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UNIQUENESS AND ERGODICITY OF STATIONARY

DIRECTED POLYMERS ON Z
2

CHRISTOPHER JANJIGIAN AND FIRAS RASSOUL-AGHA

Abstract. We study the ergodic theory of stationary directed nearest-neighbor polymer models

on Z
2, with i.i.d. weights. Such models are equivalent to specifying a stationary distribution on

the space of weights and correctors that satisfy certain consistency conditions. We show that

for prescribed weight distribution and corrector mean, there is at most one stationary polymer

distribution which is ergodic under the e1 or e2 shift. Further, if the weights have more than two

moments and the corrector mean vector is an extreme point of the superdifferential of the limiting

free energy, then the corrector distribution is ergodic under each of the e1 and e2 shifts.

1. Introduction

Directed polymers with bulk disorder were introduced in the statistical physics literature by Huse
and Henley [17] in 1985 to model the domain wall separating the positive and negative spins in the
ferromagnetic Ising model with random impurities. These models have been the subject of intense
study over the past three decades; see the recent surveys [7, 8, 12, 14]. Much of the reason for
the interest in these models is due to the conjecture that under mild hypotheses, such models are
members of the Kardar-Parisi-Zhang (KPZ) universality class, which is an extremely wide-ranging
class of models believed to have the same statistical and structural properties. See [9, 10, 16, 24, 25]
for recent surveys.

Much like characterization of the Guassian universality in terms of variants of the central limit
theorem (CLT), the KPZ class is characterized by its scaling exponents and limit distributions.
In the context of the directed polymer models we study in this paper, the conjecture is that the
appropriately centered and normalized finite volume free energy converges to a limit distribution
which is independent of the random environment that the polymer lives in. The KPZ scaling
theory [20, 22] predicts that the fluctuations around the limiting free energy are of the order of the
cube root of the size of the volume, in contrast to the square root in the classical CLT. Moreover,
the limiting distribution is not Gaussian. The effect of the environment is felt only through the
centering and normalizing constants, which play a role similar to that of the mean and standard
deviation in the CLT.

The scaling theory also predicts the values of these two non-universal constants if one has a
complete description of the spatially-ergodic and temporally-stationary measures for the polymer
model. See [28] for an example of this computation in the setting of the semi-discrete polymer
model introduced by O’Connell and Yor in [23]. In the mathematics literature, stationary polymer
models have been studied primarily in the context of solvable models, which have product-form
stationary distributions. The first such solvable stationary polymer model was the aforementioned
model due to O’Connell and Yor. The first discrete model was introduced by Seppäläinen in [27].
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2 C. JANJIGIAN AND F. RASSOUL-AGHA

See also the models introduced in [3, 11, 29, 30] and studied further in [2, 5, 6]. Such models remain
to date the only polymer models for which the KPZ universality conjectures have been verified.

In the present paper, we investigate the ergodic theory of stationary directed polymers on the
lattice Z

2 with general i.i.d. weights and nearest-neighbor steps. The solvable model in [27] is an
example of the type of model we study. Specializing our results to the case where the limiting free
energy is everywhere differentiable, we show that the ergodic distributions form a one-parameter
family, indexed by the derivative of the free energy. This differentiability is satisfied in the model
in [27] and is conjectured to hold generally. As a consequence, our results imply that the ergodic
measures constructed in [27] are the only such measures in that model, which verifies that the
hypotheses of the scaling theory are satisfied. More generally, we give conditions under which one
can conclude that a stationary distribution is ergodic as well as conditions under which an ergodic
measure is unique.

Apart from being fundamental objects for the study of the scaling theory, classifying stationary
ergodic polymer measures is important for addressing several other questions. We mention two.

Our results on the classification of stationary and ergodic polymer measures can be reformulated
in terms of a characterization of the stationary and ergodic global physical solutions to a discrete
version of the viscous stochastic Burgers equation

BtU “
1

2
BxxU `

1

2
BxU

2 ` Bx 9W,

where 9W is space-time white noise. This connection is the focus of our companion paper [19].

In the language of statistical mechanics, stationary directed polymer measures are in correspon-
dence with shift-covariant semi-infinite Gibbs measures which are consistent with the quenched
point-to-point polymer measures. For a discussion of this point of view, we refer the reader to [18].

We close this introduction by giving an outline of the rest of the paper. We introduce polymer
measures and stationary polymer measures in Section 2 then state our main results in Section 3.
In Section 4 we prove some preliminary lemmas and motivate the setting of Section 5, where we
prove some auxiliary results that are then used in the proofs of the main theorems in Section 6.

2. Setting

2.1. Random polymer measures. Let Ω0 “ R
Z2

and equip it with the product topology and
product Borel σ-algebra F0. A generic point in Ω0 will be denoted by ω. Let tωxpωq : x P Z

2u be
the natural coordinate projections. The number ωx models the energy stored at site x and is called
the weight or potential or environment at x. Define the natural shift maps Tz : Ω0 Ñ Ω0, z P Z

2,
by ωxpTzωq “ ωx`zpωq. We are given a probability measure P0 on pΩ0,F0q such that tωx : x P Z

2u
are i.i.d. under P0 and E0r|ω0|s ă 8.

Let Πu,v be the set of up-right paths, i.e. paths in Z
2 with steps in te1, e2u, from u to v. Form ď n

in Z Y t˘8u we write xm,n to denote a path pxm, xm´1, . . . , xnq and we will use the convention
that xk ¨ pe1 ` e2q “ k.

Given the weights, the quenched point-to-point polymer measures are probability measures on
up-right paths between two fixed sites in which the probability of a path is proportional to the
exponential of its energy:

Qω
u,vpxm,nq “

e
řn

k“m`1
ωxk

Zω
u,v

, xm,n P Πu,v, v ě u.(2.1)

Here, Zω
u,v is the quenched point-to-point partition function given by

Zω
u,v “

ÿ

xm,nPΠu,v

e
řn

k“m`1
ωxk , v ě u,(2.2)

with the convention that an empty sum equals 0. (Thus, Zω
u,u “ 1 and Zω

u,v “ 0 when v ě u.)
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A computation shows that the point-to-point measure is a backward Markov chain starting at
v, taking steps t´e1,´e2u, and with absorption at u. If we define

Bupx, y, ωq “ logZω
u,y ´ logZω

u,x, x, y ě u,

then the transition probabilities of this Markov chain are given by

~πupx, x ´ ei, ωq “
eωxZω

u,x´ei

Zω
u,x

“ eωx´Bupx´ei,x,ωq , u ď x ď v, x ‰ u, i P t1, 2u.(2.3)

Note that if x “ u ` kei, k P N, then the chain takes ´ei steps until it reaches u. The processes
Bu satisfy the (rooted) cocycle property

Bupx, y, ωq ` Bupy, z, ωq “ Bupx, z, ωq, x, y, z ě u.(2.4)

Since Zω
u,v satisfies the recurrence

Zu,x “ eωxpZu,x´e1 ` Zu,x´e2q, x ´ u P N
2,(2.5)

we see that Bu also satisfies the recovery property

e´Bupx´e1,x,ωq ` e´Bupx´e2,x,ωq “ e´ωx , x ´ u P N
2.(2.6)

Note also that

Bupx, y, Tzωq “ Bu`zpx ` z, y ` z, ωq(2.7)

and that if x, y ď v, then Bupx, y, ωq is a function of tωz : z ď vu and is hence independent of
tωz : z ď vu.

A stationary polymer measure is one that retains the properties (2.4), (2.6), (2.7), and the above
independence structure, but without a reference to the roots u and u ` z. This leads us to the
notion of corrector distributions.

2.2. Corrector distributions. Extend the measurable space pΩ0,F0q to pΩ,Fq where Ω “ R
Z
2

ˆ

R
Z2ˆZ2

, equipped with the product topology, and F is the product Borel σ-algebra. Now, ω will
denote a generic point in Ω and tωxpωq : x P Z

2u and tBpx, y, ωq : x, y P Z
2u denote the natural

coordinate projections. The natural shift maps are now given by Tz : Ω Ñ Ω, z P Z
2, with

ωxpTzωq “ ωx`zpωq and Bpx, y, Tzωq “ Bpx ` z, y ` z, ωq. We will abuse notation and keep using
ωx and Tz to denote, respectively, the natural projections and shifts on the original space Ω0.

We say that a probability measure P on pΩ,Fq is a stationary future-independent L1 corrector

distribution with Ω0-marginal P0 if it satisfies the following:

I. Distributional properties: for all x, y, z P Z
2

(a) Prescribed marginal: the Ω0-marginal is P0,
(b) Stationarity: P is invariant under Tz,
(c) Integrability: Er|Bpx, yq|s ă 8,
(d) Future-independence: for any down-right path y “ pykqkPZ, i.e. yk`1 ´ yk P te1,´e2u,

tBpx, y, ωq : Dv P y : x, y ď vu and tωz : z ď v,@v P yu are independent.

II. Almost sure properties: for P-almost every ω and all x, y, z P Z
2

(e) Cocycle: Bpx, yq ` Bpy, zq “ Bpx, zq,

(f) Recovery: e´Bpx´e1,xq ` e´Bpx´e2,xq “ e´ωx .

We say P is ergodic under Tz (or Tz-ergodic) if PpAq P t0, 1u for all sets A P F such that TzA “ A.
As it is customary with probability notation (and was already done above), we will often omit the
ω from the arguments of Bpx, yq and ωx. A function B satisfying property (e) is called a cocyle.
If it also satisfies (f) then it is called a corrector. Our use of the word “corrector” comes from an
analogy with stochastic homogenization. See e.g. [1, page 467]. The recovery equation (f) is the
analogue of (3.4) in that paper.
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2.3. Stationary polymer measures from corrector distributions. A stationary polymer

measure is given by first specifying a stationary future-independent corrector distribution P with
an i.i.d. Ω0-marginal P0. Given a realization of the environment ω, the quenched polymer measure

Qω
v rooted at v P Z

2 is a Markov chain starting at v and having transition probabilities

~πpx, x ´ ei, ωq “ eωx´Bpx´ei,x,ωq, x P Z
2, i P t1, 2u.(2.8)

Observe that ~πpx, x ´ ei, ωq “ ~πp0,´ei, Txωq. Hence, stationary polymer measures are in fact
examples of the familiar model of a random walk in a stationary random environment (RWRE).

The quenched point-to-point measure (2.1) can also be viewed as a forward Markov chain starting
at u, taking steps te1, e2u, with absorption at v and transitions

~πvpx, x ` ei, ωq “
eωx`eiZω

x`ei,v

Zω
x,v

“ eωx´Bvpx,x`eiq , u ď x ď v, x ‰ v, i P t1, 2u,(2.9)

where nowBvpx, y, ωq “ logZω
x,v´logZω

y,v`ωx´ωy. This structure also leads to stationary polymer
measures that are stationary (forward) RWREs with steps te1, e2u and whose transitions are of the

form ~πpx, x ` ei, ωq “ eωx´Bpx,x`ei,ωq, i P t1, 2u, where B is an L1 stationary corrector but with the

recovery equation replaced by e´ωx “ e´Bpx,x`e1q ` e´Bpx,x`e2q and future-independence replaced
by past-independence (defined in the obvious way). The two points of view are in fact equivalent
due to the symmetry of P0 with respect to reflections of the axes.

It should be noted that although the weights tωx : x P Z
2u are i.i.d. under P0, the transitions

t ~πpx, x ´ e1q : x P Z
2u (and t~πpx, x ` e1q : x P Z

2u) are highly correlated, causing the paths of the
RWREs to be superdiffusive with a 2{3 scaling exponent. See for example Theorem 7.2 of [13].

2.4. Stationary polymer measures with boundary. Another, perhaps more familiar, way of
introducing stationary polymer measures comes by considering solutions to the recursion (2.5), but
with appropriate boundary conditions. This is how these measures were introduced in the study
of solvable models mentioned in the introduction. We explain in this section how this viewpoint is
the same as the one via the framework of corrector distributions.

Given a stationary future-independent corrector distribution P with an i.i.d. Ω0-marginal P0, a
down-right path y “ y´8,8 with ym ¨ pe1 ´ e2q “ m for m P Z, and a point u P y, define the
quenched path-to-point partition functions

Zy,ω
u,v “

ÿ

xm,nPΠy,v

eBpu,xmq`
řn

k“m`1
ωxk .(2.10)

Here, Πy,v is the set of up-right paths xm,n that start at a point xm P y, exit y right away, i.e.
xm`1 R y, and end at xn “ v. Recall that an empty sum is 0. If v P y, then Πy,v consists of a

single path and Z
y,ω
u,v “ eBpu,vq.

The cocycle and recovery properties (e) and (f) imply that eBpu,xq satisfies the same recurrence
relation (2.5) as Z

y,ω
u,x . Since the two also match for x P y we deduce that Z

y,ω
u,x “ eBpu,xq for all

x for which Πy,x “ ∅. In particular, this definition is independent of the boundary y and gives a

stationary field teBpu,vq : u, v P Z
2u of point-to-point partition functions. Also, this explains why B

is called a corrector: it corrects the potential tωx : x P Z
2u, turning the superadditive logZω

u,v into

an additive cocycle logZy,ω
u,v . This is a key idea in stochastic homogenization theory. For more, see

for example Section 2 of [21].

The corresponding quenched path-to-point polymer measure is given by

Qy,ω
u,v pxm,nq “

eBpu,xmq`
řn

k“m`1
ωxk

Z
y,ω
u,v

, xm,n P Πy,v.
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Q
y,ω
u,v is the distribution of a Markov chain starting at v and having transition probabilities

~πpx, x ´ ei, ωq “
eωxZ

y,ω
u,x´ei

Z
y,ω
u,x

“ eωx´Bpx´ei,x,ωq, x P Z
2, i P t1, 2u

until reaching y. In other words, this is exactly the quenched distribution Qω
v , until absorption at

y and the path-to-point polymer measure is exactly the stationary polymer measure introduced
above.

One can also go in the other direction: starting from a stationary model with boundary we can
define a corrector distribution. More precisely, suppose we are given a boundary down-right path
y “ y´8,8 with ym ¨ pe1 ´ e2q “ m for m P Z and a point u P y. Abbreviate I

`
y

“ tz P Z
2 : z ď

v,@v P yu. Equip Ωy “ R
I

`
y ˆ R

y with the product topology and Borel σ-algebra and denote the
natural projections of an element ω P Ωy by ωz, z P I

`
y
, and ω̄v, v P y. Suppose we are given a

probability measure P1 on Ωy under which tωz : z P I
`
y

u and tω̄v : v P yu are independent and such

that the distribution of tωz : z P I
`
y

u is the same under P1 as under P0.

Let m0 “ u ¨ pe1 ´ e2q, so that u “ ym0
. For m P Z let Bpu, xmq “

řm´1

i“m0
ω̄i for m ě m0 and

Bpu, xmq “ ´
řm0´1

i“m ω̄i for m ď m0. Define the path-to-point partition function Z
y,ω
u,v , v P I

`
y

Yy,
by (2.10). The probability measure P1 is said to be a stationary polymer model with boundary y

if the distribution of

tωv`z , Z
y,ω
u,y`z{Zy,ω

u,u`z : v P I
`
y
, y P I

`
y

Yyu,

induced by P1, does not depend on z P Z
2
`.

For x, y P I
`
y

Yy let

Bypx, yq “ logZy,ω
u,y ´ logZy,ω

u,x .

Then the above definition is equivalent to saying that the distribution of

tωv`z , Bypx ` z, y ` zq : v P I
`
y
, x, y P I

`
y

Yyu,

induced by P1, is the same for all z P Z
2
`. Kolmogorov’s consistency theorem allows then to extend

P1 to a probability measure P on pΩ,Fq and a few direct computations check that P is a stationary
future-independent corrector distribution with Ω0-marginal P0.

2.5. The stationary log-gamma polymer. As mentioned earlier, stationary polymer measures
with boundaries were a crucial tool in the study of solvable models. In this section we recall the
example of Seppäläinen’s log-gamma polymer [27], which fits our setting. Related models include
the stationary semi-discrete model in [23], where the boundary p´8,8q ˆ t0u was used, which
is analogous to y´8,8 “ Ze1, and the models studied in [3, 11, 30], where y´8,0 “ Z`e2 and
y0,8 “ Z`e1 was used. In all of these models, the reference point is taken to be u “ 0.

For θ ą 0 let Wθ denote the distribution of a random variable X such that e´X is gamma-
distributed with scale parameter 1 and shape parameter θ. Let Wθ denote the distribution of ´X.
The log-gamma polymer is the directed polymer measure on Z

2 with P0 being the product measure

W
bZ

2

ρ for some ρ ą 0.
Consider the boundary path y´8,0 “ Z`e2 and y0,8 “ Z`e1 and the origin point u “ 0. Then

I
`
y

“ N
2. Fix θ P p0, ρq and let P1 be the product probability measure W

bN2

ρ bW
bNe1
θ bW

bNe2
ρ´θ .

The path-to-point partition functions Zy,ω
0,x , x P Z

2
`, can be computed inductively by the equations

Z
y,ω
0,x “ eωxpZy,ω

0,x´e1
` Z

y,ω
0,x´e2

q, x P N
2,

and the initial conditions

Z
y,ω
0,0 “ 1, Z

y,ω
0,me1

“ e
řm´1

i“0
ω̄ie1 and Z

y,ω
0,me2

“ e´
řm

i“1
ω̄ie2 , m P Z`.
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Equivalently, Bypx, x ` eiq, i P t1, 2u, x P Z
2
`, are computed inductively using

eBypx´e1,xq “ eωx
`

1 ` eBypx´e1´e2,x´e2qe´Bypx´e1´e2,x´e1q
˘

,

eBypx´e2,xq “ eωx
`

1 ` eBypx´e1´e2,x´e1qe´Bypx´e1´e2,x´e2q
˘

,
(2.11)

for x P N
2, and the initial conditions Bypme1, pm ` 1qe1q “ ω̄me1 and Bypme2, pm ` 1qe2q “

´ω̄pm`1qe2 , m P Z`. Compare to (3.2) in [27]. Then Bypx, yq, x, y P Z
2
`, are computed via

the cocycle property that By satisfies. The Burke property [27, Theorem 3.3] implies that P1 is
stationary in the sense of the previous section.

Alternatively, one can use the boundary path y´8,0 “ Z`e2 and y0,8 “ Z`e1 and then I
`
y

“ ZˆN

and P1 would be the product measure W
b I

`
y

ρ bW
by

θ . The partition functions Z
y,ω
0,x , x P Z ˆ Z`,

are now computed inductively by the equations

Z
y,ω
0,x “

8
ÿ

m“0

e
řm

i“0
ωx´ie1Z

y,ω
0,x´e2´me1

, x P Z ˆ N,

and the initial conditions

Z
y,ω
0,0 “ 1, Z

y,ω
0,me1

“ e
řm´1

i“0
ω̄ie1 and Z

y,ω
0,´me1

“ e´
řm

i“1
ω̄´ie1 , m P Z`.

Equivalently, Bypx, x ` eiq, i P t1, 2u, x P Z ˆ Z` are computed inductively using

eBypx´e2,xq “ eωx

´

1 `
8
ÿ

m“1

m
ź

i“1

eωx´ie1
´Bypx´e2´ie1,x´e2´pi´1qe1q

¯

,(2.12)

eBypx´e1,xq “ eωx
`

1 ` eBypx´e1´e2,x´e2qe´Bypx´e1´e2,x´e1q
˘

,

for x P Z ˆ N, and the initial conditions Bypme1, pm ` 1qe1q “ ω̄me1 , m P Z. Analysis of the
general polymer model with boundary conditions of this type plays a key role in our analysis. See
in particular the discussion in Section 5.

By the uniqueness in Lemma 5.2, the distribution of tBypx, x` eiq : x P Z
2
`u in this construction

is the same as the one in the above construction. Consequently, P1 is again stationary in the sense
of the previous section. See Lemma 5.7 for the details of this argument.

3. Main results

Consider a stationary future-independent L1 corrector distribution P with Ω0-marginal P0. By
shift-invariance and the cocycle property,

ErBp0, x ` yqs “ ErBp0, xqs ` ErBpx, x ` yqs “ ErBp0, xqs ` ErBp0, yqs,

for all x, y P Z
2. Hence, there exists a unique vector mP P R

2, called the mean vector, such that
ErBp0, xqs “ x ¨ mP for all x P Z

2. In particular, mP ¨ei “ ErBp0, eiqs.

Our first main result is on the uniqueness of ergodic corrector distributions with prescribed i.i.d.
Ω0-marginal and mean mP ¨ei.

Theorem 3.1. Fix an i.i.d. probability measure P0 on pΩ0,F0q with L1 weights. Fix a number
α P R. Fix i P t1, 2u. There is at most one stationary Tei-ergodic future-independent L1 corrector
distribution P with Ω0-marginal P0 and such that mP ¨ei “ α.

In terms of stationary polymers with boundary y “ Z e1, this theorem says that, in general,
the Te1-ergodic stationary distributions form a one parameter family, indexed by the mean of the
boundary weights. The formulation in terms of corrector distributions allows us to extend this
result to more general boundary geometries.

We next turn to the question of determining which values of the parameter mP admit ergodic
stationary polymers. To state our second result we need a few more definitions and some more
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hypotheses. Recall the point-to-point partition functions (2.2). Assume that Er|ω0|ps ă 8 for some
p ą 2. Then Theorem 2.2(a), Remark 2.3, and Theorems 2.4, 2.6(b), and 3.2(a) of [26] imply that
there exists a deterministic continuous 1-homogenous concave function ΛP0

: R2
` Ñ R such that

P0-almost surely

n´1 logZω
0,tnξu ÝÑ

nÑ8
ΛP0

pξq for all ξ P R
2
`.(3.1)

Given ξ P p0,8q2, let

BΛP0
pξq “

 

b P R
2 : b ¨pξ ´ ζq ď ΛP0

pξq ´ ΛP0
pζq, @ζ P R

2
`

(

(3.2)

denote the superdifferential of ΛP0
at ξ. This is a convex set. Let ext BΛP0

pξq denote its extreme
points. If ξ P p0,8q2 then ΛP0

is differentiable at ξ if and only if

BΛP0
pξq “ ext BΛP0

pξq “ t∇ΛP0
pξqu.(3.3)

Otherwise, ext BΛP0
pξq consists of exactly two points (see Lemma 4.6(c) in [18]). It is conjectured

that ΛP0
is differentiable on p0,8q2 and then (3.3) holds for all ξ P p0,8q2. Note that due to the

homogeneity of ΛP0
, BΛP0

pξq “ BΛP0
pcξq for all ξ P p0,8q2 and c ą 0.

Before presenting our second main result in the present paper, we record some useful inputs from
our companion paper [18]. The first is Lemma 4.5(a) in that paper and it characterizes the possible
mean vectors of corrector distributions.

Lemma 3.2. If P is a stationary future-independent corrector distribution with an Ω0-marginal
given by i.i.d. Lp weights, p ą 2, then mP P BΛP0

pξq for some ξ P tte1 ` p1 ´ tqe2 : 0 ă t ă 1u “
se1, e2r.

The second is Theorem 4.7 in that paper and gives existence of corrector distributions for each
such mean.

Lemma 3.3. For each b with the property that b P BΛP0
pξq for some ξ Pse1, e2r and for each

probability measure P0 on Ω0 under which the weights are i.i.d. and in Lp for some p ą 2, there
exists a stationary future-independent L1 corrector distribution P with Ω0-marginal P0 such that
mP “ b.

Let CP0
denote the collection of all stationary future-independent L1 corrector distributions with

Ω0-marginal P0. In words, the last lemma says that as P varies over CP0
, its mean vector mP spans

all of
Ť

ξPse1,e2r BΛP0
pξq. The next result is an immediate consequence of Lemmas 4.7(b), 4.7(d),

and C.1 in [18]. It says that in fact as P spans CP0
each coordinate of mP spans pE0rω0s,8q.

Lemma 3.4. Fix an i.i.d. probability measure P0 on pΩ0,F0q with Lp weights, for some p ą 2.
Then tmP : P P CP0

u is a closed curve in R
2 and for each i P t1, 2u, tmP ¨ei : P P CP0

u “ pE0rω0s,8q.

Our second main result in this paper gives a convenient tool which allows us to identify ergodic
stationary corrector distributions.

Theorem 3.5. Fix an i.i.d. probability measure P0 on pΩ0,F0q with Lp weights, for some p ą 2.
Suppose P is a stationary future-independent corrector distribution with Ω0-marginal P0. If mP P
ext BΛP0

pξq for some ξ Pse1, e2r, then P is ergodic under Te1 and Te2 .

In principle, this result leaves open the possibility that there could be ergodic stationary distri-
butions with mean vectors which are not extreme points of the superdifferential of the free energy.
Nevertheless, in our setting, it is expected that ΛP0

is differentiable, in which case every element
of the superdifferential would be extreme. In particular, under this hypothesis, for each ξ Pse1, e2r,
Lemma 3.3 furnishes a future-independent L1 corrector distribution Pξ with Ω0-marginal P0 such
that mP “ ∇ΛP0

pξq. Then, under the hypothesis of differentiability, using Theorems 3.1 and 3.5
we have the following complete characterization of all ergodic stationary polymer meausures.
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Corollary 3.6. Fix an i.i.d. probability measure P0 on pΩ0,F0q with Lp weights, for some p ą 2.
Assume ΛP0

is differentiable on p0,8q2. Then for i P t1, 2u, the collection of Tei-ergodic stationary
corrector distributions is exactly given by tPξ : ξ Pse1, e2ru. In particular, for each ξ Pse1, e2r
and each i P t1, 2u, Pξ is the unique Tei-ergodic future-independent corrector distribution with Ω0-
marginal P0 and such that mP “ ∇ΛP0

pξq.

As a consequence, the above and Lemma 3.4 imply that the one-parameter family of ergodic
measures constructed in [27] is unique and assumption (2-6) of the scaling theory in [28] is satisfied.

4. Preliminaries

In this section, we motivate the main tool in the proofs of the main theorems 3.1 and 3.5, which
we will call the update map Φ.

Given B : Z2 ˆ Z
2 Ñ R define the random variables Vn,k “ eωpn,kq , Xn,k “ eBppn,k´1q,pn`1,k´1qq,

and Yn,k “ eBppn,k´1q,pn,kqq´ωpn,kq for n, k P Z. The next lemma rewrites the corrector property in
terms of this notation. Compare (4.1) with (2.11).

Lemma 4.1. B is a corrector if and only if the following hold for all n, k P Z:

Yn`1,k “ 1 `
Vn,k

Xn,k

Yn,k and Xn,k`1 “ Vn`1,k

´

1 `
Xn,k

Vn,kYn,k

¯

.(4.1)

Proof. The cocycle property (e) is equivalent to

Bpx ´ e2, xq ´ Bpx ´ e1, xq “ Bpx ´ e1 ´ e2, x ´ e1q ´ Bpx ´ e1 ´ e2, x ´ e2q

for all x P Z
2. Together, the cocycle and the recovery properties (e) and (f) are equivalent to

eBpx´e2,xq´ωx “ 1 ` eBpx´e1´e2,x´e1q´ωx´e1eωx´e1e´Bpx´e1´e2,x´e2q and

eBpx´e1,xq “ eωx

´

1 ` eBpx´e1´e2,x´e2q´ωx´e2eωx´e2e´Bpx´e1´e2,x´e1q
¯

holding for all x P Z
2. Plug in x “ pn` 1, kq in the first equation and x “ pn, kq in the second one,

then apply the definitions of V , X, and Y . �

We will see below that iterating the first equation in (4.1) gives

Yn`1,k “ 1 `
n
ÿ

j“´8

n
ź

i“j

Vi,k

Xi,k
for all n, k P Z.(4.2)

Compare with (2.12).
Suppose now tωx : x P Z

2u have an i.i.d. distribution P0. Then tVn,k : n, k P Zu are also i.i.d.
Suppose tXn,0 : n P Zu are independent of the V variables and have a stationary probability
distribution µ. Once the variables tVn,k : n, k P Zu and tXn,0 : n P Zu are known, the rest of the
variables tYn,k : n P Z, k P Z`u and tXn,k : n P Z, k P Nu can be computed via (4.2) and the second
equation in (4.1). The resulting process tVn,k,Xn,k, Yn,k : n P Z, k P Z`u is clearly stationary under
shifts in the n index.

Let Φpµq be the distribution of tXn,1 : n P Zu. By the equivalence of stationary corrector
distributions and stationary polymer measures with boundary, discussed in Section 2.4 (with here
y “ Ze1), the problem of finding a stationary corrector distribution P with Ω0-marginal P0 is the
same as finding a stationary fixed point for the map Φ. Indeed, this will ensure that the pV,X, Y q
process is stationary under shifts in the k index. Inspecting the dependence on V in (4.1) and (4.2)
one can quickly see that P will also satisfy the future-independence property.

The purpose of the next section is to show that Φ is a mean-preserving contraction and hence
has at most one fixed point with a given mean.
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5. Properties of the update map

The properties of the update map Φ that we prove here require fewer assumptions than our main
results. Hence, this section has its own setting and notation, which we introduce next.

We are given a stationary process X “ tXn : n P Zu and an i.i.d. sequence V “ tVn : n P Zu with
X0 ą 0 and V0 ą 0 almost surely. Assume the two families are independent of each other and denote
their joint distribution by P , with expectation E. Suppose Er| logX0|s ă 8 and Er| log V0|s ă 8.
Let I denote the shift-invariant σ-algebra of the process tpXn, Vnq : n P Zu and assume that

ErlogX0 | Is ą Erlog V0s P -almost surely.(5.1)

Lemma 5.1. Suppose that Y “ tYn : n P Zu satisfies the recursion

Yn`1 “ 1 ` VnX
´1
n Yn, P -almost surely and for all n P Z.(5.2)

Then n´1
1t0 ă Y0 ă 8u log Yn Ñ 0 almost surely.

Proof. Let a P R and ε ą 0 be given and abbreviate Uk “ log Vk ´ logXk. Define

F ε
0 paq “ a and F ε

n`1paq “ log p1 ` exp tF ε
npaq ` Un ´ ErU0 | Is ` εuq for n P Z`.

An induction argument shows that for any n P N, we have

F ε
npaq “ log

´

1 `
n´1
ÿ

m“1

exp
!

n´1
ÿ

k“m

pUk ´ ErU0 | Is ` εq
)

` exp
!

a `
n´1
ÿ

k“0

pUk ´ ErU0 | Is ` εq
)¯

.

As usual, we take an empty sum to be zero. The ergodic theorem implies then that F ε
npaq “

logp1 ` enε`opnqq and therefore n´1F ε
npaq Ñ ε P -almost surely, for any a P R.

Another induction (using the fact that ErU0 | Īs ď 0) shows that on the event 0 ă Y0 ă 8, we
have 0 ď log Yn ď F ε

nplog Y0q for all n P N. The claim of the lemma follows. �

Lemma 5.2. The process Y “ tYn : n P Zu given by

Yn “ 1 `
n´1
ÿ

m“´8

n´1
ź

k“m

Vk

Xk

(5.3)

is the unique stationary and almost surely finite solution to (5.2). For any other process Y for
which (5.2) holds P -almost surely for all n P Z, Y must satisfy P

 

limjÑ´8 |Yj| Ñ 8
(

ą 0 and
then either Y is stationary and P p|Y0| “ 8q ą 0 or Y is not stationary.

Proof. Suppose Y is given by (5.3). By the ergodic theorem and (5.1)

lim
mÑ´8

1

|m|

n´1
ÿ

k“m

plog Vk ´ logXkq “ E rlog V0 ´ logX0 | Is ă 0 almost surely.(5.4)

Hence 1 ă Yn ă 8 almost surely. It is also clear that Y is stationary and that (5.3) implies (5.2).
Conversely, let Y satisfy (5.2) P -almost surely and for all n P Z. Iterating (5.2) implies that

whenever j ă n ´ 1, we must have

Yn “ 1 `
n´1
ÿ

m“j`1

n´1
ź

k“m

Vk

Xk
` Yj

n´1
ź

k“j

Vk

Xk
.(5.5)

Suppose now that

P
!

lim
jÑ´8

|j|´1 log |Yj | ą 0
)

“ 0,(5.6)
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where we take the convention that log 8 “ 8. Then this and (5.4) imply that almost surely

limjÑ´8 |Yj |
śn´1

k“j
Vk

Xk
“ 0. In this case, taking j Ñ ´8 in (5.5) along a subsequence that realizes

this liminf implies Y is given by (5.3) almost surely and for all n P Z.
If, alternatively, the probability in (5.6) is positive, then with positive probability |Yj | Ñ 8 as

j Ñ ´8. If we furthermore assume that Y is stationary, then the ergodic theorem implies that
|Y0| “ 8 on the event t|Yj | Ñ 8u. To see this last claim note that for any c ą 0, |k|´1

ř

0

i“k 1t|Yk| ě
cu Ñ P p|Y0| ě c | Iq almost surely. Consequently,

P
 

|Y0| “ 8, |Yk| Ñ 8
(

“ E
“

1t|Y0| “ 8u1t|Yk| Ñ 8u
‰

“ E
“

P p|Y0| “ 8 | Iq1t|Yk| Ñ 8u
‰

“ 0. �

Given the setting at the beginning of the section, define Y “ tYn : n P Zu by (5.3). By Lemma
5.2, Y satisfies (5.2) and 1 ă Y0 ă 8 almost surely. Define the stationary process

Xn “ Vn`1p1 ` V ´1
n XnY

´1
n q “ Vn`1Yn`1

Xn

VnYn
P p0,8q , n P Z.(5.7)

An induction argument shows that for n P N, we have

Y1V1

n
ź

k“1

Xk “ Yn`1Vn`1

n
ź

k“1

Xk.(5.8)

Lemma 5.1 implies that log Yn{n Ñ 0 almost surely. Also, logX0 ą log V1 almost surely. Hence,
the ergodic theorem implies logX0 is integrable and

ErlogX0 | Is “ ErlogX0 | Is.(5.9)

Lemma 5.3. Suppose tpX1
n, Vn, Y

1
n ,X

1
nq : n P Zu and tpX2

n, Vn, Y
2
n ,X

2
nq : n P Zu both satisfy

equations (5.3) and (5.7). Note that both families share the same V variables. Suppose also that
X1

n ď X2
n for all n P Z. Then Y 1

n ě Y 2
n and X1

n ď X2
n for all n P Z.

Proof. It follows immediately that if X1
n ď X2

n for all n P Z, then

Y 1
n “ 1 `

n´1
ÿ

m“´8

n´1
ź

k“m

Vk

X1
k

ě 1 `
n´1
ÿ

m“´8

n´1
ź

k“m

Vk

X2
k

“ Y 2
n .

Then one has X1
n{Y 1

n ď X2
n{Y 2

n for all n P Z. It follows that

X1
n “ Vn`1

´

1 `
X1

n

VnY 1
n

¯

ď Vn`1

´

1 `
X2

n

VnY 2
n

¯

“ X2
n. �

Now we define the update operator Φ : M1pRZq Ñ M1pRZq, where M1pXq is the set of proba-
bility measures on X. Let ΩA “ ΩW “ R

Z. Let A0 “ pA0
nqnPZ and pA0,W q “ pA0

n,WnqnPZ be the
natural coordinate projections on ΩA and ΩA ˆ ΩW , respectively. Let pA1, A2q “ pA1

n, A
2
nqnPZ and

pA1, A1,W q “ pA1
n, A

2
n,WnqnPZ be the natural coordinate projections on ΩAˆΩA and ΩAˆΩAˆΩW ,

respectively. Equip all these spaces with the product topologies, Borel σ-algebras, and natural
shifts. Let I0 and I be the σ-algebras of shift-invariant Borel subsets of ΩA and ΩA ˆΩW , respec-
tively. Note that if we view ΩA as embedded in ΩA ˆΩW and abuse notation by identifying I and
I ˆΩW , then I Ă I

0.

For i P t0, 1, 2u, given numbers pAi
nqnPZ and pWnqnPZ define Xi

n “ eA
i
n and Vn “ eWn then Y i

n

and Xi
n via (5.3) and (5.7), n P Z. Let Ai

n “ logXi
n.

To define Φ we need a probability measure Γ on R such that
ş

|s|Γpdsq ă 8. Let M0 “
ş

sΓpdsq.
Given such a Γ, the mapping Φ “ ΦΓ sends µ P M1pΩAq to the distribution Φpµq P M1pr´8,8sZq
of pA0

nqnPZ induced by P “ µ b ΓbZ P M1pΩA ˆ ΩW q.
We are interested in shift-invariant fixed points of Φ. To have Φpµq P M1pΩAq we need to have

|A0
n| ă 8, P -almost surely. This is guaranteed if µ is satisfies Eµr|A0

0|s ă 8 and µ-almost surely
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EµrA0
0 | I0s ą ErW0s “ M0. Indeed, as observed above, I Ă I

0 and hence the stochastic process
pX0, V q “ tpX0

n, Vnq : n P Zu falls in the setting at the beginning of the section. Then by (5.7) we
have |A0

n| ă 8 almost surely.
Given two stationary probability measures µ1, µ2 on ΩA, let Mpµ1, µ2q denote all stationary

probability measures on ΩAˆΩA, with marginals µ1 and µ2. Recall the definition of the ρ̄ distance:

ρ̄pµ1, µ2q “ inf
λPMpµ1,µ2q

Eλ
“

|A1
0 ´ A2

0|
‰

.(5.10)

When µ1 and µ2 are ergodic, the infimum may be taken over ergodic measures λ, by the ergodic
decomposition theorem. It is shown in [15, Theorem 8.3.1] that the ρ̄ distance is a metric and the
infimum is achieved. The following is a positive-temperature analogue of an argument originally
due to Chang [4]. Note that the technical assumption P pV0 ą cq ą 0 for all c, required in [4], is
not needed in positive temperature.

Proposition 5.4. Let µ1 and µ2 be two ergodic probability measures on ΩA. Assume Eµi

r|A0
0|s ă 8

and Eµi

rA0
0s ą M0, i P t1, 2u. Then ρ̄pΦpµ1q,Φpµ2qq ď ρ̄pµ1, µ2q. If in addition µ1 ‰ µ2 but

Eµ1 rA0
0
s “ Eµ2 rA0

0
s, then ρ̄pΦpµ1q,Φpµ2qq ă ρ̄pµ1, µ1q.

Proof. Fix an ergodic λ P Mpµ1, µ2q and let P “ λbΓbZ P M1pΩA ˆΩA ˆΩW q. Being a product
of an ergodic measure and a product measure, P is also ergodic. Let A3

n “ A1
n _ A2

n. Then

ErA3
0s “ EλrA3

0s ě EλrA1
0s “ Eµ1

rA0
0s ą M0.

Thus, the setting at the beginning of the section applies to X3 “ tX3
n “ eA

3
n : n P Zu and V .

Construct A3 “ tA3
n : n P Zu as was done above for Ai, i P t0, 1, 2u. Lemma 5.3 implies that

P -almost surely A3
0 ě A1

0 _A2
0. Hence P -almost surely and for all n P Z

|A1
0 ´ A2

0| “ 2A1
0 _ A2

0 ´ A1
0 ´ A2

0 “ 2A3
0 ´ A1

0 ´ A2
0 and

|A1
0 ´A2

0| “ 2A1
0 _A2

0 ´A1
0 ´A2

0 ď 2A3
0 ´A1

0 ´A2
0.

(5.11)

By (5.9) we have ErAi
0s “ ErlogXi

0s “ ErlogXi
0s “ ErAi

0s “ EλrAi
0s for i P t1, 2, 3u. This and

(5.11) give

Er|A1
0 ´A2

0|s ď Er2A3
0 ´A1

0 ´A2
0s “ Eλr2A3

0 ´ A1
0 ´ A2

0s “ Eλr|A1
0 ´ A2

0|s.

The left hand side is greater than ρ̄pΦpµ1q,Φpµ2qq. The first claim now follows by taking the
infimum over λ on the right hand side.

Turning to the second claim, suppose that Eµ1rA0
0s “ Eµ2 rA0

0s and that µ1 ‰ µ2. Let λ P
Mpµ1, µ2q be an ergodic minimizer of (5.10). Then there exists an integer n ą 1 with

λ
 

A1
1 ă A2

1, A
1
m ď A2

m, 1 ď m ă n,A1
n ą A2

n

(

ą 0.

Under the event in the above probability, we have
´

n
ÿ

k“m

A1
k

¯

_
´

n
ÿ

k“m

A2
k

¯

ă
n
ÿ

k“m

A3
k

whenever 1 ď m ă n. This is equivalent to
´

n
ź

k“m

X1
k

¯

_
´

n
ź

k“m

X2
k

¯

ă
n
ź

k“m

X3
k .(5.12)

We also have X1
k _ X2

k ď X3
k for all k P Z. Then the representation (5.3) of Y i, i P t1, 2, 3u, gives

Y 3
n`1

ă Y 1
n`1

^ Y 2
n`1

and from (5.7), it follows that for i P t1, 2u

Xi
n`1 “ Vn`2

´

1 `
Xi

n`1

Vn`1Y
i
n`1

¯

ă Vn`2

´

1 `
X3

n`1

Vn`1Y
3
n`1

¯

“ X3
n`1.
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Thus, λ
`

A1
n`1 _A2

n`1 ă A3
n`1

˘

ą 0. In particular,

ρ̄pΦpµ1q,Φpµ2qq ď Eλr|A1
0 ´A2

0|s “ Eλr|A1
n`1 ´A2

n`1|s

“ Eλr2A1
n`1 _A2

n`1 ´A1
n`1 ´A2

n`1s

ă Eλr2A3
n`1 ´A1

n`1 ´A2
n`1s “ Eλr|A1

0 ´ A2
0|s “ ρ̄pµ1, µ2q. �

Let M
α
e pΩAq be the set of ergodic probability measures µ P M1pΩAq with marginal mean

EµrA0
0s “ α. The following is an immediate consequence of the previous proposition.

Corollary 5.5. For each α ą M0 there exists at most one µ P M
α
e pΩAq with Φpµq “ µ.

Lemma 5.6. Suppose µ P M1pΩAq is stationary, Φpµq “ µ, and for some constant α ą M0 we
have

lim
nÑ8

1

n

n´1
ÿ

m“0

A0
m “ α, µ-almost surely.(5.13)

Then µ P M
α
e pΩAq.

Proof. By the ergodic decomposition theorem, there exists Qµ P M1

`

M
α
e pΩAq

˘

with

µ “

ż

Mα
e pΩAq

ν Qµpdνq.

Let φ be a bounded measurable function on ΩA. Then

EΦpµqrφpA0qs “ EµEΓbZ

rφpA0qs “

ż

Mα
e pΩAq

EνEΓbZ

rφpA0qsQµpdνq

“

ż

Mα
e pΩAq

EΦpνqrφpA0qsQµpdνq.

This is equivalent to Φpµq “
ş

ΦpνqQµpdνq. Since Φpµq “ µ, uniqueness in the ergodic decomposi-
tion theorem implies that Qµ ˝ Φ´1 “ Qµ. In particular, Φpνq P M

α
e pΩAq for Qµ-almost every ν.

Also, for any k P N
ż

Mα
e pΩAq

ρ̄pν,ΦpνqqQµpdνq “

ż

Mα
e pΩAq

ρ̄pΦkpνq,Φk`1pνqqQµpdνq.

The inequality in Proposition 5.4 then implies that

Qµ

´!

ν P M
α
e pΩAq : ρ̄pν,Φpνqq “ ρ̄pΦkpνq,Φk`1pνqq @k P N

)¯

“ 1.

By the second part of Proposition 5.4 it must be the case that ν “ Φpνq for Qµ-almost every ν.
Corollary 5.5 then implies that Qµ is a Dirac mass and so µ P M

α
e pΩAq. �

We close this section with a proof of the stationarity mentioned at the end of Section 2.5.

Lemma 5.7. Fix ρ ą θ ą 0. Assume tVn : n P Zu are i.i.d. such that 1{V0 is gamma-distributed
with scale parameter 1 and shape parameter ρ. Assume Xn are i.i.d. such that 1{X0 is gamma-
distributed with scale parameter 1 and shape parameter θ. Assume the two families of random
variables are independent. Then tXn : n P Zu, defined by (5.7), has the same distribution as
tXn : n P Zu.

Proof. Let Y 1
0 be independent of tXn, Vn : n P Z`u with 1{Y 1

0 being gamma-distributed with scale
parameter 1 and shape parameter ρ ´ θ. Define tY 1

n : n P Nu and tX1
n : n P Z`u inductively using

Y 1
n`1 “ 1 ` VnX

´1
n Yn and X1

n “ Vn`1p1 ` V ´1
n Xn{Y 1

nq.



STATIONARY DIRECTED POLYMERS 13

The Burke property [27, Theorem 3.3] tells us that tpY 1
m`n,X

1
m`n,Xm`n, Vm`nq : n P Z`u has the

same distribution for all m P Z` and that tX1
n : n P Z`u has the same distribution as tXn : n P Z`u.

Using Kolmogorov’s extension theorem we can extend the above random variables to a family
tpY 1

n,X
1
n,Xn, Vnq : n P Zu. In particular, the distribution of X1 is the same as that of the process

X and Y 1 and X1 satisfy the above induction for all n P Z.
By the uniqueness in Lemma 5.2, Y 1 must equal the process Y defined by (5.3), which then

implies that X1 is the same as X defined by (5.7). The claim now follows because we already
established that X1 has the same distribution as X. �

6. Proof of Theorems 3.1 and 3.5

Fix an i.i.d. probability measure P0 on pΩ0,F0q with L1 weights. Let P be a stationary future-

independent L1 corrector distribution with Ω0-marginal P0. Let X0
n “ eBpne1,pn`1qe1q, Y 0

n “
eBpne1,ne1`e2q´ωne1`e2 , and Vn “ eωne1`e2 , n P Z. Future independence implies the two processes
X0 and V are independent of each other. Let I be the invariant σ-algebra for the process pX0, V q.
Let µ be the distribution of A0 “ tlogX0

n : n P Zu. Let M0 “ Erω0s “ Erlog V0s. Recovery
(f) implies that Bp0, e1q ą ωe1 and hence ErlogA0

0 | Is “ ErBp0, e1q | Is ą Erω0s. In particular,
α “ mP ¨e1 “ ErBp0, e1qs ą M0.

Lemma 6.1. There exists a Borel-measurable map F : RZ ˆ R
ZˆN Ñ R

Z2ˆZ2

such that P-almost
surely,

tBpx, y, ωq : x, y P Z ˆ Z`u

“ F
`

tBpne1, pn ` 1qe1q : n P Zu, tωne1`ke2 : n P Z, k P Nu
˘

.

Proof. Lemma 4.1 implies that Y 0 satisfies (5.2). Since it is a stationary almost surely finite
process, Lemma 5.2 implies that Y 0 has the representation (5.3). Then the second equation in

(4.1) says that eBpne1`e2,pn`1qe1`e2q is equal to X0
n, defined by (5.7). This argument shows that

the process tBpne1, ne1 ` e2q, Bpne1 ` e2, pn ` 1qe1 ` e2q : n P Zu is a measurable function of
tBpne1, pn ` 1qe1q : n P Zu and tωne1`e2 : n P Zu.

Since P is stationary, we have that A0 “ tlogX0
n : n P Zu has the same distribution µ as

A0. In other words, Φpµq “ µ. This lets us repeat the above procedure inductively to get that
tBpx, x ` eiq : x P Z ˆ Z`, i “ 1, 2u is a measurable function of tBpne1, pn ` 1qe1q : n P Zu and
tωne1`ke2 : n P Z, k P Nu. We also have Bpx ` ei, xq “ ´Bpx, x ` eiq, P-almost surely. Then the
cocycle property (e) implies that for x, y P Z ˆ Z`, Bpx, yq is the sum of Bpxk, xk`1q along any
path with steps t˘e1,˘e2u from x to y. The claim of the lemma follows. �

Corollary 6.2. If P1 is a stationary future-independent L1 corrector distribution with Ω0-marginal
P0 and the distributions of tBpne1, pn ` 1qe1q : n P Zu under P

1 and P match, then P
1 “ P.

Proof. Lemma 6.1 implies that the distributions of tBpx, yq : x, y P ZˆZ`u under P and P
1 match.

Then stationarity of the two probability measures implies P “ P
1. �

Proof of Theorem 3.1. As was mentioned in the proof of Lemma 6.1, µ is a fixed point of Φ.
Corollary 5.5 says that there exists at most one ergodic such µ. Corollary 6.2 thus implies that
there exists at most one Te1-ergodic P. Switching e1 and e2 around in the definitions of X0 and Y 0

we get the same result for the Te2 shift. �

Proof of Theorem 3.5. Theorem 4.4 and Lemma 4.5(c) in [18] imply that n´1Bp0, ne1q converges

almost surely to mP ¨e1. Since Bp0, ne1q “
řn´1

m“0
A0

m we have that (5.13) holds and Lemma 5.6

says that µ is ergodic. Corollary 6.2 says P is determined by µ b ΓbpZˆZ`q. Since this is a product
of an ergodic measure and a product measure, it is ergodic. Ergodicity of P under the Te1 shift
follows. A symmetric argument gives the ergodicity under the Te2 shift. �
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