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ON THE ENTROPY OF PARABOLIC ALLEN-CAHN EQUATION

AO SUN

Abstract. We define a (mean curvature flow) entropy for Radon measures in R
n or in

a compact manifold. Moreover, we prove a monotonicity formula of the entropy of the
measures associated with the parabolic Allen-Cahn equations. If the ambient manifold is a
compact manifold with non-negative sectional curvature and parallel Ricci curvature, this
is a consequence of a new monotonicity formula for the parabolic Allen-Cahn equation. As
an application, we show that when the entropy of the initial data is small enough (less
than twice of the energy of the one-dimensional standing wave), the limit measure of the
parabolic Allen-Cahn equation has unit density for all future time.

1. Introduction

The parabolic Allen-Cahn equation

(1.1)
∂

∂t
uǫ = ∆uǫ − 1

ǫ2
f(uǫ)

was introduced by Allen and Cahn in 1979. It is the gradient flow of the energy functional

(1.2) M ǫ(u) =

∫

Rn

ǫ

2
|Du|2 + 1

ǫ
F (u)dx

with a speed up factor 1/ǫ. Here F (u) is the potential function known to be the “double
well potential”, and f is the derivative of the potential function, see Section 2.

The solutions to the Allen-Cahn equation are the models to the motion of phase boundaries
by surface tension. When ǫ → 0, the term − 1

ǫ2
f(uǫ) makes the phase boundry sharp, and

the limit should be the motion of surfaces by mean curvature. In [I1], Ilmanen studied the
measures µǫ

t associated with the solution uǫ, which is defined by

(1.3) dµǫ
t =

(

ǫ

2
|Duǫ(·, t)|2 + 1

ǫ
F (uǫ(·, t))

)

dx.

In this paper, we study the (mean curvature flow) entropy of this measure. Entropy in R
n

was introduced by Colding-Minicozzi [CM] in the study of mean curvature flow. Later the
author [Su2] generalized Colding-Minicozzi’s idea to define entropy in a manifold. Entropy
is a quantity that characterizes a submanifold/measure from all scales. Hypersurfaces with
small entropy have been studied in many contexts, see Colding-Ilmanen-Minicozzi-White
[CIMW], Bernstein-Wang [BW1],[BW2] and Zhu [Z].
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The monotonicity formula of the entropy of mean curvature flow plays a very important
role in the study of mean curvature flow, see [CM], [Su2]. The main result of this paper is
the following monotonicity formula of the entropy of Allen-Cahn equations. We use λ to
denote the entropy (see Definition 4.1), and we use ξǫ to denote the discrepancy measure
(see (2.8)).

Theorem 1.1. Suppose M = R
n or M is a compact manifold with non-negative sectional

curvature and parallel Ricci curvature. Suppose µǫ
t is the measure associated with the para-

bolic Allen-Cahn equation on M . Suppose ξǫ0 ≤ 0. For every 0 ≤ t1 ≤ t2, we have

(1.4) λ(µǫ
t2
) ≤ λ(µǫ

t1
).

If we let ǫ → 0, we obtain a monotonicity formula of entropy for the limit measure.

Theorem 1.2. Suppose M = R
n or M is a compact manifold with non-negative sectional

curvature and parallel Ricci curvature. Suppose µǫ
t is the measure associated with the para-

bolic Allen-Cahn equation on M , and µt is the limit measure as ǫ → 0. For every 0 < t1 ≤ t2,
we have

(1.5) λ(µt2) ≤ λ(µt1).

We remark that there are also monotonicity formulas for local entropy (see Definition 4.3),
and Theorem 1.1 and Theorem 1.2 are just special cases. See Corollary 4.5 and Corollary
4.6.

The monotonicity of entropy provides information on the evolutions. In this paper, we
focus on the problem of the density of the measures associated with the parabolic Allen-Cahn
equations. In [I1], Ilmanen proved that under certain reasonable initial conditions, as ǫ → 0,
µǫ
t converge to a rectifiable measure µt. See also [ESS],[So2]. Moreover µt is a Brakke flow,

a geometric measure theoretic weak solution of mean curvature flow. In [I1, Section 13],
Ilmanen asked the following question: when does µt have unit density? Let α be the energy
of the 1-dimensional standing wave (see (2.6)). Then unit density means that µt has density
α almost everywhere.

In this paper, we use entropy and local entropy of Radon measures (see Definition 4.1) to
answer this question in a special case.

Theorem 1.3. Suppose M = R
n or M is a compact manifold with non-negative sectional

curvature and parallel Ricci curvature. Suppose µǫ
t are measures associated with the Allen-

Cahn equations on M . Suppose there exists κ > 0 such that λ(0,T )(µǫ
0) < 2α − κ, and the

discrepancy measure ξǫ0 ≤ 0 for a sequence of ǫ → 0. Then µǫ
t has unit density for t ∈ (0, T ).

Here T ∈ (0,∞) or T = ∞.

In the above theorem, we need a technical assumption that the discrepancy measure is
non-positive. This assumption is used by Ilmanen in [I1]. Even we do not require the
discrepancy measure to be non-positive, we can still use an argument by Soner [So2] to show
that the limit measure has unit density.
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Theorem 1.4. Suppose M = R
n or M is a compact manifold with non-negative sectional

curvature and parallel Ricci curvature. Suppose µǫ
t are measures associated with the Allen-

Cahn equations on M , and µt is a limit measure as ǫ → 0. Suppose there exists κ > 0, ǫ0 > 0
and δ > 0 such that the entropy λ(µǫ

δ) < 2α − κ, or the local entropy λ(0,T )(µǫ
δ) < 2α − κ,

for ǫ < ǫ0. Then the limit measure µt has unit density for t ≥ δ, i.e. the density of µt is α
almost everywhere.

Bronsard-Stoth [BS] constructed examples such that the limits do not have unit density.
The limit of the initial data constructed by Bronsard-Stoth has density 2α, this implies that
the entropy of their initial data is at least 2α (see Lemma 4.4). Thus our theorem is sharp
in some sense. We highlight that our theorems provide long time information, i.e. they hold
for arbitrarily large time t.

There is a connection between the unit density problem of the limit of the Allen-Cahn
equation and the unit density problem of Brakke flow. In [I2, Appendix E], Ilmanen asked
that can we show the unit density is preserved for the Brakke flow starting from the bound-
aries of sets. Ilmanen also constructed an example called “double spoon” to illustrate that
in general unit density may fail under Brakke flow, even when the initial measure has unit
density. Thus the assumption that the Brakke flow starts from the boundaries of sets is
necessary.

It is not too hard to construct a motion of the boundaries of sets by the limit of the
Allen-Cahn equation, see [I1, Section 1.4]. In particular, the double spoon example can not
be obtained by the Allen-Cahn equation. So the unit density conjecture on Brakke flow is
true if the unit density problem for the limit of the Allen-Cahn equation is true. As a special
case, our result implies that for a Brakke flow, if the entropy of the initial measure is small
(less than 2), the unit density is preserved under the flow.

Idea of proof. The proof relies on monotonicity formulas of Allen-Cahn equation (see
Theorem 3.3 and Theorem 3.4). If the ambient manifold is R

n, then the monotonicity
formula has been proved by Ilmanen [I1] and Soner [So2], and similar results for the non-
scalar case (correspondence to higher codimensional mean curvature flow) was studied by
Ambrosio-Soner in [AS] and Jerrard-Soner in [JS]. We refer the readers to [So1] for an
overview discussion.

In this paper, we generalize the monotonicity formula to a compact manifold M with non-
negative sectional curvature and parallel Ricci curvature. The proof follows the calculations
by Ilmanen and Soner, with an extra term appearing because the ambient space M is not Rn.
In order to handle this extra term, we need an idea by Hamilton. In [Ha1], Hamilton proved a
monotonicity formula for mean curvature flow in a compact manifold M . Similarly, because
the ambient space M is not R

n, there is an extra term, and Hamilton used a Harnack
inequality [Ha2] to bound this term. In our case, we can also use Hamilton’s Harnack
inequality to bound the extra term.

The curvature assumption on M is necessary for Hamilton’s Harnack inequality. Without
the curvature assumption, we can only obtain a Gronwall type inequality rather than a
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monotonicity formula, and the entropy may become very large as t → ∞. Thus the curvature
assumption is necessary if we want to study long time behaviour.

We want to remark that Pisante-Punzo [PP] proved a Huisken’s type of inequality for
parabolic Allen-Cahn equations in a manifold, without a specific curvature assumption.
Their inequality was motivated by Ecker’s local monotonicity formula, see [E]. Nevertheless,
their inequality is a Gronwall type inequality, so it can not be used to study long time
behaviours.

2. Preliminaries on Allen-Cahn Equation

Let uǫ be the unique smooth solutions of the equation

∂

∂t
uǫ = ∆uǫ − 1

ǫ2
f(uǫ) on R

n × [0,∞)

uǫ(·, 0) = uǫ
0(·) on R

n × {0}.
(2.1)

where uǫ
0 is the initial data. The potential function F : R → R satisfies

f = F ′, F =
1

2
g2,

where

(2.2)















f(−1) = f(0) = f(1) = 0,
f > 0 on (−1, 0), f < 0 on (0, 1),
f ′(−1) > 0, f ′(1) > 0, f ′(0) < 0
g(−1) = g(1) = 0, g > 0 on (−1, 1).

In this paper, we will assume F , f and g are the functions in the standard model

(2.3) F (u) =
1

2
(1− u2)2, f(u) = 2u(u2 − 1), g(u) = 1− u2.

For general F , f and g satisfying (2.2), all the discussions in this paper still hold if we assume
one extra assumption on F (see (3.11)). We will discuss this assumption in Remark 3.5.

The one-dimensional standing wave qǫ is defined to be the solution to

(2.4) qǫxx −
1

ǫ2
f(qǫ(x)) = 0, x ∈ R

with the assumption that qǫx > 0, qǫ(±∞) = ±1 and qǫ(0) = 0. We can solve this ODE by
solving the first order ODE

(2.5) qǫx −
1

ǫ
g(qǫ(x)) = 0, x ∈ R

with the assumption that qǫx > 0, qǫ(±∞) = ±1 and qǫ(0) = 0.
By ODE theory we can solve qǫ for any potential function satisfying (2.2). We define α to

be its energy

(2.6) α =

∫ ∞

−∞

ǫ

2
(qǫx(x))

2 +
1

ǫ
F (qǫ(x))dx.
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By change of variable we know that α is independent of ǫ. One can also check that

α =

∫ 1

−1

√

F (s)/2ds.

In particular, for the model case F (u) = 1
2
(1− u2)2, we have qǫ(x) = tanh(x/ǫ), α = 4/3.

We define the Radon measure µǫ
t by

(2.7) dµǫ
t =

(

ǫ

2
|Duǫ(·, t)|2 + 1

ǫ
F (uǫ(·, t))

)

dx.

We say µǫ
t is associated with the solution to the Allen-Cahn equation, or for the sake of

brevity say µǫ
t is associated with the Allen-Cahn equation.

Ilmanen [I1] proved that, under certain technical requirement, there exists ǫi → 0 such
that µǫi

t converge to a (n− 1)-rectifiable Radon measure µt for a.e. t > 0. Moreover, µt is a
mean curvature flow in the sense of Brakke.

One motivation of Ilmanen to study the limit behavior of the Allen-Cahn equation was
to understand the weak mean curvature flow, see [I1, Section 12]. Thus Ilmanen had some
technical requirement on the initial data µǫ

0, see [I1, p.423]. However, uniformly bounded
total energy

∫

dµǫ
t is enough to give a convergence subsequence, see [So2]. [So2] even proved

that a weaker assumption is enough to yield a convergence subsequence. In our case we only
require the initial data have uniform small entropy. This can be viewed as a restriction on
(iv) on [I1, p.423], cf. Lemma 4.2.

Next we discuss the discrepancy measure ξt, which is defined to be

(2.8) dξǫt =

(

ǫ

2
|Duǫ(·, t)|2 − 1

ǫ
F (uǫ(·, t))

)

dx.

If we define rǫ to be the function satisfying

(2.9) uǫ = qǫ(rǫ),

then rǫ satisfies the equation

(2.10)
∂

∂t
rǫ = ∆rǫ +

2g′

ǫ
(|Drǫ|2 − 1).

We can check

(2.11) |Drǫ|2 = (ǫ/2)|Duǫ|2
(1/ǫ)F (uǫ)

.

This implies that |Drǫ|2 − 1 carries information of ξt. In particular, |Drǫ| ≤ 1 implies that
ξt ≤ 0.

By using (2.10) and the equation of |Drǫ|2, Ilmanen and Soner obtained some estimates
on |Drǫ|2. As a result, they proved certain bounds on ξt. We refer the readers to [I1, Section
4] [So2, Appendix] for detailed discussions. Here we only state their results which we will use
later. We also remark that although their results were proved for the Allen-Cahn equations
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in R
n, the proofs are also valid for the Allen-Cahn equations in a closed manifold (in fact

the maximum principle is even easier in this case because the domain is compact).

Theorem 2.1 ([I1], Section 4). If ξ0 ≤ 0, then ξt ≤ 0 for all t > 0.

Theorem 2.2 ([So2], Proposition 4.1). Assume |uǫ(·, 0)| ≤ 1. Then there exists 0 < ǫ0 < 1
such that for any ǫ ≤ ǫ0 we have

(2.12) |Drǫ(x, t)|2 ≤ 1 +
2

log(1/ǫ)

(ǫrǫ(x, t))2 + 1

t
.

for (x, t) ∈ M × (0,∞).

We remark that In [So2], Soner used zǫ to denote ǫrǫ.

3. Monotonicity formula

Based on Huisken’s monotonicity formula [Hu], Ilmanen [I1, Section 3] proved a mono-
tonicity formula for the measures which are associated with the solutions to the Allen-Cahn
equation, with a technical assumption on the initial data (see Ilmanen [I1, 1.4 (i)]). Later
Soner [So2] removed this assumption. Let us first state the monotonicity formula for Allen-

Cahn equations on R
n. Let ρy,s be the backward heat kernel in R

n multiplying by
√

4π(s− t):

ρy,s(x, t) =
1

(4π(s− t))(n−1)/2
e−

|x−y|2

4(s−t) .

Theorem 3.1. ([I1, 3.3]) Suppose µǫ
t is the measure associated with an Allen-Cahn equation

on R
n. Suppose the discrepancy measure ξ0 at time 0 is non-positive. Then for every

0 ≤ t1 ≤ t2 < s, we have

(3.1)

∫

ρy,s(t2, x)dµ
ǫ
t2
(x) ≤

∫

ρy,s(t1, x)dµ
ǫ
t1
(x).

Theorem 3.2. ([So2, Corollary 5.1]) Suppose µt is the limit measure associated with Allen-
Cahn equations on R

n. For every 0 < t1 ≤ t2 < s, we have

(3.2)

∫

ρy,s(t2, x)dµt2(x) ≤
∫

ρy,s(t1, x)dµt1(x).

In this section, we are going to generalize this monotonicity formulas to the parabolic
Allen-Cahn equation on a certain class of manifolds. Suppose M is a manifold. We use
H(x, y, t) to denote the heat kernels on M and we call H(x, y, s − t) the backward heat
kernel if we fix s > 0. We have

∂tH(x, y, t) = ∆xH(x, y, t).

Moreover we define

(3.3) ρy,s(t, x) =
√

4π(s− t)H(x, y, s− t).

Note that if M = R
n, then this definition coincides with the definition of ρy,s in R

n as in the
beginning of this section.

In the rest of this section we prove the following monotonicity formulas.
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Theorem 3.3. Suppose µǫ
t is the measure associated with Allen-Cahn equations onM , where

M is a compact manifold with parallel Ricci curvature and non-negative sectional curvature.
Suppose the discrepancy measure ξ0 at time 0 is non-positive. For every 0 ≤ t1 ≤ t2 < s, we
have

(3.4)

∫

ρy,s(t2, x)dµ
ǫ
t2(x) ≤

∫

ρy,s(t1, x)dµ
ǫ
t1(x).

Theorem 3.4. Suppose µt is the limit measure associated to Allen-Cahn equations on M ,
where M is a compact manifold with parallel Ricci curvature and non-negative sectional
curvature. For every 0 < t1 ≤ t2 < s, we have

(3.5)

∫

ρy,s(t2, x)dµt2(x) ≤
∫

ρy,s(t1, x)dµt1(x).

Proof of Theorem 3.3 and Theorem 3.4. The proof follows the calculations of [I1],[So2], and
an idea of Hamilton in [Ha1]. In the following, for two matrices A and B, A : B denotes the
inner product of them as matrices. We also define the unit normal vector to the level sets
by ν = Duǫ

|Duǫ|
. Note that ν is not well-defined at the points where Duǫ = 0, but it does not

matter the later calculations, and we can define ν to be any unit vector at the point where
Du = 0.

Recall the calculations in [I1, 3.2]: for φ ∈ C2(M,R+),

d

dt

∫

φdµǫ
t =− ǫ

∫

φ

(

−∆u+
1

ǫ2
f(u)− Du ·Dφ

φ

)2

dx

+

∫
(

∆φ+
∂

∂t
φ

)

dµǫ
t +

∫
(

−ν ⊗ ν : D2φ+
(ν ·Dφ)2

φ

)

(dµǫ
t + dξǫt)

≤
∫
(

∆φ +
∂

∂t
φ

)

dµǫ
t +

∫
(

−ν ⊗ ν : D2φ+
(ν ·Dφ)2

φ

)

(dµǫ
t + dξǫt )

(3.6)

Now we insert ρy,s(x, t) as the test function φ. Note that

∂

∂t
ρy,s(x, t) = −∆ρy,s(x, t)−

1

2(s− t)
ρy,s(x, t).

Moreover, by Hamilton’s Hanarck inequality (see [Ha2, Corollary 4.4]),

ν ⊗ ν :

(

D2H− DH⊗DH
H +

1

2(s− t)
Hg

)

≥ 0,

while H = H(x, y, s− t) and g is the metric tensor on M . These imply

d

dt

∫

ρy,sdµ
ǫ
t ≤
∫
(

∆ρy,s +
∂

∂t
ρy,s

)

dµǫ
t +

∫

1

2(s− t)
ρy,s(dµ

ǫ
t + dξǫt )

≤
∫

1

2(s− t)
ρy,sdξ

ǫ
t .

(3.7)
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If ξ0 ≤ 0, then Theorem 2.1 shows that ξt ≤ 0, so we complete the proof of Theorem 3.3.
In the following we are going to prove Theorem 3.4. Namely, even the discrepancy measure
is not assumed to be non-positive, the inequality

(3.8)

∫

ρy,s(t2, x)dµt2(x) ≤
∫

ρy,s(t1, x)dµt1(x)

holds for the limit measure µt.
By Theorem 2.2, (3.7) becomes

(3.9)
d

dt

∫

ρy,sdµ
ǫ
t ≤

∫

1

2(s− t)

1

ǫ

2

log(1/ǫ)

(ǫrǫ)2 + 1

t
F (uǫ)ρy,sdx.

We note that

(3.10)
1

ǫ
F (uǫ)dx ≤ dµǫ

t

and

(3.11) x2F (qǫ(x)) ≤ 4, ∀x ∈ R.

So we have
d

dt

∫

ρy,sdµ
ǫ
t ≤

1

(s− t) log(1/ǫ)t

∫

ρy,sdµ
ǫ
t +

4ǫ

(s− t) log(1/ǫ)t

∫

ρy,sdx,(3.12)

and when t ≥ t1,

d

dt

∫

ρy,sdµ
ǫ
t ≤

1

(s− t) log(1/ǫ)t1

∫

ρy,sdµ
ǫ
t +

4ǫ

(s− t) log(1/ǫ)t1

∫

ρy,sdx.(3.13)

We also note that
∫

ρy,s(t, x)dx =
√

4π(s− t)

∫

H(x, y, s− t)dx =
√

4π(s− t).

In conclusion, we obtain the following differential inequality

(3.14)
d

dt

∫

ρy,sdµ
ǫ
t ≤

1

(s− t) log(1/ǫ)t1

(
∫

ρy,sdµ
ǫ
t + 4ǫ

√

4π(s− t)

)

.

Then we obtain a Gronwall type inequality for t ≥ t1

(3.15)
d

dt

(

(

s− t

s− t1

)K ∫

ρy,sdµ
ǫ
t − 8ǫ

√
πK

∫ t

t1

(s− b)−1/2

(

s− b

s− t1

)K

db

)

≤ 0,

where K = (log(1/ǫ)t1)
−1. Therefore,

(3.16)

∫

ρy,sdµ
ǫ
t2
≤
(

s− t1
s− t2

)K ∫

ρy,sdµ
ǫ
t1
+ 8ǫ

√
πK

∫ t2

t1

(s− b)−1/2

(

s− b

s− t2

)K

db.

By letting ǫ → 0, we obtain the desired monotonicity formula in Theorem 3.4. �
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Remark 3.5. In the proof we assume

F (u) =
1

2
(1− u2)2, f(u) = 2u(u2 − 1), g(u) = 1− u2.

For a general triple F , f and g satisfying (2.2), the proof still works if (3.11) holds (the right
hand side can be replaced by any fixed positive number).

4. Entropy of Parabolic Allen-Cahn Equation

We follow the idea of Colding-Minicozzi [CM] to define the entropy of a Radon measure,
c.f.[Su2].

Definition 4.1. Suppose M = R
n or M is a compact manifold. Given a Radon measure µ

in M , we define the entropy λ(µ) to be

λ(µ) = sup
(y,s)∈M×(0,∞)

∫

ρy,s(x, 0)dµ(x).

Entropy is a quantity that characterizes the measure from all scales. For example, the
following lemma indicates that the entropy is equivalent to the volume growth bound of a
measure:

Lemma 4.2. Suppose M = R
n or M is a compact manifold with non-negative Ricci cur-

vature. There exists C > 0 only depending on the geometry of M such that for any Radon
measure µ with bounded entropy,

(4.1) C−1 sup
x∈M,R>0

µ(BR(x))

Rn−1
≤ λ(µ) ≤ C sup

x∈M,R>0

µ(BR(x))

Rn−1
.

Here we only prove the case that M = R
n. When M is a compact manifold with non-

negative Ricci curvature, the proof is very similar but needs some analysis on heat kernels,
which is out of the scope of this paper, so we omit the proof here and refer the readers to
[Su2, Section 4] for a proof.

Proof of Lemma 4.2 when M = R
n. On one hand, for any x ∈ R

n and R > 0, we have

λ(µ) ≥ 1

(4πt)n/2

∫

e
−|y−x|2

4t χBR(x)dµ(y) ≥
1

(4πt)n/2
e−R2/4tµ(BR(x)).

Then by choosing t = R2 we have µ(BR(x))
Rn ≤ Cλ(µ), where C is a constant.

On the other hand, we only need to prove
∫

e−|x|2dµ(x) ≤ C supx∈Rn,R>0
µ(BR(x))
Rn−1 to con-

clude the second inequality. Let χBr(x) be the characteristic function of the set Br(x).
∫

e−|x|2dµ(x) ≤
∑

y∈Zn

∫

e−|x|2χB2(y)dµ ≤ C
∑

y∈Zn

e−|y|2µ(B2(y))

≤ C sup
x∈Rn+1,R>0

µ(BR(x))

Rn−1

∑

y∈Zn

e−|y|2 ≤ C sup
x∈Rn+1,R>0

µ(BR(x))

Rn−1
.

(4.2)
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Here C varies from line to line, but it is always a constant only depending on n. Zn consists
of all the integer points in R

n. Then we conclude this Lemma. �

If we only take the supremum over a subset of Rn × (0,∞), we get a localized version of
entropy, see [Su1].

Definition 4.3. Given a Radon measure µ and U ⊂ M , I ⊂ (0,∞), we define the local
entropy λI

U(µ) to be

λI
U(µ) = sup

(y,s)∈U×I

∫

ρy,s(x, 0)dµ(x).

We will omit the subscription U if U = M .

If we only study the local property, the entropy/local entropy actually gives a bound on
the density. We define the (n− 1)-dimensional density θ(x) by

(4.3) θ(x) = lim
r→0

µ(Br(x))

ωn−1rn−1

whenever the limit exists. Here ωn−1 is the volume of the unit ball in R
n−1.

Lemma 4.4. Suppose M = R
n or M is a compact manifold. Suppose µ is an integral

(n− 1)-rectifiable Radon measure in M , then for T ∈ (0,∞) or T = ∞,

(4.4) θ(x) ≤ λ(0,T )(µ).

Proof. First let us consider the case that M = R
n. Since µ is integral rectifiable, θ(x) just

counts the multiplicity of the approximate tangent plane through x. Note the integral of the
backward heat kernel on a hyperplane is 1. Thus

θ(x) = lim
s→0

∫

1

(4πs)(n−1)/2
e−

|y−x|2

4s dµ(y) ≤ λ(0,T )(µ).

If M is a compact manifold, then the short time expansion of the heat kernels together
with a similar argument as the case M = R

n show the same inequality. �

Now we focus on the measures associated with the parabolic Allen-Cahn equations. Taking
supremum of the monotonicity formula among all (y, s) leads to the monotonicity of entropy
and local entropy:

Corollary 4.5. Suppose M = R
n or M is a compact manifold with non-negative sectional

curvature and parallel Ricci curvature. Suppose µǫ
t is the measure associated with the para-

bolic Allen-Cahn equation on M . Suppose ξǫ0 ≤ 0. For every 0 ≤ t1 ≤ t2, we have

(4.5) λ(µǫ
t2) ≤ λ(µǫ

t1).

More generally, given T > 0, we have

(4.6) λ(0,T )(µǫ
t2) ≤ λ(0,T+(t2−t1))(µǫ

t1).
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Corollary 4.6. Suppose M = R
n or M is a compact manifold with non-negative sectional

curvature and parallel Ricci curvature. Suppose µǫ
t is the measure associated with the par-

abolic Allen-Cahn equation on M , and µt is the limit as ǫ → 0. For every 0 < t1 ≤ t2, we
have

(4.7) λ(µt2) ≤ λ(µt1).

More generally, given T > 0, we have

(4.8) λ(0,T )(µt2) ≤ λ(0,T+(t2−t1))(µt1).

Proof. Note ρy,s(t, x) = ρy,s−t(0, x). Taking supremum among all (y, s) ∈ R
n×(t2,∞) on the

left hand side of (3.1) and (3.2) gives us the monotonicity of entropy, and taking supremum
among all (y, s) ∈ R

n × (t2, t2 + T ) on the left hand side of (3.1) and (3.2) gives us the
monotonicity of local entropy. �

Together with Lemma 4.2, Corollary 4.5 and Corollary 4.6 imply the following uniform
volume growth bound.

Corollary 4.7. Suppose M = R
n or M is a compact manifold with non-negative sectional

curvature and parallel Ricci curvature. Suppose µǫ
t is the measure associated with the para-

bolic Allen-Cahn equation on M , and µt is the limit as ǫ → 0. Then

sup
x∈M,R>0

µt(BR(x))

Rn−1
≤ C sup

x∈M,R>0

µδ(BR(x))

Rn−1
, ∀t ≥ δ > 0.

If we further assume ξǫ0 ≤ 0, then

sup
x∈M,R>0

µǫ
t(BR(x))

Rn−1
≤ C sup

x∈M,R>0

µǫ
0(BR(x))

Rn−1
.

Here C is a constant depending on M but does not depend on time t.

5. Unit Density of Limit Measure

Let µt be the limit of the measures which is associated with the parabolic Allen-Cahn
equation. Recall that

α =

∫ 1

−1

√

F (s)/2ds,

and we say µt has unit density if θ(x) = α for almost all time and almost all x in the
support of µt. Note α appears because of the nature of the Allen-Cahn equation. In this
section we prove the main theorem.

Proof of Theorem 1.3. By Corollary 4.6, λ(0,T−t)(µt) ≤ λ(0,T )(µ0) < 2α. Then Lemma 4.4
implies that the density of µt is strictly less than 2α. Tonegawa [T] proved that α−1µt is
integral, thus µt has density α, i.e. µt has unit density. �
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Proof of Theorem 1.4. By the lower semi-continuity of entropy and local entropy, λ(0,T )(µǫ
0) <

2α − κ implies that λ(0,T )(µ0) ≤ 2α − κ < 2α. Then Theorem 1.3 implies that µt has unit
density when t ∈ [0, T ). �
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