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Abstract: In this paper we introduced the concept of a ring of stable range 2 which has
square stable range 1. We proved that a Hermitian ring R which has (right) square stable
range 1 is an elementary divisor ring if and only if R is a duo ring of neat range 1. And
we proved that a commutative Hermitian ring R is a Toeplitz ring if and only if R is a ring
of (right) square range 1. We proved that if R be a commutative elementary divisor ring
of (right) square stable range 1, then for any matric A € Ms(R) one can find invertible
Toeplitz matrices P and Q such that PAQ = (eol 802) , where e; is a divisor of es.
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1 Introduction

The notion of a stable range of a ring was introduced by H. Bass, and became
especially popular because of its various applications to the problem of can-
cellation and substitution of modules. Let us say that a module A satisfies
the power-cancellation property if for all modules B and C, A B= AdC
implies that B"™ = C"™ for some positive integer n (here B™ denotes the
direct sum of n copies of B). Let us say that a right R-module A has
the power-substitution property if given any right R-module decomposition
M = A, & B; = Ay ® B, which each A; = A, there exist a positive integer n
and a submodule C' C M™ such that M" =C @ B} = C & Bj.

Prof. K. Goodearl pointed out that a commutative rind R has the power-
substitution property if and only if R is of (right) power stable range 1, i.e.
if aR+bR = R than (a™ +bx)R = R for some x € R and some integer n > 2
depending on a,b € R [1].
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Recall that a ring R is said to have 1 in the stable range provided that
whenever ax +b = 1 in R, there exists y € R such that a + by is a unit
in R. The following Warfield’s theorem shows that 1 in the stable range is
equivalent to a substitution property.

Theorem 1. [1] Let A be a right R-module, and set E = Endg(A). Then E
has 1 in the stable range if and only if for any right R-module decomposition
M = A, ® By = Ay ® By with each A; = A, there exists a submodule C C M
such that M = C @& B, = C @ Bs.

A ring R is said to have 2 in the stable range if for any ay,...,a, € R
where r > 3 such that a; R+- - -4a, R = R, there exist elements by,...,b,_1 €
R such that (a; + a,.b)R + (as + a,bo) R+ -+ + (a,—1 + a.b—_1)R = R.

K. Goodearl pointed out to us the following result.

Proposition 1. [1/ Let R be a commutative ring which has 2 in the stable
range. If R satisfies right power-substitution, then so does M,(R), for all n.

Our goal this paper is to study certain algebraic versions of the notion
of stable range 1. In this paper we study a Bezout ring which has 2 in the
stable range and which is a ring square stable range 1.

A ring R is said to have (right) square stable range 1 (written ssr(R) = 1)
if aR+ bR = R for any a,b € R implies that a® + bz is an invertible element
of R for some z € R. Considering the problem of factorizing the matrix (¢ 9)
into a product of two Toeplitz matrices. D. Khurana, T.Y. Lam and Zhou
Wang were led to ask go units of the form a? + bz given that aR + bR = R.

Obviously, a commutative ring which has 1 in the stable range is a ring
which has (right) square stable range 1, but not vice versa in general. Exam-
ples of rings which have (right) square stable range 1 are rings of continuous
real-valued functions on topological spaces and real holomorphy rings in for-
mally real fields [2].

Proposition 2. [2] For any ring R with ssr(R) = 1, we have that R is right
quasi-duo (i.e. R is a ring in which every mazximal right ideal is an ideal).

We say that matrices A and B over a ring R are equivalent if there exist
invertible matrices P and () of appropriate sizes such that B = PAQ. If for
a matrix A there exists a diagonal matrix D = diag(ey,e9,...,&,,0,...,0)
such that A and D are equivalent and Re; 1R C ;R N Re; for every ¢ then
we say that the matrix A has a canonical diagonal reduction. A ring R



is called an elementary divisor ring if every matrix over R has a canonical
diagonal reduction. If every (1 x 2)-matrix ((2 x 1)-matrix) over a ring R
has a canonical diagonal reduction then R is called a right (left) Hermitian
ring. A ring which is both right and left Hermitian is called an Hermitian
ring. Obviously, a commutative right (left) Hermitian ring is an Hermitian
ring. We note that a right Hermitian ring is a ring in which every finitely
generated right ideal is principal.

Theorem 2. [3] Let R be a right quasi-duo elementary divisor ring. Then
for any a € R there exists an element b € R such that RaR = bR = Rb. If
in addition all zero-divisors of R lie in the Jacobson radical, then R is a duo
Ting.

Recall that a right (left) duo ring is a ring in which every right (left) ideal
is two-sided. A duo ring is a ring which is both left and right duo ring.
We have proved the next result.

Theorem 3. Let R be an elementary divisor ring which has (right) square
stable range 1 and which all zero-divisors of R lie in Jacobson radical of R,
then R is a duo ring.

Proof. By Proposition 2 we have that R is a right quasi-duo ring. By Theo-
rem [2] we have that R is a duo ring. O

Proposition 3. Let R be a Hermitian duo ring. For every a,b,c € R such
that aR 4+ bR + cR = R the following conditions are equivalent:

1) there exist elements p,q € R such that paR + (pb+ qc)R = R;

2) there exist elements A\, u,v € R such that b+ \c = vu, where uR+aR =
R and vR + cR = R.

Proof. 1)=2) Since paR + (pb+ gc)R = R we have pR + gcR = R and since
R is a duo ring we have pR + cR = R. Than Rp+ Rc = R, i.e. vp+ jc=1
for some elements v, j € R. Then vpb+ jcb = b and b—vpb = jcb = ¢j'b = ct
where t = j’b and jc = ¢j’. Element j' exist, since R is a duo ring. Then
v(pb+ qc) = vpb+ vge = b+ ct +vge = b+ ct + ck, where vge = ck for some
element & € R. That is, we have v(pb+ gc) —b = ¢\ for some element A € R.
We have b+ cA = v(pb+ gc). Let u = pb+ gc. We have b+ cA = vu, where
vR+cR = R, since vp+cj’ = 1 and uR+aR = R, since paR+ (pb+qc)R = R.



2)=1) Since vR + ¢cR = R then Rv + Rc = R. Let pv + jc = 1 for
some elements p, 7 € R. Then pR + cR = R. Since b+ Ac = vu, we have
pb = p(vu—Ac) = (pv)u—piec = (1—jc)u+pAic = u—ju'c+ pAc = u+qc for
some element ¢ = pA — ju’, where cu = u/c for some element v’ € R. Since
u = pb+ qc, therefore (pb+gc) R+aR = R. Since R is an Hermitian duo ring
then we have pR+qR = dR where p = dpy, ¢ = dg; and py R+q¢ R = R. Then
m R+ (p1b+ qi¢)R = R since pR C pyR and pR+cR =R, pR+ @R =R,
i.e. we have pjR + (p1b + q1¢)R = R. Hence, aR + (p1b + ¢1¢) R we have
plaR + (plb + qlc)R = R. [

Remark 1. In Proposition[3 we can choose the elements u and v such that
uR+vR = R.

Proposition 4. Let R be an Hermitian duo ring. Then the following condi-
tions are equivalent:

1) R is an elementary divisor duo ring;

2) for every x,y, z,t € R such that tR+yR = R and zR+ tR = R there
exists an element A\ € R such that x + \y = vu, where vR + zR = R
and uR+tR = R.

Proof. 1)=2) Let R be an elementary divisor ring. By [4] for any a, b,
c such that aR 4+ bR + cR = R there exist elements p,q € R such that
paR + (pb+ qc)R = R.

Since tR+yR = R, zR+tR = R and the fact that R is a Hermitian duo
ring we have zR + R + ytR = R. By Proposition [3] we have x + Ayt = uwv
where uR 4+ zR = R, vR + ytR = R. Since = + (M)y = = + uy = uv where
1= At, we have uR+ 2R = R, vR+yR = R.

2)=1) Let aR+ bR+ cR = R and Rb+ Rc = Rd and b = byd, ¢ = ¢1d,
where Rb; = Rc; = R. Since R is a duo ring then b1 R + c;R = R. So now
dR = Rd and aR + bR+ cR = R, Rb+ Rc = Rd we have aR + dR = R, i.e.
dd, + ax = 1 for some elements d;,z € R. Then 1 — dd; € aR.

Since bR 4+ c;R = R, by Conditions 2 of Proposition [B] there exists an
element \; € R such that b; + c;A = vu; where u1 R + (1 — dd;)R = R and
vR+ddyR = R. Since (1 —dd,) € aR and u; R+ (1 — dd;)R = R. We have
uR+aR = R. Let u = uid. Since 1R+ aR = R and dR + aR = R we have
uR 4+ aR = R. Since b; + ¢c; A = vuy, we have b+ cu + vu, where Ad = dpu.



Recall that vR + dd;R = R then vR + dR = R. Since vR + cR =
vR + c;dR = vR+ ¢iR. So by + ¢tA = vu; and byR + ¢¢R = R then
vR + ClR = R.

Therefore, vR+cR = R. This means that the Condition 2 of Proposition 3]
is true. By Proposition Bl we conclude that for every a,b, ¢ € R with aR +
bR + cR = R there exist elements p, g € R such that paR + (pb+ qc)R = R,
i.e. according to [4], R is an elementary divisor ring. O

Definition 1. Let R be a duo ring. We say that an element a € R\{0} is
neat if for any elements b, ¢ € R such that bR + cR = R there exist elements
r,s € R such that a = rs, where rR+bR =R, sR+cR =R, rR+ sR = R.

Definition 2. We say that a duo ring R has neat range 1 if for every a,b € R
such that aR + bR = R there exists an element ¢t € R such that a + bt is a
neat element.

According to Propositions[3] Ml and Remark [I] we have the following result.

Theorem 4. A Hermitian duo ring R is an elementary divisor ring if and
only if R has neat range 1.

The term "neat range 1" substantiates the following theorem.

Theorem 5. Let R be a Hermitian duo ring. If ¢ is a neat element of R
then R/cR is a clean ring.

Proof. Let ¢ =rs, where rR+ aR = R, sR+ (1 —a)R = R for any element
a € R. Let 7 =r+cR, 5= s+ aR. From the equality 7R + sR = R we
have ru + sv = 1 for some elements u,v € R. Hence r’*u + srv = r and
rsu 4+ s*v = s we have 72u = 7, 5°0 = 5. Let 50 = é. It is obvious that
e2=¢eand 1 —e = @r. Since rR+aR = R, we have rz + ay = 1 for elements
x,y € R. Hence rxsv+ aysv = sv we have rsz’v+ aysv = sv where xs = sz’
for some element 2’ € R. Then ayée = €, i.e. € € aR. Similarly from the
equality sR+ (1 —a)R = R, it follows 1 — & € (1 — @)R. According to [5]
R/cR is an exchange ring. Since R is a duo ring, R/cR is a clean ring. [

Taking into account the Theorem [8]and Theorem [4] we have the following
result.

Theorem 6. A Hermitian ring R which has (right) square stable range 1 is
an elementary divisor ring if and only if R is a duo ring of neat range 1.



Let R be a commutative Bezout ring. The matrix A of order 2 over R is
said to be a Toeplitz matrix if it is of the form

a b
c a
where a, b, c € R.

Notice that if A is an invertible Toeplitz matrix, then A~! is also an
invertible Toeplitz matrix.

Definition 3. A commutative Hermitian ring R is called a Toeplitz ring
if for any a,b € R there exist an invertible Toeplitz matrix 7" such that
(a,b)T = (d,0) for some element d € R.

Theorem 7. A commutative Hermitian ring R is a Toeplitz ring if and only
if R is a ring of (right) square range 1.

Proof. Let R be a commutative Hermitian ring of (right) square stable range
1 and aR 4 bR = R for some elements a,b € R. Then a? + bt = u, where u
is an invertible element of R.

Let ; .
a — u” 0
s=( V) x=( ).

(a,0)S = (u,0), (u,0)K =(1,0),

Then

i.e. we have

(a,0)SK = (1,0).

a =b\ (vt 0\ [au! —but\ T
t a 0 uwt) \—tu' aut )
we have that T'= SK is a Toeplitz matrix. So (a,b)T = (1,0). If a,b € R

and aR + bR = dR then by a = dagy, b = dby and agR + byR = R [4]. Then
there exists an element ¢ € R such that ag+ byt = u, where a is an invertible

element of R.
ap —byg ut 0
t agp 0 U_l ’

Let
Note that T" is an invertible Toeplitz matrix. Then (a,b)T = (d,0), i.e. R is
a Toeplitz ring.

Since



Let R be a Toeplitz ring and aR + bR = R. The exists an invertible
Toeplitz matrix T such that (a,b)T = (1,0). Let S =T""! = (z ;), where

z,y,t € R. So detT~! = 22 +ty = u is an invertible element of R. Since
(a,b) = (1,0)T~!, we have a = z, b = t. By equality 2? + ty = u we have
a’ + by = u, i.e. Ris a ring of (right) square stable range 1. O

Theorem 8. Let R be a commutative ring of square stable range 1. Then
for any row (a,b), where aR + bR = R, there exists an invertible Toeplitz

matrix
T = (a b) ,
T a

Proof. By Theorem [ we have (a,b) = (1,0)T for some invertible Toeplitz
matrix 7. Let T = (x t). Then a = x, b =t and T = (a b) is an
y z Yy a

invertible Toeplitz matrix.

where © € R.

Recall that GE,(R) denotes a group of n X n elementary matrices over
ring R. The following theorem demonstrated that it is sufficient to consider
only the case of matrices of order 2 in Theorem [7l

Theorem 9. [J/ Let R be a commutative elementary divisor ring. Then for
any n X m matric A (n > 2, m > 2) one can find matrices P € GE,,(R) and
Q € GE,,(R) such that

er 0 0 0
0 e 0 0
PAQ = e
0 0 ... e O
0 0 ... 0 A

where e; is a divisor of e;11, 1 <i < s—1, and Ag is a 2 X k or k X 2 matrix
for some k € N.

Theorem 10. Let R be a commutative elementary divisor ring of (right)
square stable range 1. Then for any 2 X 2 matrix A one can find invertible
Toeplitz matrices P and () such that

0
PAQ = (601 62) ,



where e; is a divisor of es.

Proof. Since R is a Toeplitz ring it is enough to consider matrices of the form

a b
=50
where aR + bR + cR = R. Since R is an elementary divisor ring by [4] there

exist elements p, ¢ € R such that paR+(pb+qc)R = R, i.e. par+(pb+qc)s =1
for some elements r,s € R. Since pR 4+ gR = R and R + sR = R, by

Theorem [8 we have the invertible Toeplitz matrices P = <§Z z), Q =

(T *) such that
s %

Then
1 0 1 —z 1 0
<—y 1)A1<o 1)‘(0 ac)’

where S = ( ly O) and T = ((1) —lz) are invertible Toeplitz matrices. So

SPAQT = (1 0) .

0 ac

Theorem is proved. O

Open Question. Is it true that every commutative Bezout domain of
stable range 2 which has (right) square stable range 1 is an elementary divisor
ring?
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