1 = 25

but the LHS is not divisible by 5. This is again a contradiction.

2.2.4 Solutions when a = 7, 9

When a = 7, cn = 1 so that acn < 10 so equation (3) becomes

(7 · 10n−1) + (7 · 10n−2 − 10)cn−1 + · · ·+ (70 − 10n−2)c2 + (7− 10n−1)c1 = 50

Now for n > 2, every term on the LHS is divisible by 10 except 7c1 so c1 must be divisible by 10.
This is a contradiction as c1 must be a single digit and cannot be zero. The case where n = 1
trivially gives no solutions and if n = 2, this requires the solution of the Diophantine equation
(7 · 10− 1)c2 − (7− 10)c1 = 72 =⇒ 3(23c2 − c1) = 49, but the RHS is not divisible by 3. Hence
no solutions exist and this completes a = 7.

Similarly, when a = 9, cn = 1 so

(9 · 10n−1) + (9 · 10n−2 − 10)cn−1 + · · ·+ (90 − 10n−2)c2 + (9− 10n−1)c1 = 82

For n > 2, every term on the LHS is even except 9c1 so c1 must be even. This means that cn is
also even which is a contradiction. The case where n = 1 trivially also gives no solutions and this
case where n = 2 requires the solution of the Diophantine equation (9 · 10− 1)c2 + (9− 10)c1 =
92 =⇒ 89c2 − c1 = 81, which is (c1, c2) = (t,−81+89t). As 0 < c1, c2 < 10, the solution occurs
when t = 1, so (c1, c2) = (1, 8), implying that b = 18 − 9 = 9. Hence the only solution when
a = 9 is b = 9.

2.2.5 Solutions for the remaining a

If a is even, so is the RHS of (3). The LHS is also even as a and 10 are divisible by 2, except
for the term −cn. This means that cn is even. However, for even a > 5, we must set cn = 1 so
that acn < 10 which is again a contradiction. If a is odd; that is, a = 11, 13, · · · , 19, then clearly
acn > 10 so all that is left is to check the extreme cases in the next section, where, for example,
b = 10n − a so that a+ b and ab have the same number of digits.
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2.3 Checking the extreme cases

2.3.1 When a = 2, 3, 4, 5, 7, 9

There were instances in §2.2 where it was assumed that cn = bn. While this may be true for
the majority of the values of b, there are still some exceptions. For example, consider the case
a = 2. If b = 19 · · · 98 or 19 · · · 99 then cn becomes 2 not 1. However, by inspection it is apparent
that 2 + b and 2b are not palindromic for these b, since 2 + b starts with 2 but 2b ends in 6
or 8. Similarly, for the other five values of a, we can check from b = 10n−1(bn + 1) − a to
10n−1(bn + 1) − 1 - since here, cn = bn + 1, but this yields no solutions either for all n > 1.

2.3.2 When a = 11, 13, 15, 17, 19

For these values of a, bn = 9 so that a+ b and ab have the same number of digits. This means
that we need only check from b = 10n − a to 10n − 1 and it can be easily verified (by comparing
the first and last digits of each of a+ b and ab) that no solutions exist here either.

3 When b− a and ab are palindromic

3.1 Formulating the problem

This is very similar to section 2.1. The LHS of equation (1) in §2.1 will be replaced by b − a

but the rest of (1) and (2) remain the same. We get a near equivalent equation to (3); the only
difference is due to the negative sign on the RHS:

(a · 10n−1 − 1)cn + (a · 10n−2 − 10)cn−1 + · · ·+ (10a − 10n−2)c2 + (a− 10n−1)c1 = −a2 (5)

Note that a < 10; otherwise, ab will have at least one more digit than b− a as subtraction of a
positive integer cannot increase the value of the expression. Again, the criterion (bar exceptions)
that acn < 10 still holds.

3.2 Finding the solutions

As in §2.2, assume that cn = bn in this section.

3.2.1 Solutions when a = 2, 4, 5

We will start with a = 5. We have two cases: cn = 0 and cn = 5, as 5b ends in cn. Of course,
cn = 0 is trivially false, and cn = 5 implies that 5b has more digits than b− 5. Both cases lead
to contradictions, so there are no solutions.

We will now consider a = 4, first assuming n = 1 we get b − 4 = 4b, and this implies no
solutions. Now we can apply (5) and get:

(4 · 10n−1 − 1)cn + (4 · 10n−2 − 10)cn−1 + · · ·+ (40 − 10n−2)c2 + (4− 10n−1)c1 = −16

Therefore cn is even, and to keep acn < 10 we also get cn < 3 =⇒ cn = 2. Multiplying by 4 we
get c1 = 8, 9 (which is the last digit of b−4) and we need only consider the carrying of 1 because
beyond that we will get a new digit. Now b = 2 · · · · · · 2 or b = 2 · · · · · · 3, and multiplying the
possible last digits by 4 we get cn = 8 for the former and cn = 2 in the latter. Thus, if solutions
exists, cn = 2 and c1 = 3.

This gives b = 2 · · · · · · 3 =⇒ b − 4 = 2 · · · · · · 9 =⇒ 4b = 9 · · · · · · 2; in other words, there is a
carrying of 1 from cn−1, so we get two possible values: cn−1 = 3, 4.
If cncn−1 = 23 then 4b ends with 32, dividing 32 by 4 yields b1 = 8, which contradicts the fact
that b1 = 3.
If cncn−1 = 24 then 4b ends with 42 which is not divisible by 4 so we have another contradiction.
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So for a = 4 there are no solutions.

For a = 2, n = 1 gives the equation 2a = a − 2 which yields no results, and if n ≥ 2, we
can start by noticing that cn = 2, 4 because

(2 · 10n−1 − 1)cn + (2 · 10n−2 − 10)cn−1 + · · ·+ (20 − 10n−2)c2 + (2− 10n−1)c1 = 4

If cn = 4, c1 is either 8 or 9, but c1 cannot be 8 as 8 + 2 ends in 0. Thus c1 = 9 =⇒ b1 = 1,
but 2b ends in 4, which is a contradiction.

If cn = 2, c1 is 4 or 5, but we know that 2b ends in cn = 2. Hence b ends in either 1 or 6,
so b− 2 ends with 9 or 4 which is c1. Now the only common number between 4, 5 and 4, 9 is 4,
so c1 = 4. It is easy to see that 24 + 2 = 26 is not a solution. So the possible values of cn−1 are
0, 1, 2, 3, 4.

If cn−1 = 0, 2, 4 then 2b ends with d2 where d = 0, 2, 4. This is a contradiction as for a
positive integer k we have 2 · (k · 10 + 6) ends in t2 where t is odd.

If cn−1 = 1 then b − 2 = 21 · · · · · · 4 =⇒ 2b = 4 · · · · · · 12, which means that b ends in 06
or 56, so c2 = 0, 5 which is a contradiction to the fact that b starts with 21. We are just
left with cn−1 = 3; if b − 2 = 23 · · · · · · 4 then 2b = 4 · · · · · · 32, and cn−1 = 3 also means that
c2 = 6, 7. Hence b = 23 · · · · · · 66 or b = 23 · · · · · · 76, but 76 ·2 = 152 does not end in 32 so c2 = 6.

Claim:

Let 3k = 3 · · · 3
︸ ︷︷ ︸

k times

, 6k = 6 · · · 6
︸ ︷︷ ︸

k times

. Then b = 2(3k) · · · 6k implies that b = 2(3k+1) · · · 6k+1.

Proof:

To prove this claim it will be shown that b = 2(3k)6k is not a solution, and indeed there
exists the digit 7 in 2b but not in b− 2.

If 23k6k is not a solution, there exists more digits, namely cn−k−1, ck+1, that are not in the
3k or 6k, so we need to check cn−k−1 = 0, 1, 2, 3, 4.

For even cn−k−1 we get an easy contradiction just like at the start: for an even digit d,
b − 2 = 2(3k)d · · · 6k−14 =⇒ 2b = 4(6k−1) · · · d3k2, but this is impossible as the last 6 has a
carrying which makes the next digit odd, and d is even.

For cn−k−1 = 1 we get b − 2 = 2(3k)1 · · · 6k−14 =⇒ 2b = 4(6k−1) · · · 13k2 that means b

ends in 06k−1 or 56k−1 and just like we did in the case of cn−1 = 1, it is a contradiction.

This forces cn−k−1 = 3, so b − 2 = 2(3k+1) · · · 6k−14 =⇒ 2b = 4(6k−1) · · · 3k+12, and
cn−k−1 = 3 =⇒ ck+1 = 6, 7. If ck+1 = 7 we get 5 in the place where there should be 3,
so ck+1 = 3. We are done, because 6 6= 3 and the number of digits is ever growing (infinite), but
every integer is finite, so there are no solutions. �

3.2.2 Solutions when a = 6, 7, 8, 9

From (5), we get that when a = 6, 8, cn is even, but if cn > 1 then acn > 10, so for a = 6, 8
there are no solutions.

For a = 7 we get cn = 1, and c1 = 7, 8, 9. If c1 = 7 then b = 1 · · · · · · 4 so 7b = 7 · · · · · · 8,
but 8 6= 1 is a contradiction. For c1 = 8 we get b = 1 · · · · · · 5, then 7b ends in 5 and not 1,
again, a contradiction. Lastly, if c1 = 9 then b = 1 · · · · · · 6, so 7b ends in 2 6= 1. So there are no
solutions. For a = 9 we have cn = 1 and c1 = 9, so b = 1 · · · · · · 8 and 9b ends in 2 and not in 9,
so again no solutions.
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3.2.3 Solutions when a = 3

For n ≤ 3, it is possible to solve the respective Diophantine equations, and no solutions exist
when n = 1, 2. When n = 3, the Diophantine equation becomes

(3 · 102 − 1)c3 + (30− 10)c2 + (3− 100)c1 = −32 =⇒ 299c3 + 20c2 − 97c1 = −9

and the general solutions are (c1, c2, c3) = (t,−135− 299s+259t, 9 + 20s− 17t) for integers s, t.
Since c1 = t < 10, there are only nine cases to cover. For t = 1, 2, 3, 7, 8, 9, c3 ≥ 10 and for
t = 5, 6, c2 ≫ 10. However, when t = 4, c2 = 4 and c3 = 1 so b − 3 = 144 =⇒ b = 147 is the
only solution for n ≤ 3.

For the rest of this section, n > 3. Firstly, we know that cn = 1, 2, 3. Plugging a = 3 and
subtracting one from both sides of (5), the equation becomes

− 1+ (3 · 10n−1 − 1)cn + (3 · 10n−2 − 10)cn−1 + · · ·+ (30− 10n−2)c2 + (3− 10n−1)c1 = −10 (6)

and it can be seen that 10 divides −1− cn + 3c1. However, if cn = 2 then 3(c1 − 1) is divisible
by 10 which is impossible as c1 is a single-digit positive integer. If cn = 3 this forces c1 = 8,
so b − 3 (and hence b) begins with 3 and 3b begins with 8 due to their palindromicity. This is
contradictory since 3 · 3 = 9 > 8, so the only case left is cn = 1.

If cn = 1 this forces c1 = 4 since 10 must divide 3c1 − 2. Now b starts with 1 and 3b starts with
4 so there is a carrying of 1 from the second digit to the first digit - implying that cn−1 = 4, 5, 6.
If cn−1 = 5, b− 3 = 15 · · · · · · 4 =⇒ b = 15 · · · · · · 7 and 3b = 4 · · · · · · 51. This forces c2 = 1 since
17 · 3 = 51 so 3b starts with 41. We reach a contradiction as 15 · 3 > 41. This leaves us with
cn−1 = 4, 6.

3.2.3.1 When cn−1 = 4

If cn−1 = 4, b = 14 · · · · · · 47 =⇒ b − 3 = 14 · · · · · · 44 =⇒ 3b = 44 · · · · · · 41 and since there
is a carrying of 2 from the third digit, cn−2 = 7, 8, 9. If cn−2 = 9 then b3 = 6 = c3 since
647 · 3 = 1941. Thus b starts with 149 and 3b with 446 which is a contradiction as 149 · 3 > 446.
Similarly, if cn−2 = 8 then b = 3 = 9 = c3 since 947 · 3 = 2841. Thus b starts with 148 and 3b
with 449 which is again a contradiction as 148 · 3 = 444 < 449.

If cn−2 = 7, b3 = 2 = c3 since 247 · 3 = 741. Thus b starts with 147 and 3b with 442 so
there is a carrying of 1 from the fourth digit. This implies that cn−3 = 4, 5, 6.

If cn−3 = 4, b = 1474 · · · 247 =⇒ 3b = 442 · · · 4741 which forces c4 = 8 as 8247 · 3 =
24741. Hence 3b starts with 4428 which is contradictory since 1474 · 3 = 4422. If cn−3 = 6,
b = 1476 · · · 247 =⇒ 3b = 442 · · · 6741 which forces c4 = 2 as 2247 · 3 = 6741. Hence 3b starts
with 4422 which is contradictory yet again since 1476 · 3 = 4428. In a similar argument, it can
be shown that cn−3 = 5 = c4 (∗). In the next five paragraphs we will demonstrate that a pattern
shows up.

Suppose that b has seven digits; that is, b = 147x247 where x is a digit from 0 to 9. If
this is multiplied by 3, 3b = 441(3x)741. But 3b starts with 442 due to palindromicity, so
3x = 12, 15, 18 or that x = 4, 5, 6. This forces x = 5 since the last digit of 3x is the same as x

itself. Hence b = 1475247 is a solution.

Suppose that b has eight digits; that is, b = 147xy247 where x, y are single digits. From similar
reasoning to the above, we deduce that 3(xy) = yx+ 100 (concatenation, not multiplication of
xy) due to carrying, so 29x−7y = 100. The general solution to this is (x, y) = (100+7t, 400+29t)
for an integer t, but it is impossible for y to be positive and less than 10. No solutions exist.
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Suppose that b has nine digits; that is, b = 147xyz247. The Diophantine equation this time is
299x+20y − 97z = 100 with general solution (x, y, z) = (20 + 20s− 17t,−249− 299s+259t, t).
For t = 1, 4, 5, 6, x ≥ 10 and for t = 2, 3, 7, 8, 9, s = 1, 2, 5, 6, 7 respectively, so y ≫ 10. No
solutions exist.

Suppose that b has ten digits; that is, b = 147wxyz247. The Diophantine equation is 2999w +
290x − 70y − 997z = 10000 and it can be verified from [1] that all solutions produced have at
least one variable that is no less than 10. No solutions exist.

Now suppose that b has eleven digits; that is, b = 147vwxyz247. The Diophantine equation
is 2990w + 200x − 970y − 9997z = 100000 − 29999v. Going through v from 1 to 9 and solving
this gives us that only v = 5 provides one solution with all variables less than 10. The unique
solution is (v,w, x, y, z) = (5, 2, 4, 7, 5) so b = 14752475247.

In particular, we have that for b of any length greater than eleven, b = 1475247 · · · 5247. But
we have arrived at exactly the same situation as in (*). This means that the cycle repeats, and
thus b is equal to 147 followed by blocks of 5247. Formally, b = 147 · 104(k+1) + 5247

∑
k

i=0 10
4i

and 147 for k = 0, 1, 2, · · · , and this completes cn−1 = 4.

3.2.3.2 When cn−1 = 6

It can be verified that for n ≤ 3, no solutions exist. This can be done by employing linear
Diophantine equations. From (6), since cn = 1 and c1 = 4,

−2 + 3 · 10n−1 + (3 · 10n−2 − 10)cn−1 + · · · + (30− 10n−2)c2 + 12− 4 · 10n−1 = −10

Combining terms and dividing by 10 gives (for n > 3)

−10n−2 + (3 · 10n−3 − 1)cn−1 + · · · + (3− 10n−3)c2 = −2

−8− 10n−2 + (3 · 10n−3 − 1)cn−1 + · · ·+ (3− 10n−3)c2 = −10

This means that for cn−1 = 6, −8 − 6 + 3c2 is divisible by 10; in other words, c2 = 8. Hence
b− 3 = 16 · · · · · · 84 =⇒ b = 16 · · · · · · 87 and 3b = 48 · · · · · · 61. In turn, it can be implied that
cn−2 = 0, 1, 2, 3 as 16 · 3 = 48.

If cn−2 = 0, 3b ends in 061 forcing c3 = 6 since 684 · 3 = 2061 which is a contradiction as
b starts with 160 and 3b starts with 486. If cn−2 = 2, 3b ends in 261 forcing c3 = 0 since
84 · 3 = 261 which is contradictory as b starts with 162 and 3b starts with 480. Furthermore,
if cn−2 = 3, 3b ends in 361 forcing c3 = 7 since 787 · 3 = 2361 which is again a contradiction
as b starts with 163 and 3b starts with 487 < 163 · 3. There is no contradiction when cn−2 = 1
because c3 = 3 works so we can continue down this route.

We are now left with b = 161 · · · · · · 387 =⇒ b− 3 = 161 · · · · · · 384 =⇒ 3b = 483 · · · · · · 161 so
again, cn−3 = 0, 1, 2, 3. If cn−3 = 0, b starts with 1610 so c4 = 0, 1, 2 as the fourth digit of 3b.
Now 0387 · 3 = 1161, 1387 · 3 = 4161 and 2387 · 3 = 7161 which is a contradiction as 1, 4, 7 6= 0
which is what we assumed for cn−3 in this case. Similarly, if cn−3 = 1, b starts with 1611 so
c4 = 3, 4, 5 as the fourth digit of 3b. Now 3387 · 3 = 10161, 4387 · 3 = 13161 and 5387 · 3 = 16161
which is a contradiction as 0, 3, 6 6= 1 which is what we assumed for cn−3 in this case. If cn−3 = 3,
this forces c4 = 9 since 1613 · 3 = 4839 which in turn forces cn−3 = 8 as 9384 · 3 = 28161. The
contradiction is apparent. This means that b = 1612 · · · · · · 7387 as it turns out that if cn−3 = 2,
c4 = 7 using the same method as above. (†)

Suppose that b has nine digits; that is, b = 1612x7387 just like in the previous subsection.
Then 3b = 4836(3x + 2)2161 which means that 20 > 3x+ 2 ≥ 10 =⇒ 3x+ 2 = 11, 14, 17 =⇒
x = 3, 4, 5. The last digits of 3x + 2 are 1, 4, 7 and since 4 is the only digit such that the last
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digit of 3x+ 2 is the same as x, the only solution is b = 161247387.

Suppose that b has ten digits; that is, b = 1612xy7387. From similar reasoning to the above,
we deduce that 3(xy) + 2 = yx+ 100. This means that in algebraic terms, 29x− 7y = 98. This
forces x = 7 as 29x = 7(y + 14), but this gives y = 15 > 10 so no solutions exist.

Suppose that b has eleven digits; that is, b = 1612xyz7387. The Diophantine equation this
time is 299x + 20y − 97z = 998 and it can be verified from [1] that there are no solutions such
that x, y, z < 10.

Suppose that b has twelve digits; that is, b = 1612wxyz7387. The Diophantine equation is
2999w + 290x − 70y − 997z = 9998 and similarly it can be verified from [1] that there are no
solutions such that w, x, y, z < 10.

Now suppose that b has thirteen digits; that is, b = 1612vwxyz7387. The Diophantine equation
is 2990w + 200x − 970y − 9997z = 99998 − 29999v. Going through v from 1 to 9 and solving
this gives us that only v = 4 provides one solution with all variables less than 10. The unique
solution is (v,w, x, y, z) = (4, 7, 5, 2, 4) so b = 161 247 5247 387.

In particular, we have that for b of any length greater than thirteen, b = 161 247 5247 · · · 387 =⇒
b = 161 247 52 · · · 387. But this is exactly where we had arrived at previously in (†). This means
that the cycle repeats, and thus b is equal to 161247 followed by blocks of 5247, followed by
387 at the end. Formally, b = 161247 · 104k+7 + 5247

∑
k

i=0 10
4i+3 + 387 and 161 247 387 for

k = 0, 1, 2, · · · , and this completes cn−1 = 6.
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