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Abstract

We introduce a family of extensions of the Hietarinta-Viallet equation to a multi-term recurrence

relation via a reduction from the coprimeness-preserving extension to the discrete KdV equation.

The recurrence satisfies the irreducibility and the coprimeness property although it is nonintegrable

in terms of an exponential degree growth. We derive the algebraic entropy of the recurrence by an

elementary method of calculating the degree growth. The result includes the entropy of the original

Hietarinta-Viallet equation.

1 Introduction

There has been a question of what is exactly the discrete integrability. Various attempts have been made
to construct a reasonable definition of discrete integrability by analogy with that of continuous systems.
An underlying idea is that the integrability of a discrete equation is closely related to the slow growth
of certain quantities. One of the first criteria for discrete integrability is the singularity confinement test
(SC test) [1], which was introduced as a discrete analogue of the Painlevé test for differential equations.
The SC test asserts that if all the singularities of a discrete equation are resolved after a finite iterations:
i.e., the information on the initial values are recovered, then the equation passes the test. The SC test has
been successfully applied to discrete QRT mappings to discover numerous nonautonomous recurrences
including the discrete Painlevé equations [2].

Another famous criterion uses the algebraic entropy [3]. The algebraic entropy of a discrete mapping
is a non-negative scalar which is related to the degree growth of the iterated mapping. The algebraic
entropy E of a mapping ϕ is defined as

E := lim
n→∞

log(dn)

n
,

where dn is the degree of the n-th iterate degϕn of some initial condition. If a discrete equation has
zero algebraic entropy the equation is decided to be integrable, otherwise when the entropy is positive
the equation is a non-integrable mapping. In this article we hire the zero algebraic entropy condition
as a working definition of discrete integrability. It has been discovered that a certain type of discrete
equations has positive algebraic entropy while passing the SC test. The first example of this kind is the
mapping by Hietarinta and Viallet [4]:

xn+1 = −xn−1 + xn +
a

x2
n

, (1)

where a is a nonzero constant. The algebraic entropy of (1) is derived to be log 3+
√
5

2 by an algebraic
method [3], and by an algebro-geometric method (blowing ups and construction of a space of initial
conditions) [5].
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Now a lot of examples of confining equations (whose singularities are all confined) with positive
algebraic entropies are known [6, 7, 8, 9], however they are all equations on a one-dimensional lattice. It
has been a problem to find the singularity confining equations with exponential degree growth defined
over a multi-dimensional lattice. Recently several such examples have been discovered using the notion
of the coprimeness property. The coprimeness property was introduced as an algebraic re-interpretation
of the singularity confinement test, originating from the idea that a common factor between two iterates
corresponds to a common zero/pole. Let ϕ be a dynamical system of a variable xh (h ∈ L) where L is
an integer lattice. Then ϕ has the coprimeness property if there exists a positive constant D such that
arbitrary two iterates xh and xk are pairwise coprime over the field of rational functions of the initial
variables, on condition that dist(h, k) ≥ D, where we have introduced a non-trivial metric ‘dist’ on the
lattice L. Roughly speaking the system satisfies the coprimeness property if any pair of iterates that
stay far enough away from each other on the lattice is coprime. Many of the known integrable systems
satisfy the coprimeness property [10, 11, 12]. Moreover, many non-integrable coprimeness-preserving
extensions to the well-known integrable equations were discovered including the so-called CP discrete
KdV equation, the CP discrete Toda equation and the CP Somos-4 sequence [9, 13, 14]. We shall call
such equations as belonging to the “CP class” in this article.

Let us focus on the following two-dimensional CP class equation extended from the discrete KdV
equation [13]:

xt,n + xt−1,n−1 =
a

xk
t,n−1

+
b

xk
t−1,n

. (2)

Here k is a positive even integer and a, b 6= 0. Note that if k ≥ 3 is odd the equation does not pass the
singularity confinement test. The transformation of variables corresponding to its singularity pattern is

xt,n =
ft,nft−1,n−1

fk
t−1,nf

k
t,n−1

.

Equation (2) transforms into the following recurrence analogous to the tau-function form in the integrable
cases:

ft,n =
−ft−2,n−2f

k
t−1,nf

k
t,n−1 + afk2−1

t−1,n−1f
k2

t,n−2f
k
t−1,nf

k
t−2,n−1 + bfk2−1

t−1,n−1f
k2

t−2,nf
k
t,n−1f

k
t−1,n−2

fk
t−2,n−1f

k
t−1,n−2

. (3)

The irreducibility and the coprimeness of (3) are first addressed in [13] and the complete proof is published
in [20]. See Appendix for details. In this article, we study the following recurrence

xm + xm−p−q =
a

xk
m−q

+
b

xk
m−p

(k ∈ 2Z>0), (4)

where 1 ≤ p < q are positive integers coprime with each other. Note that if (p, q) = r r ≥ 2, then the
iteration splits into r independent orbits on which the results in this article can be applied. The equation
(4) is obtained as a reduction of (2) and can be considered as an extension of the Hietarinta-Viallet
equation into a multi-term recurrence relation. The equation (4) is transformed into the “tau-function”
form (5)

fmfk
m−2p−qf

k
m−p−2q = −fk

m−pf
k
m−qfm−2p−2q

+ afk
m−pf

k2−1
m−p−qf

k2

m−2qf
k
m−2p−q + bfk

m−qf
k2−1
m−p−qf

k2

m−2pf
k
m−p−2q, (5)

via the transformation (6):

xm =
fmfm−p−q

fk
m−pf

k
m−q

. (6)

It is proved that (5) also satisfies the Laurent, the irreducibility and the coprimeness properties as in
Appendix.
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2 Algebraic entropy

In this section we obtain the algebraic entropy of the equation (4). It is worth noting that since
(4) is a multi-term recurrence, it is not easy to apply an algebro-geometric technique to obtain the
space of initial conditions to derive the algebraic entropy. Thus we stick to elementary estimation
of the growth of the degrees. From here on let us fix the set of initial variables of Equation (5)
as f = {f−2p−2q, f−2p−2q+1, ..., f−1}. The initial variables of (4) corresponding to f is denoted as
x := {x−p−q, x−p−q+1, ..., x−1}. Let us denote by Ord(r) the degree of a rational function r(x) with
respect to x: i.e., if we write r = f/g, f, g ∈ Z[x, a, b], where f , g are pairwise coprime as polynomials
of x, then Ord(x) := max[deg(f), deg(g)]. Let us denote by Ordxs

(f) the degree of f with respect to xs.
The main theorem of this article gives the algebraic entropy of (4).

Theorem 2.1
The algebraic entropy Ep,q of the equation (4) for a positive even k is given by

Ep,q = logΛp,q,

where Λp,q is the largest real root of

λp+q − k(λp + λq) + 1 = 0. (7)

Now we shall prepare several propositions. Let us define two subsets of f as fa := {f−2p−2q, f−2p−2q+1, ..., f−p−q−1}
and fb := {f−p−q, f−p−q+1, ..., f−1}. When we rewrite the iterate fm (m = 0, 1, 2, . . .) using fa ∪ x or
fb ∪ x instead of f , we obtain the following proposition:

Proposition 2.2
Each iterate fm is expressed as

fm(fa,x) = um(fa)gm(x), (8a)

fm(fb,x) = vm(fb)hm(x). (8b)

Here um, vm are Laurent monomials that satisfy umum−p−q = uk
m−pu

k
m−q and vmvm−p−q = vkm−pv

k
m−q,

and gm(x), hm(x) are irreducible Laurent polynomials that satisfy (5).

Proof First we study the case of −2p− 2q ≤ m ≤ −1. By transforming the variables in fb into those
in fa ∪ x we have

f−p−q =
fk
−2p−qf

k
−p−2q

f−2p−2q
x−p−q, f−p−q+1 =

fk
−2p−q+1f

k
−p−2q+1

f−2p−2q+1
x−p−q+1, · · ·

f−q−1 =
fk
−p−q−1f

k
−2q−1

f−p−2q−1
x−q+1, f−q =

fk
−2qf

k2

−2p−qf
k2−1
−p−2q

fk
−2p−2q

x−qx
k
−p−q, · · ·

f−1 =
fk
−p−1f

k
−q−1

f−p−q−1
x−1.

Thus fm (−2p − 2q ≤ m ≤ −1) is inductively expressed as the following form: fm = um(fa)gm(x)
where um is a Laurent monomial and gm is a monomial. Note that um = fm, gm = 1 (−2p− 2q ≤ m ≤
−p− q − 1). From the transformation (6), we have umum−p−q = uk

m−pu
k
m−q. Thus Proposition 2.2 for

um, gm with m ≤ −1 is proved. Let us inductively prove the statement for um and gm with m ≥ −1.
Let us fix r ≥ −1 and assume Proposition 2.2 for all m ≤ r: From the relations

uk
r+1−pu

k
r+1−qur+1−2p−2q

uk
r+1−2p−qu

k
r+1−p−2q

=
uk
r+1−pu

k
r+1−q

ur+1−p−q

,

uk
r+1−pu

k2−1
r+1−p−qu

k2

r+1−2qu
k
r+1−2p−q

uk
r+1−2p−qu

k
r+1−p−2q

=
uk
r+1−pu

k
r+1−q

ur+1−p−q

,

uk
r+1−qu

k2−1
r+1−p−qu

k2

r+1−2pu
k
r+1−p−2q

uk
r+1−2p−qu

k
r+1−p−2q

=
uk
r+1−qu

k
r+1−p

ur+1−p−q

,
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we have

fr+1 =
1

fk
r+1−2p−qf

k
r+1−p−2q

(
−fk

r+1−pf
k
r+1−qfr+1−2p−2q

+afk
r+1−pf

k2−1
r+1−p−qf

k2

r+1−2qf
k
r+1−2p−q + bfk

r+1−qf
k2−1
r+1−p−qf

k2

r+1−2pf
k
r+1−p−2q

)

=
uk
r+1−qu

k
r+1−p

ur+1−p−q

1

gkr+1−2p−qg
k
r+1−p−2q

(
−gkr+1−pg

k
r+1−qgr+1−2p−2q

+agkr+1−pg
k2−1
r+1−p−qg

k2

r+1−2qg
k
r+1−2p−q + bgkr+1−qg

k2−1
r+1−p−qg

k2

r+1−2pg
k
r+1−p−2q

)
.

Therefore we obtain

ur+1 =
uk
r+1−qu

k
r+1−p

ur+1−p−q

,

and that gr+1 satisfies (5). The irreducibility of gm follows from Theorem A.2.
The same argument applies to the case of vm(fb) and hm(x).

Lemma 2.3
hm(x) is a polynomial of x−p−q, whose constant term is nonzero.

Lemma 2.3 is readily obtained by verifying xm 6≡ 0, ∞ when we substitute x−p−q = 0 into the initial
variables of (4).

We shall give the lower bound for the algebraic entropy in Proposition 2.4.

Proposition 2.4
Let Λp,q be the same as in Theorem 2.1. The algebraic entropy of Equation (4) satisfies

Ep,q ≥ log Λp,q.

Proof Recall that xm =
hmhm−p−q

hk
m−p

hk
m−q

, where {hm} are pairwise coprime irreducible Laurent polynomials.

It is easy to show that hm has the following unique factorization:

hm = h(0)
m h(1)

m ,

where h
(0)
m is a Laurent monomial of x, and h

(1)
m is a polynomial of x that satisfies h

(1)
m

∣∣
xj=0

6= 0 for

every j. Let dm be the degree of hm with respect to x−p−q. From Lemma 2.3, the term h
(0)
m does not

include x−p−q. Thus

Ord(xm) ≥ Ord(h(1)
m h

(1)
m−p−q) = dm + dm−p−q.

Let us define a degree d∗m := dm
∣∣
a=b=0

then dm ≥ d∗m. Since we have xm = xm−p−q for a = b = 0,

hm =
−hk

m−ph
k
m−qhm−2p−2q

hk
m−2p−qh

k
m−p−2q

,

and thus d∗m satisfies

d∗m = k(d∗m−p + d∗m−q)− k(d∗m−2p−q + d∗m−p−2q) + d∗m−2p−2q.

Here, initial data are dm = d∗m = 0 (−2p− 2q + 1 ≤ m ≤ −1), d−2p−2q = d∗−2p−2q = 1. Therefore d∗m
grows as d∗m ∼ Λm

p,q, where Λp,q is the largest real root of

λ2p+2q − k(λ2p+q + λq+2p) + k(λp + λq)− 1

= (λp+q − 1)
(
λp+q − k(λp + λq) + 1

)
= 0.
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Properties of Λp,q will be discussed in Lemma A.12 in Appendix. Therefore using Lemma A.13 in
Appendix, we can find a positive constant c such that d∗m ≥ cΛm

p,q. Thus we have

Ord(xm) ≥ cΛm
p,q,

which readily derives Ep,q ≥ log Λp,q.
Next we obtain the upper bound for Ep,q, which is not as simple as the lower bound as is often the

case with algebraic entropy of discrete equations.

Lemma 2.5
The term gm is uniquely factorized as gm = g

(0)
m g

(1)
m , where g

(0)
m is a monic monomial, and g

(1)
m is a

polynomial satisfying g
(1)
m (x)

∣∣
xs=0

6= 0 for s = −1,−2, ...,−p− q. Let αs(m) be the degree of g
(0)
m (x)

with respect to xs, and βs(m) be the degree of g
(1)
m (x). Then we have the following estimation:

Ord(xm) ≤ 2
−1∑

s=−p−q

|αs(m) + αs(m− p− q)− kαs(m− p)− kαs(m− q)|

+

−1∑

s=−p−q

|cs(m)− kcs(m− p)− kcs(m− q) + cs(m− p− q)|

+

−1∑

s=−p−q

k (cs(m− p) + cs(m− q)− αs(m− p)− αs(m− q)) . (9)

Proof Recall that
cs(m) := Ordxs

(gm) = αs(m) + βs(m).

Since gm(x), gm−p(x), gm−q(x), gm−p−q(x) are pairwise coprime irreducible Laurent polynomials, we
have

Ord(xm) = Ord

(
g
(0)
m g

(0)
m−p−q

(g
(0)
m−pg

(0)
m−q)

k

g
(1)
m g

(1)
m−p−q

(g
(1)
m−pg

(1)
m−q)

k

)

≤ Ord

(
g
(0)
m g

(0)
m−p−q

(g
(0)
m−pg

(0)
m−q)

k

)
+Ord

(
g
(1)
m g

(1)
m−p−q

(g
(1)
m−pg

(1)
m−q)

k

)
.

Next, since

Ordxs

(
g
(0)
m g

(0)
m−p−q

(g
(0)
m−pg

(0)
m−q)

k

)
= αs(m) + αs(m− p− q)− kαs(m− p)− kαs(m− q),

we have

Ord

(
g
(0)
m g

(0)
m−p−q

(g
(0)
m−pg

(0)
m−q)

k

)
≤
∑

s

|αs(m) + αs(m− p− q)− kαs(m− p)− kαs(m− q)| ,

where the summation moves from s = −p− q to s = −1. Therefore,

Ord

(
g
(1)
m g

(1)
m−p−q

(g
(1)
m−pg

(1)
m−q)

k

)

= max

[
∑

s

cs(m) + cs(m− p− q)− αs(m)− αs(m− p− q),

∑

s

k (cs(m− p) + cs(m− q)− αs(m− p)− αs(m− q))

]

5



=
∑

s

k (cs(m− p) + cs(m− q)− αs(m− p)− αs(m− q))

+ max

[
∑

s

cs(m)− kcs(m− p)− kcs(m− q) + cs(m− p− q)

− (αs(m)− kαs(m− p)− kαs(m− q) + αs(m− p− q)) , 0] .

Therefore we obtain (9).

Following Proposition 2.6 plays the key role in our estimation of the upper bound:

Proposition 2.6
For arbitrary s (−p− q ≤ s ≤ −1), there exist positive constants Cs, As such that

|cs(m)| ≤ CsΛ
m
p,q, |αs(m)| ≤ AsΛ

m
p,q.

Before its proof, let us complete the proof of Theorem 2.1. From Proposition 2.6 and (9) we have the
upper bound for the algebraic entropy:

Corollary 2.7
We have Ep,q ≤ log Λp,q.

From Proposition 2.4 and Corollary 2.7 we obtain our main Theorem 2.1.

2.1 Proof of Proposition 2.6

The rest of this section is devoted to proving Proposition 2.6. Let us prepare an elementary lemma on
a recurrence relation.

Lemma 2.8
For a sequence (am)∞m=−p−q, let us define Am := am−k(am−p+am−q)+am−p−q (m = 0, 1, ...). Suppose
that there exists an integer m0 ∈ Z≥p+q such that Am = Am−p−q for every m ≥ m0. Then there exists
a positive constant C such that |am| ≤ CΛm

p,q for every m ≥ m0.

Proof Am = Am−p−q is equivalent to

am − k(am−p + am−q) + k(am−2p−q + am−p−2q)− am−2p−2q = 0.

The characteristic polynomial of this linear recurrence is

λ2p+2q − k(λp+2q + λ2p+q) + k(λq + λp)− 1

= (λp+q − 1)
{
(λp+q − k(λq + λp) + 1

}
,

whose largest root with respect to the absolute value is Λp,q from Note A.12. Therefore there exists a
constant C > 0 such that |am| ≤ CΛm

p,q.

2.1.1 The case of p = 1, q = 2:

First let us prove the former inequality on cs(m). We have

g−6 = g−5 = g−4 = 1,

g−3 = x−3, g−2 = xk
−3x−2, g−1 = xk2+k

−3 xk
−2x−1.
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Let us denote by ym the following degree: ym := c−3(m) = Ordx−3(gm). By calculating y = (y−6, y−5, y−4, ...)
we have

y−6 = y−5 = y−4 = 0, y−3 = 1, y−2 = k, y−1 = k2 + k.

For m ≥ 0 we have

gm =
−gkm−1g

k
m−2gm−6 + agkm−1g

k2−1
m−3 g

k2+k
m−4 + bgk

2+k
m−2 g

k2−1
m−3 g

k
m−5

gkm−4g
k
m−5

.

By comparing the degrees of the three terms on the right hand side

y(1)m := k(ym−1 + ym−2)− k(ym−4 + ym−5) + ym−6,

y(2)m := kym−1 + (k2 − 1)ym−3 + k2ym−4 − kym−5,

y(3)m := (k2 + k)ym−2 + (k2 − 1)ym−3 − kym−4,

we obtain
ym = max[y(1)m , y(2)m , y(3)m ], (10)

unless an unexpected cancellation occurs. Precisely speaking, if the two terms, for example gkm−1g
k
m−2gm−6

and agkm−1g
k2−1
m−3 g

k2+k
m−4 has the same degree with respect to all of xs (s = −1,−2,−3)and the degree is

greater than that of the third termit is possible that the degree satisfies ym < max[y
(1)
m , y

(2)
m , y

(3)
m ]. This

type of cancellation is inductively proved to be impossible later in this proof.
Let us define a sequence Ym := ym − k(ym−1 + ym−2) + ym−3. Then

Y−3 = 1, Y−2 = 0, Y−1 = 0.

We shall prove that Ym = Ym−3 for every m. Let us define

Y (i)
m := y(i)m − k(ym−1 + ym−2) + ym−3 (i = 1, 2, 3).

Then we have
Y (1)
m = Ym−3, Y (2)

m = −kYm−2, Y (3)
m = −kYm−1,

and
Ym = max[Ym−3,−kYm−2,−kYm−1]. (11)

We shall use the notation (applicable only in this section) Ym = aI to denote that Ym = a and the
maximum/maxima in Equation (11) is attained on the ith term(s) for all i ∈ I. For example, Y0 =
max[1, 0, 0] = 1 where maximum is attained on the first term 1, and thus we write Y0 = 11. The
successive iterations give

Y0 = 11, Y1 = max[0, 0,−k] = 01,2, Y2 = 01,3, Y3 = 11, Y4 = 01,2, Y5 = 01,3, · · · ,

on condition that no unexpected cancellation occurs in (11).
Next we study c−2(m) and c−1(m). Note that Ordx−2gm = ym−1, Ordx−1gm = ym−2. We redefine

ym := c−2(m), y
(i)
m (i = 1, 2, 3) and Ym = ym− k(ym−1+ ym−2)+ ym−3 (we use the same symbols ym and

Ym as s = −3 to ease notation). Then Ym satisfies Equation (11), with the initial condition

Y−3 = 0, Y−2 = 1, Y−1 = 0 (s = −2).

If a cancellation does not occur, we have

Y0 = 01,3, Y1 = 11, Y2 = 01,2, Y3 = 01,3, Y4 = 11, Y5 = 01,2, · · · .

For s = −1 let us redefine ym := c−1(m), y
(i)
m (i = 1, 2, 3) and Ym = ym − k(ym−1 + ym−2) + ym−3. Then

we have
Y−3 = 0, Y−2 = 0, Y−1 = 1,

7



Y0 = 01,2, Y1 = 01,3, Y2 = 11, Y3 = 01,2, Y4 = 01,3, Y5 = 11, · · · .

From these results, for any m, there exists at least one s ∈ {−1,−2,−3} such that the right hand side of
(11) attains its maximum only for one term (i.e., only one subscript in our notation). Thus the degrees

of y
(i)
m (i = 1, 2, 3) are all distinct from each other as rational functions of {x−1, x−2, x−3}. Therefore

it is proved inductively that no unexpected cancellation occurs while iterating (11) (and thus (10)) and
that we have Ym − Ym−3 = 0 for all m ≥ 0. Thus, from Lemma 2.8, there exists a constant Cs > 0 such
that |ym| ≤ CsΛ

m
1,2 for all s = −1,−2,−3. Now |cs(m)| ≤ CsΛ

m
1,2 (s = −1,−2,−3) is proved.

Next let us prove the latter inequality on αs(m). From Lemma 2.5, gm has the factorization gm =

g
(0)
m g

(1)
m . Let zm be the degree of g

(0)
m with respect to x−3: i.e., zm := α−3(m). It is clear that zm = ym

(−6 ≤ m ≤ −1). For m ≥ 0, zm is iteratively defined as

zm = min[z(1)m , z(2)m , z(3)m ], (12)

where we use three auxiliary variables as

z(1)m := k(zm−1 + zm−2)− k(zm−4 + zm−5) + zm−6,

z(2)m := kzm−1 + (k2 − 1)zm−3 + k2zm−4 − kzm−5,

z(3)m := (k2 + k)zm−2 + (k2 − 1)zm−3 − kzm−4.

Equation (12) is true unless we encounter a non-trivial cancellation of terms just like in ym. In order to
avoid unexpected cancellations, it is sufficient that at least one of “degrees of monomial parts of gm are
distinct (discussion on Zm below)” or “degrees of gm are distinct (discussion on Ym)” is satisfied. Let
Zm := zm − k(zm−1 + zm−2) + zm−3. We have Z−3 = 1, Z−2 = Z−1 = 0. Let us define

Z(i)
m := z(i)m − k(zm−1 + zm−2) + zm−3 (i = 1, 2, 3).

Then
Z(1)
m = Zm−3, Z(2)

m = −kZm−2, Z(3)
m = −kZm−1,

and thus
Zm = min

i
[Z(i)

m ] = min[Zm−3,−kZm−2,−kZm−1]. (13)

It is easy to check that
Z0 = 02,3, Zi = 01,2,3 (1 ≤ i).

Let us study the case of s = −2. Let us abuse the notation and redefine zm = α−2(m) and so on.
Then Equation (13) is satisfied with the initial condition Z−3 = 0, Z−2 = 1, Z−1 = 0. Thus Zm is
periodic with period three for m ≥ 3 as

Z0 = −k2, Z1 = 02, Z2 = 01,3, Z3 = −k1, Z4 = 01,2, Z5 = 01,3, · · · .

The same discussion applies to α−1(m). The redefined Zm satisfies Equation (13) with the initial
condition Z−3 = 0, Z−2 = 0, Z−1 = 1. Thus Zm is again periodic with period three for m ≥ 3 as

Z0 = −k3, Z1 = −k2, Z2 = 11, Z3 = −k1,3, Z4 = −k1,2, Z5 = 11, · · · .

In the case of m ≡ 0, 2 mod 3,m ≤ 4, there exists at least one s ∈ {−1,−2} such that the right hand
side of (13) attains its minimum only for one term. In the case of m ≡ 1 mod 3,m ≤ 4, the degrees of
the first two terms of the right hand side of gm are zero with respect to x−2 and x−3, they must have
the following form:

xK
−1G1 + axK

−1 G2.

Here K = z
(1)
m = z

(2)
m and G1, G2 are irreducible. On the other hand, from the discussion of Ym,

their degrees satisfy Ord(G1) 6= Ord(G2), and therefore their highest order terms cannot be cancelled
out. Therefore from Lemma 2.8, there exists a constant As > 0 such that |zm| ≤ AsΛ

m
1,2 for any

s = −1,−2,−3. Thus |αs(m)| ≤ AsΛ
m
1,2 (s = −1,−2,−3) is proved.
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2.1.2 The case of p = 1, q ≥ 3:

By successive iterations we have

gs = 1 (−2q − 2 ≤ s ≤ −q − 2), g−q−1 = x−q−1, g−q = xk
−q−1x−q, · · · ,

g−2 = xkq−1

−q−1x
kq−2

−q · · ·xk
−3x−2, g−1 = xkq+k

−q−1x
kq−1

−q · · ·xk
−2x−1.

Let y
(s)
m := cs(m) = Ordxs

(gm) for s = −q − 1, · · · ,−1. For example,

y(−q−1)
s = 0 (−2q − 2 ≤ s ≤ −q − 2), y

(−q−1)
−q−1 = 1, y

(−q−1)
−q = k, · · · , y

(−q−1)
−2 = kq−1, y

(−q−1)
−1 = kq + k.

Just like the case of p = 1, q = 2, let us define

y
(s)
m,1 := k(y

(s)
m−1 + y

(s)
m−q)− k(y

(s)
m−2−q + y

(s)
m−1−2q) + y

(s)
m−2−2q,

y
(s)
m,2 := ky

(s)
m−1 + (k2 − 1)y

(s)
m−1−q + k2y

(s)
m−2q + ky

(s)
m−2−q − k(y

(s)
m−2−q + y

(s)
m−1−2q),

y
(s)
m,3 := ky

(s)
m−q + (k2 − 1)y

(s)
m−q−1 + k2y

(s)
m−2 + ky

(s)
m−1−2q − k(y

(s)
m−2−q + y

(s)
m−1−2q).

Let Y
(s)
m := y

(s)
m − k(y

(s)
m−1+ y

(s)
m−q)+ y

(s)
m−q−1 and Y

(s)
m,i := y

(s)
m,i− k(y

(s)
m−1+ y

(s)
m−q)+ y

(s)
m−q−1 for i = 1, 2, 3.

Then
Y

(s)
m,1 = Y

(s)
m−1−q, Y

(s)
m,2 = −kY

(s)
m−q, Y

(s)
m,3 = −kY

(s)
m−1.

Therefore
Y (s)
m = max

[
Y

(s)
m−1−q, −kY

(s)
m−q, −kY

(s)
m−1

]
. (14)

Let us study the case of s = −q − 1 first. We have

(Y
(−q−1)
−q−1 , Y

(−q−1)
−q , Y

(−q−1)
−q+1 , · · · , Y

(−q−1)
−1 ) = (1, 0, 0, ..., 0).

Therefore if there is no unexpected cancellation of terms, which shall be proved inductively in the course
of the proof, we have

Y
(−q−1)
0 = max[1,−k · 0,−k · 0] = 11, Y

(−q−1)
1 = max[0,−k · 0,−k · 1] = 01,2,

Y
(−q−1)
j = 01,2,3 (2 ≤ j ≤ q − 1), Y (−q−1)

q = max[Y
(−q−1)
−1 ,−kY

(−q−1)
0 ,−kY

(−q−1)
q−1 ] = 01,3,

Y
(−q−1)
q+1 = max[Y

(−q−1)
0 ,−kY

(−q−1)
1 ,−kY (−q−1)

q ] = 11.

Therefore Y
(−q−1)
m has period q + 1.

Next we study the case of s = −q. Initial values of (14) are

(Y
(−q)
−q−1, Y

(−q)
−q , Y

(−q)
−q+1, · · · , Y

(−q)
−1 ) = (0, 1, 0, ..., 0).

The iterations give

Y
(−q)
0 = 01,3, Y

(−q)
1 = 11, Y

(−q)
2 = 01,2, Y

(−q)
j = 01,2,3 (3 ≤ j ≤ q),

Y
(−q)
q+1 = max[Y

(−q)
0 ,−kY

(−q)
1 ,−kY (−q)

q ] = 01,3.

Therefore Y
(−q)
m is also periodic with the period q + 1. The same discussion shows that Y

(s)
m has period

q+1 for all −q+1 ≤ s ≤ −1. When we fix s, the right hand side of Equation (14) attains its maximum
only for one term if m = s (mod q + 1). Therefore no irregular cancellation is proved to be impossible.
From Lemma 2.8, for each s there exists a constant Cs > 0 such that |cs(m)| ≤ CsΛ

m
1,q.

Next let us study αs(m) (−q − 1 ≤ s ≤ −1). Let z
(s)
m = αs(m) and Z

(s)
m := z

(s)
m − k(z

(s)
m−1 + z

(s)
m−q) +

z
(s)
m−q−1. If no cancellation occurs we have

Z(s)
m = min[Z

(s)
m−q−1,−kZ

(s)
m−q,−kZ

(s)
m−1], (15)
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where the initial values are Z
(s)
s = 1, Z

(s)
j = 0 (j 6= s). Let us prove that no cancellation occurs using a

procedure similar to the (p, q) = (1, 2) case. In the case of s = −1 we have:

Z
(−1)
0 = min[0, 0,−k] = −k3, Z

(−1)
1 = min[0, 0, k2] = 01,2, Z

(−1)
j = 01,2,3 (2 ≤ j ≤ q − 2),

Z
(−1)
q−1 = min[0,−k, 0] = −k2, Z(−1)

q = min[1, k2, k2] = 11, Z
(−1)
q+1 = min[−k, 0,−k] = −k1,3,

Z
(−1)
q+2 = min[0, 0, k2] = 01,2, Z

(−1)
j = 01,2,3 (q + 3 ≤ j ≤ 2q − 2), Z

(−1)
2q−1 = min[0, k2, 0] = 01,3,

Z
(−1)
2q = min[−k,−k, 0] = −k1,2, Z

(−1)
2q+1 = min[1, k2, k2] = 11, · · · .

Therefore Z
(−1)
m has period q + 1.

For −2 ≤ s ≤ −q, we have Z
(s)
m = −k for m ≡ q + s (mod q + 1), which is the unique minimum in

the right hand side of Equation (15). Otherwise Z
(s)
m = 0. Therefore Z

(s)
m = Z

(s)
m−q−1. For s = −q− 1 we

have Z
(−q−1)
−q−1 = 1, Z

(−q−1)
m = 0 (−q ≤ m ≤ −1) and

Z
(−q−1)
0 = min[1, 0, 0] = 02,3.

We have Z
(−q−1)
m = 0 for any m ≥ 0. Thus Z

(−q−1)
m = Z

(−q−1)
m−q−1.

From the discussion above, for m ≡ 0, 1, 2, ..., q − 2 (mod q + 1), Z
(m−q)
m has the unique minimum

in the right hand side of Equation (15). For m ≡ q, Z
(−1)
m has the unique minimum. For m ≡ q − 1,

monomials of x\{x−1} do not appear in the first and the second terms of gm. Therefore the cancellation
is impossible, taking into account the fact that these two terms have distinct degrees from the discussion
of Ym. Therefore, for each s, there exists a constant As > 0 such that |αs(m)| ≤ AsΛ

m
1,q.

2.1.3 The case of q > p ≥ 2:

Since p and q are coprime, let us write lp < q < (l + 1)p, r = q − lp where 0 < r < p. We shall use the

same notations as previous parts. Let us define y
(s)
m := cs(m) for s = −q− p, · · · ,−1. First let us derive

y
(−q−p)
m . Values of y

(−q−p)
m for −q − p ≤ m ≤ −1 are

y−q−p = 1, y−q−p+i = 0 (i = 1, 2, · · · , p− 1),

y−q+tp = kt+1, y−q+tp+i = 0 (i = 1, 2, · · · , p− 1, t = 0, 1, · · · , l − 1, (i, t) 6= (r, l − 1)),

y−p(= y−q+(l−1)p+r) = k,

y−r = kl+1, yj = 0 (j = −r + 1, · · · ,−1), (16)

where we have omitted the superscripts (−p−q) for simplicity. For example, when (q, p) = (17, 5), k = 2,
we have

(y
(−22)
−22 , · · · , y

(−22)
−1 ) = (1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 2, 0, 0, 16, 0).

In the case of s = −p− q + 1, we have

y
(−q−p+1)
−q−p = 0, y

(−q−p+1)
m+1 = y(−q−p)

m (m = −q − p, · · · ,−2),

which is derived by shifting the sequence (16) to the right and adding 0 to the left. In a similar manner
we have

y(s)m = 0 (−q − p ≤ m ≤ s− 1), y
(s)
m+s+q+p = y(−q−p)

m (−q − p ≤ m ≤ −q − p− s− 1),

for −q − p + 2 ≤ s ≤ −1. In particular, (y
(−1)
−q−p, · · · , y

(−1)
−1 ) = (0, 0, ...., 0, 1). Note that y

(s)
m = 0

(m ≤ −p− q − 1) for any s. Let

Y (s)
m = y(s)m − k(y

(s)
m−p + y

(s)
m−q) + y

(s)
m−p−q.

Then, for a fixed s, we have Y
(s)
s = 1Y

(s)
j = 0 (−p− q ≤ j ≤ −1, j 6= s). Since we have

Y (s)
m = max[Y

(s)
m−p−q,−kY

(s)
m−q,−kY

(s)
m−p], (17)
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it is inductively proved that Y
(−p−q+j)
m = 1 (m ≡ j mod p + q), Y

(−p−q+j)
m = 0 (m 6≡ j mod p+ q) for

j = 0, 1, ..., p+ q − 1. In the case of Y
(s)
m = 1, only the first term of the right hand side of (17) gives the

maximum, and therefore there is no unexpected cancellation of the terms. Thus we have Y
(s)
m = Y

(s)
m−p−q

for all s.
Next let us investigate z

(s)
m = αs(m) and Z

(s)
m := z

(s)
m − k(z

(s)
m−p + z

(s)
m−q) + z

(s)
m−p−q for −p − q ≤ s.

First Z
(s)
m = Y

(s)
m for −p− q ≤ s ≤ −1. We readily obtain

Z(s)
m = min[Z

(s)
m−p−q,−kZ

(s)
m−q,−kZ

(s)
m−p]. (18)

It is proved in a similar manner to the previous case that Z
(s)
m is periodic with respect to m with period

p+ q. The sketch is as follows: for a fixed −p− q + 1 ≤ s ≤ −1 we have

Z
(s)
2p+q+s = −k, Z

(s)
p+2q+s = −k, Z

(s)
2p+2q+s = 1, otherwise Z(s)

m = 0,

for p + q ≤ m ≤ 2p + 2q − 1, and this sequence continues periodically with period p + q. Moreover

Z
(s)
2p+q+s has the unique minimum 1 on the right hand side of (18). Therefore no cancellation is possible.

For s = −p− q, we have Z
(−p−q)
m = 0 for all m, and this case neither denies a cancellation. The proof of

Proposition 2.6 is now complete.

3 Further generalizations

Let us give a further generalization to Equation (4) via a reduction from the higher-dimensional lattice
equation. Here is a higher dimensional analogue of (2):

xt+1,n + xt−1,n =

d∑

i=1

(
ai

xki

t,n+ei

+
bi

xli
t,n−ei

)
(ki, li ∈ 2Z+), (19)

where each ei ∈ Zd (i = 1, 2, · · · , d) is the unit vector (0, · · · , 0, 1, 0, · · · , 0) whose ith component is 1,

and n =
∑d

i=1 niei denotes a point on the lattice. The set of initial variables are taken from those on
t = 0 and t = 1 hyperplanes and evolve the equation towards t ≥ 2. Equation (19) is proved to satisfy
the coprimeness property [15] (the exact statement is that “two iterates xt,n and xt′,n′ are coprime in
Q
(
{x0,n, x1,n}n∈Zd , {ai, bi}

d
i=1

)
on condition that |t − t′| > 2 or |n − n′| > 2”) under the following

condition:
min
1≤i≤d

[kimi − 1] > max
1≤i≤d

[kimi]. (20)

Let us give one of the reductions of (19) to one-dimensional lattice systems. Let d = 2,n = (n,m) and
p > q > r be positive integers. Suppose that xN := xt,n,m is constant if we fix one N = pt+ qn + rm.
Then we have the following recurrence relation:

xN+p + xN−p =
a1

xk1

N+q

+
b1

xm1

N−q

+
a2

xk2

N+r

+
b2

xm2

N−r

. (21)

It is conjectured from several examples that, when the condition (20) is satisfied, the dynamical degree
of (21) is equal to the largest real root of

λ2p − k1λ
p+q − k2λ

p+r −m2λ
p−r −m1λ

p−q + 1 = 0,

which is the “characteristic” polynomial of its singularity structure. As for the second order systems
(three-term recurrences), the relation between the degree growth and the singularity structures are well
investigated. See [16, 17, 18] for details. By taking p = 5/2, q = 3/2, r = 1/2, k1 = m2 = 4, k2 = m1 = 2
and shifting N = n− 5/2, we have

xn + xn−5 =
1

x2
n−4

+
1

x4
n−3

+
1

x2
n−2

+
1

x4
n−1

. (22)
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From a numerical experiment the dynamical degree of Equation (22) is estimated to be in (4.63551, 4.63552),
while the largest real root of

λ5 − 4λ4 − 2λ3 − 4λ2 − 2λ+ 1 = 0

is 4.6355149 · · · . Here we have used the Diophantine calculation [19] for our estimation: the height of
an iterate as a rational number is calculated instead of the its degree. The height H(r) of a non-zero
rational number r = p

q
, where p, q are pairwise coprime integers, is defined as H(r) = max(|p|, |q|) and

serves as the arithmetic complexity of rationals. When we take arbitrary rational numbers as the initial
variables, then every iterate xn ∈ Q. The speed of the growth of logH(xn) is conjectured to be equal to
that of deg xn. Precisely speaking, the following limit

lim
n→∞

logH(xn+1)

logH(xn)

is conjectured to converge to the dynamical degree of the mapping. Another example is

xn + xn−6 =
1

x2
n−5

+
1

x2
n−4

+
1

x2
n−2

+
1

x2
n−1

,

whose dynamical degree is estimated to be in (2.82320, 2.82322). This quantity is close to 2.8232019 · · · ,
which is the largest real root of

λ6 − 2λ5 − 2λ4 − 2λ2 − 2λ+ 1 = 0.

On the other hand, if we study

xn + xn−6 =
1

x2
n−5

+
1

x4
n−3

+
1

x2
n−1

,

which does not satisfy (20), the estimation of its dynamical degree is in (2.61832, 2.61835), while the
root of

λ6 − 2λ5 − 4λ3 − 2λ+ 1 = 0

is λ = 2.6180339 · · · . The discrepancy between these values seems to be beyond a numerical error and
serves as a counter-example for the conjecture without (20). These are only conjectural topics, however
we wish to give rigorous results in future correspondences.

4 Conclusion

In this article we have introduced a recurrence relation (4) through a reduction from the coprimeness-
preserving extension to the discrete KdV equation (2). Equation (4) also satisfies the irreducibility and
the coprimeness property and is considered as one generalisation of the Hietarinta-Viallet equation to a
multi-term recurrence. As the main Theorem 2.1 we have derived that the algebraic entropy of (4) is given
by the largest real root of the polynomial related to the singularity pattern of the equation. Although the
proof is slightly complicated when obtaining the upper bound of the entropy, only elementary tools have
been used. Finally we have introduced a higher-dimensional lattice equation (19). We have given several
numerical simulations of the algebraic entropies of reduced mappings of (19) and have conjectured a
property similar to Theorem 2.1.
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A Supplementary materials

A.1 Review on the coprimeness of Equation (3) and (5)

Let us review the results on the coprimeness property of the tau-function form of the coprimeness-
preserving discrete KdV equation (3) and its reduction (5).

Theorem A.1 ([13, 20])
Let R be a unique factorization domain (UFD) and let a, b ∈ R be nonzero. Then, Equation (3) has the
Laurent property on any good domain, i.e. every iterate is a Laurent polynomial of the initial variables
on any good domain. Moreover, every iterate is irreducible as a Laurent polynomial.

Here a nonempty subset H ⊂ Z2 is a good domain (with respect to Equation (3)) if it satisfies the
following two conditions [21]:

• If (t, n) ∈ H , then (t+ 1, n), (t, n+ 1) ∈ H .

• For any h ∈ H , #{h′ ∈ H | h′ ≤ h} < ∞, where we denote by “≤” the product order on the lattice
Z2: i.e., h ≤ h′ ⇔ t ≤ t′ and n ≤ n′ for h = (t, n), h′ = (t′, n′) ∈ Z2.

Note that the first quadrant is a good domain with the initial variables on the L-shaped area {(t, n) | t =
0, 1, n ≥ 0 or n = 0, 1, t ≥ 0}. It is proved that the reduction (5) also satisfies the Laurent, the
irreducibility and the coprimeness properties.

Theorem A.2 ([20])
Let us denote by f the set of initial variables of (5). Then, for every iterate fm we have

fm ∈ R := Z
[
f±, a, b

]
.

Moreover each iterate is irreducible and arbitrary two iterates are pairwise coprime in R.

Proof of Theorem A.2 is explained in [20] (Japanese article). From the discussion in [22], if a multi-
dimensional lattice equation has the Laurent property on any good domain, then its reductions to
lower-dimensional lattices preserve the Laurent property. Therefore, the Laurentness of (5) follows
from the Theorem A.1 on the two-dimensional lattice equation (3). However, the irreducibility and the
coprimeness do not trivially follow by the reduction and we need to prove them inductively with respect
to m. In the case of (p, q) = (1, 2) the induction process is not very different from that of the extended
Hietarinta-Viallet equation [9], however when p ≥ 2 or q ≥ 3 the calculation is a bit complicated. First
we show Lemma on the factorization of the Laurent polynomials, whose proof is given in [11]:

Lemma A.3 ([11], Lemma 2)
Let R be a UFD and {p1, p2, · · · , pm} and {q1, q2, · · · , qm} be two sets of independent variables satisfying
for j = 1, 2, · · · ,m the following properties:

pj ∈ R
[
q±1 , q

±
2 , · · · , q

±
m

]
, qj ∈ R

[
p±1 , p

±
2 , · · · , p

±
m

]
,

and that qj is irreducible as an element of R
[
p±1 , p

±
2 , · · · , p

±
m

]
. Let f be an irreducible Laurent polynomial

f(p1, · · · , pm) ∈ R
[
p±1 , p

±
2 , · · · , p

±
m

]
,

and let g be another Laurent polynomial

g(q1, · · · , qm) ∈ R
[
q±1 , q

±
2 , · · · , q

±
m

]
,

where f(p1, · · · , pm) = g(q1 · · · , qm). Then the function g is factorized as

g(q1, · · · , qm) = pr11 pr22 · · · prmm g̃(q1, · · · , qm),

where r1, r2, · · · , rm ∈ Z and g̃(q1, · · · , qm) is irreducible in R
[
q±1 , q

±
2 , · · · , q

±
m

]
.
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A.1.1 The case of (p, q) = (1, 2)

When (p, q) = (1, 2) the equation (5) is

fm =
−fk

m−1f
k
m−2fm−6 + afk

m−1f
k2−1
m−3 f

k2+k
m−4 + bfk2+k

m−2 f
k2−1
m−3 f

k
m−5

fk
m−4f

k
m−5

, (23)

whose initial variables are f = {fj}
−1
j=−6. Here are two Lemmata for the proof:

Lemma A.4
Each fm (m ≥ 0) is a polynomial of f−6, whose constant term is nonzero.

Lemma A.5
Let us substitute the following values in Equation (23):

a = b = 0, f−6 = t, f−5 = · · · = f−1 = 1.

Then fm has a form fm = ±tαm , where αm is given by

αm = k(αm−1 + αm−2 − αm−4 + αm−5) + αm−6 (m ≥ 0),

α−6 = 1, α−5 = · · · = α−1 = 0.

In particular we have αm > (k − 1)αm−1 for m ≥ 6.

Now let us show Theorem A.2 for (p, q) = (1, 2), using an induction with respect to m.

Step 1: irreducibility of fm (m = 0, 1, 2) The iterate f0 is linear with respect to f−6, and thus is
irreducible (from here on the irreducibility is considered in R = R[{f±

j }−1
j=−6] unless otherwise stated)

and not invertible. Using Lemma A.3 for R = Z[a, b], {pj}
6
j=1 = {fj}

0
j=−5, {qj}

6
j=1 = {fj}

−1
j=−6, f1 is

expressed as

f1 = F1

0∏

j=−5

f
rj
j ,

where F1 is irreducible and each rj is an integer. Since f1 is a Laurent polynomial and f0 is irreducible
and non-invertible, we must have r0 ≥ 0. On the other hand we have

f1 ≡
bfk2+k

−1 fk
−2

fk
−3

mod f0.

Since f0 is linear with respect to f−6, the iterate f0 cannot divide f1, and therefore r0 = 0. Moreover, rj
(−5 ≤ j ≤ −1) are units in R, thus f1 is irreducible and is coprime with f0. From the irreducibility of
f1 in R, the iterate f2 is trivially irreducible in R[{f±

j }0j=−5] by shifting all the subscripts. Thus using
Lemma A.3, we have f2 = f r2

0 F2, where F2 is irreducible in R and r2 is a non-negative integer. We can
show from a simple computation that f2 6≡ 0 mod f0. Thus r2 = 0 and f2 is irreducible.

Step 2: irreducibility of fm (m = 3, 4, 5, 6) By a similar discussion to the previous step, we can
inductively show the irreducibility of fj and express fj = f

rj
0 Fj for j = 3, 4, 5, 6, where Fj is irreducible

and rj is a non-negative integer. The case of j = 3 is easy since it is readily obtained that f3 6≡ 0 mod f0.
Let us prove the irreducibility of f4. By a direct calculation we have

f2 =

(
−fk

0 f−4 + afk2+k
−2 fk2−1

−1

)
fk
1 +O(fk2+k

0 )

fk
−2f

k
−3

, f3 =
−f−3f

k
2 f

k
1 +O(fk2+k

0 )

fk
−1f

k
−2

,
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and

−fk
3 f

k
2 f−2 + bfk2+k

2 fk2−1
1 fk

−1 ≡
fk2−1
1 fk2+k

2

fk2

−1f
k2−1
−2

(
−f1f

k
−3 + bfk2+k

−1 fk2−1
−2

)
mod fk+1

0

≡
fk2−1
1 fk2+k

2

fk2

−1f
k2−1
−2

(
fk
2 f−2 − afk2+k

0 fk2−1
−2

fk
−4

fk
0

)
mod fk+1

0 .

Thus,

f4 =
−fk

3 f
k
2 f−2 + bfk2+k

2 fk2−1
1 fk

−1 +O(fk2+k
0 )

fk
0 f

k
−1

≡
fk2−1
1 fk2+k

2

fk2+k
−1 fk2−1

−2 fk
−4

(
fk
−1f−5 − afk2+k

−3 fk2−1
−2

)
6≡ 0 mod f0.

Therefore f4 is irreducible.
The case of f5 is done as follows: by a direct calculation we have

−fk
4 f

k
3 f−1 + afk

4 f
k2−1
2 fk2+k

1 ≡
fk
4 f

k2−1
2 fk2+k

1 fk
0 f−4

fk2−1
−1 fk2+k

−2

mod fk+1
0 ,

and thus

f5 ≡
fk
4 f

k2−1
2 fk2

1 f−4

fk2−1
−1 fk2+k

−2

+ b
fk2+k
3 fk2−1

2

fk
1

mod f0

=
fk2−1
2

fk2−1
−1 fk2+k

−2 fk
1

(
fk
4 f

k2+k
1 f−4 + bfk2+k

3 fk2−1
−1 fk2+k

−2

)
.

It is sufficient to prove that F := fk
4 f

k2+1
1 f−4 + bfk2+k

3 fk2−1
−1 fk2+k

−2 6≡ 0 mod f0. By choosing the initial
values f−6 = a + b, f−5 = · · · = f−1 = 1, and by taking the parameters as a > 1, b > 0, we can show
that F > 0. Thus F is not divisible by f0. Therefore f5 is irreducible.
The irreducibility of f6 is proved in a similar manner, since we can prove that

f6 ≡
fk2−1
3

fk
2 f

k
1

(
afk

5 f
k2+k
2 + bfk2+k

4 fk
1

)
6≡ 0 mod f0.

Step 3: coprimeness of fm (0 ≤ m ≤ 6) Suppose that fi and fj (i > j) are not pairwise coprime,
then we can express fi = ufj where u is an invertible element in R. On the other hand, from Lemma
A.5, u must include the factor tαi−αj . Therefore the constant term of fj as a polynomial of t must be
zero, which contradicts Lemma A.4.

Step 4: irreducibility and coprimeness of fm (m ≥ 7) From Lemma A.3, f7 is factorized in two
ways as

f7 = f r0
0 F = f r1

1 · · · f r6
6 F ′,

where F, F ′ are irreducible in R and rj are non-negative integers. Suppose that f7 is not irreducible,
then the factorization is limited to the form f7 = uf0fj where u is invertible and j ∈ {1, · · · , 6}. Thus
we have

α7 > (k − 1)α6 + 1 ≥ αj + α3,

which contradicts Lemma A.4. The case of m ≥ 8 can be done in the same manner. The pairwise
coprimeness of fi and fj (i > j) is proved in exactly the same manner as in Step 3. The proof of
Theorem A.2 for (p, q) = (1, 2) is now complete.
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A.1.2 The case of p = 1 and q ≥ 3

Next let us prove the case of p = 1 and q ≥ 3. It is worth noting that p, q, 2p, p+ q, 2q, 2p+ q, p+ 2q are
all distinct when (p, q) 6= (1, 2). Let us present four Lemmata, which are applicable for every (p, q) with
p ≥ 1 and q ≥ 2.

Lemma A.6
For every s ≥ 0, fs is a polynomial of f−2p−2q, f−2p−2q+1, . . . , f−p−2q−1 whose constant term is nonzero.
The statement is true even when we substitute a = 0 or b = 0.

Lemma A.7
Let c

(j)
s be the degree of fs|a=b=0 with respect to f−2p−2q+j (j = 0, . . . , p−1) and let cs =

(
c
(0)
s , . . . , c

(p−1)
s

)
.

Then we have the following properties:

(i) c
(j)
s = c

(0)
s−j for every s ≥ j.

(ii) If we have fs = u
∏

j∈J fj where u is invertible, then cs =
∑

j∈J cj .

(iii) Let fs and fr be irreducible Laurent polynomials. If cs 6= cr, fs and fr are pairwise coprime.

Proof (i) is trivial since we have

fs|a=b=0 = −
fk
s−pf

k
s−qfs−2p−2q

fk
s−2p−qf

k
s−p−2q

.

(ii) Since u is invertible, u does not depend on a, b. From Lemma A.6, u does not depend on f−2p−2q, . . . , f−p−2q−1.
By substituting a = b = 0 into fs = u

∏
j∈J fj , we obtain cs =

∑
j∈J cj .

(iii) Suppose that fs and fr are both irreducible but not coprime with each other. Then there exists an
invertible element u such that fs = ufr. Thus we have cs = cr from (ii).

Lemma A.8
The iterate fs is irreducible if either s 6∈ {ip+ jq | i, j ∈ Z≥0} or 0 ≤ s ≤ p+ q is satisfied.

Proof

Step 1 In the case of s = 0, . . . , p − 1, fs is linear with respect to f−2p−2q+s whose constant term is
nonzero. Thus fs is irreducible and is not a unit. Note that fs does not depend on the initial variables
f−2p−2q+i (0 ≤ i ≤ p− 1, i 6= s).

Step 2 In the case of s 6= ip+ jq (i, j ∈ Z≥0), fm(m ≥ 0) depends on f−2p−2q if and only if m can be
written as m = ip+ jq where i, j are nonnegative integers. Thus fs does not depend on f−2p−2q. From
Lemma A.3, by assuming the irreducibility of fm for every m ≤ s− 1, fs can be factorized as fs = f r

0F ,
where r is a nonnegative integer and F is irreducible. Since fs is independent of f−2p−2q we must have
r = 0. Thus fs is irreducible.

Step 3 In the case of 1 ≤ s ≤ p+ q, let us define gs as the value of fs where we substitute the following
values

f−2p−2q =
fk2−1
−p−q

fk
−pf

k
−q

(
afk

−pf
k2

−2qf
k
−2p−q + bfk

−qf
k2

−2pf
k
−p−2q

)
,

fm < 0 (−2p− 2q ≤ m ≤ −p− q),

fm > 0 (−p− q + 1 ≤ m ≤ −1),
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into the initial variables. Suppose that a, b > 0. It is clear that g0 = 0 and gs satisfies

gs =
−gs−2p−2qg

k
s−pg

k
s−q +

(
agks−pg

k2

s−2qg
k
s−2p−q + bgks−qg

k2

s−2pg
k
s−p−2q

)
gk

2−1
s−p−q

gks−p−2qg
k
s−2p−q

.

Therefore gs > 0. By the same argument as in Step 2, we conclude that fs is irreducible.

Lemma A.9
Let us prepare two functions Cp,q, C̃p,q by

Cp,q =
fk2−1
p fk2

q fk
2p

fk2−1
−q fk2

−pf
k
−2qf

k
p−q

, C̃p,q =
fk2

p fk2−1
q fk

2q

fk2−1
−p fk2

−qf
k
−2pf

k
−p+q

.

Then we have

f2p+q ≡ Cp,q

(
fk
p−qf−p−2q − afk2

p−2qf
k
−p−qf

k2−1
−q

)
+

afk
p+qf

k2

2p−qf
k2−1
p

fk
p−q

mod f0,

fp+2q ≡ C̃p,q

(
fk
−p+qf−2p−q − bfk2

−2p+qf
k
−p−qf

k2−1
−p

)
+

bfk
p+qf

k2

−p+2qf
k2−1
q

fk
−p+q

mod f0.

Now let us begin the proof of Theorem A.2 for p = 1, q ≥ 3. Equation (5) is

fs =
fk
s−1f

k
s−q (−fs−2−2q) +

(
afk

s−1f
k2

s−2qf
k
s−2−q + bfk

s−qf
k2

s−2f
k
s−1−2q

)
fk2−1
s−1−q

fk
s−1−2qf

k
s−2−q

.

From Lemma A.8, fs is irreducible for 0 ≤ s ≤ q + 1. Let gs be the values of the iterates fs when we
substitute

fm =





2 (m = −2q − 2)

−1 (m = −2q)

1 (−2q − 1 ≤ m ≤ −1,m 6= −2q)

into the initial variables of fs and take a = b = 1. Clearly g0 = 0.

Step 1 It is readily obtained that if gs 6= 0, then fs is irreducible: From Lemma A.3, there exist a
nonnegative integer r and an irreducible element F such that fs = f r

0F . If we assume that r > 0, then
gs = 0. From here on we shall prove gs 6= 0 by a direct calculation. The first few terms are

gs =





gk
2

s−2 (3 ≤ s ≤ q − 1)

gks−1 (s = q)

−gks−1 (s = q + 1)

.

Therefore

gs =






1 (3 ≤ s ≤ q − 1, s is odd)

2k
s−2

(3 ≤ s ≤ q − 1, s is even)

gkq−1 (s = q)

−gk
2

q−1 (s = q + 1)

.

When q is odd we have
gq−1 = 1, gq = 1, gq+1 = −1,

and when q is even we have

gq−1 = 2k
q−3

, gq = 2k
q−2

, gq+1 = −2k
q−1

.
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Step 2: irreducibility of fs: In the case of s = q + 2, from Lemma A.9 we have

gq+2 = gk
3

q−1 6= 0.

In the case of q + 3 ≤ s ≤ 2q − 1, we have

gq+r+2 =
−gks−1g

k
s−q +

(
gks−1g

k
s−q−2 + gks−qg

k2

s−2

)
gk

2−1
s−1−q

gks−2−q

,

for 1 ≤ r ≤ q − 3. Thus

gq+r+2 =

{
(Nr − 1) gkq+r+1 +Nrg

k2

q+r (r is odd)

(1−Nr) g
k
q+r+1 +Nrg

k2

q+r (r is even)
,

where
Nr = 2k

r−1(k2−1).

Therefore we have gq+r+2 > 0 if r is odd, and gq+r+2 < 0 if r is even. These inequalities are clear when
r is odd. When r is even, we can prove this by

gq+r+2 = −(Nr − 1)
(
(Nr−1 − 1)gkq+r +Nr−1g

k2

q+r−1

)k
+Nrg

k2

q+r

< −
(
(Nr − 1)(Nr−1 − 1)k −Nr

)
gk

2

q+r.

Therefore we have gs 6= 0 for q + 3 ≤ s ≤ 2q − 1.
In the case of s = 2q, since

f2q ≡
−fk

2q−1f
k
q f−2 + bfk

q f
k2

2q−2f
k
−1f

k2−1
q−1

fk
−1f

k
q−2

mod f0,

we have

g2q =
gkq
gkq−2

(
−gk2q−1 + gk

2−1
q−1 gk

2

2q−2

)
.

It is sufficient to prove that G = −gk2q−1 + gk
2−1

q−1 gk
2

2q−2 6= 0. If q is even, since q ≥ 4 and gq−1 = 1, we

must have g2q−1 = ±gk2q−2 in order to achieve G = 0. This is not possible because

g2q−1 = (Nq−3 − 1) gk2q−2 +Nq−3g
k2

2q−3 > gk2q−2.

If q is odd, since gq−1 = 2k
q−3

and thus gk
2−1

q−1 = Nq−2, we have

G = −gk2q−1 +Nq−2g
k2

2q−2.

In the case of q = 3, G 6= 0 is obtained by a direct calculation. In the case of q ≥ 5, we must have
g2q−1 = ±Nq−3g

k
2q−2 when G = 0. However, since g2q−1 = (1 − Nq−3)g

k
2q−2 + Nq−3g

k2

2q−3 whose right

hand side is negative, we must have g2q−1 = −Nq−3g
k
2q−2, and therefore gk2q−2 = −Nq−3g

k2

2q−3, which is
not possible. Thus G 6= 0.
In the case of s = 2q + 1, from Lemma A.9 we have

g2q+1 = gk
2−1

q gk2q

(
gkq−1 − gk

2

q−2

)
+

gkq+1g
k2

2q−1g
k2−1
q

gkq−1

.

If q is odd, g2q+1 > 0 is readily obtained since gq−2 = 1, gq−1 = 2k
q−3

. If q is even, we have

gq+r+2 ≡ 1 mod 3,
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for 2 ≤ r ≤ q − 3. Since we have gkq−1 − gk
2

q−2 ≡ 0 mod 3 and that none of the four iterates
gq+1, g2q−1, gq, gq−1 is divisible by 3, we have

g2q+1 6≡ 0 mod 3.

Thus g2q+1 6= 0.
In the case of s = 2q + 2, g2q+2 6= 0 is obtained from

g2q+2 =
gk

2−1
q+1

gk1g
k
q

(
gk2q+1g

k2

2 gkq + gkq+2g
k2

2q g
k
1

)
.

The proof of the irreducibility of fs (s ≥ 2q + 3) is omitted.

Step 3: coprimeness of fs: Let us prove that fs and fr are pairwise coprime if s > r ≥ 0. The

degrees c
(0)
j in Lemma A.7 satisfy

c
(0)
0 = c

(0)
−2q−2 = 1, c

(0)
−1 = · · · = c

(0)
−2q−1 = 0,

c
(0)
j = k

(
c
(0)
j−1 + c

(0)
j−q − c

(0)
j−2−q − c

(0)
j−1−2q

)
+ c

(0)
j−2−2q (j ≥ 1).

Thus we have c
(0)
j ≥ kc

(0)
j−1 for every j ≥ −2q − 1 inductively. Therefore c

(0)
s > c

(0)
r . From Lemma A.7

(iii), fs and fr are coprime with each other.

A.1.3 The case of p = 2

When p = 2, q must be odd. Let gs be the values of the iterates fs when we substitute

fm =






2 (m = −2p− 2q)

−1 (m = −2q)

1 (−2p− 2q + 1 ≤ m ≤ −1,m 6= −2q)

(24)

into the initial variables of fs and take a = b = 1. Clearly g0 = 0. Our goal is to prove that gs 6= 0 for
every s ≥ 1. The discussion goes in a similar manner to the case of p = 1, q ≥ 3.

Step 1: irreducibility of fs (1 ≤ s ≤ 2q + 4): A direct calculation shows that

gs =

{
Ni (s = 4i)

1 (s 6= 4i)

for every 1 ≤ s ≤ q − 1, where we have defined Ni = 2k
2(i−1)

. Calculating further we have

gq = gkq−2 = 1, gq+1 = gk
2

q−3, gq+2 = −gkq = −1, gq+3 = gk
2

q−1,

where we have used the fact that q is odd. From Lemma A.9 we have

gq+4 = gkq+2g
k2

−q+4g
k2−1
2 g−k

2−q = 1 6= 0.

Thus we have gs 6= 0 for 1 ≤ s ≤ q + 4.
Next we show gs 6= 0 for q + 5 ≤ s ≤ 2q − 1. By using r = s− q − 4, we have

gq+r+4 =
{(

−gkr+4 + gk
2

r+4−qg
k
r g

k2−1
r+2

)
gkq+r+2 + gkr+4g

k2−1
r+2 gk

2

q+r

}
g−k
r ,

and therefore,

gq+5 = gk
2

q+1, gq+6 = −1 + 2k
2−1 + 2k

2−1 = 2k
2

− 1 = N2 − 1, gq+7 = gk
2

q+3.
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Inductively we have the following expression for 3 ≤ r ≤ q − 5:

gq+r+4 =






(
−
Nk

i+1

Nk
i

+ 1

)
gkq+r+2 +

Nk
i+1

Nk
i

gk
2

q+r (r = 4i)

gk
2

q+r (r = 4i+ 1, 4i+ 3)(
Nk2−1

i+1 − 1
)
gkq+r+2 +Nk2−1

i+1 gk
2

q+r (r = 4i+ 2)

.

If r is odd, it is clear that gq+r+4 6= 0. If r is even, gq+r+4 ≡ gq+r+2 mod 2 and thus inductively
gq+r+4 ≡ 1 mod 2 6= 0. Lastly we need to prove that gs 6= 0 for 2q ≤ s ≤ 2q+4 one by one. The case of

s = 2q is readily obtained from g2q = −gk2q−2 + gk
2

2q−4 and the fact that q is odd. We also have g2q+1 ≡ 1
mod 2 by a direct calculation. In the case of s = 2q + 2, using the second equation in Lemma A.9, we
have gq+2 = −1, gq = gq−2 = gq−4 = 1 and g2q+2 = gkq+2g

k2

2q−2g
k2−1
q g−k

q−2 = gk
2

2q−2 6= 0. The cases of
s = 2q + 3, 2q + 4 are omitted since they are proved by a direct calculation.

Step 2: coprimeness of fs (0 ≤ s ≤ 2p+ 4): The variables c
(0)
j in Lemma A.7 satisfy

c
(0)
0 = c

(0)
−2q−4 = 1, c

(0)
−1 = · · · = c

(0)
2q−3 = 0,

c
(0)
j = k

(
c
(0)
j−2 + c

(0)
j−q − c

(0)
j−4−q − c

(0)
j−2−2q

)
+ c

(0)
j−4−2q (j ≥ 1).

Thus we have c
(0)
2i = ki (0 ≤ i ≤ q − 1) and

c
(0)
2i+1 = 0

(
0 ≤ i ≤

q − 3

2

)
, c(0)q = k, c

(0)
q+2i = (i+ 1)ki+1 − (i− 1)ki−1 (1 ≤ i ≤ q − 1),

c
(0)
2q = kq + k2, c

(0)
2q+2 = kq+1 + 3k3 − k, c

(0)
2q+4 = kq+2 + 6k4 − 4k2 + 1.

Therefore cs 6= cr for 0 ≤ s < r ≤ 2p+4. From (iii) of Lemma A.7, fs and fr must be pairwise coprime.

Step 3: irreducibility and coprimeness of fs (2q + 5 ≤ s): Let us first prove the irreducibility of
fs for s ≥ 2q + 5. From the previous steps, if we suppose that fs is not irreducible then there exist a
reversible element u and 1 ≤ r ≤ 2q + 4 such that fs = uf0fr. Therefore from (ii) of Lemma A.7 we

must have cs = c0 + cr, and thus c
(0)
s = c

(0)
r + 1, c

(0)
s−1 = c

(0)
r−1. However, this leads us to a contradiction

since we can prove that cs 6= c0 + cr as follows: for 0 ≤ i ≤ q + 2 we have c
(0)
2i > c

(0)
2i−1, c

(0)
i+2 ≥ kc

(0)
i and

c
(0)
i+q ≥ kc

(0)
i . If s ≥ 2q+5 and s is even, we have c

(0)
s ≥ kc

(0)
2q+4. Thus c

(0)
s 6= c

(0)
r +1. If s is odd we have

c
(0)
s−1 ≥ c

(0)
2q+4 and thus c

(0)
s−1 6= c

(0)
r−1.

The coprimeness of fs and fr (0 ≤ s ≤ r) is proved in a similar manner.

A.1.4 The case of p ≥ 3

When p ≥ 3, every pair from {ip, q+ ip, 2q+ ip | (i = 0, 1, 2, . . .)} is distinct from each other. Since p and
q are pairwise coprime, we have the following Lemma A.10.

Lemma A.10
For m,n ∈ Z≥0 let us define s = mp+ nq. Then s is uniquely expressed as

s = rpq + ip+ jq (r ∈ Z≥0, 0 ≤ i ≤ q − 1, 0 ≤ j ≤ p− 1).

Moreover, this expression maps s to (r, i, j) bijectively.

From Lemma A.8, fs is irreducible if 0 ≤ s ≤ p+ q or s 6= ip+ jq (i, j ∈ Z≥0). Let gs be the same value
as in (24) in the case of p = 2. Our goal is to prove the irreducibility of fs for every s ≥ 1. Basically we
have only to prove that gs 6= 0, however, for s = 2q we have g2q = 0 and therefore another approach is
necessary.
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Step 1: irreducibility of fs (1 ≤ s ≤ 2p+2q): Let us express s = rpq+ ip+jq in the sense of Lemma
A.10. First we study the case where r = 0, 0 ≤ i ≤ q − 1 and j = 0, 1. If j = 0, we have g2p 6= 0 and

gip = −gk(i−1)p + gk(i−1)p + gk
2

(i−2)p = gk
2

(i−2)p.

Thus

gip =

{
1 (i :odd)

2k
i−2

(i :even)
.

Therefore gip 6= 0. Let us study the case of j = 1. For i = 0, 1, 2 we have

gq = 1, gq+p = −1, gq+2p = 1.

Here we have used Lemma A.9 to obtain the value of gq+2p. For i ≥ 3,

gq+ip =
−gk

q+(i−1)pg
k
ip +

(
gk
q+(i−1)pg

k
(i−2)p + gkipg

k2

q+(i−2)p

)
gk

2−1
(i−1)p

gk(i−2)p

=




−gk

q+(i−1)p +Ni−2

(
gk
q+(i−1)p + gk

2

q+(i−2)p

)
(i :odd)

−(Ni/Ni−2)g
k
q+(i−1)p +

(
gk
q+(i−1)p + (Ni/Ni−2)g

k2

q+(i−2)p

)
(i :even)

,

where Ni = 2k
i−2

. Since gq+ip ≡ 1 mod 2 we have gq+ip 6= 0.
Next let us prove the irreducibility of f2q. Since g2q = 0, we cannot use the same argument as before
using g2q. Let hs be the values of fs when we substitute

fm =






2 (m = −2p− 2q)

−1 (m = −2p)

1 (−2p− 2q ≤ m ≤ −1,m 6= −2p)

in the initial variables of fs and take a = b = 1. Then we have

h0 = 0, hq = 1, h2q = 2 6= 0.

Thus f2q is irreducible.
The proof for g2q+p, g2q+2p, g3q 6= 0 is straightforward. From Lemma A.9 we have g2q+p = 1 6= 0. Using

g2q = 0, we have g2q+2p = 2k
2

6= 0. If p ≥ 4, g2q = 0 leads us to g3q = 1 6= 0. If p = 3, since 3q = pq, we
can use the discussion in the next step.
Next let us prove the case of r = 1: i.e., s = rpq + ip+ jq = pq + ip+ jq. Note that from the condition
s ≤ 2p+ 2q, only the case s = pq with (p, q) = (3, 4), (3, 5) is possible. Therefore g(p−1)q = g2q = 0 and

thus gpq = gk(q−1)pg
k2

q 6= 0.
We have proved that fs is irreducible for 0 ≤ s ≤ 2p+ 2q.

Step 2: coprimeness of fs (0 ≤ s ≤ 2p+ 2q): First let us present several properties concerning the

variable c
(0)
s in Lemma A.7.

Lemma A.11
We have c

(0)
jp+i < c

(0)
jp for any j ∈ Z≥0 and 0 < |i| ≤ p− 1. Moreover it holds that c

(0)
mp ≥ c

(0)
(m−1)p for any

m > 0.

Proof
For the former inequality, it is sufficient to show that, for a fixed i, ym,n := c

(0)
mp+nq − c

(0)
mp+nq+i

satisfies ym,0 > 0. Note that ym,n satisfies ym+q,n = ym,n+p with the initial values

y−2,−2 = 1, ym,−2 = ym,−1 = y−2,n = y−1,n = 0 (−1 ≤ m ≤ q − 1,−1 ≤ n ≤ p− 1),
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and the recurrence relation for ym,n is

ym,n = k (ym−1,n + ym,n−1 − ym−2,n−1 − ym−1,n−2) + ym−2,n−2.

If we define dm,n = ym,n − ym−1,n−1 we have dm,n = k(dm−1,n + dm,n−1)− dm−1,n−1, dm+q,n = dm,n+p,
with the initial values d−1,−1 = −1, dm,−1 = d−1,n = 0 (0 ≤ m ≤ q − 1, 0 ≤ n ≤ p− 1). Therefore it is
readily obtained that ym,n > 0 form,n ≥ 0. Ifm,n satisfy−p ≤ m−n ≤ q, we have ym,n =

∑
ℓ dm−ℓ,n−ℓ,

where the summation runs over 0 ≤ ℓ ≤ min(m,n). Thus ym,n > 0. For a fixed m ≥ 0, let us take
m0 ∈ Z≥0 such that −q ≤ m0(p+ q)−m ≤ p. Then ym,0 = ym−m0q,m0p and −p ≤ m−m0q −m0p ≤ q
indicate that ym,0 > 0. The latter inequality in Lemma A.11 is proved in a similar manner to the former

one by defining em,n := c
(0)
mp+nq − c

(0)
(m−1)p+(n−1)q, which satisfies the same recurrence as that for dm,n,

and by proving dm,0 ≥ kdm−1,0.
Now, let us prove that fs and ft are pairwise coprime for 0 ≤ s < t ≤ 2p+ 2q. From (iii) of Lemma

A.7, it is sufficient to prove that cs 6= ct. When we define

ms = max
(
c(0)s , . . . , c

(0)
s−p+1

)
,

it is shown from Lemma A.11 that there exists i ≤ j such that ms = c
(0)
ip , mt = c

(0)
jp . If i < j then we

have ms < mt and thus cs 6= ct. If i = j then again from Lemma A.11 we have cs 6= ct since they attain
their maxima in the distinct elements.

Step 3: irreducibility and coprimeness of fs (2p+2q+1 ≤ s): For s ≥ 2p+2q+1, let us assume
that fs is not irreducible. Then fs must be factorized as fs = ufrf0 using an invertible element u and a
subscript r with 1 ≤ r ≤ 2p+ 2q. From (ii) of Lemma A.7, we have cs = cr + c0, which contradicts the
calculations in the previous steps. It is readily obtained that fs and ft are pairwise coprime for every
0 ≤ s < t in the same manner as in the previous steps.

A.2 Comments on Proposition 2.4

Let us show two Lemmas on Λp,q.

Lemma A.12
We have 1 < Λp,q < k. Moreover, Λp,q is the largest absolute value among all the roots (including the
imaginary ones) of (7).

Proof Let f(λ) := λp+q − k(λp +λq)+ 1, then f(1) < 0 and f(k) > 0 and thus 1 < Λp,q. For x ≥ Λp,q

we have

f ′(x) = x−1 {p(xq − k)xp + q(xp − k)xq}

≥ x−1
{
p(Λq

p,q − k)Λp
p,q + q(Λp

p,q − k)Λq
p,q

}

= x−1
{
q(kΛp

p,q − 1) + p(kΛq
p,q − 1)

}
> 0.

Thus for x > Λp,q we have f(x) > 0 and thus Λp,q < k. Assume that there exists a root λ such that

|λ| > Λp,q, then f(x) > 0 for x := |λ|. On the other hand, if we take λ = xe−
√
−1γ , f(λ) = 0 is equivalent

to
xp+q − k(xpe

√
−1qγ + xqe

√
−1pγ) + e

√
−1(p+q)γ = 0.

Let us prove that no x, γ satisfy the above equality. It is sufficient to show that, for fixed 1 < u, y, z
and u+ y < 1 + z, we cannot find θ, φ that satisfy (25):

z − (ue
√
−1θ + ye

√
−1φ) + e

√
−1(θ+φ) = 0. (25)

By taking the real part of (25) we have

u+ y − 1 + cos(θ + φ) < z + cos(θ + φ) = u cos θ + y cosφ.
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Thus
(1− cos θ) + (1− cosφ) ≤ u(1− cos θ) + y(1− cosφ) < 1− cos(θ + φ),

from which 0 ≤ (1− cos θ)(1− cosφ) < sin θ sinφ immediately follows. On the other hand, by taking the
imaginary part of (25) we have

u sin θ + y sinφ = sin(θ + φ),

and thus
(u− cosφ) sin θ + (y − cos θ) sinφ = 0,

which is impossible since sin θ sinφ > 0.

Lemma A.13
There exists a constant c > 0 such that d∗m ≥ cΛm

p,q.

Proof Since the degree d∗m satisfies (d∗−2q−2p, · · · , d
∗
−1) = (1, 0, 0, ..., 0) and

d∗m − k(d∗m−p + d∗m−q) + k(d∗m−2p−q + d∗m−p−2q)− d∗m−2p−2q = 0,

there exist suitable constants ci ∈ C such that d∗m =
∑2p+2q

i=1 ciλ
m+2p+2q
i , where {λi} consists of p + q

roots of (7) in addition to the p+ q-th root of unity. (Note that we omitted the case of multiple roots,
however the discussion proceeds similarly to the simple roots.) Let λ2p+2q = Λp,q and we prove that
c2p+2q 6= 0. Let c := t(c1, c2, ..., c2p+2q)e1 := t(1, 0, 0, ..., 0) and A be the square Vandermonde matrix
generated by λ1, λ2, ..., λ2p+2q. Then we have Ac = e1. From Cramer’s rule we have

c2p+2q = −
|A1.2p+2q|

|A|
,

where |A1.2p+2q| is the (1, 2p + 2q)-first minor of A. The determinant of the Vandermonde matrix is

nonzero, and |A1.2p+2q| 6= 0 is also satisfied, since |A1.2p+2q| =
∏2p+2q−1

i=1 λi× |B|, where B is the square
Vandermonde matrix generated by λ1, λ2, ..., λ2p+2q−1. Thus c2p+2q 6= 0. Therefore we can choose
0 < c ≪ |c2p+2q| so that d∗m ≥ 0 and d∗m ≥ cΛm

p,q.

A.3 Comment on Lemma 2.8

For a generic initial values there exists a constant c > 0 in addition to C > 0 such that cΛm
p,q ≤ |am| ≤

CΛm
p,q. In fact, the iterate am is expressed as

am =

2p+2q∑

i=1

ciλ
m
i (ci ∈ C),

where λ1, λ2, ..., λ2p+2q = Λp,q are the roots of the characteristic polynomial. Since Λp,q has the largest
absolute value among the roots, we can find c > 0 such that cΛm

p,q ≤ |am| as long as c−2p−2q 6= 0.

References

[1] B. Grammaticos, A. Ramani and V. Papageorgiou, “Do integrable mappings have the Painlevé
property?,” Physical Review Letters 67 (1991): 1825–1828.

[2] A. Ramani, B. Grammaticos and J. Hietarinta “Discrete versions of the Painlevé equations,” Physical
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