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DISTRIBUTION OF SHORT SUBSEQUENCES OF

INVERSIVE CONGRUENTIAL PSEUDORANDOM

NUMBERS MODULO 2t

LÁSZLÓ MÉRAI AND IGOR E. SHPARLINSKI

Abstract. In this paper we study the distribution of very short
sequences of inversive congruential pseudorandom numbers mod-
ulo 2t. We derive a new bound on exponential sums with such
sequences and use it to estimate their discrepancy. The technique
we use is based on the method of N. M. Korobov (1972) of estimat-
ing double Weyl sums and a fully explicit form of the Vinogradov
mean value theorem due to K. Ford (2002), which has never been
used in this area and is very likely to find further applications.

1. Introduction

1.1. Background on the Möbius tranformation. Let t ě 3 be an
integer and write Ut “ R

˚
t for the group of units of the residue ring

Rt “ Z{2tZ modulo 2t. Then #Ut “ 2t´1. It is often be convenient
to identify elements of Rt with the corresponding elements of the least
residue system modulo 2t.
We fix a matrix

M “
ˆ

m11 m12

m21 m22

˙

P GL2pRtq

with

(1.1) M ”
ˆ

1 0
0 1

˙

or

ˆ

0 1
1 0

˙

mod 2.

We then consider sequences generated by iterations of the Möbius
tranformation

(1.2) M : x ÞÑ m11x ` m12

m21x ` m22

which, under the condition (1.1), is always defined over Ut, that is,
M : Ut Ñ Ut.
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That is for u0 P Rt we consider the trajectory

(1.3) un “ M pun´1q “ Mn pu0q , n “ 1, 2, . . . ,

generated by iterations of the Möbius tranformation (1.2) associated
with M .
Assume that the characteristic polynomial of M has two distinct

eigenvalues ϑ1 and ϑ2 from the algebraic closure Q2 of the field of 2-
adic fractions Q2.
It is not difficult to prove by induction on n that there is an explicit

representation of the form

(1.4) un “ γ11ϑ
n
1 ` γ12ϑ

n
2

γ21ϑ
n
1 ` γ22ϑ

n
2

with some coefficients γij P Q2, i, j “ 1, 2.
Here we consider the split case when the eigenvalues ϑ1, ϑ2 P Z2 are

2-adic integers, in which case, interpolating, we also have γij P Z2,
i, j “ 1, 2.
It is easy to see that in this case we can assume that

γ21 ” 1 mod 2 and γ22 ” 0 mod 2.

Then, defining g P Ut by the equation

g “ ϑ1{ϑ2

we have g P Rt (recall that M is invertible in R2), thus the sequence
generated by (1.3), the representation (1.4) has the form

(1.5) un “ a

gn ´ b
` c

with some coefficients a, b, c P Rt. Furthermore, it is also easy to see
that

b ” 0 mod 2.

1.2. Motivation. The sequences (1.3) are interesting in their own
rights but they have also been used as a source of pseudorandom num-
ber generation where this sequence is known as the inversive genera-
tor , for example, see [4] for the period length and [10] for distributional
properties.
More precisely, let τ be the multiplicative order of g modulo 2t. Then

punq is a periodic sequence with period length τ , provided that a is odd.
Niederreiter and Winterhof [10], extending the results of [9] from odd

prime powers to powers of 2, obtained nontrivial results for segments
of these sequences of length N satisfying

(1.6) τ ě N ě 2p1{2`ηqt
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for any fixed η ą 0 and sufficiently large t.
Here using very different techniques we significantly reduce the range

(1.6) and obtain results which are nontrivial for much shorter segments,
namely, for

(1.7) τ ě N ě 2ct
2{3

for some absolute constant c ą 0.
We also consider this as an opportunity to introduce new techniques

into the area of pseudorandom number generation which we believe
may have more applications and lead to new advances.

1.3. Our results. Here we establish upper bounds for the exponential
sums

ShpL,Nq “
L`N´1

ÿ

n“L

e
`

hun{2t
˘

, 1 ď N ď τ,

where, as usual, we denote epzq “ expp2πizq and, as before, τ is the
multiplicative order of g modulo 2t.
Using the method of Korobov [8] together with the use of the Vino-

gradov mean value theorem in the explicit form given by Ford [6], we
can estimate ShpL,Nq for the values N in the range (1.7).
Throughout the paper we always use the parameter

(1.8) ρ “ logN

t

which controls the size of N relative to the modulus 2t on a logarithmic
scale.

Theorem 1.1. Let gcdpg, 2q “ gcdpa, 2q “ 1 and write

g2 “ 1 ` wβ2
β, gcdpwβ, 2q “ 1.

Then for 28β ă N ď τ we have

|ShpL,Nq| ď cN1´ηρ2

where ρ is given by (1.8), for some absolute constants c, η ą 0 uniformly
over all integers h with gcdph, 2q “ 1.

From a sequence punq defined by (1.5) we derive the inversive con-
gruential pseudorandom numbers with modulus 2t:

uL{2t, uL`1{2t, . . . , uL`N´1{2t P r0, 1q.
The discrepancy DpL,Nq of these numbers is defined by

DpL,Nq “ sup
JĂr0,1q

ˇ

ˇ

ˇ

ˇ

ApJ,Nq
N

´ |J |
ˇ

ˇ

ˇ

ˇ

,
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where the supremum is taken over all subintervals J of r0, 1q, ApN, Jq
is the number of point un{2t in J for L ď n ă L ` N , and |J | is
the length of J . The Erdős–Turán inequality (see [5, Theorem 1.21])
allows us to give an upper bound on the discrepancy DpL,Nq in terms
of ShpL,Nq.
Theorem 1.2. Let punq be as in Theorem 1.1 and assume that 232β ă
N ď τ . Then we have

DpL,Nq ď c0N
´η0ρ

2

where ρ is given by (1.8), for some constants c0, η0 ą 0.

Writing

N´ρ2 “ exp

ˆ

´plogNq3
t2

˙

we see that Theorems 1.1 and 1.2 are nontrivial in the range (1.7).

2. Preparation

2.1. Notation. We recall that the notations U ! V , and V " U are
equivalent to the statement that the inequality |U | ď cV holds with
some absolute constant c ą 0.
We use the notation v2 to the 2-adic valuation, that is, for non-zero

integers a P Z we let v2paq “ k if 2k is the highest power of 2 which
divides a, and v2pa{bq “ v2paq ´ v2pbq for a, b ‰ 0.

2.2. Multiplicative order of integers. The following assertion de-
scribes the order of elements modulo powers of 2.

Lemma 2.1. Let g ‰ ˘1 be an odd integer and write

g2 “ 1 ` wβ2
β, gcdpwβ, 2q “ 1.

Then for s ě β the multiplicative order τs of g modulo 2s is τs “ 2s´β`1

and

(2.1) gτs “ 1 ` ws2
s, gcdpws, 2q “ 1.

Proof. First we note that β ě 2. We prove (2.1) by induction of s.
Clearly, we have (2.1) with s “ β. Furthermore, if (2.1) holds for

some s ě β, then by squaring it we get

g2τs “ 1 ` ws2
s`1 ` w2

s2
2s`2 “ 1 ` ws`12

s`1,

with ws`1 “ 1 ` ws2
s´1 ” 1 mod 2. Hence (2.1) also holds with s ` 1

in place of s. �
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2.3. Explicit form of the Vinogradov mean value theorem. Let
Nk,npMq be the number of integral solutions of the system of equations

x
j
1 ` . . . ` x

j
k “ y

j
1 ` . . . ` y

j
k, j “ 1, . . . , n,

1 ď xi, yi ď M, i “ 1, . . . , k.

Our application of Lemma 2.3 below rests on a version of the Vino-
gradov mean value theorem which gives a precise bound on Nk,npMq.
We use its fully explicit version given by Ford [6, Theorem 3], which
we present here in the following weakened and simplified form.

Lemma 2.2. For every integer n ě 129 there exists an integer k P
r2n2, 4n2s such that for any integer M ě 1 we have

Nk,npMq ď n3n3

M2k´0.499n2

.

We note that the recent striking advances in the Vinogradov mean
value theorem due to Bourgain, Demeter and Guth [3] and Wooley [11]
are not suitable for our purposes here as they contain implicit constants
that depend on k and n, while in our approach k and n grow together
with M .

2.4. Double exponential sums with polynomials. Our main tool
to bound the exponential sum ShpL,Nq is the following result of Ko-
robov [8, Lemma 3].

Lemma 2.3. Assume that
ˇ

ˇ

ˇ

ˇ

αℓ ´ aℓ

qℓ

ˇ

ˇ

ˇ

ˇ

ď 1

q2ℓ
and gcdpaℓ, qℓq “ 1,

for some real αℓ and integers aℓ, qℓ, ℓ “ 1, . . . , n. Then for the sum

S “
M
ÿ

x,y“1

e pα1xy ` . . . ` αnx
nynq

we have

|S|2k2 ď
`

64k2 logp3Qq
˘n{2

M4k2´2kNk,npMq
n

ź

ℓ“1

min

"

M ℓ,
?
qℓ ` M ℓ

?
qℓ

*

,

where

Q “ maxtqℓ : 1 ď ℓ ď nu.
We also need the following simple result which allows us to reduce

single sums to double sums.
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Lemma 2.4. Let f : R Ñ R be an arbitrary function. Then for any
integers M,N ě 1 and a ě 0, we have

ˇ

ˇ

ˇ

ˇ

ˇ

N´1
ÿ

x“0

epfpxqq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 1

M2

N´1
ÿ

x“0

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

y,z“1

epfpx ` ayzqq
ˇ

ˇ

ˇ

ˇ

ˇ

` 2aM2.

Proof. Examining the non-overlapping parts of the sums below, we see
that for any positive integers y and z

ˇ

ˇ

ˇ

ˇ

ˇ

N´1
ÿ

x“0

epfpxqq ´
N´1
ÿ

x“0

epfpx ` ayzqq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ayz.

Hence
ˇ

ˇ

ˇ

ˇ

ˇ

M2

N´1
ÿ

x“0

epfpxqq ´
M
ÿ

y,z“1

N´1
ÿ

x“0

epfpx ` ayzqq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 2a
M
ÿ

y,z“1

yz ď 2aM4.

Changing the order of summation and using the triangle inequality, the
result follows. �

2.5. Sums of binomial coefficients. We need results of certain sums
of binomial coefficients. The first ones are immediate and we leave the
proof for the reader.

Lemma 2.5. Let n be a positive integer. Then

(1) for any integer k ď n we have
n

ÿ

i“k

ˆ

i

k

˙

“
ˆ

n ` 1

k ` 1

˙

;

(2) for any polynomial P pXq P ZrXs of degree degP ă n we have
n

ÿ

j“0

p´1qj
ˆ

n

j

˙

P pjq “ 0.

Lemma 2.6. For any n, k with k ď n we have

ÿ

ℓ1`...`ℓk“n
ℓ1,...,ℓkě1

n!

ℓ1! . . . ℓk!
“

k
ÿ

i“0

p´1qk´i

ˆ

k

i

˙

in.

Proof. As
ÿ

ℓ1`...`ℓk“n

n!

ℓ1! . . . ℓk!
“ kn

the result follows directly from the inclusion–exclusion principle. �
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3. Proofs of the main results

3.1. Proof of Theorem 1.1. As

un`L “ a

gn`L ´ b
` c “ ag´L

gn ´ bg´L
` c,

we can assume, that L “ 0 and we put

Shp0, Nq “ ShpNq.
We can also assume, that a “ 1 and c “ 0. Finally we assume, that

N ě 26t
1{2

since otherwise the result is trivial, see (1.7).
Define

r “ t log 2

logN
“ ρ´1 log 2,

where ρ is given by (1.8). First assume, that

r ě 129

and put

s “
Z

t

4r

^

and κ “
R

t

s

V

´ 1.

Then

s ą β, 2s ď N1{4, r ď κ ă s,

if N is large enough. Indeed,

s ě t

4r
´ 1 “ logN

4 log 2
´ 1 ě 2β ´ 1 ą β and 2s ď 2

t
4r “ N1{4.

Moreover,

κ ě t

s
´ 1 ě 4r ´ 1 ě r

and

κ ď t

s
ď plogNq2

36plog 2q2s “ t2

36r2s
ď s.

Let τs be the order of g modulo 2s. As s ą β,

gτs “ 1 ` w ¨ 2s with gcdpw, 2q “ 1

by Lemma 2.1. Clearly, for all even x, we have

1

1 ´ x
” 1 ` x ` . . . ` xt´1 mod 2t,
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thus

un¨τs ” ´1

b ´ gn¨τs
” ´1

1 ´ p1 ´ b ` gnτsq ” ´
t´1
ÿ

ℓ“0

p1 ´ b ` gn¨τsqℓ

” ´
t´1
ÿ

ℓ“0

p1 ´ b ` p1 ` w ¨ 2sqnqℓ

” ´
t´1
ÿ

ℓ“0

˜

2 ´ b `
n

ÿ

i“1

ˆ

n

i

˙

pw ¨ 2sqi
¸ℓ

mod 2t.

Define

Fκpnq “
κ

ÿ

ℓ“0

pw ¨ 2sqℓ
t´1
ÿ

j“0

j
ÿ

ν“1

ˆ

j

ν

˙

p2 ´ bqj´ν
ÿ

i1`...`iν“ℓ
i1,...,iνě1

ˆ

n

i1

˙

. . .

ˆ

n

iν

˙

.

Then
un¨τs ” ´Fκpnq mod 2t.

The expression κ!Fκpnq is a polynomial of 2sn of degree at most κ.
Thus we can define the integers a0, . . . , aκ by

κ!Fκpnq “
κ

ÿ

ℓ“0

aℓ2
ℓsnℓ.

Then the coefficients satisfy

aℓ ” κ!

ℓ!
wℓ

t´1
ÿ

j“1

j
ÿ

ν“1

ˆ

j

ν

˙

p2 ´ bqj´ν
ÿ

i1`...`iν“ℓ
i1,...,iνě1

ℓ!

i1! . . . iν !
mod 2s.

We have v2paℓq “ v2pκ!{ℓ!q. Indeed, as w is odd and b is even, by
Lemmas 2.6 and 2.5 we get

t´1
ÿ

j“1

j
ÿ

ν“1

ˆ

j

ν

˙

p2 ´ bqj´ν
ÿ

i1`...`iν“ℓ
i1,...,iνě1

ℓ!

i1! . . . iν !

”
ℓ

ÿ

j“1

ÿ

i1`...`ij“ℓ
i1,...,ijě1

ℓ!

i1! . . . ij!
”

ℓ
ÿ

j“1

j
ÿ

i“0

p´1qj´i

ˆ

j

i

˙

iℓ

”
ℓ

ÿ

i“0

p´1qiiℓ
ℓ

ÿ

j“i

ˆ

j

i

˙

”
ℓ

ÿ

i“0

p´1qiiℓ
ˆ

ℓ ` 1

i ` 1

˙

” ´
ℓ`1
ÿ

i“1

p´1qi
ˆ

ℓ ` 1

i

˙

pi ´ 1qℓ ”
ˆ

ℓ ` 1

0

˙

p´1qℓ ” 1 mod 2
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(we note that the last several congruences are actually equations).
Write ωℓ “ v2paℓq. Then

ωℓ ď v2pκ!q ď
Yκ

2

]

`
Yκ

4

]

` . . . ă κ for ℓ ă κ

and ωκ “ 0.
To conclude the proof observe, that by Lemma 2.4 we have

|ShpNq| ď 1

22s

N´1
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

2s
ÿ

x,y“1

e

ˆ

h

2t
un`τsxy

˙

ˇ

ˇ

ˇ

ˇ

ˇ

` 2τs2
2s

ď 1

22s

N´1
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

2s
ÿ

x,y“1

e

ˆ

h

2t
¨ g´n

gτsxy ´ bg´n

˙

ˇ

ˇ

ˇ

ˇ

ˇ

` 23s

ď 1

22s

N´1
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

2s
ÿ

x,y“1

e

ˆ

hg´npa12sxy ` . . . ` aκ2
κspxyqκq

κ!2t

˙

ˇ

ˇ

ˇ

ˇ

ˇ

` N3{4,

where the coefficients aℓ “ aℓpbg´nq for ℓ “ 1, . . . , κ, are determined as
above with bg´n instead of b.
Write

hg´naℓ2
ℓs

κ!2t
“ rℓ

qℓ
, gcdprℓ, qℓq “ 1, ℓ “ 1, . . . , κ,

with

(3.1) 2t´ℓs´ωℓ ď qℓ ď κ!2t´ℓs´ωℓ ℓ “ 1, . . . , κ.

Then

(3.2) |ShpNq| ď 1

22s

N´1
ÿ

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

2s
ÿ

x,y“1

e pfnpx, yqq
ˇ

ˇ

ˇ

ˇ

ˇ

` N3{4,

where

fnpx, yq “ r1

q1
xy ` . . . ` rκ

qκ
pxyqκ.

Put

σn “
2s
ÿ

x,y“1

e pfnpx, yqq .

For κ, there exists a k P r2κ2, 4κ2s such that for Nk,κ we have the
bound of Lemma 2.2 (with κ instead of n).
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Then by Lemma 2.3 we have

|σn|2k2 ď
`

64k2 logp3Qq
˘κ{2

2p4k2´2kqsNk,κp2sq
κ

ź

ℓ“1

min

"

2ℓs,
?
qℓ ` 2ℓs?

qℓ

*

,
(3.3)

where by (3.1) we have Q ď κ!2t and thus

(3.4) logp3Qq ď logp3κ!2tq ď tκ logp6κq.
By the choice of κ we have sκ ă t ď spκ ` 1q. As ωℓ ď κ ď s, under

κ ` 1

2
ď ℓ ă κ

we have by (3.1)

qℓ ď κ!2spκ`1´ℓq ď κ!2ℓs and qℓ ą 2spκ´1´ℓq

thus
1?
qℓ

`
?
qℓ

2ℓs
ď 1 ` κ!?

qℓ
ď κκ2´ s

2
pκ´1´ℓq.

Whence
κ

ź

ℓ“1

min

"

2ℓs,
?
qℓ ` 2ℓs?

qℓ

*

“ 2sκpκ`1q{2
κ

ź

ℓ“1

min

"

1,
1?
qℓ

`
?
qℓ

2ℓs

*

ď 2sκpκ`1q{2
ź

κ
2

ăℓăκ

κκ2´spκ´1´ℓq{2

ď κκ2

2sκpκ`1q{2´spκ´2qpκ´4q{16.

(3.5)

By Lemma 2.2 we have

(3.6) Nk,κp2sq ď κ3κ3

22ks´0.499κ2s.

Combining (3.3), (3.4), (3.5) and (3.6), we have

|σn|2k2 ď
`

64tk3 logp6κq
˘κ{2

κ4κ3

24k
2s`sκpκ`1q{2´spκ´2qpκ´4q{16´0.499κ2s

and therefore
|σn| ! t1{p16κ3q22s´s{p32770κ2q.

Since tκ2 ă p t
s
q3s ă p6rq3s, then

2s{κ2 “ N rs{ptκ2q ą N1{p216r2q.

Moreover

t1{κ3 ď N log t{p129r2 logNq ď N log logN{p387r2 logNq,

whence
|σn| ! 22sN´ηρ2 ,
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for some η ą 0 if N is large enough. Thus by (3.2) we have

|ShpNq| ď 1

22s

N´1
ÿ

n“0

|σn| ` N3{4 ! N1´ηρ2 ` N3{4 ! N1´η{r2

which gives the result for r ě 129.
If r ă 129, define

N0 “
X

2t{129
\

ρ0 “ logN0

t
“ log 2

129
` Op1{tq.

As N ď τ ă 2t, we have

(3.7)
logN0

logN
ą 1

129
.

Then

|ShpNq| ď
ÿ

0ďkăN{N0

ˇ

ˇ

ˇ

ˇ

ˇ

pk`1qN0´1
ÿ

n“kN0

ephun{2tq
ˇ

ˇ

ˇ

ˇ

ˇ

.

Applying the previous argument to the inner sums, we get

|ShpNq| ! N

N0

N
1´ηρ2

0

0 ! N1´129´3ηρ2
0

by (3.7). Thus replacing η to η{1293, we conclude the proof.

3.2. Proof of Theorem 1.2. By the Erdős-Turán inequality, see [5]
for any integer H ě 1 we have

(3.8) DpL,Nq ! 1

H
` 2

N

H
ÿ

h“1

1

h
|ShpL,Nq|.

Define

H “
Z

τt?
N

^

,

where τt is as in Lemma 2.1.
For a given 1 ď h ď H , write h “ 2dj with odd j and d ď log2H .

Then consider the sequence punq modulo 2t´d. Then clearly

ShpL,Nq “ Sd,jpL,Nq.
where Sd,jpL,Nq is defined as SjpL,Nq, however with respect to the
modulus 2t´d.
By the above choice of parameters, we have

(3.9) t ´ d ě t ´ log2H ě 1

2
log2N ` β ą 17β

by Lemma 2.1, thus

(3.10) τt´d “ 2t´d´β`1.
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Using (3.8), we have

DpL,Nq ! 1

H
` 1

N

H
ÿ

h“1

1

h
|ShpL,Nq|

! 1

H
` 1

N

ÿ

0ďdďlog2 H

1

2d

ÿ

1ďjďH{2d

j odd

1

j
|Sd,jpL,Nq|.

(3.11)

For fixed d and j put

Nd “
R

N

τt´d

V

and Kd “ N ´ Ndτt´d.

Then

|Sd,jpL,Nq| ď
Nd´2
ÿ

i“0

|Sd,jpL ` iτt´d, τt´dq|

` |Sd,jpL ` pNd ´ 1qτt´d, Kdq|.
(3.12)

If Kd ă 28β , we use the trivial estimate

|Sd,jpL ` pNd ´ 1qτt´d, Kdq| ď Kd ă 28β.

As

8β ă 1

2
pt ´ d ´ βq

by (3.9), we get

(3.13) |Sd,jpL ` pNd ´ 1qτt´d, Kdq| ď τ
1´ηpt´dq´2plog τt´dq2

t´d .

If Kd ě 28β, then as Kd ď τt´d we also have (3.13) by Theorem 1.1.
Thus by (3.12) we have

|Sd,jpL,Nq| ! Nd ¨ τ 1´ηpt´dq´2plog τt´dq2

t´d ! N1´ηpt´dq´2plog τt´dq2{ logN .

By (3.9) and (3.10) we have

plog τt´dq3
logNpt ´ dq2 “ pt ´ d ´ βq3

logNpt ´ dq2 ě pt ´ d ´ βq3
logNt2

ě 1

8

ˆ

logN

t

˙2

“ ρ2{8,

whence
|Sd,jpL,Nq| ! N1´ηρ2{8.

Then by (3.11),

DpL,Nq ! 1

H
`

ÿ

0ďdďlog2 H

1

2d

ÿ

1ďjďH{2d

j odd

1

j
N´ηρ2{8

! 2´pt´βq{2 ` N´ηρ2{8 logH ! 1

t
` N´ηρ2{8 logH ! N´ηρ2{16
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if N is large enough.

4. Comments

We note that an extension of our results to the case of sequences (1.5)
modulo prime powers pt with a prime p ě 3 is immediate and can be
achieved at the cost of merely typographical changes.
We also note that all implied constants are effective and can be

evaluated (however at the cost of some additional technical clutter).
It is certainly natural to study the multidimensional distribution of

the sequence generated by (1.3), that is, the s-dimensional vectors

pun, . . . , un`s´1q, n “ 1, . . . , N.

Our method is capable of addressing this problem, however investigat-
ing the 2-divisibility of the corresponding polynomial coefficients which
is an important part of our argument in Section 3.1 is more difficult
and may require new arguments.
We also use this as an opportunity to pose a question about study-

ing short segments of the inversive generator modulo a large prime p.
While results of Bourgain [1,2] give a non-trivial bound on exponential
sums for very short segments of sequence agn mod p, n “ 1, . . . , N , see
also [7, Corollary 4.2], their analogues for even the simplest rational
expressions like 1{pgn ´ bq mod p are not known. Obtaining such re-
sults beyond the standard range N ě p1{2`ε (with any fixed ε ą 0) is
apparently a difficult question requiring new ideas.
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