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Abstract. In this paper, we study the ratio of the L1 and L2 norms, denoted as L1/L2, to promote sparsity.
Due to the non-convexity and non-linearity, there has been little attention to this scale-invariant model. Compared
to popular models in the literature such as the Lp model for p ∈ (0, 1) and the transformed L1 (TL1), this ratio model
is parameter free. Theoretically, we present a strong null space property (sNSP) and prove that any sparse vector is a
local minimizer of the L1/L2 model provided with this sNSP condition. Computationally, we focus on a constrained
formulation that can be solved via the alternating direction method of multipliers (ADMM). Experiments show that
the proposed approach is comparable to the state-of-the-art methods in sparse recovery. In addition, a variant of the
L1/L2 model to apply on the gradient is also discussed with a proof-of-concept example of the MRI reconstruction.
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1. Introduction. Sparse signal recovery is to find the sparsest solution of Ax = b where
x ∈ Rn,b ∈ Rm, and A ∈ Rm×n for m � n. This problem is often referred to as compressed
sensing (CS) in the sense that the sparse signal x is compressible. Mathematically, this fundamental
problem in CS can be formulated as

(1.1) min
x∈Rn

‖x‖0 s.t. Ax = b,

where ‖x‖0 is the number of nonzero entries in x. Unfortunately, (1.1) is NP-hard [31] to solve. A
popular approach in CS is to replace L0 by the convex L1 norm, i.e.,

(1.2) min
x∈Rn

‖x‖1 s.t. Ax = b.

Computationally, there are various L1 minimization algorithms such as primal dual [8], forward-
backward splitting [34], and alternating direction method of multipliers (ADMM) [4].

A major breakthrough in CS was the restricted isometry property (RIP) [6], which provides a
sufficient condition of minimizing the L1 norm to recover the sparse signal. There is a necessary
and sufficient condition given in terms of null space of the matrix A, thus referred to as null space
property (NSP); see Definition 1.1.

Definition 1.1 (null space property [10]). For any matrix A ∈ Rm×n, we say the matrix A
satisfies a null space property (NSP) of order s if

(1.3) ‖vS‖1 < ‖vS̄‖1 , v ∈ ker(A)\{0}, ∀S ⊂ [n], |S| ≤ s,
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where [n] := {1, . . . , n}, S̄ is the complement of S, i.e., [n]\S, and xS is defined as

(xS)i =

{
xi if i ∈ S,
0 otherwise.

The null space of A is denoted by ker(A) := {x | Ax = 0}.
Donoho and Huo [12] proved that every s-sparse signal x ∈ Rn is the unique solution to the

L1 minimization (1.2) if and only if A satisfies the NSP of order s. NSP quantifies the notion
that vectors in the null space of A should not be too concentrated on a small subset of indices.
Since it is a necessary and sufficient condition, NSP is widely used in proving other exact recovery
guarantees. Note that NSP is no longer necessary if “every s-sparse vector” is relaxed. A weaker1

sufficient condition for the exact L1 recovery was proved by Zhang [49]. It is stated that if a vector
x∗ satisfies Ax∗ = b and

(1.4)
√
‖x∗‖0 <

1

2
min
v

{
‖v‖1
‖v‖2

: v ∈ ker(A)\{0}
}
,

then x∗ is the unique solution to both (1.1) and (1.2). Unfortunately, neither RIP nor NSP can be
numerically verified for a given matrix [1, 38].

Alternatively, a computable condition for L1’s exact recovery is based on coherence, which is
defined as

(1.5) µ(A) := max
i6=j

|aTi aj |
‖ai‖‖aj‖

,

for a matrix A = [a1, . . . ,aN ]. Donoho-Elad [11] and Gribonval [16] proved independently that if
x∗ satisfies Ax∗ = b and

(1.6) ‖x∗‖0 <
1

2

(
1 +

2

µ(A)

)
,

then x∗ is the optimal solution to both (1.1) and (1.2). Clearly, the coherence µ(A) is bounded by
[0, 1]. The inequality (1.6) implies that L1 may not perform well for highly coherent matrices, i.e.,
µ(A) ∼ 1, as ‖x‖0 is then at most one, which seldom occurs simultaneously with Ax∗ = b.

Other than the popular L1 norm, there are a variety of regularization functionals to promote
sparsity, such as Lp [9, 43, 23], L1-L2 [44, 26], capped L1 (CL1) [48, 37], and transformed L1 (TL1)
[29, 46, 47]. Most of these models are nonconvex, leading to difficulties in proving exact recovery
guarantees and algorithmic convergence, but they tend to give better empirical results compared
to the convex L1 approach. For example, it was reported in [44, 26] that Lp gives superior results
for incoherent matrices (i.e., µ(A) is small), while L1-L2 is the best for the coherent scenario. In
addition, TL1 is always the second best no matter whether the matrix is coherent or not [46, 47].

In this paper, we study the ratio of L1 and L2 as a scale-invariant model to approximate the
desired L0, which is scale-invariant itself. In one dimensional (1D) case (i.e., n = 1), the L1/L2

model is exactly the same as the L0 model if we use the convention 0
0 = 0. The ratio of L1 and L2 was

first proposed by Hoyer [20] as a sparseness measure and later highlighted in [21] as a scale-invariant
model. However, there has been little attention on it due to its computational difficulties arisen

1The sufficient condition of (1.4) is weaker than the one in (1.3).
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from being non-convex and non-linear. There are some theorems that establish the equivalence
between the L1/L2 and the L0 models, but only restricted to nonnegative signals [13, 44]. We aim
to apply this ratio model to arbitrary signals. On the other hand, the L1/L2 minimization has an
intrinsic drawback that it tends to produce one erroneously large coefficient while suppressing the
other non-zero elements, under which case the ratio is reduced. To compensate for this drawback,
it is helpful to incorporate a box constraint, which will also be addressed in this paper.

Now we turn to a sparsity-related assumption that signal is sparse after a given transform, as
opposed to signal itself being sparse. This assumption is widely used in image processing. For
example, a natural image, denoted by u, is mostly sparse after taking gradient, and hence it is
reasonable to minimize the L0 norm of the gradient, i.e., ‖∇u‖0. To bypass the NP-hard L0 norm,
the convex relaxation replaces L0 by L1, where the L1 norm of the gradient is the well-known
total variation (TV) [36] of an image. A weighted L1-αL2 model (for α > 0) on the gradient was
proposed in [27], which suggested that α = 0.5 yields better results than α = 1 for image denoising,
deblurring, and MRI reconstruction. The ratio of L1 and L2 on the image gradient was used in
deconvolution and blind deconvolution [22, 35]. We further adapt the proposed ratio model from
sparse signal recovery to imaging applications, specifically focusing on MRI reconstruction.

The rest of the paper is organized as follows. Section 2 is devoted to theoretical analysis of
the L1/L2 model. In Section 3, we apply the ADMM to minimize the ratio of L1 and L2 with two
variants of incorporating a box constraint as well as applying on the image gradient. We conduct
extensive experiments in Section 4 to demonstrate the performance of the proposed approaches over
the state-of-the-art in sparse recovery and MRI reconstruction. Section 5 is a fun exercise, where
we use the L1/L2 minimization to compute the right-hand-side of the NSP condition (1.4), leading
to an empirical upper bound of the exact L1 recovery guarantee. Finally, conclusions and future
works are given in Section 6.

2. Rationales of the L1/L2 model. We begin with a toy example to illustrate the advantages
of L1/L2 over other alternatives, followed by some theoretical properties of the proposed model.

2.1. Toy example. Define a matrix A as

(2.1) A :=


1 −1 0 0 0 0
1 0 −1 0 0 0
0 1 1 1 0 0
2 2 0 0 1 0
1 1 0 0 0 −1

 ∈ R5×6,

and b = (0, 0, 20, 40, 18)T ∈ R5. It is straightforward that any general solutions of Ax = b have
the form of x = (t, t, t, 20 − 2t, 40 − 4t, 2(t − 9))T for a scalar t ∈ R. The sparsest solution occurs
at t = 0, where the sparsity of x is 3 and some local solutions include t = 10 for sparsity being 4
and t = 9 for sparsity being 5. In Figure 1, we plot various objective functions with respect to t,
including L1, Lp (for p = 1/2), L1-L2, and TL1 (for a = 1 as suggested in [47]). Note that all these
functions are not differentiable at the values of t = 0, 9, and 10, where the sparsity of x is strictly
smaller than 6. The sparsest vector x corresponding to t = 0 can only be found by minimizing TL1
and L1/L2, while the other models find t = 10 as a global minimum.

2.2. Theoretical properties. Recently, Tran and Webster [39] generalized the NSP to deal
with sparse promoting metrics that are symmetric, separable and concave, which unfortunately
does not apply to L1/L2 (not separable), but this work motivates us to consider a stronger form of
the NSP, as defined in Definition 2.1.
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Fig. 1. The objective functions of a toy example illustrate that only L1/L2 and TL1 can find t = 0 as the
global minimizer, but TL1 has a very narrow basin of attraction (thus sensitive to initial guess and difficult to find
the global solution.).

Definition 2.1. For any matrix A ∈ Rm×n, we say the matrix A satisfies a strong null space
property (sNSP) of order s if

(2.2) (s+ 1) ‖vS‖1 ≤ ‖vS̄‖1 , v ∈ ker(A)\{0}, ∀S ⊂ [n], |S| ≤ s.

Note that Definition 2.1 is stronger than the original NSP in Definition 1.1 in the sense that if
a matrix satisfies sNSP then it also satisfies the original NSP. The following theorem says that any
s-sparse vector is a local minimizer of L1/L2 provided the matrix has the sNSP of order s. The
proof is given in Appendix.

Theorem 2.2. Assume an m × n matrix A satisfies the sNSP of order s, then any s-sparse
solution of Ax = b (b 6= 0) is a local minimum for L1/L2 in the feasible space of Ax = b. i.e.,
there exists a positive number t∗ > 0 such that for every v ∈ ker(A) with 0 < ‖v‖2 ≤ t∗ we have

(2.3)
‖x‖1
‖x‖2

≤ ‖x + v‖1
‖x + v‖2

.

Finally, we show the optimal value of the L1/L2 subject to Ax = b is upper bounded by the
same ratio with b = 0; see Proposition 1.

Proposition 1. For any A ∈ Rm×n,x ∈ Rn, we have

(2.4) inf
z∈Rn

{
‖z‖1
‖z‖2

∣∣∣∣Az = Ax

}
≤ inf

z∈Rn

{
‖z‖1
‖z‖2

∣∣∣∣ z ∈ ker(A) \ {0}
}
.
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Proof. Denote

(2.5) α∗ = inf
z∈Rn

{
‖z‖1
‖z‖2

∣∣∣∣Az = Ax

}
.

For every v ∈ ker(A) \ {0} and t ∈ R, we have that

(2.6) α∗ ≤ ‖x + tv‖1
‖x + tv‖2

,

since A(x + tv) = b. Then we obtain

(2.7) lim
t→∞

‖x + tv‖1
‖x + tv‖2

= lim
t→∞

‖x/t+ v‖1
‖x/t+ v‖2

=
‖v‖1
‖v‖2

.

Therefore, for every v ∈ ker(A) \ {0},

(2.8) α∗ ≤ ‖v‖1
‖v‖2

,

which directly leads to the desired inequality (2.4).

Proposition 1 implies that the left-hand-side of the inequality involves both the underlying
signal x and the system matrix A, which can be upper bounded by the minimum ratio that only
involves A.

3. Numerical schemes. The proposed model is

(3.1) min
x∈Rn

{
‖x‖1
‖x‖2

+ I0(Ax− b)

}
,

where IS(t) is the function enforcing t into the feasible set S, i.e.,

(3.2) IS(t) =

{
0 t ∈ S,
+∞ otherwise.

In Subsection 3.1, we detail the ADMM algorithm for minimizing (3.1), followed by a minor change
to incorporate additional box constraint in Subsection 3.2. We discuss in Subsection 3.3 another
variant of L1/L2 on the gradient to deal with imaging applications.

3.1. The L1/L2 minimization via ADMM. In order to apply the ADMM [4] to solve for
(3.1), we introduce two auxiliary variables and rewrite (3.1) into an equivalent form,

(3.3) min
x,y,z

{
‖z‖1
‖y‖2

+ I0(Ax− b)

}
s.t. x = y, x = z.

The augmented Lagrangian for (3.3) is

Lρ1,ρ2(x,y, z;v,w) =
‖z‖1
‖y‖2

+ I0(Ax− b) + 〈v,x− y〉+
ρ1

2
‖x− y‖22 + 〈w,x− z〉+

ρ2

2
‖x− z‖22

=
‖z‖1
‖y‖2

+ I0(Ax− b) +
ρ1

2

∥∥∥∥x− y +
1

ρ1
v

∥∥∥∥2

2

+
ρ2

2

∥∥∥∥x− z +
1

ρ2
w

∥∥∥∥2

2

.(3.4)
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The ADMM consists of the following five steps:

(3.5)



x(k+1) := arg min
x
Lρ1,ρ2(x,y(k), z(k);v(k),w(k)),

y(k+1) := arg min
y
Lρ1,ρ2(x(k+1),y, z(k);v(k),w(k)),

z(k+1) := arg min
z
Lρ1,ρ2(x(k+1),y(k+1), z;v(k),w(k)),

v(k+1) := v(k) + ρ1(x(k+1) − y(k+1)),
w(k+1) := w(k) + ρ2(x(k+1) − z(k+1)).

The update for x is a projection to the affine space of Ax = b,

x(k+1) := arg min
x
Lρ1,ρ2(x,y(k), z(k);v(k),w(k))

= arg min
x

{
ρ1 + ρ2

2

∥∥∥x− f (k)
∥∥∥2

2
s.t. Ax = b

}
=
(
I −AT (AAT )−1A

)
f (k) +AT (AAT )−1b,

where

(3.6) f (k) =
ρ1

ρ1 + ρ2

(
y(k) − 1

ρ1
v(k)

)
+

ρ2

ρ1 + ρ2

(
z(k) − 1

ρ2
w(k)

)
.

As for the y-subproblem, let c(k) = ‖z(k)‖1 and d(k) = x(k+1) + v(k)

ρ1
and the minimization

subproblem reduces to

(3.7) y(k+1) = arg min
y

c(k)

‖y‖2
+
ρ1

2
‖y − d(k)‖22.

If d(k) = 0 then any vector y with ‖y‖2 = 3

√
c(k)

ρ1
is a solution to the minimization problem. If

c(k) = 0 then y = d(k) is the solution. Now we consider d(k) 6= 0 and c(k) 6= 0. By taking derivative
of the objective function with respect to y, we obtain(

− c(k)

‖y‖32
+ ρ1

)
y = ρ1d

(k).

As a result, there exists a positive number τ (k) ≥ 0 such that y = τ (k)d(k). Given d(k), we denote
η(k) = ‖d(k)‖2. For η(k) > 0, finding y becomes a one-dimensional search for the parameter τ (k).

In other words, if we take D(k) = c(k)

ρ1(η(k))3
, then τ (k) is a root of

τ3 − τ2 −D(k)︸ ︷︷ ︸
F (τ)

= 0.

The cubic-root formula suggests that F (τ) = 0 has only one real root, which can be found by the
following closed-form solution.

(3.8) τ (k) =
1

3
+

1

3
(C(k) +

1

C(k)
), with C(k) =

3

√
27D(k) + 2 +

√
(27D(k) + 2)2 − 4

2
.
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In summary, we have

(3.9) y(k+1) =

{
e(k) d(k) = 0,

τ (k)d(k) d(k) 6= 0,

where e(k) is a random vector with the L2 norm to be 3

√
c(k)

ρ1
.

Finally, the ADMM update for z is

(3.10) z(k+1) = shrink

(
x(k+1) +

w(k)

ρ2
,

1

ρ2‖y(k+1)‖2

)
,

where shrink is often referred to as soft shrinkage operator,

(3.11) shrink(v, µ)i = sign(vi) max (|vi| − µ, 0) , i = 1, 2, . . . , n.

We summarize the ADMM algorithm for solving the L1/L2 minimization problem in Algorithm 3.1.

Algorithm 3.1 The L1/L2 minimization via ADMM.

Input: A ∈ Rm×n,b ∈ Rm×1, Max and ε ∈ R
while k < Max or ‖x(k) − x(k−1)‖2/‖x(k)‖ > ε do

x(k+1) =
(
I −AT (AAT )−1A

)
f (k) +AT (AAT )−1b

y(k+1) =

{
e(k) d(k) = 0

τ (k)d(k) d(k) 6= 0

z(k+1) = shrink
(
x(k+1) + w(k)

ρ2
, 1
ρ2‖y(k+1)‖2

)
v(k+1) = v(k) + ρ1(x(k+1) − y(k+1))
w(k+1) = w(k) + ρ2(x(k+1) − z(k+1))
k = k+1

end while
return x(k)

Remark 1. We can pre-compute the matrix I − AT (AAT )−1A and the vector AT (AAT )−1b
in Algorithm 3.1. The complexity is O(m2n) for the pre-computation including the matrix-matrix
multiplication and Cholesky decomposition for solving linear system. In each iteration, we need
to do matrix-vector multiplication for the x-subproblem, which is in the order of O(n2). In the
y-subproblem, the rooting finding is one-dimensional search, whose cost can be neglected. The z-
subproblem is pixel-wise shrinkage operation and only takes O(n). In summary, the computation
complexity for each iteration is O(n2). We can consider the parallel computing to further speed up,
thanks to the separation of the z-subproblem.

3.2. L1/L2 with box constraint. The L1/L2 model has an intrinsic drawback that tends
to produce one erroneously large coefficient while suppressing the other non-zero elements, under
which case the ratio is reduced. To compensate for this drawback, it is helpful to incorporate a
box constraint, if we know lower/upper bounds of the underlying signal a priori. Specifically, we
propose

(3.12) min
x∈Rn

{
‖x‖1
‖x‖2

+ I0(Ax− b)

∣∣∣∣ x ∈ [c, d]

}
,
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which is referred to as L1/L2-box. Similar to (3.3), we look at the following form that enforces the
box constraint on variable z,

(3.13) min
x,y,z

{
‖z‖1
‖y‖2

+ I0(Ax− b)

}
s.t. x = y, x = z, z ∈ [c, d].

The only change we need to make by adapting Algorithm 3.1 to the L1/L2-box is the z update.
The z-subproblem in (3.5) with the box constraint is

(3.14) min
z

1

‖y(k+1)‖2
‖z‖1 +

ρ2

2
‖x(k+1) − z +

1

ρ2
w(k)‖22 s.t. z ∈ [c, d].

For a convex problem (3.14) involving the L1 norm, it has a closed-form solution given by the soft
shrinkage, followed by projection to the interval [c, d]. In particular, simple calculations show that

(3.15) z
(k+1)
i = min {max(ẑi, c), d} , i = 1, 2, . . . , n,

where ẑ = shrink (r, ν), r = x(k+1) + w(k)

ρ2
and ν = 1

ρ2‖y(k+1)‖ . If the box constraint [c, d] is

symmetric, i.e., c = −d and d > 0, it follows from [2] that the update for z can be expressed as

(3.16) z
(k+1)
i = sign(vi) min {max(|ri| − ν, 0), d} , i = 1, 2, . . . , n.

Remark 2. The existing literature on the ADMM convergence [17, 19, 24, 33, 40, 41, 42]
requires the existence of one separable function in the objective function, whose gradient is Lipschitz
continuous. Obviously, L1/L2 does not satisfy this assumption, no matter with or without the box
constraint. Therefore, we have difficulties in analyzing the convergence theoretically. Instead, we
show the convergence empirically in Section 4 by plotting residual errors and objective functions,
which gives strong supports for theoretical analysis in the future.

3.3. L1/L2 on the gradient. We adapt the L1/L2 model to apply on the gradient, which
enables us to deal with imaging applications. Let u ∈ Rn×m be an underlying image of size n×m.
Denote A as a linear operator that models a certain degradation process to obtain the measured
data f . For example, A can be a subsampling operator in the frequency domain and recovering u
from f is called MRI reconstruction. In short, the proposed gradient model is given by

(3.17) min
u∈Rn×m

‖∇u‖1
‖∇u‖2

s.t. Au = f, u ∈ [0, 1],

where ∇ denotes discrete gradient operator ∇u := {[uij − u(i+1)j ]
n
i=1}mj=1, {[uij − ui(j+1)]

m
j=1}ni=1

with periodic boundary condition; hence the model is referred to as L1/L2-grad. Note that the box
constraint 0 ≤ u ≤ 1 is a reasonable assumption in the MRI reconstruction problem.

To solve for (3.17), we introduce three auxiliary variables d,h, and v, leading to an equivalent
problem,

(3.18) min
u∈Rn×m

‖d‖1
‖h‖2

s.t. Au = f, d = ∇u, h = ∇u, u = v, 0 ≤ v ≤ 1.

Note that we denote d and h in bold to indicate that they have two components corresponding to
both x and y derivatives. The augmented Lagrangian is expressed as

L(u,d,h, v;w,b1,b2, e) =
‖d‖1
‖h‖2

+
λ

2
‖Au− f − w‖22 +

ρ1

2
‖d−∇u− b1‖22

+
ρ2

2
‖h−∇u− b2‖22 +

ρ3

2
‖v − u− e‖22 + I[0,1](v),

(3.19)
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where w,b1,b2, e are dual variables and λ, ρ1, ρ2, ρ3 are positive parameters. The updates for d,h

are the same as Algorithm 3.1. Specifically for h, we consider D(k) = ‖d‖1
ρ2‖∇u(k+1)+g(k)‖32

and hence

τ (k) is the root of the same polynomial as in (3.8). By taking derivative of (3.19) with respect to
u, we can obtain the u-update, i.e.,

u(k+1) =
(
λATA− (ρ1 + ρ2)4+ ρ3I

)−1
(
λAT (f + w(k))

+ρ1∇T (d(k) − b
(k)
1 ) + ρ2∇T (h(k) − b

(k)
2 ) + ρ3(v(k) − e(k))

)
.

(3.20)

Note for certain operator A, the inverse in the u-update (3.20) can be computed efficiently via the
fast Fourier transform (FFT). The v-subproblem is a projection to an interval [0, 1], i.e.,

(3.21) v
(k+1)
ij = min

{
max(u

(k+1)
ij + e

(k)
ij , 0), 1

}
, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

In summary, we present the ADMM algorithm for the L1/L2-grad model in Algorithm 3.2.

Algorithm 3.2 The L1/L2-grad minimization via ADMM.

Input: f ∈ Rn×m, A, Max and ε ∈ R.
while k < Max or ‖u(k) − u(k−1)‖2/‖u(k)‖ > ε do

Solve u(k+1) via (3.20)
Solve v(k+1) via (3.21)

h(k+1) =

{
e(k) ∇u(k+1) + g(k) = 0,

τ (k)
(
∇u(k+1) + g(k)

)
∇u(k+1) + g(k) 6= 0.

d(k+1) = shrink
(
∇u(k+1) + b(k), 1

ρ1‖h(k+1)‖2

)
b(k+1) = b(k) +∇u(k+1) − d(k+1)

g(k+1) = g(k) +∇u(k+1) − h(k+1)

w(k+1) = w(k) + f −Au(k+1)

e(k+1) = e(k) + u(k+1) − v(k+1)

k = k + 1
end while
return u(k)

4. Numerical experiments. In this section, we carry out a series of numerical tests to
demonstrate the performance of the proposed L1/L2 models together with its corresponding al-
gorithms. All the numerical experiments are conducted on a standard desktop with CPU (Intel
i7-6700, 3.4GHz) and MATLAB 9.2 (R2017a).

We consider two types of sensing matrices: one is called oversampled discrete cosine transform
(DCT) and the other is Gaussian matrix. Specifically for the oversampled DCT, we follow the
works of [14, 26, 45] to define A = [a1,a2, . . . ,an] ∈ Rm×n with

(4.1) aj :=
1√
m

cos

(
2πwj

F

)
, j = 1, . . . , n,

where w is a random vector uniformly distributed in [0, 1]m and F ∈ R+ controls the coherence
in a way that a larger value of F yields a more coherent matrix. In addition, we use N (0,Σ) (the
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multi-variable normal distribution) to generate Gaussian matrix, where the covariance matrix is
Σ = {(1 − r) ∗ I(i = j) + r}i,j with a positive parameter r. This type of matrices is used in the
TL1 paper [47], which mentioned that a larger r value indicates a more difficult problem in sparse
recovery. Throughout the experiments, we consider sensing matrices of size 64× 1024. The ground
truth x ∈ Rn is simulated as s-sparse signal, where s is the total number of nonzero entries. The
support of x is a random index set and the values of non-zero elements follow Gaussian normal
distribution i.e., (xs)i ∼ N (0, 1), i = 1, 2, . . . , s. We then normalize the ground-truth signal to
have maximum magnitude as 1 so that we can examine the performance of additional [−1, 1] box
constraint.

Due to the non-convex nature of the proposed L1/L2 model, the initial guess x(0) is very
important and should be well-chosen. A typical choice is the L1 solution (1.2), which is used here.
We adopt a commercial optimization software called Gurobi [32] to minimize the L1 norm via linear
programming for the sake of efficiency. The stopping criterion is when the relative error of x(k) to
x(k−1) is smaller than 10−8 or iterative number exceeds 10n.

4.1. Algorithmic behaviors. We empirically demonstrate the convergence of the proposed
ADMM algorithms in Figure 2. Specifically we examine the L1/L2 minimization problem (3.1),
where the sensing matrix is an oversampled DCT matrix with F = 10 and ground-truth sparse
vector has 12 non-zero elements. We also study the MRI reconstruction from 7 radical lines as a
particular sparse gradient problem that involves the L1/L2-grad minimization of (3.17) by Algo-
rithm 3.2.

There are two auxiliary variables y and z in L1/L2 such that x = y = z, while two auxiliary
variables d,h are in L1/L2-grad for ∇u = d = h. We show in the top row of Figure 2 the values of∥∥x(k) − y(k)

∥∥
2

and
∥∥x(k) − z(k)

∥∥
2

as well as
∥∥∇u(k) − d(k)

∥∥
2

and
∥∥∇u(k) − h(k)

∥∥
2
, all are plotted

with respect to the iteration counter k. The bottom row of Figure 2 is for objective functions, i.e.,∥∥x(k)
∥∥

1
/
∥∥x(k)

∥∥
2

and
∥∥∇u(k)

∥∥
1
/
∥∥∇u(k)

∥∥
2

for L1/L2 and L1/L2-grad, respectively. All the plots
in Figure 2 decrease rapidly with respect to iteration counters, which serves as heuristic evidence
of algorithmic convergence. On the other hand, the objective functions in Figure 2 look oscillatory.
This phenomenon implies difficulties in theoretically proving the convergence, as one key step in
the convergence proof requires to show that objective function decreases monotonically [3, 42].

4.2. Comparison on various models. We now compare the proposed L1/L2 approach with
other sparse recovery models: L1, Lp [9], L1-L2 [45, 26], and TL1 [47]. We choose p = 0.5 for
Lp and a = 1 for TL1. The initial guess for all the algorithms is the solution of the L1 model.
Both L1-L2 and TL1 are solved via the DCA, with the same stopping criterion as L1/L2, i.e.,
‖x(k)−x(k−1)‖

2

‖x(k)‖
2

≤ 10−8. As for Lp, we follow the default setting in [9].

We evaluate the performance of sparse recovery in terms of success rate, defined as the number
of successful trials over the total number of trials. A success is declared if the relative error of the
reconstructed solution x∗ to the ground truth x is less than 10−3, i.e., ‖x

∗−x‖2
‖x‖2 ≤ 10−3. We further

categorize the failure of not recovering the ground-truth as model failure and algorithm failure. In
particular, we compare the objective function F(·) at the ground-truth x and at the reconstructed
solution x∗. If F(x) > F(x∗), it means that x is not a global minimizer of the model, in which
case we call model failure. On the other hand, F(x) < F(x∗) implies that the algorithm does not
reach a global minimizer, which is referred to as algorithm failure. Although this type of analysis
is not deterministic, it sheds some lights on which direction to improve: model or algorithm. For
example, it was reported in [30] that L1 has the highest model-failure rates, which justifies the need



A SCALE INVARIANT APPROACH FOR SPARSE SIGNAL RECOVERY 11

200 400 600 800 1000 1200 1400 1600 1800 2000

iteration

10-10

10-8

10-6

10-4

10-2

distance y

distance z

(a) Residual errors in L1/L2

200 400 600 800 1000 1200 1400

iteration

10-4

10-3

10-2

10-1

100

101

distance y

distance z

(b) Residual errors in L1/L2-grad

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

2.72

2.73

2.74

2.75

2.76

2.77

2.78

(c) Objective functions of L1/L2

200 400 600 800 1000 1200 1400

iteration

50

100

150

200

250

300

(d) Objective functions of L1/L2-grad

Fig. 2. Plots of residual errors and objective functions for empirically demonstrating the convergence of the
proposed algorithms - L1/L2 in signal processing and L1/L2-grad with a box constraint for MRI reconstruction.

for nonconvex models.
In Figure 3, we examine two coherence levels: F = 5 corresponds to relatively low coherence

and F = 20 for higher coherence. The success rates of various models reveal that L1/L2-box
performs the best at F = 5 and is comparable to L1-L2 for the highly coherent case of F = 20. We
look at Gaussian matrix with r = 0.1 and r = 0.8 in Figure 4, both of which exhibit very similar
performance of various models. In particular, the Lp model gives the best results for the Gaussian
case, which is consistent in the literature [44, 26]. The proposed model of L1/L2-box is the second
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(a) Success rates (F = 5)
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(b) Success rates (F = 10)
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(c) Model failures (F = 5)
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(d) Model failures (F = 10)
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(e) Algorithm failures (F = 5)
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(f) Algorithm failures (F = 10)

Fig. 3. Success rates, model failures, algorithm failures for 6 algorithms in the case of oversampled DCT
matrices.
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best for such incoherent matrices.
By comparing L1/L2 with and without box among the plots for success rates and model failures,

we can draw the conclusion that the box constraint can mitigate the inherent drawback of the L1/L2

model, thus improving the recovery rates. In addition, L1/L2 is the second lowest in terms of model
failure rates and simply adding a box constraint also increases the occurrence of algorithm failure
compared to the none box version. These two observations suggest a need to further improve upon
algorithms of minimizing L1/L2.

Finally, we provide the computation time for all the competing algorithms in Table 1 with the
shortest time in each case highlighted in bold. The time for L1 method is not included, as all the
other methods use the L1 solution as initial guess. It is shown that TL1 is the fastest for relatively
lower sparsity levels and the proposed L1/L2-box is the most efficient at higher sparsity levels. The
computational times for all these methods seem consistent with DCT and Gaussian matrices.

Table 1
Computation time (sec.) in 5 algorithms.

(a) DCT matrix

F = 5
sparsity 2 6 10 14 18 22 mean

TL1 0.049 0.050 0.066 0.207 0.618 0.795 0.298
Lp 0.061 0.137 0.209 0.355 0.515 0.565 0.307

L1-L2 0.049 0.050 0.071 0.260 0.550 0.625 0.267
L1/L2 0.276 0.279 0.311 0.353 0.358 0.366 0.324

L1/L2-box 0.102 0.183 0.247 0.313 0.325 0.332 0.250

F = 10
sparsity 2 6 10 14 18 22 mean

TL1 0.048 0.069 0.092 0.330 0.654 0.755 0.325
Lp 0.094 0.254 0.423 0.472 0.530 0.534 0.385

L1-L2 0.049 0.070 0.093 0.272 0.598 0.677 0.293
L1/L2 0.263 0.272 0.295 0.340 0.355 0.356 0.314

L1/L2-box 0.090 0.179 0.239 0.301 0.324 0.322 0.243

(b) Gaussian matrix

r = 0.1
sparsity 2 6 10 14 18 22 mean

TL1 0.070 0.069 0.117 0.295 1.101 1.633 0.548
Lp 0.079 0.128 0.229 0.261 0.742 1.218 0.443

L1-L2 0.070 0.069 0.122 0.399 0.877 1.161 0.450
L1/L2 0.864 0.866 1.175 1.130 1.210 1.458 1.117

L1/L2-box 0.324 0.625 1.039 1.060 1.146 1.385 0.930

r = 0.8
sparsity 2 6 10 14 18 22 mean

TL1 0.050 0.053 0.071 0.239 0.613 0.750 0.296
Lp 0.061 0.094 0.140 0.207 0.426 0.613 0.257

L1-L2 0.051 0.054 0.077 0.306 0.497 0.576 0.260
L1/L2 0.277 0.277 0.324 0.358 0.364 0.363 0.327

L1/L2-box 0.102 0.192 0.265 0.321 0.332 0.327 0.256

4.3. MRI reconstruction. As a proof-of-concept example, we study an MRI reconstruction
problem [28] to compare the performance of L1, L1-L2, and L1/L2 on the gradient. The L1 on
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(a) Success rates (r = 0.1)
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(b) Success rates (r = 0.8)
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(c) Model failures (r = 0.1)
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(d) Model failures (r = 0.8)
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(e) Algorithm failures (r = 0.1)
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(f) Algorithm failures (r = 0.8)

Fig. 4. Success rates, model failures, algorithm failures for 6 algorithms in the Gaussian matrix case.
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the gradient is the celebrated TV model [36], while L1-L2 on the gradient was recently proposed in
[27]. We use a standard Shepp-Logan phantom as a testing image, as shown in Figure 5a. The MRI
measurements are obtained by several radical lines in the frequency domain (i.e., after taking the
Fourier transform); an example of such sampling scheme using 6 lines is shown in Figure 5b. As this
paper focuses on the constrained formulation, we do not consider noise, following the same setting
as in the previous works [45, 27]. Since all the competing methods (L1, L1-0.5L2, and L1/L2)
yield an exact recovery with 8 radical lines, with accuracy in the order of 10−8, we present the
reconstructions results of 6 radical lines in Figure 5, which illustrates that the ratio model (L1/L2)
gives much better results than the difference model (L1-0.5L2). Figure 5 also includes quantitative
measures of the performance by relative error (RE) between the reconstructed and ground-truth
images, which shows significantly improvement of the proposed L1/L2-grad over a classic method
in MRI reconstruction, called filter-back projection (FBP), and two recent works of using L1 [15]
and L1-0.5L2 [27] on the gradient. Note that the state-of-the-art methods in MRI reconstruction
are [18, 30] that have reported exact recovery from 7 radical lines.

5. Empirical validations. A review article [7] indicated that two principles in CS are spar-
sity and incoherence, leading an impression that a sensing matrix with smaller coherence is easier
for sparse recovery. However, we observe through numerical results [25] (also given in Figure 6b)
that a more coherent matrix gives higher recovery rates. This contradiction motivates us to collect
empirical evidence regarding to either prove or refuse whether coherence is relevant to sparse re-
covery. Here we examine one such evidence by minimizing the ratio of L1 and L2, which gives an
upper bound for a sufficient condition of L1 exact recovery, see (1.4). To avoid the trivial solution

of x = 0 to the problem of min
x

{
‖x‖1
‖x‖2 : Ax = 0

}
, we incorporate a sum-to-one constraint. In other

word, we define an expanded matrix Ã = [A; ones(n, 1)] (following Matlab’s notation) and an ex-

panded vector b̃ = [0; 1]. We then adapt the proposed method to solve for min
x

{
‖x‖1
‖x‖2 : Ãx = b̃

}
.

In Figure 6a, we plot the mean value of ratios from 50 random realizations of matrices A at each
coherence level (controlled by F ), which shows that the ratio actually decreases2 with respect to F .
As the L0 norm is bounded by the ratio (1.4), smaller ratio indicates it is more difficult to recover
the signals. Therefore, Figure 6a is consistent with the common belief in CS.

We postulate that an underlying reason of more coherent matrices giving better results is
minimum separation (MS), as formally introduced in [5]. In Figure 6b, we enforce the minimum
separation of two neighboring spikes to be 40, following the suggestion of 2F in [14] (we consider F
up to 20). In comparison, we also give the success rates of the L1 recovery without any restrictions
on MS in Figure 6c. Note that we use the exactly same matrices in both cases (with and without
MS). Figure 6c does not have a clear pattern regarding how coherence affects the exact recovery,
which supports our hypothesis that minimum separation plays an important role in sparse recovery.
It will be our future work to analyze it throughly.

6. Conclusions and future works. In this paper, we have studied a novel L1/L2 minimiza-
tion to promote sparsity. Two main benefits of L1/L2 are scale invariant and parameter free. Two
numerical algorithms based on the ADMM are formulated for the assumptions of sparse signals
and sparse gradients, together with a variant of incorporating additional box constraint. The ex-
perimental results demonstrate the performance of the proposed approaches in comparison to the
state-of-the-art methods in sparse recovery and MRI reconstruction. As a by-product, minimizing

2We also observe that the ratio stagnates for larger F , which is probably because of instability of the proposed
method when matrix becomes more coherent.
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(a) Original (b) Sampling mask (c) FBP (RE = 99.80%)

(d) L1 (RE = 39.42%) (e) L1-0.5L2 (RE = 38.43%) (f) L1/L2 (RE = 0.04%)

Fig. 5. MRI reconstruction results from 6 radical lines in the frequency domain (2.57% measurements). The
relative errors (RE) are provided for each method.

the ratio also gives an empirical upper bound towards L1’s exact recovery, which motivates further
investigations on exact recovery theories. Other future works include algorithmic improvement and
convergence analysis. In particular, it is shown in Table 1, Figures 3 and 4 that L1/L2 is not as fast
as competing methods in CS and also has certain algorithmic failures, which calls for a more robust
and more efficient algorithm. In addition, we have provided heuristic evidence of the ADMM’s
convergence in Figure 2 and it will be interesting to analyze it theoretically.
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thoughtful comments, which helped us greatly improve our paper. We also acknowledge the help
of Dr. Min Tao from Nanjing University, who suggested the reference on the ADMM convergence.



A SCALE INVARIANT APPROACH FOR SPARSE SIGNAL RECOVERY 17

2 4 6 8 10 12 14 16 18

F

-5

0

5

10

15

20

25

30

35

ra
ti
o

(a) The mean of ratios

2 4 6 8 10 12 14 16 18 20

sparsity

0

10

20

30

40

50

60

70

80

90

100

%

F = 2

F = 6

F = 10

F = 14

F = 18

(b) Success rates with MS

2 4 6 8 10 12 14 16 18 20

sparsity

0

10

20

30

40

50

60

70

80

90

100

%

F = 2

F = 6

F = 10

F = 14

F = 18

(c) Success rates without MS

Fig. 6. The use of min
x

{
‖x‖1
‖x‖2

: Ax = 0
}

as an upper bound for the L1 recovery. (a) plots the mean of ratios

over 50 realizations with the standard deviation indicated as vertical bars. (b) and (c) are success rates of L1 recovery
with and without minimum separation.

Appendix: proof of Theorem 2.2. In order to prove Theorem 2.2, we study the function

(6.1) g(t) =
‖x + tv‖21
‖x + tv‖22

,

where x 6= 03 and

(6.2) v ∈ ker(A)\{0} with ‖v‖2 = 1.

Notice that the denominator of the function g is non-zero for all t ∈ R. Otherwise, we have
x + tv = 0 and hence Ax + A(tv) = A(0). Since Ax = b and Av = 0, we get b = 0 which is a
contradiction. Therefore, the function g is continuous everywhere. Next, we introduce the following
lemma to discuss the L1 term in the numerator of g.

3We assume that b 6= 0 so x = 0 is not a solution to Ax = b.
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Lemma 6.1. For any x ∈ Rn and v ∈ Rn satisfying (6.2), denote S as the support of x and
t0 := min

i∈S
|xi|. We have

(6.3) ‖x + tv‖1 = ‖x‖1 + tσt(v) > 0, ∀|t| < t0,

where

(6.4) σt(v) =
∑
i∈S

visign(xi) + sign(t)‖vS̄‖1.

Proof. Since x + tv 6= 0 for all t ∈ R, we have ‖x + tv‖1 > 0. It follows from (6.2) that
|vi| ≤ 1, ∀i. Then we get sign(xi + tvi) = sign(xi), ∀i ∈ S, as |tvi| < |xi| for |t| < t0. Therefore,
we have

‖x + tv‖1 =
∑
i∈S
|xi + tvi|+

∑
i/∈S

|t||vi|

=
∑
i∈S

(xi + tvi)sign(xi) + |t|‖vS̄‖1

=
∑
i∈S

xisign(xi) + t
∑
i∈S

visign(xi) + |t|‖vS̄‖1

= ‖x‖1 + t
∑
i∈S

visign(xi) + |t|‖vS̄‖1

= ‖x‖1 + t

(∑
i∈S

visign(xi) + sign(t)‖vS̄‖1

)
,

which implies (6.3) and hence Lemma 6.1 holds.

Notice that σt(v) only relies on the sign of t, i.e., it is constant for t > 0 and t < 0. Therefore,
g(t) is differentiable on 0 < t < t0 and −t0 < t < 0 (Note that when t 6= 0, g is not differentiable at
the points where xi + tvi = 0). Some simple calculations lead to the derivative of g for 0 < t < t0
and −t0 < t < 0,

g′(t) =
d

dt

(
(‖x‖1 + tσt(v))

2

‖x‖22 + 2t 〈vS ,x〉+ t2‖v‖22

)

=
2σt(v) (‖x‖1 + tσt(v))

(
‖x‖22 + 2t 〈vS ,x〉+ t2‖v‖22

)
−
(
2 〈vS ,x〉+ 2t‖v‖22

)
(‖x‖1 + tσt(v))

2

(‖x‖22 + 2t 〈vS ,x〉+ t2‖v‖22)
2

=
2 (‖x‖1 + tσt(v))

[
σt(v)

(
‖x‖22 + 2t 〈vS ,x〉+ t2‖v‖22

)
−
(
〈vS ,x〉+ t‖v‖22

)
(‖x‖1 + tσt(v))

]
(‖x‖22 + 2t 〈vS ,x〉+ t2‖v‖22)

2

=
2 (‖x‖1 + tσt(v))

[(
σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1

)
+
(
σt(v) 〈vS ,x〉 − ‖x‖1‖v‖22

)
t
]

(‖x‖22 + 2t 〈vS ,x〉+ t2‖v‖22)
2 .

(6.5)

It follows from Lemma 6.1 that the first term in the numerator of (6.5) is strictly positive, i.e.,
‖x‖1 + tσt(v) > 0. Therefore, the sign of g′ depends on the second term in the numerator. We
further introduce two lemmas (Lemma 6.2 and Lemma 6.3) to study this term.
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Lemma 6.2. For any x,v ∈ Rn and i ∈ [n], we have

n‖x‖22 − |xi|‖x‖1 ≥ (n− 1)

∑
j 6=i

x2
j

 ,(6.6)

n‖v‖1‖x‖22 ≥ ‖x‖1| 〈v,x〉 |.(6.7)

Furthermore, if ‖x‖0 = s, then the constant n in the inequalities can be reduced to s.

Proof. Simple calculations show that

n‖x‖22 − |xi|‖x‖1 = n

∑
j

x2
j

− |xi|
∑

j

|xj |


= (n− 1)

∑
j 6=i

x2
j

+
∑
j 6=i

x2
j + (n− 1)x2

i −
∑
j 6=i

|xi||xj |

= (n− 1)

∑
j 6=i

x2
j

+
∑
j 6=i

(
(|xi| − |xj |)2 + |xi||xj |

)

≥ (n− 1)

∑
j 6=i

x2
j

 ≥ 0.

(6.8)

Therefore, we have
∑
i

(
n‖x‖22 − |xi|‖x‖1

)
|vi| ≥ 0, which implies that

(6.9) n‖v‖1‖x‖22 ≥ ‖x‖1

(∑
i

|xi||vi|

)
≥ ‖x‖1| 〈v,x〉 |.

Similarly, we can reduce the constant n to s, if we know ‖x‖0 = s.

Lemma 6.3. Suppose that an s-sparse vector x satisfies Ax = b (b 6= 0) with its support on an
index set S and the matrix A satisfies the sNSP of order s. Define

(6.10) t1 := inf
v,t

{
|σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1|
|σt(v) 〈vS ,x〉 − ‖x‖1‖v‖22|

∣∣∣∣v ∈ ker(A), ‖v‖2 = 1, t 6= 0

}
,

where σt(v) is defined as (6.4). Then t1 > 0.

Proof. For any v ∈ ker(A) and ‖v‖2 = 1, it is straightforward that

|σt(v) 〈vS ,x〉 − ‖x‖1‖v‖22| ≤ |σt(v)|‖v‖2‖x‖2 + ‖x‖1‖v‖22
≤ ‖v‖1‖v‖2‖x‖2 + ‖x‖1‖v‖22
= ‖v‖1‖x‖2 + ‖x‖1
≤
√
n‖x‖2 + ‖x‖1,

(6.11)

and

(6.12) |σt(v)| ≥ |sign(t)‖vS̄‖1| − |
∑
i∈S

visign(xi)| ≥ ‖vS̄‖1 −
∑
i∈S
|vi| = ‖vS̄‖1 − ‖vS‖1.
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It follows from the sNSP that ‖vS̄‖1 ≥ (s+ 1)‖vS‖1, thus leading to the following two inequalities,

|σt(v)| ≥ ‖vS̄‖1 − ‖vS‖1 ≥ s‖vS‖1

|σt(v)| ≥ ‖vS̄‖1 − ‖vS‖1 ≥ (1− 1

s+ 1
)‖vS̄‖1 =

s

s+ 1
‖vS̄‖1.

(6.13)

Next we will discuss two cases: s = 1 and s > 1.
(i) For s = 1. Without loss of generality, we assume the only non-zero element is xn 6= 0 and

hence we have

|σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1| = |(vnsign(xn) + sign(t)‖vS̄‖1)x2
n − (vnxn)|xn|| = ‖vS̄‖1x2

n.

We further discuss two cases: |vn| ≥ 1√
n

and |vn| < 1√
n

. If |vn| ≥ 1√
n

, then ‖vS̄‖1 ≥
(s+ 1)|vn| ≥ s+1√

n
and hence

(6.14) |σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1| = ‖vS̄‖1‖x‖22 ≥
s+ 1√
n
‖x‖22.

If |vn| < 1√
n

, then we have ‖vS̄‖1 ≥ 1− |vn| = 1− 1√
n

=
√
n−1√
n

and

(6.15) |σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1| = ‖vS̄‖1‖x‖22 ≥
√
n− 1√
n
‖x‖22.

Combining (6.14) and (6.15), we have

(6.16) t1 ≥
min

{
s+1√
n
‖x‖22,

√
n−1√
n
‖x‖22

}
√
n‖x‖2 + ‖x‖1

> 0.

(ii) For s > 1. We split into two cases. The first case is ∀j ∈ S, vj < c (we will determine
the value of c shortly). As a result, we get ‖vS‖1 < sc and ‖vS̄‖1 ≥ 1 − sc since ‖v‖1 ≥
‖v‖2 = 1. Some simple calculations lead to∣∣σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1

∣∣ ≥ |σt(v)|‖x‖22 − | 〈vS ,x〉 |‖x‖1

≥ s

s+ 1
‖vS̄‖1‖x‖22 −

∑
i∈S
|vi||xi|‖x‖1 (based on (6.13))

≥ s

s+ 1
(1− sc)‖x‖22 −

∑
i∈S

c|xi|‖x‖1

=
s

s+ 1
(1− sc)‖x‖22 − c‖x‖21

≥ s

s+ 1
(1− su0)‖x‖22 − sc‖x‖22

=
s

s+ 1

(
1− (2s+ 1)c

)
‖x‖22.

If we choose c = 1
2s+2 , then the above quantity is larger than

s‖x‖22
(s+1)(2s+2) > 0.
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In the second case, we have there exist j ∈ S such that vj ≥ c, leading to∣∣σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1
∣∣ ≥ |σt(v)|‖x‖22 − | 〈vS ,x〉 |‖x‖1

≥ s‖vS‖1‖x‖22 −

(∑
i∈S
|xi||vi|

)
‖x‖1

=
∑
i∈S

(
s‖x‖22 − |xi|‖x‖1

)
|vi|

≥
(
s‖x‖22 − |xj |‖x‖1

)
|vj | (based on Lemma 6.2)

≥ c
(
s‖x‖22 − |xj |‖x‖1

)
≥ c(s− 1)

∑
i6=j

x2
i (based on Lemma 6.2)

≥ c(s− 1) min
j∈S

∑
i6=j

x2
i .

(6.17)

These two cases guarantee that t1 > 0, i.e.,

(6.18) t1 ≥
min

{
c(s− 1) min

j∈S

∑
i6=j

x2
i ,

s‖x‖22
(s+1)(2s+2)

}
√
n‖x‖2 + ‖x‖1

> 0.

By (6.16) and (6.18), we get Lemma 6.3.

Now, we are ready to prove Theorem 2.2.

Proof. According to (6.3), the first term in the numerator is strictly positive, i.e., ‖x‖1 +
tσt(v) = ‖x + tv‖1 > 0, ∀|t| < t0. As for the second one, there exists a positive number t1 defined
in Lemma 6.3 such that∣∣σt(v) 〈vS ,x〉 − ‖x‖1‖v‖22

∣∣ |t| < |σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1|

for all |t| < t1 and v ∈ ker(A) with ‖v‖2 = 1. Moreover, we have

sign
[
(σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1 +

(
σt(v) 〈vS ,x〉 − ‖x‖1‖v‖22

)
t
]

= sign
(
σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1

)
.

Letting t∗ = min{t0, t1}, we have for any t ∈ (0, t∗) and v 6= 0 that σt(v) > 0 as

σt(v) =
∑
i∈S

visign(xi) + sign(t)‖vS̄‖1

=
∑
i∈S

visign(xi) + ‖vS̄‖1

≥ ‖vS̄‖1 − ‖vS‖1

≥ max

{
s‖vS‖1,

s

s+ 1
‖vS̄‖1

}
> 0 (based on (6.13)).

(6.19)
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Also (6.13) implies that

(6.20) |σt(v)|‖x‖22 ≥ s‖vS‖1‖x‖22 ≥ ‖vS‖1‖x‖21 ≥ | 〈vS ,x〉 |‖x‖1,

thus leading to

(6.21) σt(v)‖x‖22 − 〈vS ,x〉 ‖x‖1 ≥ 0,

for σt(v) > 0. As a result, we have g′(t) ≥ 0 if 0 < t < t∗. The function g(t) is not differentiable at
zero, but we can compute the sub-derivative as follows,

(6.22) g′(0+) = lim
t→0+

g(t)− g(0)

t− 0
=

2‖x‖1
(
σ+1(v)‖x‖22 − 〈vS ,x〉 ‖x‖1

)
‖x‖42

≥ 0.

Similarly, we can get g′(t) ≤ 0 if −t∗ < t < 0 and g′(0−) ≤ 0. Therefore for any 0 < |t| < t∗ we
have g(0) ≤ g(t), which implies that

(6.23)
‖x + tv‖1
‖x + tv‖2

≥ ‖x‖1
‖x‖2

, ∀|t| < t∗.

Notice that t∗ does not depend on the choice of v, therefore the inequality is true for any v satisfying
6.2, which will imply the result.
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