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Abstract: In this paper we introduced the concept of a ring of stable range 2 which has
square stable range 1. We proved that a Hermitian ring R which has (right) square stable
range 1 is an elementary divisor ring if and only if R is a duo ring of neat range 1. And
we proved that a commutative Hermitian ring R is a Toeplitz ring if and only if R is a ring
of (right) square range 1. We proved that if R be a commutative elementary divisor ring
of (right) square stable range 1, then for any matrix A ∈ M2(R) one can find invertible
Toeplitz matrices P and Q such that PAQ =

(

e1 0

0 e2

)

, where ei is a divisor of e2.

Key words and phrases: Hermitian ring, elementary divisor ring, stable range 1, stable
range 2, square stable range 1, Toeplitz matrix, duo ring, quasi-duo ring.

Mathematics Subject Classification: 06F20,13F99.

1 Introduction

The notion of a stable range of a ring was introduced by H. Bass, and became
especially popular because of its various applications to the problem of can-
cellation and substitution of modules. Let us say that a module A satisfies
the power-cancellation property if for all modules B and C, A⊕B ∼= A⊕C
implies that Bn ∼= Cn for some positive integer n (here Bn denotes the
direct sum of n copies of B). Let us say that a right R-module A has
the power-substitution property if given any right R-module decomposition
M = A1 ⊕B1 = A2 ⊕B2 which each Ai

∼= A, there exist a positive integer n
and a submodule C ⊆ Mn such that Mn = C ⊕ Bn

1 = C ⊕ Bn

2 .
Prof. K. Goodearl pointed out that a commutative rind R has the power-

substitution property if and only if R is of (right) power stable range 1, i.e.
if aR+ bR = R than (an+ bx)R = R for some x ∈ R and some integer n ≥ 2
depending on a, b ∈ R [1].
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Recall that a ring R is said to have 1 in the stable range provided that
whenever ax + b = 1 in R, there exists y ∈ R such that a + by is a unit
in R. The following Warfield’s theorem shows that 1 in the stable range is
equivalent to a substitution property.

Theorem 1. [1] Let A be a right R-module, and set E = EndR(A). Then E
has 1 in the stable range if and only if for any right R-module decomposition
M = A1⊕B1 = A2 ⊕B2 with each Ai

∼= A, there exists a submodule C ⊆ M
such that M = C ⊕B1 = C ⊕ B2.

A ring R is said to have 2 in the stable range if for any a1, . . . , ar ∈ R
where r ≥ 3 such that a1R+· · ·+arR = R, there exist elements b1, . . . , br−1 ∈
R such that (a1 + arb1)R + (a2 + arb2)R + · · ·+ (ar−1 + arbr−1)R = R.

K. Goodearl pointed out to us the following result.

Proposition 1. [1] Let R be a commutative ring which has 2 in the stable
range. If R satisfies right power-substitution, then so does Mn(R), for all n.

Our goal this paper is to study certain algebraic versions of the notion
of stable range 1. In this paper we study a Bezout ring which has 2 in the
stable range and which is a ring square stable range 1.

A ring R is said to have (right) square stable range 1 (written ssr(R) = 1)
if aR+ bR = R for any a, b ∈ R implies that a2 + bx is an invertible element
of R for some x ∈ R. Considering the problem of factorizing the matrix ( a 0

b 0
)

into a product of two Toeplitz matrices. D. Khurana, T.Y. Lam and Zhou
Wang were led to ask go units of the form a2 + bx given that aR + bR = R.

Obviously, a commutative ring which has 1 in the stable range is a ring
which has (right) square stable range 1, but not vice versa in general. Exam-
ples of rings which have (right) square stable range 1 are rings of continuous
real-valued functions on topological spaces and real holomorphy rings in for-
mally real fields [2].

Proposition 2. [2] For any ring R with ssr(R) = 1, we have that R is right
quasi-duo (i.e. R is a ring in which every maximal right ideal is an ideal).

We say that matrices A and B over a ring R are equivalent if there exist
invertible matrices P and Q of appropriate sizes such that B = PAQ. If for
a matrix A there exists a diagonal matrix D = diag(ε1, ε2, . . . , εr, 0, . . . , 0)
such that A and D are equivalent and Rεi+1R ⊆ εiR ∩ Rεi for every i then
we say that the matrix A has a canonical diagonal reduction. A ring R



is called an elementary divisor ring if every matrix over R has a canonical
diagonal reduction. If every (1 × 2)-matrix ((2 × 1)-matrix) over a ring R
has a canonical diagonal reduction then R is called a right (left) Hermitian
ring. A ring which is both right and left Hermitian is called an Hermitian
ring. Obviously, a commutative right (left) Hermitian ring is an Hermitian
ring. We note that a right Hermitian ring is a ring in which every finitely
generated right ideal is principal.

Theorem 2. [3] Let R be a right quasi-duo elementary divisor ring. Then
for any a ∈ R there exists an element b ∈ R such that RaR = bR = Rb. If
in addition all zero-divisors of R lie in the Jacobson radical, then R is a duo
ring.

Recall that a right (left) duo ring is a ring in which every right (left) ideal
is two-sided. A duo ring is a ring which is both left and right duo ring.

We have proved the next result.

Theorem 3. Let R be an elementary divisor ring which has (right) square
stable range 1 and which all zero-divisors of R lie in Jacobson radical of R,
then R is a duo ring.

Proof. By Proposition 2 we have that R is a right quasi-duo ring. By Theo-
rem 2 we have that R is a duo ring.

Proposition 3. Let R be a Hermitian duo ring. For every a, b, c ∈ R such
that aR + bR + cR = R the following conditions are equivalent:

1) there exist elements p, q ∈ R such that paR + (pb+ qc)R = R;

2) there exist elements λ, u, v ∈ R such that b+λc = vu, where uR+aR =
R and vR + cR = R.

Proof. 1)⇒2) Since paR+ (pb+ qc)R = R we have pR+ qcR = R and since
R is a duo ring we have pR + cR = R. Than Rp +Rc = R, i.e. vp+ jc = 1
for some elements v, j ∈ R. Then vpb+ jcb = b and b−vpb = jcb = cj′b = ct
where t = j′b and jc = cj′. Element j′ exist, since R is a duo ring. Then
v(pb+ qc) = vpb+ vqc = b+ ct+ vqc = b+ ct+ ck, where vqc = ck for some
element k ∈ R. That is, we have v(pb+ qc)− b = cλ for some element λ ∈ R.
We have b + cλ = v(pb+ qc). Let u = pb+ qc. We have b+ cλ = vu, where
vR+cR = R, since vp+cj′ = 1 and uR+aR = R, since paR+(pb+qc)R = R.



2)⇒1) Since vR + cR = R then Rv + Rc = R. Let pv + jc = 1 for
some elements p, j ∈ R. Then pR + cR = R. Since b + λc = vu, we have
pb = p(vu−λc) = (pv)u−pλc = (1−jc)u+pλc = u−ju′c+pλc = u+qc for
some element q = pλ − ju′, where cu = u′c for some element u′ ∈ R. Since
u = pb+qc, therefore (pb+qc)R+aR = R. Since R is an Hermitian duo ring
then we have pR+qR = dR where p = dp1, q = dq1 and p1R+q1R = R. Then
p1R + (p1b+ q1c)R = R since pR ⊂ p1R and pR + cR = R, p1R + q1R = R,
i.e. we have p1R + (p1b + q1c)R = R. Hence, aR + (p1b + q1c)R we have
p1aR + (p1b+ q1c)R = R.

Remark 1. In Proposition 3 we can choose the elements u and v such that
uR + vR = R.

Proposition 4. Let R be an Hermitian duo ring. Then the following condi-
tions are equivalent:

1) R is an elementary divisor duo ring;

2) for every x, y, z, t ∈ R such that xR + yR = R and zR + tR = R there
exists an element λ ∈ R such that x + λy = vu, where vR + zR = R
and uR + tR = R.

Proof. 1)⇒2) Let R be an elementary divisor ring. By [4] for any a, b,
c such that aR + bR + cR = R there exist elements p, q ∈ R such that
paR + (pb+ qc)R = R.

Since xR+ yR = R, zR+ tR = R and the fact that R is a Hermitian duo
ring we have zR + xR + ytR = R. By Proposition 3 we have x + λyt = uv
where uR + zR = R, vR + ytR = R. Since x + (λt)y = x + µy = uv where
µ = λt, we have uR + zR = R, vR + yR = R.

2)⇒1) Let aR + bR + cR = R and Rb + Rc = Rd and b = b1d, c = c1d,
where Rb1 = Rc1 = R. Since R is a duo ring then b1R + c1R = R. So now
dR = Rd and aR + bR + cR = R, Rb+Rc = Rd we have aR+ dR = R, i.e.
dd1 + ax = 1 for some elements d1, x ∈ R. Then 1− dd1 ∈ aR.

Since b1R + c1R = R, by Conditions 2 of Proposition 3 there exists an
element λ1 ∈ R such that b1 + c1λ = vu1 where u1R + (1 − dd1)R = R and
vR + dd1R = R. Since (1− dd1) ∈ aR and u1R + (1− dd1)R = R. We have
uR+ aR = R. Let u = u1d. Since u1R+ aR = R and dR+ aR = R we have
uR + aR = R. Since b1 + c1λ = vu1, we have b+ cµ+ vu, where λd = dµ.



Recall that vR + dd1R = R then vR + dR = R. Since vR + cR =
vR + c1dR = vR + c1R. So b1 + c1λ = vu1 and b1R + c1R = R then
vR + c1R = R.

Therefore, vR+cR = R. This means that the Condition 2 of Proposition 3
is true. By Proposition 3 we conclude that for every a, b, c ∈ R with aR +
bR+ cR = R there exist elements p, q ∈ R such that paR+ (pb+ qc)R = R,
i.e. according to [4], R is an elementary divisor ring.

Definition 1. Let R be a duo ring. We say that an element a ∈ R\{0} is
neat if for any elements b, c ∈ R such that bR+ cR = R there exist elements
r, s ∈ R such that a = rs, where rR+ bR = R, sR+ cR = R, rR+ sR = R.

Definition 2. We say that a duo ring R has neat range 1 if for every a, b ∈ R
such that aR + bR = R there exists an element t ∈ R such that a + bt is a
neat element.

According to Propositions 3, 4 and Remark 1 we have the following result.

Theorem 4. A Hermitian duo ring R is an elementary divisor ring if and
only if R has neat range 1.

The term "neat range 1" substantiates the following theorem.

Theorem 5. Let R be a Hermitian duo ring. If c is a neat element of R
then R/cR is a clean ring.

Proof. Let c = rs, where rR + aR = R, sR + (1− a)R = R for any element
a ∈ R. Let r̄ = r + cR, s̄ = s + aR. From the equality rR + sR = R we
have ru + sv = 1 for some elements u, v ∈ R. Hence r2u + srv = r and
rsu + s2v = s we have r̄2ū = r̄, s̄2v̄ = s̄. Let s̄v̄ = ē. It is obvious that
ē2 = ē and 1̄− ē = ūr̄. Since rR+aR = R, we have rx+ay = 1 for elements
x, y ∈ R. Hence rxsv+aysv = sv we have rsx′v+aysv = sv where xs = sx′

for some element x′ ∈ R. Then āȳē = ē, i.e. ē ∈ āR. Similarly from the
equality sR + (1 − a)R = R, it follows 1̄ − ē ∈ (1̄ − ā)R. According to [5]
R/cR is an exchange ring. Since R is a duo ring, R/cR is a clean ring.

Taking into account the Theorem 3 and Theorem 4 we have the following
result.

Theorem 6. A Hermitian ring R which has (right) square stable range 1 is
an elementary divisor ring if and only if R is a duo ring of neat range 1.



Let R be a commutative Bezout ring. The matrix A of order 2 over R is
said to be a Toeplitz matrix if it is of the form

(

a b
c a

)

where a, b, c ∈ R.
Notice that if A is an invertible Toeplitz matrix, then A−1 is also an

invertible Toeplitz matrix.

Definition 3. A commutative Hermitian ring R is called a Toeplitz ring
if for any a, b ∈ R there exist an invertible Toeplitz matrix T such that
(a, b)T = (d, 0) for some element d ∈ R.

Theorem 7. A commutative Hermitian ring R is a Toeplitz ring if and only
if R is a ring of (right) square range 1.

Proof. Let R be a commutative Hermitian ring of (right) square stable range
1 and aR + bR = R for some elements a, b ∈ R. Then a2 + bt = u, where u
is an invertible element of R.

Let

S =

(

a −b
t a

)

, K =

(

u−1 0
0 u−1

)

.

Then
(a, b)S = (u, 0), (u, 0)K = (1, 0),

i.e. we have
(a, b)SK = (1, 0).

Since
(

a −b
t a

)(

u−1 0
0 u−1

)

=

(

au−1 −bu−1

−tu−1 au−1

)

= T

we have that T = SK is a Toeplitz matrix. So (a, b)T = (1, 0). If a, b ∈ R
and aR + bR = dR then by a = da0, b = db0 and a0R + b0R = R [4]. Then
there exists an element t ∈ R such that a0+ b0t = u, where a is an invertible
element of R.

Let
(

a0 −b0
t a0

)(

u−1 0
0 u−1

)

.

Note that T is an invertible Toeplitz matrix. Then (a, b)T = (d, 0), i.e. R is
a Toeplitz ring.



Let R be a Toeplitz ring and aR + bR = R. The exists an invertible

Toeplitz matrix T such that (a, b)T = (1, 0). Let S = T−1 =

(

x t
y x

)

, where

x, y, t ∈ R. So det T−1 = z2 + ty = u is an invertible element of R. Since
(a, b) = (1, 0)T−1, we have a = x, b = t. By equality x2 + ty = u we have
a2 + by = u, i.e. R is a ring of (right) square stable range 1.

Theorem 8. Let R be a commutative ring of square stable range 1. Then
for any row (a, b), where aR + bR = R, there exists an invertible Toeplitz
matrix

T =

(

a b
x a

)

,

where x ∈ R.

Proof. By Theorem 7 we have (a, b) = (1, 0)T for some invertible Toeplitz

matrix T . Let T =

(

x t
y x

)

. Then a = x, b = t and T =

(

a b
y a

)

is an

invertible Toeplitz matrix.

Recall that GEn(R) denotes a group of n × n elementary matrices over
ring R. The following theorem demonstrated that it is sufficient to consider
only the case of matrices of order 2 in Theorem 7.

Theorem 9. [4] Let R be a commutative elementary divisor ring. Then for
any n×m matrix A (n > 2, m > 2) one can find matrices P ∈ GEn(R) and
Q ∈ GEm(R) such that

PAQ =













e1 0 . . . 0 0
0 e2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . es 0
0 0 . . . 0 A0













where ei is a divisor of ei+1, 1 ≤ i ≤ s− 1, and A0 is a 2× k or k× 2 matrix
for some k ∈ N.

Theorem 10. Let R be a commutative elementary divisor ring of (right)
square stable range 1. Then for any 2 × 2 matrix A one can find invertible
Toeplitz matrices P and Q such that

PAQ =

(

e1 0
0 e2

)

,



where ei is a divisor of e2.

Proof. Since R is a Toeplitz ring it is enough to consider matrices of the form

A =

(

a b
0 c

)

,

where aR+ bR+ cR = R. Since R is an elementary divisor ring by [4] there
exist elements p, q ∈ R such that paR+(pb+qc)R = R, i.e. par+(pb+qc)s = 1
for some elements r, s ∈ R. Since pR + qR = R and rR + sR = R, by

Theorem 8 we have the invertible Toeplitz matrices P =

(

p q
∗ ∗

)

, Q =
(

r ∗
s ∗

)

such that

PAQ =

(

1 x
y z

)

= A1.

Then
(

1 0
−y 1

)

A1

(

1 −x
0 1

)

=

(

1 0
0 ac

)

,

where S =

(

1 0
−y 1

)

and T =

(

1 −x
0 1

)

are invertible Toeplitz matrices. So

SPAQT =

(

1 0
0 ac

)

.

Theorem is proved.

Open Question. Is it true that every commutative Bezout domain of
stable range 2 which has (right) square stable range 1 is an elementary divisor
ring?
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