arXiv:1812.08925v1 [math.AP] 21 Dec 2018

A generalization of Picard-Lindelof theorem/ the method of
characteristics to systems of PDE

Erfan ShalchianP-21

%Department of Physics, University of Toronto, 60 St. George St., Toronto ON M5S 1A7, Canada
bDepartment of Mathematics and Department of Physics, Sharif Institute of Technology, Azadi St., Tehran, Iran

Abstract

We generalize Picard-Lindelof theorem/ the method of characteristics to the following system of
PDE: Cj(x, y)@yz/ﬁxl—l—ayl/@xm = D (a: y). With a Lipschitz or C" Cy;, D; : [—a,a]™x[—b, b]"™

and initial condition I; : [—a,a)|™ ' — (=b,b), @ < a, we obtain a local unique Lipschitz or C”
solution f, respectively that satisfies the initial condition, f;(v,0) = I;(v), v € [—a,a]™ . To
construct the solution we set bounds on the value of the solution by discretizing the domaln of the
solution along the direction perpendicular to the initial condition hyperplane. As the number of
discretization hyperplanes is taken to infinity the upper and lower bounds of the solution approach
each other, hence this gives a unique function for the solution (U fs). A locality condition is derived
based on the constants of the problem. The dependence of Cj, D; and I; on parameters, the
generalization to nonlinear systems of PDE and the application to hyperbolic quasilinear systems of
first order PDE in two independent variables is discussed.
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1. Introduction and outline

The method of characteristics for solving a first order partial differential equation in an unknown
function has been known to mathematicians in the past centuries, however, the generalization of
this method to systems of first order PDE has remained unknown (e.g.[l]: Chapter VI, Section 7 it
is stated that there is no analog of the method of characteristics for systems of first order PDE). In
this work we will prove theorems, in particular Theorem [[.1] below, that will generalize the result
obtained using the method of characteristics, typically applicable to one equation with one unknown
function, to systems of first order PDE which the partial derivatives of each function appear in
separate equations. Theorem [[.I] can also be considered as the generalization of the Picard-Lindelof

theorem of ODE to PDE. The main result of this work proven is Section [ is the following Theorem:

Theorem 1.1 (A generalization of Picard-Lindelof theorem/ the method of character-
istics to systems of PDE) Let Cy,D; : P - R, i=1,..,n,l=1,...m—1, m > 2, be Lipschitz
continuous or C" (r > 1) functions defined on the parallelpiped P = Py x Py with P, = {x €
R™| ||z — 2ol < a,z0 € R™} and P = {y € R"||ly — yoll o, < b,yo € R"}. And let the Lipschitz
continuous or C" initial condition function I : V — Py for V. ={x € Pi|xym = Tom, |21 — zo| < @},
0<a<aand Mj_y < b with Mj;_,, = max{|[I(u) —yoll, |u € V} be given. The following

system of partial differential equations

yi y;

0y;
Ci1(z,y) Y +'~'+Cim—1(x7y)ax S

8171

has a unique Lipschitz continuous or C" solution respectively, f : B — P, forV.C B C P, B
containing a neighbourhood of Vipe, with Vipy = {a € Pi|zm = Zom, |21 — x| < @} and f reducing
to the initial condition function I on V', f(u) = I(u) foru e V.

The proof of Theorem [[1] is far from trivial. The main difficulty in generalizing the method
of characteristics to the system of PDE of the type [[L1] is that the characteristic curves for each
equation are distinct therefore it cannot be reduced to systems of ODE. One way to gain control
over these characteristics is to set bounds on the value of the solution satisfying an initial condition
and the characteristic curves which are distinct for each equation by discretizing the hyperplanes
along the direction perpendicular to the initial condition hyperplane. If the bounds are set in an
appropriate and optimal way it can be shown that in the limit that the number of discretization
hyperplanes is taken to infinity the bounds for the value of the solution and the characteristic curves
approach each other, hence this gives a unique function for the solution (U fs).

It should be noted that there is a more general and abstract theorem in hyperbolic systems of
partial differential equations that is related to the system of PDE of relation [[LT] however the condi-
tions of that theorem, being a more general result are not as minimal as the conditions of Theorem

[L1l For example the differentiability assumptions of that theorem have to increase proportional to

1By Lipschitz continuous solution we mean a Lipschitz continuous function that solves the system of PDE [ J]at its
differentiable points. By Rademacher theorem (for a proof refer to [4]) a Lipschitz continuous function is differentiable
almost everywhere.



the number of independent variables used in the hyperbolic system of PDE in order for the solution
to be a bounded ordinary function possessing finite derivatives to a certain order (for more details
refer to 3], Chapter VI, Section 10). On the other hand the conditions of Theorem [[I] are as min-
imal as they can be. Another interesting feature of Theorem [[.1] is the method which it is proven
with, which is an elegant generalization of the method of characteristics, applicable to one equation
with one unknown function, to the system of PDE of[[.T} The difference now is that there are many
characteristics coming out of each point of the domain which the solution is being constructed on,
therefore it is not possible to reduce it to systems of ODE. As described in the previous paragraph
one way to gain control over these characteristics and the value of the solution, is to set bounds on
them by discretizing the hyperplanes parallel to the initial condition hyperplane and later show that
these bounds approach each other as the number of discretization hyperplanes goes to infinity. Also
we derive explicit expressions for the locality condition and the Lipschitz constant of the solution of

the PDE of Theorem [Tl based on the constants of the problem as follows:
a< ! co=nLp—(m—-1)L (1.2)
exp (0(c)era)n(m — 1) Lo(Ly+1/n) = 7 7P “ '
B (L1 4+ 1/n) exp(c1c)
~ 1—n(m—1)Lea(L; +1/n)exp (0(c1)c1a)

LUfs = max {Lf,M”D” —I—Lf(m— 1)M||C||} (1.4)

Ly —1/n (1.3)

L¢ and Lp refer to the Lipschitz constants of the C;; and D; functions on P, respectively. 6(c;) is
the step function. Ly is the Lipschitz constant of the initial condition functions I; on V. M| p and
M, ¢ refer to a bound for | D;| and |Cy;| on P, respectively. The extent which, in general, the solution
can be constructed in the x,, direction above or below the initial condition hyperplane is given by the
locality condition of L2} —a < 2y, — 20y < 4. Also a < & with @ = min{a, (b — My, )/M|p|}
to make sure the domain and range of the solution lie within P; and P, respectively. With Ly in
relation being the Lipschitz constant of the solution along the hyperplanes parallel to the initial
condition hyperplane, Ly, in relation [[.4] gives the total Lipschitz constant of the solution on its
domain of construction.

One of the applications of Theorem [[.T] is in regard to hyperbolic quasilinear systems of first
order PDE in two independent variables which, as an example, are used to describe the one dimen-
sional space flow of fluids. These systems of PDE can be reduced to the PDE of Theorem [L.1] by
differentiating the system, diagonalizing its coefficient matrix and performing a change of function
variables, therefore Theorem [[1] and the method which its solution is constructed (this is discussed
in Section B]) offer an alternative way, which is more direct and convenient especially for finding a
numerical solution, as compared to other methods, e.g. iteration methods [3], for constructing the
solution of hyperbolic quasilinear systems of first order PDE in two independent variables.

In order to illustrate the main idea of proving Theorem [[LT] in a simpler context, in Section
we present an alternative proof of the Picard-Lindelof theorem of ODE by setting upper and lower

bounds on the value of the solution of the system of ODE: ¢/ = f(¢,y), y(to) = yo, by discretizing



the time interval [to, o + a] into 2V partitions at the N’th step

. . Nk Nk
and find a recursion relation for Ay™:F > ¢ 0 — 408

AyNF = AyN P (1 4 nLgot) + O0t* +est, Ay™0 =0 (1.6)

5t = /2N, C a bounded constant, Ly the Lipschitz constant of f(¢,y) and € — 0 as 6t — 0. After
solving relation we find Ay™M*¥ ~ 1/2V + ¢ therefore as N — oo, the upper and lower bounds
for the solution in approach each other, hence this gives a unique function for the solution to
the system of ODE. We will see that this alternative way of proving the Picard-Lindelof theorem is
more easily generalizable to the quasilinear system of PDE of [Tl Setting upper and lower bounds
on the value of the solution enables us to have more control over the possible range of values of
the solution and the bounds at the IV + 1’th step of partitioning naturally fall within the bounds
at the N’th step of partitioning, therefore with denoting the set of possible ranges of values for
the solution on the time interval at the N’th step of partitioning by RY, these sets form a nested
sequence RN D RN+L 5 RN+2 5 | hence in order to show that this nested sequence converges
to the graph of a unique function for solution we only need to show that at the N’th step of the
partitioning the difference between the upper and lower bounds of the solution is of order 1/2%V.
In the current methods which we make successive approximations to the solution without finding
bounds for the solution, e.g. by making successive approximations to the solution from the integral
equation of the system of ODE as in [1] or considering the discretization of the system of ODE as
when solving it numerically, in order to show convergence to a solution the difference between the
approximations to the solution at the N’th step and the N + 1’th step have to be found and finally
show that the sequence of approximations to the solution at the N’th step converges uniformly to
a solution. In these methods when the existence of the solution is proven one is not sure about its
uniqueness and therefore a uniqueness proof has to be presented separately. In the method described
above which we set bounds on the value of the solution the proof of the existence of the solution
is not separate from proving the uniqueness of the solution, since in order to demonstrate existence
it has to be shown that the bounds set on the solution at the N’th step form a nested sequence
and approach each other as N — oo which automatically shows uniqueness as well. This implies
that this method is only applicable to when the conditions of the theorem are such that we obtain
a unique solution (e.g. when f(¢,y) in the system of ODE above is Lipschitz), and it cannot be ap-

plied to show the existence of a solution only (e.g. it cannot be applied to when f(¢,y) is continuous).

In Section Bl we prove Theorem [LI1 We implement the same idea used in Section 2] and de-
scribed in the paragraph after Theorem [[.1] to prove this result. A standard domain S, is defined

as

S ={z € Pl 0 < @ — 2om < &, =@+ Mc,(Tm — Tom) < 21— Tor < @+ me, (Tm — Tom)} (1.7)



and the solution is constructed on this domain. m¢, and M¢, refer to a lower and upper bound for
Cy for i = 1,...,n on P, respectively. a > 0 is chosen small enough. Similarly an S_ domain can
be defined for below the initial condition hyperplane H The domain between the initial condition
hyperplane at z,, = o, in S and the hyperplane x,, = xo, + « in S, is divided into 2V equal
partitions for N =0, 1, ... . The hyperplanes at x,, = xo,, + ka/2" in S, are denoted by V¥ for
k=1,..,2Y and VN9 = V. Upper and lower bound functions independent of the assumed solution
are defined on VV:k: leAf : VNFE 5 R and fiJXT’Lk : VNF 4 R such that if f(x) is a solution to ]
satisfying the initial condition then

@) < filz) < f1@), wevNh (1.8)

i,m

and le "’LO = leA’/'IJ = [;. Next in order to find a similar recursion relation as for AfNF >
fZNAf(:z) — fiJXT’Lk(I), x € VNV* we need to introduce the Lipschitz constants L% of leI\f and fi])\gf

and to show that Af™V¥ — 0 as N — oo we need to show that these Lipschitz constants are bounded.
This is done by finding a recursion relation for the Lipschitz constants in Section 3.1l and showing
that they are locally (i.e. close enough to the initial condition hyperplane) bounded in Section
The recursion relation for AfN-* LNk and a bound for the Lipschitz constants LYN-* < LN2" are

given by
_ o a2
AfNE = A fN -1 (1 + Cl—2N) +Cs (—QN) (1.9)
_ «@ o o N «
LN’k:LN’k 1 (1 +(m—1)Lc2—N+nLD2—N> +n(m—1)Lc2—N (LN7k 1) +LD2_N (110)
L 1
NN (L1 +1/n) exp(c10) —1/n=1L; (1.11)

“1—-n(m—1)Lea(L; +1/n)exp (6(c1)c1cx)

with AfN0 =0 and LM% = L;. C; and Cs are bounded constants. If the locality condition of [L2]
is satisfied, it can be shown that L™* are bounded for all N and k, with their bound given by Ly
in relation [[LTT1

In it is shown in detail that the bounds for the solution at the N + 1 step of
partitioning of S, lie within the bounds of the N step of partitioning. Therefore with denoting the
set of possible ranges of values of the solution on S} at the IV step of partitioning by PJZFV we have
PN > PYt D L and (2, f(z)) € PN for x € S4. Solving the recursion relation of [0 for AfN:*
we find AfN* ~ 1/2V hence Pfrv converges to the graph of a unique function for the solution (U fs)
as N — oo.

Finally in Section B.3]it is shown that the U fs obtained in the previous Subsections solves the
system of PDE of Theorem [[T] at its differentiable points subject to the initial condition. When
the coefficients Cy;, D; and the initial condition I; are C' in order to prove that U fs is C' on the

3 A list of equivalent definitions for when constructing the solution on the S_ domain is given in [Appendix_A]



hyperplanes VV-* the following functions are defined recursively

fiN,k(x) _ fiN,k—l (LL' _ Cz' (xl/,fN,]i}—l(xl/)) a/2N) + Dz (:L,l/7fN,k—1(xV)) a/2N (112)
V=1L, e eVVE ¥ =g — V;LN, v=(mg, +Mc,)é/2+ém,Ci = (Cit, ..., Cim—1,1)

the functions f"*(z) are defined such that fZNmk(x) < fNR) < fZN]\f(x) for x € VNP A fixed
VN:EN is considered for ky € {1,...,2"} and ¢ = ky /2" held fixed as N — oo. Based on the
discussion above it is clear that the sequence of functions fiN’kN (x) converges uniformly to U fs(z) on
VNEN furthermore it is shown that the sequence of their partial derivatives 0 fZN ok /0x; is bounded
and equicontinuous, therefore there is a subsequence of their partial derivatives that converges
uniformly. From this it is concluded that Ufs(x) is C' on VN:F~ this is then easily generalized
to all hyperplanes parallel to the initial condition hyperplane in S;. Based on this fact it is then
shown that U fs solves the system of PDE of [Tl subject to the initial condition and is C' on S,.

Note that relation can be used to solve the system of PDE of [[LT] numerically on S;. One
might attempt to show that the discretized functions in converge to the solution of the PDE
of Theorem [[LTl In this case one has to evaluate the difference between le’k(:zr) and fN L2k ()
and show that this difference is of order 1/2V uniformly on V¥ for k = 1,...,2V this is also a
possibility, however as mentioned earlier in the approach which we set bounds on the values of the
solution things are more under control, therefore it is a more convenient and reliable method hence
this will be the approach we consider in this work.

Section [ discusses the generalizations and application of Theorem [Tl In Subsection 1] it
is shown that the Lipschitz or C” dependence of the initial condition and coefficients C;; and D;
on parameters is inherited to the solution, Subsection discusses the generalization of Theorem
[Tl to non-linear systems of PDE and in Subsection the application of Theorem [[.1] in regard

to quasilinear hyperbolic first order systems of PDE in two independent variables is briefly discussed.

The generalization of Picard-Lindelof theorem/ the method of characteristics to systems of PDE
is a result concerning the classical theory of partial differential equations which has remained un-
known in the past centuries. As far as the author is concerned this result, in the form stated in
Theorem [Tl with minimal differentiability assumptions and explicit expressions for the locality
condition and the Lipschitz constant of the solution, is not approachable using known methods or
theorems and the only way is by direct construction of the solution. Here our main focus will be on
proving this result and briefly discuss some of its generalizations and application but leave further

investigations for future works.



2. An alternative proof of the Picard-Lindelof theorem of ODE

In this Section we demonstrate the main idea in proving Theorem [[T] in the simpler context of

ordinary differential equations. Consider Picard-Lindelof theorem [3:

Theorem 2.1 (Picard-Lindelof theorem) Let y, f € R™; f(t,y) continuous on a parallelepiped
R:—a<t—ty<a,lly—yoll, <0band Lipschitz continuous with respect to y. Let M) ¢ be a bound
for | f(t,y)lloc on R; o = min{a,b/Ms}. Then

y/ = f(tvy)v y(to) = %Yo (21)

has a unique solution y = y(t) on [to — a, to + af.

The standard proofs of this theorem are textbook material [1]. Here we present an alternative way

to prove this theorem.

PROOF (ALTERNATIVE PROOF OF PICARD-LINDELOF THEOREM). Lets assume the system of ODE
2T has a solution. We can integrate 2] for this solution to obtain

t
yi(t) = yoi + [ fit,y(@®)dt,  ylto) = yo (2.2)

to
to first approximation the maximum and minimum values of this solution at ¢ = ty 4+ « are given by

Yom = yoi +omyt <yilto+a) <y +aMP =yl i=1,..n (2.3)
where M?i’l and m?;l denote the maximum and minimum values of f;(¢,y) in the region R%! =
{ty)|0<t—to < |ly—yolloo < Msja}. Next we divide the interval [to,to + a] in half. The

maximum and minimum values of the solution at ¢t = to + /2 are given by
Ui = Yoi +my /2 <yilto + a/2) < yoi + Mpta/2 =yl (24)

where M}l and m}l are the maximum and minimum values of f;(t,y) in RV = {(t,y)|0 <t —ty <
/2, ||y = yolloo < M)sa/2}, respectively. Now we use the bounds in ([2.4)) for the possible range of
the solution at ¢ = ¢y + /2 as a range of possible initial conditions at ¢ = to + /2 to find a better

range of values for the solution at ¢t = tg + «. This is given by

1,2 _ 1,1 1,2 1,1 1,2 _ 1,2

Yiim = Yiom T M7, a/2 <yi(to +a) < Yiar T Mfi a2 = Yim (2.5)

where M}2 and m}f are the maximum and minimum values of f;(¢,y) in RV = {(t,y)|a/2 <
t—tg < a, yllnlT - Mjp/2 <y < ylll\l/[ + Mg /2}, respectively. We continue this process by
dividing the interval [to,to + o] into 2V equal intervals for N = 0,1,2,... and set bounds on the

4We make use of the maximum or infinity norm: ||z|/ec = max |z¢| and the 1-norm: |lz||1 = >, |z¢| throughout

the paper.



solution at ¢t = to + ka/2N for k =1,...,2~

N,k N,k—1 N,k N,k—1 N,k _ Nk
yi,m yzm +m a/2N§yi(t0+ka/2N)<sz +M a/2N:sz

oy (26)
RN”“E{(t,y)‘(k—l)Q—Nﬂ to<k2N=ylm Mwn <y <wiki +M||fn2N}

with yN’O = yZN ]i/_([) = yo; and M, Nk and mN’k denoting the maximum and minimum values of f;(t,y)
in RV respectively. From 2 1t can be Verlﬁed that the bounds for the solution at the N + 1 step
of the partitioning lie within the bounds at the IV step of the partltlonlngH therefore with defining
RN = UiilRN’k we have, RV O RN*1 O RN+2 5 . and clearly based on how RN is deﬁned we
have (t,y(t)) € RN for t € [to,to + o], hence if we show that as N — oo yZ M - ylm — 0 for
k=1,...,2" it can be concluded that the regions R™ will shrink to a graph of a unique function for
the solution to 21l To show this consider the following recursion relation

Uit — Yims = Vit yf,v,;f*l+(M}f’k—mf )a/2N (2.8)
by assumption the function f satisfies the Lipschitz condition in its y coordinates and being a
continuous function defined on the compact region RN'* it assumes its maximum and minimum

values M;Vk and m;\”ﬂ at certain points in RN"* therefore we have
N,k N,k N,k—1 N,k—1
MR =i < STy Mypa/2 = (= Mypja/2V) f Ly + e (2.9)
i

with Ly being the Lipschitz constant of the function f(¢,y) with respect to y. Since the function
f(t,y) is continuous and it is defined on a compact set it is uniformly continuous therefore for any
€ > 0 there is a 6 > 0 (independent of y) such that if |t — /| < 0, |fi(t,y) — fi(t',y)| < e. Now we
can choose N large enough such that a/2" < §. This defines the € used in relation Using
we can derive an upperbound for 2.8

Yigs — Ui < Ay™NEo 1+Z{Ay“ "Lpa/2N + LyMjp /2Nt /2N } +ea/2N = AyNF (2.10)

5This can be seen as follows, with assuming yN+1 2k =2 > yl]\rj 1, y;\r]\;1,2k—2 < yN k=1 (note that this is true for
N+1,2k N+1 2k
k—l—O)Wehavetoshowy Zy“n,y <sz7
N+1,2k _  N+1,2k—1 N+1,2k © N+1,2k—2 1 N+1,2k—1 N+1,2k) ©&©
ya o =y + MY = +2<Mf + M) )2N (2.7)

M;\_TH’Zkfl < M;V k M;V+1 2k < M;V ¥ gince RN+1.2k=1 <« RNk and RN+L2k c RNk apd by assumption

k2 K3
lel\tIl’%72 < leNI; , therefore this proves Yi g N+1,2k < yz M7 the proof of yNJrl 12k > le,;f is similar.

N+1 2k—2 > yN,kfl d N+1,2k—2 < N,k—1

It is clear that RN+1 2k—1 - RN.k gince by assumption Yi, Z Yiom Yi M S Yim and

RN+1.2k — RN gince yf\f;lrl 2k—1 g;lrl 2k=2 4o }\1&1 2T, a/2NFL >y m T — Mypa/2N T and similarly
N+1,2k—1 N+1,2k—2 N+1,2k—1 N,k—1 . .
;. 1v+1 = yiy;; + MfiJr oz/ZN7L1 < Yi b + M||f||a/2N+1 hence their y; range is a subset of the y;

range of RN-¥ and their ¢ range is also clearly a subset of the ¢ range of RY:F,



with yf?]];/_];_l — yfﬁ;f_l < AyNF=1 From 210 we have

AyNE = AyNFTH (L 4 nLyst) + C6t* + edt (2.11)
with C = 2nLy M and 6t = a/2". Solving 211l with noting that Ay™:" = 0 we find

AyNF = (C6t2 4 est) {1+ (1+nLy6t) + ...+ (1 + nLpot) =1} = (C6t + e){(1 + nL5t)* —1}/(nLy)
< (C6t +€) {exp (nLyak/2V) — 1} /(nLy) (2.12)

From2.12it can be easily seen that as N — oo, Ay™'* — 0 for any k = 1,...,2" hence RN converges
to a graph of a unique function for the solution (U fs) on [to,tp + «]. It can be shown that U fs
indeed solves 2.1t

Ufsl(t + At) — UfSi (t) = UfSl(t + At) — (Ufsl (t) + Atfi(t, UfS(f))) + Atfi (f, UfS(t))
= O(A?) + cO(At) + Atfi(t, U fs(t)) = Ufs'(t) = f(t,Ufs(t))) (2.13)

with € — 0 as At — 0. The second equality follows from 2T} for N = 0, k = 1, §t = |A¢
H, Ay%0 = 0, with considering yo = U fs(t) as the initial condition at ¢t € [0,a] and noting that
?72 < Ufsi(t+ At) < y?]b and y?il < Ufsi(t) + Atfi(t,Ufs(t)) < y?l\l/[ It is clear that with a

similar procedure we can construct a unique solution on [—a + tg, to]- i

3. A generalization of Picard-Lindelof theorem/ the method of characteristics to sys-
tems of PDE

In this Section we will apply the idea used in the previous Section for proving the Picard-Lindelof

theorem to prove the theorem below.

Theorem 3.1 (A generalization of Picard-Lindelof theorem/ the method of character-
istics to systems of PDE) Let C;;,D; : P >R, i =1,..,n,l=1,...m—1, m > 2, be Lipschitz
continuous or C™ (r > 1) functions defined on the parallelpiped P = Py x Py with P, = {x €
R™| |z — xol|l,, < a,20 € R™} and P = {y € R"|[ly — yoll < b,yo € R"}. And let the Lipschitz
continuous or C" initial condition function I :V — Py for V. ={x € Pi|xym = Tom, |21 — zo| < @},
0<a<aandMj_y <bwith Mjjj_,, = max{|[I(u) —yoll, |u € V} be given. The following

system of partial differential equations

Jy; yi
8{Em71 + 8Im

0y;
Cit (2, y) o + ... + Cim1 (2, 9)

Dy = D;(z,y) (3.1)

6At can also be considered negative. Although relation B.I1] was derived by assuming we are moving in the
positive time direction, clearly it is equivalently valid for when moving in the negative time direction (e.g. for when
constructing the solution on [—a + tg,to] with 6t = /2N >0).



has a unique Lipschitz continuousﬁ or C" solution respectively, f : B — P, forV.C B C P, B
containing a neighbourhood of Vipe, with Vipe = {x € Pi|zm = Tom, |21 — o] < @} and f reducing
to the initial condition function I on V', f(u) = I(u) foru e V.

PROOF. In a similar approach as the alternative proof of the Picard-Lindelof theorem presented in
the previous Section we assume a solution exists and find bounds for this solution by dividing the
domain along the z,,, direction into equal partitions and later show that these bounds approach each
other as the number of partitions goes to infinity.

First we define a standard domain to construct the solution on. Let M| p| be a bound for |D;|
on P and & = min{a, (b — M|;_y)/Mp|}. Let Mc, and m¢, denote an upper and lower bound
for C; for i =1,...,n on P, respectively. We define the plus standard domain

Si={zx e P|0< 2 — 2om <, —a+ Me,(Tm — Tom) < @1 —xor < @+ me, (Tm — Zom)} (3.2)

with a > 0 chosen sufficiently small as to satisfy the following conditions: i) a locality criteria (the
first relation of B:4T) to be derived in Subsection B2l ii) o < @, iii) to ensure the inequalities for x;
in the definition of .2l are satisfied. Similarly an S_ domain can be defined for below the hyperplane
V 1. The standard domain Sy is defined in a way as to ensure the following two properties. If a
solution f toBJIlon S exists satisfying the initial condition then:
i) f(54) € P
ii) Each characteristic curve z(*) of this solution lies within S, and connects with a point in the
initial condition domain V.

In what follows we will construct a unique solution to[BIlon S that satisfies the initial condition.
We will be using lots of notations and definitions. For a p € S, after integrating 3] based on an
assumed solution f on S that satisfies the initial condition we obtain the following integral and

characteristic equations:

fio) = £+ [ D (1), 2O @))dt, 29 @om) = pi € V. 2 (p) = p
da (1) o (3.3)
Jdt =Cy(D@0), fED (1), Cim=1, j=1,...m

note that the parameter of the characteristic equations t, is the same as the x,, coordinate. Next
we divide S, along the z,, direction into 2% for N = 0,1, ... equal partitions and find upper and
lower bounds for the value of the assumed solution f at the intersection of these partitions in Sy,

we have

N,k _ N,k—1 N,k «@ N,k—1 N,k & N,k
fiom @) = fi v, (@) +mp) (33)2—]\; < fi(z) < firrv,., (@) + Mp (513)2_1\[ = fia (@)

e VNE YNk =1, e 8 |2, = 2om + ka/2N}, VIO =V, k=1,..,2V

"By Lipschitz continuous solution we mean a Lipschitz continuous function that solves the system of PDE [3.] at
its differentiable points. By Rademacher theorem a Lipschitz continuous function is differentiable almost everywhere.
8 A list of equivalent definitions for when constructing the solution on the S_ domain can be found in
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leA?(z) = fﬁho(z) =Ii(z) for z € V. fz-])vj\f, ﬁ;f : VNE 5 R form upper and lower bounds for the
value of the solution on VY, fZNMk;lc (x), fZNmk;,lL (x), Mgk(:zz) and mgk(x) for z € VVF will be
defined below. The bounds of relation [3.4] can be understood better in terms of the first relation of
B3l Writing this relation for z € V™* as the final point and 2* € VV'*=1 as the initial point we

have

wom+ka/2N

fi) = £ + [ Di(a? (1), feOONdt, 0 () = 2Oah) =o' (35)

Tom+(k—1)a/2N
note that x,, = xom + ka/2N for x € VVF and 2!, = zom + (k — Da/2V for 2¢ € VNA-L
The bounds of relation [B:4] are such that lemk‘_,rles(x) < fi(zh) < ijjf]\’file& () and mg;k(x) <
Di(z@ (1), f(zD (1)) < M[J\)fi’k(:t) for (k — 1)a/2N <t — zom < ka/2N. Next we give precise defini-
tions for these bounds. We first define fZNAf;/l(:E), mek(/l (x), Mgk(x) and mg;k (z) for x € VNF:

K2

k— _ k— k ke
f'],VM,vl(w) = max{f»lyM Y(z) ‘z € Sf@ Ny Mk },

K2 3

mek‘_/l(x) = min {fN’k_l(z) ‘z € S’ivf NyNk-L } , (3.6)

(z.y) € PYF Yoy @) =min { Di(z,) |(2,9) € PYF

i

Mgk(:zz) =max {Di(z, y)

with S} and P} for 2 € VN given by

Sivf = {z S ‘—a/?N < zZm — Tm <0,

Mc,(zm — o) < 21— 21 <mey(zm — Tm) } (3.7)
N,k _ N,k yN,k—1 a N,k—1 a
Py = {(z) ‘Z €50, im,V (x)_MHDH2—N <y < fi,M)V () + MHDH2—N,Z =1,.,n}

for when the characteristic curves (9 (t) of the assumed solution f pass through a z € VNF for
i=1,..
—a/2N <t—w,, <0 and Pﬁf is defined in a way as to ensure that (z(V(t), f(z()(¢))) € Pﬁf for

—a/2N <t—uaz,, <O0. fl.NA’f;,rlm (x) and fZNmk‘_,i (z) for x € VVF are given by

on, ie 20 (x,) = Sivf is defined in a way as to ensure that z()(t) € Sivmk for

Fitve, (@) = max {116 [ € L )
SRS (1) = min {f.N”f—l(Z) ‘z c yNA-1 } .

4,m, Vres. 2,m res.,i,T

Yk - {z € S_]’Y)f NYNk-1 ’—Méi’lk(x)oz/fv <z—x < —mgi’lk(x)oz/2N}

res.,i,T

with Mév Lk(:zr) and mglk () having similar definitions as Mgk(x) and mg;k(:zr) in relation re-

spectively with D; replaced by Cy
Mglk(x) = max {Cil(z, Y) ’(z,y) € Pﬁ’f} , mglk(:v) = min {Cil(z,y) ‘(z, y) € Pﬁ’f} (3.9)

From the definitions above it can be verified that the bounds of relation B.4] for the assumed

solution are correct. For example the maximum of f; at a point # € V¥ consists of the maximum
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VNE=1 which the characteristic curve of f; passing through this region

VNE=1 s given by V.2 F71 defined in B8 and

res. ZI

value of f; in a region of
has the possibility of passing through x, this region of
the maximum value is given by f M Vm ( ), plus the maximum value which f; can change when its
characteristic curve passing through sy i * reaches x, this is given by Mgi’k(ac)a /2N,

Also it can be verified that the bounds for the solution at the IV + 1 step of the partitioning lie

within the bounds of the N step. This is discussed in detail in[Appendix B] therefore with defining
PY = Uiil(uwevN,kP_{_v)f) we have PV O PY*! O | From the definitions and relations above

it is clear that the graph of the assumed solution on Sy lies within the set Pfrv at the N step of
partitioning, (z, f(x)) € PJJFV for x € S, therefore in order to show that PJJFV converges to the graph
of a unique function for the solution (U fs) we only need to show that leI\f (x) — fZNmk(x) — 0 as
N — o0.

For this we will try to find a similar recursion relation as in ZI1] for A fV-* > leM]; (x)— fijz;lk(:v),
Vo € VNF. Starting from B4 we have

@) = @) = N @) = i @)+ { My @) - mp @ fa2 (310)

an upper bound for Mgk(:c) - mg;k (x) is given by

WA - ) < SN @) - £ @)+ 20 5
‘ (3.11)
+Z (Mg, — mcl)2 QN}LD

with Lp a Lipschitz constant for the D; functions and the expression in brackets corresponds to an
upperbound for the distance ||p; — p2||1 between any two points py,ps € Pﬁf defined in B We
also need to find an upper bound for leI\f ;,1 (x) — lemk;l(x) in B11l For this we will assume the
functions fZNAf (x) and lemk(x) are Lipschitz with Lipschitz constant LY"*. We will show this to be

true and derive a recursion relation for the Lipschitz constants L™V* in Subsection 3.1l We have

sz]\/;CVl( ) f;[,\/;;],k,‘_/l (JI) = fz'],\]]\)/f_l(xinax) - fz'],\]]\)/f_l(xlinin) + (fi],vj\)/f_l(‘rinin) - fi],vr;zk_l(‘rinin)>
B L L (3.12)
< AR Z(Mcl - mcz)a/2N + (fz],vl\ﬁ/;c 1(‘Tmin) - fz],vv;zk 1(xmin))
l

with 2%,

ax and z? . denoting the points in S+ N VNE-L which fNMk ! and fZNmk ! assume their

maximum and minimum values in Sj_v f N VNk=1 respectively. Combining .11 and B.12 we have

ok ok k— k— «
Mgi (x) —mgi (x) §{nAka L Nk an(MCL —mcl)2—N
!

+ (2nM|D| + ZZ:(MCL —mg,) + 1) }LD

(3.13)
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with AfNF=1 an upper bound for the following quantity

PN = I ) s AL vz e v (3.14)
note that based on B.I4, we can take AfN9 = 0 since we defined fiv 0= fi{v#lo = [;. Similarly we
can obtain a bound for fNJ\f;/rles. (x) — fi{\%f;rtsl (z) in BI00

1‘)

N,k—1 N,k—1 N,k—1/ i N,k—1/_3 N,k—1/_i N,k—1/_3
fz M, Vzes. ( )_fi,m,VrCs‘ (‘T) :fi,M (Z;nax) _fi,M (Z;mn)—’— (fz,M (Zrlnin) _fi,m (Z;mn))

< LN’k’lz (Mév”k( mglk(l’)) 2%4' (fi],vz\fil(zfnin) _fi],vv;zkil(zﬁnin)) (3.15)
]

VNkl

N k-1 N k-1 . .
res.ie Which fiy,~ " and f; " assume their maximum

with 2% . and 2! ;. denoting the points in
VKL respectively. Similar to B3 we can obtaln a bound for Mévl ’lk (x) —

res. lil)’

and minimum values in

mglk( ). We have

ok k Jk— o «
M () = meF (x) S{nAka Y LVE IRy (M, - me) o
I

+ (2nM|D| + ;(Mcl —mg,) + 1) }Lc

with L¢ a Lipschitz constant for the Cj functions. Now using B.13, B8 and 316 we can find a
bound for 310, we have

(3.16)

AR = AR 4 (Lo(m = DIV 4 Lp) o {nAka AR Z(Mcl—mcl)%+
l

<2nM||D|| + Z Mc, —mge,) + 1> 2N} > [N @) = @), Ve e v (3.17)

In SubsectionB. Il we will derive a recursion relation for the Lipschitz constants L™"* and in Subsection
we will show that they are locally (i.e. for a sufficiently small a) bounded. With knowing this

we can write B.17 as
AfYE = AfNEEL (L4 Cra/2N) + Co (a/ZN) (3.18)
with C7 and C5 being constants which bound the following quantities

Cy >n(m—1)LelNF 4 nlp (3.19)

02 > ((m _ 1)LCLN’k71 + LD) {LNﬁkln Z(MCZ — mcl) + ZTLM”D” =+ Z(MCZ - mcl) + 1}
l l

BI8 is the recursion relation similar to ZI1] we were looking for. For completeness we include the
recursion relation for the Lipschitz constants to be derived in Subsection Bl the locality criteria

for o and a bound for the Lipschitz constants LY"*_ to be derived in Subsection 3.2, and a Lipschitz
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constant for the unique function for the solution (U fs) to Theorem Bl to be derived below, here

AFNE = AP (10 ) + G (55 )2

2N
_ o N . e X
LNk — [Nkl (1 +(m-1legy —|—nLD2—N) +n(m—1)Logy (LVA=1)? ¢ Lo
1
=nlp—(m-1L 3.20
a < exp (9(cl)cla) n(m— 1)LC(L] + 1/n) , €1 =nLp (m ) c ( )
N2V (L;r+1/n)exp(cia) Cn=1,

“1—n(m—1)Lea(L; + 1/n)exp(f(c1)cia)
Lyys = max {Ly, Mypy + Ly(m — 1)Mjcy }

Relations constitute the main relations of Theorem Bl L;j refers to the Lipschitz constant of
the initial condition function I and 6(c;) the step function.

With knowing that the Lipschitz constants LY'* are locally bounded we can use the first relation
in to show that AfN* — 0 as N — oo similar to the steps in relation

AfNVE = Coy(a/2M)H{1+ (1 4+ Cra/2N) + ..+ (1 + Cra/2V)F 1)
= Cy/Cra/2V{(1 + Cra/2V )% — 1} (3.21)
— AfNVF < 0y /O {exp(Crak/2N) — 1}a /2N

from relation B.21] it is clear that AfN* — 0 as N — oo, hence PJZFV converges to the graph of
a unique function for the solution (Ufs) to Theorem Bl We will prove in Subsection that
U fs indeed solves the PDE of Theorem [B.1] subject to the initial condition. Before moving on to
the next Subsection we show that U fs is also Lipschitz in the x,, direction. Ly in relation
can be considered as the Lipschitz constant of U fs along the hyperplanes x,, = const. in S for
Tom < const. < xgm + . Consider VNA¥ and VNA~ for q = ky/2Y and ¢ = k/y /2" held fixed
as N — oo and Ax,, = ¢ — q for ¢/ > q. It can be easily seen that a bound for the difference
N (2 + emAa) — [NEY (2)] for @ € VAN and @ 4 émAay € VNN is Myp Az, + Ly(m —
1) M| ¢ Az, with M) o) being a bound for |C;1| on P and é,, the unit vector in the z,, direction,
hence M) p|+ Ly Mjc|(m—1) can be considered as a Lipschitz constant for U fs in the x,, direction.

Therefore
LUfs = max{Lf, MHDH + Lf(m — I)MHCH} (322)

is a Lipschitz constant for U fs on Sy (or S_). Note that relations of are equivalently valid for
when constructing the solution on the S_ domain with o > 0 being the extent which, in general,
the solution can be constructed below the initial condition hyperplane V. A list of the equivalent of
the definitions used in this Section for when constructing the solution on the S_ domain is given in

Append A
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3.1. A recursion relation for the Lipschitz constants L™N*

In this Subsection we will obtain a recursion relation for the Lipschitz constants L'¥ of the
functions le M’; (). A similar result will be reached if we work with the functions fZN n’f(:v). Let
LN = L;, with L; being the Lipschitz constant of the initial condition functions I;. Take two
separate points p1,p2 € VN*. With assuming LY*~1 is known we would like to find an expression
for LNF

(1) = £ ) S ENRY pu—pal, 1=1,.,m—1 (3.23)
l

For this we will make use of the following Lemma:

Lemma 1. Let g: W CR" = R be a Lipschitz continuous function with Lipschitz constant Ly for

the 1-norm. W1, Wy C W be compact sets and consider d with the following characteristics:
YVwy € Wy, Jwe € Wa: ||lwg —wall1 < d, and vice versa: Yws € Wo, Jwy € Wy : ||wy — wal|1 <d

then we have the following relations: |Mg(Wh) — My(W2)| < Lgd and |mg(Wh) — mg(Wa)| < Lyd.
Where My(W,.) and my(W,) denote the mazimum and minimum values of g in W, for r = 1,2,

respectively.

PRrROOF. By the assumption of compactness of W,. and continuity of g there exists w, € W, such that
g(wy) = My(W,) for r = 1,2. By assumption of the lemma there is a yo € Wa such that ||wi —yz2|1 <
d so we have |[g(w1) — g(y2)| < Lyd and since g(y2) < g(w2) we have : g(wa) + Lyd > g(w1) and
similarly it can be concluded g(w1)+Lgd > g(ws) which proves | My (W1)—My(W2)| < Lyd. Similarly
it can be concluded that |mg(W1) — mg(W2)| < Lyd.

Note: Consider By = [[;_;lan,br], B2 = [[_;[ch,dn] C R™ Then d = Y, _, max{|an — cp|, |bn —
dp|} has the characteristics of the distance d in Lemma [l with respect to the subsets By and Ba.

From [3.4]

7

FE R0 = £5E o) = £ ) = PN ) + (MBS 00 - MY F(2)) 57 (324)

YN k=1

res.,%,p1 and

assuming d; has the characteristics of the distance d in Lemma [ for the two sets
y k-1

ves.ips WE have

|f7‘.])\,]\14k);/r1es. (pl) - lezyj\f;/xﬂles. (p2)| S LN1k71d1 (325)

el

res.,i,pr

based on the definitions of forr=1,21in and the Note after Lemma [Il we can find an

expression for d;

a a
dy ZZTH&X{ ‘pu —pa+ (Mévi’lk(pz)—Mévi;k (pl)) oN ‘, ‘pu —pa+ (mg”k (pz)—mgi’lk(pl)) oN ‘} (3.26)
1
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a bound for ‘Mévi’lk(pl) - Mévi’lk(pz)‘ or ‘mgf(pl) - mgf(pg)‘ is given by
‘M (p1) — MY (pz)’ < Leds, ’mc (p1) — mgf(m)‘ < Lods (3.27)

with do having the characteristics of the distance d in Lemma [ for the two sets Pivpkl and PJJFVPZ
Based on the definitions of Pﬁfr for r = 1,2 in 3.7 and the Note after Lemma [I] we can find an

expression for ds

dy > Z|Pu — pai +Zmax{

I 00 = 5 ) [N o) = N )|} 328)

N,k—1

a bound for | £} (1) = £ (2)| or [FE 01) = £ (02)

is given by

fl-zyﬂf;/l(pl) - fﬁ\f}l(pz)‘ < [NRL Z Ip1 — pai
: (3.29)

o o .
fi],vm,vl(]?l) - fz-],vm,vl(m)‘ < LA Z Ip11 — pai
I

from the definitions of [3.6] and [3.7] it can be Veriﬁed that ), [p1; — pa| has the characteristics of the
distance d in Lemma [I] for the two sets S’Jr ;e NVNAE=1 and Sivzi NV NkE=1
From B:28 and 329 ds is given by

=" Ipu = pul (14 0L (3.30)
l

and from B.26) and B.27 d; is given by

«
di = Z lp1 — paur| + (m — 1)Lc2—Nd2 (3.31)
!

Similarly a bound for ‘Mgi’k(pl) — Mgi’k(pg)‘ is given by

’Mg{k(pl) - Mﬁ;’“(pz)‘ < Lpds (3.32)
From [3.23] [3.30} .31 and we obtain a bound for 3.24]

leI\f(pl) fi],vz\f(pz)‘ < {LN,kfl (1 +(m — 1)Lc SN + (m 1)L02N LN,k—l)

B (3.33)
+Lpa 5N (14 nLNk 1)} Z [P — pau
1
Comparing and we find an expression for LYV:*
_ 2 a
LNF = LNR (1 (- Dlegy +nlogy & )+ nim ~Dlogg (L) 4 Loy (3.34)
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3.2. Local boundedness of L™F

The nonlinear term ~ (LN *k’1)2 in [3:34] is the term that can lead to an unbounded increase of
the Lipschitz constants LY'F, but if the coefficient of this term (~n(m — 1)Loa) is small enough
we expect to be able to show that the Lipschitz constants are bounded. We first rewrite 3.34] in a

simpler form

Q
be = bp—1v + (bk—1)?, b = 022—N(LN’k +1/n), k=1,..2" (3.35)
v=(1+ce/2"), e =nLp—(m—1)Lc, ez =n(m—1)Lc

For convenience we have suppressed the index N in b;. Note that for ¢; > 0, v > 1 but for ¢; < 0
and a sufficiently large N, 0 < v < 1 with v — 1 as N — oco. The first few terms of the sequence by,

read
by = boy + bo?
Lo , . (3.36)
by = 7*bo + (v +7%)bo” + 27bo° + bo
From B35 and it is clear that by is a polynomial of degree 2% in by
2¥
by =Y Ch(nbl, C=0forh>2" orh<1, K e NU{0} (3.37)
h=1

with C% () a polynomial in 4. To show the local boundedness of L¥** we need to find a bound for
the coefficients Cf. For this insert by_; from relation 337 into relation 335 to obtain
) 28 -1
b = YCR_1bg + (CR1bG)” = 7CRybf + D > O™ by (3.38)

h1=2 ha=1

summation over A is implicit. From B.38 a recursion relation for the coefficients C,}; can be derived

2
Cl =Cly +2C0LCLy + .+ 2037 T + (GR) i his even

(3.39)
Cp =~CP_, 420010} + ...+ 20 D20 D2 i his odd
In what follows we will show that the coefficients C{; are bounded by the inequalities below
Ch < kh71 kh, > 1
R T= (3.40)

Ch<Eh=Iyk=1 0 1/2<~y<1

one might be able to improve the bounds in and accordingly improve the bounds of relation
B.47 by a more careful study of the coefficients C{;. But these bounds suffice to capture the main
features of a locality condition for a.

From relation and it can be verified that C} = * and C? = Zik:_,f_l ", satisfying
the inequalities of B.40l So assuming C,’C‘/ < kh/_lwkh/ holds for 1 < A’ < h lets try to prove
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C,}; < kh=14kh for 4 > 1 and for h > 3. Applying this to 3.39 we have

Ch < ~OP_ | +2(h)2 = 1)(k — 1) 2yh0=D (g — 1)P=24h=D - if 1 is even
h h (h—1) h—2, h(k—1 (3-41)
Ck <G+ 25— (k= 1)"7%y (k=1 if h is odd
so in both cases we obtain
Clt < ACI, + (h = 1)(k — 1) 244D (3.42)
applying this inequality to C;?,l, C;?,Q, ... we obtain
Cf <AFCh + (h — 1)0"=DA0HE=1 g (= 1)1k g (B — 1) (k — 2)h2yh (D H
k
+ (h = 1)(k — 1)h 240D < g 4 'ykh/ (h —1)z"2dx = KP4k (3.43)
0
note that C{f =0 for h > 3. We also used the fact that v > A"k=1=1)+7 for o > 1, r =0, ...,k — 1,
k=1,...,2Y and h > 3 in the above relation.
Similarly if we assume CP < k" ~'~4*=1 holds for 1 < h’ < h, it is possible to prove that

Ch < kPM1y%=1 for 1/2 <y < 1 and h > 3. Applying this to for both even and odd cases we

obtain
Cr SACE_; + (h=1)(k = 1) 25202 (3.44)
applying this inequality to C;?,l, C;?,Q, ... we have
OF <A*Ch 4 (h—1){0=Dy 724k L 1(h=2) 0 04k=2 4 o(h=2)24k=3 4 | (f—2)h=2,2(k=3)+1}

2 k
+(h=1)(k—1)h22=2 < ¢ +~yk_1(h—1){/ "2 dx +/ xh_zda:} =ikt (3.45)
0 2
we used the fact that =1 > 42(k=2=m)+r . — ok —3 k= 3,..,2" and f02 2" =2dx > 1/ for
1/2 <4 < 1 in the above relation. Hence the inequalities of 340 are proven. Applying to 337
for k = 2V we find

N
22
NN N Ni  9N\h coa(Ly + 1/n) exp(cra)
coa( L 1/n) =2"byn < 2°h, < c1 >0
2a( +1/n) 2 _Z( 07" 1—cea(L; + 1/n)exp(crar)’ ' =
h=1
(3.46)
2V N
2

1 exp(cia)cea(Ly + 1/n)
(LN 41 n) =2V byn <3 T (2Vbg)h < =
20( /) 2N_}; o (27bo) v 1—coa(L;+1/n)

,c1<0,1/2<~vy<1

with LYY = L; the Lipschitz constant of the initial condition function I. We used 72N =(1+
(act)/2V)2" < exp(cia) in the above relations and assumed 2V by exp(cia) < 1 in the first relation
and 2Vby < 1 in the second relation of 3.46l From these assumptions and 346 we can find a locality
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condition for o and a bound for the Lipschitz constants L™F < 2" H

1

e exp (0(c1)cra) n(m — 1)Le(Ly + 1/n) c1=nlp—(m-1)Lc
L2 < (L1 +1/n)exp(cia)

~ 1—-n(m—1)Lea(L; + 1/n)exp(f(c1)cr1ar)

(3.47)

—1/n=1Ly
with 0(cr) the step function.

3.3. Unique function for solution (U fs) solves Theorem [31]

In this Subsection we will show that the U fs obtained in the previous Subsections is the solution
of the system of PDE of Theorem 3.1l With the Lipschitz condition for the initial condition and
the coefficients C;; and D;, Ufs is Lipschitz. Due to Radamechar theorem it is differentiable
almost everywhere. Here we will show that U fs solves the system of PDE at its differentiable
points. Consider two hyperplanes in Sy: Vi = {z € Si|zm = B,20m < 8 < xom + o} and
Varsg = {2z € Stlzm = B+ 08, 20m < B+ 8 < zom + a} for 68 > 0. Define the function g for
z —€émdB € Vg and x € V153

gi(x) =Ufs;(x — Ci(z",Ufs(2¥))6B) + Di(z", U fs(z"))dp, (3.48)
C; = (Cil7 ooy Cin—1, 1), ¥ =x —vdf, with v= (mcl + Mcl)él/Q + ém

é; is the unit m-vector in the x; direction. Similar to before we can take V3 as the initial condition
hyperplane and Vg3 as the final hyperplane, but we will not partition the space in between, instead
we take the limit §8 — 0. Based on how g;(z) is defined it can be seen to lie within the upper and
lower bounds for the solutionl!}: ! (z) < gi(z) < flol\l/[(:v) Using the first relation of (3.20) with

i,m

N =0, k=1, a = |68] and noting that Af%° = 0, we have

AfO = Cy(68)? (3.49)

9We have dropped the 1/v factor on the righthand side of the second relation of 346 as v — 1 for N — oo.
But now since LY¥-2" is an increasing function of N and the second relation of [3.47] is true in the limit of N — oo
then it must be true for all N € {0} UN. To see how L2V is an increasing function of N consider LNk =
LN:k—1 (1 + 61/2N) + (e2/2N) (Lva*l)2 +e3/2N from B34 with e1, ea,e3 > 0. It suffices to show LV+1:2k > [Nk
for k = 1,...,2N. Note that LV+1.0 = LN.0 — [, therefore lets assume LV +1L2(k=1) > [N.k=1 4n9 try to prove
LN+1,2k: 2 LN,k:_ We have LN+1,21<:71 — LN+1,21<:72 (1+61/2N+1) + (62/2N+1)(LN+1,2]€72)2 +63/2N+1 and
LN+1,2k _ [ N+1,2k—1 (1 + 61/2N+1)+(62/2N+1) (LN+1’2]V*1)2+@3/2N+1 - [N+1,2k _ [ N+1,2k—2 (1 + 61/2N)+
(e2/2N) (LN+1’2]“*2)2 +e3/2N + terms greater than or equal to zero. This proves LV +1:2k > [Nk,

0¢.g. it can be verified that =¥ € S?r”lm, (¥, Ufs(z")) € Pﬂ'ylz therefore m%i (z) < Di(z”,Ufs(z")) < M%’ll(m)
and —Mg’zll(x) < —Cy(a¥,Ufs(z¥)) < —m(élzll (z) hence (z — Ci(z”,Ufs(z*))s8) € VOO —and f&° (z) <

= res.,t,T i,m, Vyes.

Ufsi(@—Ci(2,Ufs(2"))88) < f{ar voee (@)
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since U fs;(x) also lies within the upper and lower bounds for the solution flonlq(:t) < Ufsi(z) <
fOAZ (7), based on relation B.49 we have |g;(z) — U fs;(z)| = O(53?). Therefore

2

Ufsi(x)=Ufsi(x —émof) = U fsi(x) — gi(x) + gi(x) — Ufsi(x — émdf)=
O(0B*) 4+ Ufsi(x — émof)— %U fsi(x — émdB)Ca(z”, U fs(x?))df+

R(6B) + Di(x",U fs(x)d—U fsi(x — émdP) (3.50)

with R(68)/68 — 0 as 68 — 0 and we used the fact that U fs; is differentiable at « — é,,,03. Note
that z — é,,08 € V3 is a fixed point and x € Vpg4sp is varied as 68 — 0. Another point to consider
here is that we only used the fact that U fs; is differentiable on V3 and did not need to assume it is
differentiable in the z,, direction in Dividing relation B.50 by 68 and taking the limit §5 — 0
we find

Ciul(z, Ufs(:t))aixlUfsi(;E) + %Ufsl(x) = D,(z,Ufs(x)) (3.51)

This shows that U fs solves the PDE of relation 3.1l at its differentiable points subject to the initial
condition .

Next we will show that if the initial condition and the coefficients C;; and D; are C* then U fs
is C1. We first show that U fs(z) is C! on VN*. We will make use of the following two theorems in

mathematical analysis [2]:

. . . S d
1. Arzela-Ascoli theorem: Any bounded equicontinuous sequence of functions in C° ([} _; [an, bx], R)
has a uniformly convergent subsequence.
2. Theorem: The uniform limit of a sequence of functions in C (Hizl[ah, by],R) is C* provided
that the sequence of its partial derivatives also converges uniformly and the partial derivative

of the uniform limit function is the same as the uniform limit of the partial derivative.

Consider the collection of functions fiN’k : VNk 5 R defined recursively as follows

£ @) = ;0 = G N @) a/2N) + Dl U @) a2

fiN’O =1, ceVVE v =g — 1/2%, v=(me, + Mc,)é1/2+ ém (3.52)
from the way the functions le ** are defined it can be seen

@) < V@) < (@), wevhE (3.53)

we consider a fixed VV*~ (for 1 < ky < 2V) at 2, = zom + ga with ¢ = kn /2" held fixed as

1 Although the construction of U fs was done by moving in the positive ,, direction it is clear that with similar
methods it is possible to start from an initial condition hyperplane and construct the solution in the negative zm,
direction (c.f. [Appendix A). Therefore the discussion here is equivalently valid for when making the replacement
68 — =43 for 8 > 0 and evaluating the derivative of U fs; in the negative x,, direction.

12A similar reasoning as the footnote of the previous page holds here: z¥ € SNk (z¥,Ufs(z")) € Pf’f

+,27
therefore mg;k(m) < Di(z¥,Ufs(z¥)) < Mg;k(x) and —Mgi’lk(x) < —Cu(z¥,Ufs(z¥)) < —mgl’lk(m) hence

(z — Ci(z”,Ufs(z"))a/2N) € Vack land fF01 (2) SUfsi(w — Ci(a”, Ufs(a))a/2N) < £5100 (@)

res.,,T i,m, Vres. i,
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N — 0. To show that U fs is differentiable on VN-*N we have to show the following:

1. Uniform convergence of the sequence of functions fl-N’kN on VN:kn,

2. Uniform convergence of the sequence (or at least a subsequence) of the partial derivatives
8fZN’kN/8:1:l on VN:kEN,

To show the uniform convergence of a subsequence of the partial derivatives it suffices to show the

following:

2.1 Boundedness of the sequence of partial derivatives 9 le oo /0xy.

2.2 Equicontinuity of the sequence of partial derivatives 9 fZN ok /0xy.

The first statement follows from relation B.53 and the fact that as N — oo the upper and lower
bounds approach each other uniformly on V¥~ as shown in .21l To show statements 2.1 and 2.2

we take the partial derivative of

0 Nk N,k—1 v Nk 1
T f @) = TR+ { om0/ 2Y = G, 0V @)/ 2V } 1Y
+Di,zl(pV)2ﬁN + Dy, (p") FRE (2 )2— 1<h<m-1,1<s<n,1 <k<ky (3.54)

with p¥ = (z¥, fN*1(2¥)) and z = = — C;(p”)a/2V in the above relation. Summation over h
and s is implicit. To show the boundedness of the sequence of derivatives we assume a bound

szv el |8fN h '(2)/0x}| is known for the partial derivatives of fN ke Y(@') for ' € VN4~ and

look for LN P> afN *(x)/0x;|. From BS54 we can find such recursion relation

AR (1+(m 1)LC2N+nLD2N)+n( —1)LC(LNk 1)2—N+LD2N |1V @)| (3.55)

where Lc and Lp are Lipschitz constants for Cy(x,y) and D;(z,y) which bound |Cy ., (z,y)],
|Ciy. ()| and |D; g, (2, y)|, |Diy, (x,y)| respectively, for (x,y) € P . Relation .50l is exactly
similar to relation [3.34] obtained previously for the Lipschitz constants L™*. This proves 2.1 that

the sequence f ko

iz, is bounded (locally in ). To prove 2.2 we have to show that the sequence

N,k
fiIlN

and D;(z,y) implies that f;;
uniformly continuous, therefore we only have to show that for a € > 0 there is a common § > 0,
independent of N, such that if || —Z|1 < — | f lj\;lkN () — fi]’\;’lkN (7)| < e, for x,7 € VN:hn,
Taking the functions fN k= "(2) as known, for an eNHA1 > 0 choose dV* =1 > 0 such that if
' =& < 6NF1 for 2/, 7 € VAL and ||p/ — Py < 0NF-1(14 Ly) for p/,p' € P with Ly given

by B:20, then

is equicontinuous. The C! assumption for the initial condition and the coefficients Cy(x, )

N k” is continuous and since they are defined on a compact set they are

VR @) — fE @) <
(Citr . () = Cir . ()] < 71, [Cit i (8) = Cotry (B)] < 1 (3.56)
1Diy. (0) = Diy. 7)< 71 Di, () = D, ()] <

13For brevity we have used the symbol H,,, = 0H/0z,.
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I!=1,...,m— 1. For these eNVF=1 and 6V*-1 Jets see which €¥* and 6% we will obtain for Zj\gf

For this lets evaluate |f1]\;;;(x) - fﬁ?(fﬂ using the right hand side of B:5dl for 2,7 € VNF and

|z — #||1 < 6V* . Note that the difference of the product of any number of terms can be written in

terms of the difference of each of the terms multiplied by other terms, for example
AAg. Ay — Ay Ay Ay = 5A1 Ag. Ar + A0 AsAs. Ar + o+ Ay Ag. Ay 164, (3.57)

for 04, = Ay — gh, 1 < h < t. Therefore the difference of the right hand side of [3.54] can be
written in terms of the difference of each of the terms at their corresponding two distinct points
multiplied by other terms which are bounded. Their two distinct points are either ¥ = x — va/2V
and 7 = T —va/2N or p* = (x¥, fNF1(2?)) and p¥ = (3, fFVF1(3)) or 2z = 2 — Ci(p¥)a /2N and
Z=7—Ci(p")/2N. A bound for the difference between these points are |[p” — p¥||; < 6V-F(1+Ly)
or lz¥ =3y < 6NFor |[z2—2|1 < ONF(1+Lo(1+Ls)a/2N). Assuming 0NF(1+Lo(1+Ly)a/2N) =
§NF=1 (note that with this assumption 6NF < §N+=1 and §N*(14 L) < 6VF~1(14 L;)) and using
3356 we can find a bound for |fN];(x) - f-N’I;(E)|

1,T 2,21

@) = FUR@) < MR 4 NI Ga oV = N (3.58)

1,T 2,21

with G > 0 a bounded constant. Therefore the 6N-F (< ¢N-F=1) and eV-F (> ¢Nk=1) obtained for

N,k . E— b .
fiar 14 in terms of 6NF~1 and €-5~1 and eventually in terms of 6V:0 and €: are as follows

NF = NF1( L Gaf2N) = NO(1 4 Ga /2N (3.59)
VR = gNF1 (1 4 Lo(1+ Lp)a/2V) = 6N°/(1 + Le(1 4 Ly)a/2N)F

for k = ky = ¢2V we have

N a2 — eo(l + Ga/2N)q2N < epexp(Gga) =€ (3.60)
sN.a2V _ 8o/(1+ Lo(1 +Lf)a/2N)‘12N > 0o/ exp(Lc(1+ Ly)ga) =6 (3.61)

where g = €0, §o = §™V:0. Therefore for a € > 0, we can choose ¢y small enough such that .60 is

satisfied: €y exp(Gga) = e. For this &y has to be chosen such that

2 =2l <do = Liw (2) = Lia, ()| < €0 2,2€V
lp =Dl < o(1+ Ly) = |Ciry, (p) — Citry, (P)| < €0, (3.62)
|Oil/7rz (p) - Oil/ymz (5)| < €o, |Di7ys(p) - Di,ys(ﬁﬂ < €o, |Di,fﬂz(p) - Diymz (ﬁ)| < €0, p,ﬁE P

for the §p of B.62the N independent ¢ is given by B.6I} & = 0o/ exp(Lc (14 Ly)qer). This shows that

N.kn

the sequence f; /™" is equicontinuous and therefore statement 2.2 is proven. Therefore there exists

M Note that for the SNE and €Nk obtained, relation B.56] for the derivatives of C;; and D is also satisfied: p,p € P,
lp = Bll < 8%F(U+ Ly) = [Citr ., (B) — Cir s, B)] < NF, |Clt iy (B) = Cotr oy )] < €N, [ Diy, () = Diy B)] <
ek |Ds,z, (p) — Diz, (D) < Nk since 6Nk < §N:E—L and Nk > Nkl
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a subsequence of fzj\gclkN forl =1,...,m—1 that converges uniformly and since the sequence of fl-N’kN
converges uniformly to U fs; on VN~ this shows that U fs; ., (z) exists and is continuous in the
direction of the variables x; for [ = 1,...,m — 1 on VN"*~ Since the hyperplanes V™-*~¥ are dense in
S this easily generalizes to all hyperplanes parallel to the initial condition hyperplane in Sy (e.g. by
varying «). Next we show that U fs; 5, (x) is continuous in the z,, direction. Consider V3 and Vaysp
for 68 > 0, defined at the beginning of Subsection [3.3] as the initial condition and final hyperplane,
respectively. We discretize the space in between along the x,, direction similar to before. Consider
(54 with « replaced by 68 and V0 and VIV 2" corresponding to Vg and Vjzisg, respectively,
with noting that all the terms have a bounded behaviour as N — oo the recursion relation can
be written as /2 (2) = fN2 M@ — 6,68/2Y + &04(58)/2Y) + 0'(58)/2Y with 0}(68) and
O'(6B) terms of order 63, therefore upon solving this relation for f-N’QN(a:) (x € V34sp) in terms

of [0(a") = Ufsiy(@) (a' € V), we find f57 (@) = Uf s (w = 0B + &10] (95)) + OV (99),
with @ — €,,08 + 0N (68) € Vs, ON(63) and O (53) terms of order §3. From lNIlQN there is a

subsequence (e.g. fﬁ;‘l’za") that converges uniformly to U fs; 5, (x), therefore

U f i (@) =Ufsim (= 6m6B8) = lim {2, (@)} = U fsia (x = €0B)
=Ufsiz(x—EndB+€01(08)) + O068) —Ufsiz(x —éndB) (3.63)

we already proved that U fs; ;, is continuous in the direction of the variables z; on V3, therefore
upon taking the limit 68 — 0 in B.63] (note that for z € V58, £ — €05 € V3 is a fixed point) it
can be concluded that U fs; 5, is continuous in the z, directio . From and B.51] it follows
that U fs;(x) solves the system of PDE of Bl subject to the initial condition for all € S and
that Ufs; 4, (¢) exists and is continuous. Similarly with assuming that the initial condition and
the coefficients Cj; and D; are C™t! for » > 1 we can show that the solution is C"+!. For this
consider the r + 1 partial derivatives of [3.52] by similar methods it can be shown that the sequence

of a r + 1 partial derivative of f¥'*~

f is bounded and equicontinuous and with a subsequence of its

lower r derivative converging uniformly, it can be concluded that the r+ 1 partial derivative of U f's;
in the z; directions exists and is continuous in the x; directions for 1 < [ < m — 1, also similar
to the argument above it can be concluded that the r + 1 partial derivative in the x; directions is
continuous in the z,, direction. Then using [3.51]it can be shown that all r + 1 partial derivatives in
the z; direction for j = 1,...,m exist and are continuous.

Note that with the Lipschitz or C" assumption on the coefficients and the initial condition we

obtain a Lipschitz or C" solution, respectively but the characteristic curves and the solution along

Blimp s 00 6,07 (68) = €,0,(68) and limy— 00 0% (§8) = O(883), these limits are well defined. To see this consider
fam2n (x) = Ufsiz (x— émdB +€0;™(68)) + O (68), as noted fan2n (x) converges to U fs; z,(x). © —EémdB +

i,T i,x
élO;a" (68) € Vg converges to the point in Vg which the characteristlic curve of the solution f; passing through
x € V455 passes through in V3, therefore the O%n (63) term also has a well defined limit as n — oo.

16 A5 previously noted although the construction of U fs was done by moving in the positive z,, direction it is clear
that with similar methods it is possible to start from an initial condition hyperplane and construct the solution in the
negative z, direction (c.f. . Therefore the discussion in this page is equivalently valid for when making

the replacement 68 — —6f for §8 > 0 and showing the continuity of U fs; -, (x) in the negative x, direction.
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these curves will be C! with Lipschitz continuous derivative and C"*!, respectively as can be seen
from relation [3.3]

Although the solution was constructed on S by a similar procedure we can define an S_ domain
and construct a unique solution there (c.f. [Appendix_A)), it is also possible to extend the domain of
the solution to a larger one by applying the same procedure on regions near the boundaries of the
domain S = S; US_. Further proceedings in the positive or negative z,, direction, depending on the
specific problem considered, might lead to regions of overlapping characteristics or an unbounded
increase of the solution or its derivatives which would limit the domain with a well defined unique
solution. Nevertheless we would expect there to exist a maximal domain with a unique well defined
solution. For instance consider the union of all domains which a unique well defined solution exists
with unique characteristics connecting the points of the domain to the initial condition domain.
Other regions of the domain P; are regions which no solution, that is related to the initial condition,
exists, i.e. there is no characteristic connecting that region to the initial condition domain, or
multiple solutions exist with multiple characteristics connecting a point in that region to the initial

condition domain. O

4. Generalizations and application of Theorem 3.1

4.1. Dependence of initial condition and coefficients on parameters

In this Subsection we consider the dependence of the initial condition I and coefficients C;; and
D; on parameters and show that their Lipschitz or C” dependence on the parameters is inherited to

the solution. The Proposition is as follows:

Proposition 4.1. Consider extending the definition of Cy, D; and I; of Theorem [31l to Cy -
PxP; - R, D;: PxPy—-Rand I : VxP; — R with P = {w € RY|w—w, < c},
P = Py x Py with Py, P, and V' defined in Theorem[31l Let Ciu, D; and I; be Lipschitz or C™ with
Ii(z,wo) = Ii(z), Cu(z,y,wo) = Culz,y) and Di(x,y,wo) = Di(x,y), also let Myr_, | < b with
M7y = max{|[{(u, w) = yollo|(u,w) € V' x P3}. Then the following system of partial differential

equations:

O’Ll (Ia Y, U]) 651 Y + L

= D; 4.1
Sl 5 = Dif.y.w) (1)

+ o+ Cim1(z,y,w)

has a unique Lipschitz continuous or C" solution respectively, f : B x Py — Py for V.C BC P, B
containing a neighbourhood of Vint, with Vins defined in Theorem [31] and f reducing to the initial
condition function I on'V x Py, f(u,w) = I(u,w) for (u,w) € V x Ps.

The construction of U fs which was done in Section [3] can similarly be done here for a fixed w

(or in other words for a spectator w argument) by replacing the constants of the problem

MHDH7MHCHuMCnmCmLCuLD defined on P with M||D||7M||C‘H7MélvmélvLévLD

(4.2)
defined on P x P3 and Lj defined on V' with Lj defined on V x P;

and accordingly relation 3220 and the relations in Section Bl that involve these constants would be

modified in this way.
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To show that U fs(z,w) is Lipschitz with respect to its w argument consider the sequence of
functions in .52l Now with the initial condition and coefficients depending on the parameter w the

recursion relation picks up a w dependence

_ =N = v T — v o D vof - v @
I )= 74 (0 = G (@7 JY (07, w) w) g w) Dy (7, PV @ w), w) o
IN2,w) = Liw,w), 2 € VVF, 27 =2 — DgﬂN’ v=(meg, + Mg,)é1/2 + ém (4.3)

The sequence of fiN’kN (z,w) converges uniformly to U fs(z,w) on VN*~ x Py for ¢ = ky /2N
fixed as N — oo and 1 < kxy < 2V as can be seen from relation B.21] after applying Therefore
if it is shown that " (z,
that U fs(x,w) is Lipschitz with respect to w on all V¥ which then easily generalizes to all

w) has a bounded Lipschitz constant with respect to w, this implies

points in the domain S*(e.g. by varying ) . Lets assume fiN’kfl(x, w) is Lipschitz with Lipschitz

Nk—1
Ly

constant and try to find the Lipschitz constant of ﬁN’k(:zr, w). Consider two different points

(z,w), (&,@) € VVF x Py We would like to find LY* such that £ (z,w) — [ (@, )| <
L;y’k{zl |x — 2| + 22:1 |wy, — Wy|}. First lets evaluate the difference between each of the terms
in 43
‘Di (Iﬂva,k—l(ID,w),w) - D, (ffﬂ,fN,k—l(ff <L; (1 +nLJyk 1) (4.4)
{ xl—’fl|+2|wu—au|}
FN,k— A U FN,k— U ~ (P Y~
PR @=Cia” PN @ w) w) g w) = A (303 fN’“ L@ ), @)y ) |

£
%L@(m 1) (1+nLNk 1)}{Z|xl—xl|+2|wu—wu|} (4.5)

gL}“‘l{lJr

using the above relations we can find a bound for

M (@, w) — VM@, )|

Ik @, w) — ;R @, w)‘ < {%LD (1+nLJyk 1)+

Lyt (1+2%L@(m 1) (1+nL]yk 1))}{Zl:|xl—%l|+zu:|wu—i5ul} (4.6)

from we obtain a similar recursion relation as B34 (but with applied) for the Lipschitz

constants

LY = DR (14 (m = 1)L + nLp) sy &) +n(m ~Dlegy (L}V”“‘l)2+ Logy (A7)
This shows that the sequence of Lipschitz constants is locally bounded for all N and k, therefore
U fs is also Lipschitz with respect to its parametric dependence with Lyys = maX{Lf, M p+ (m—
1)L M e} being its Lipschitz constant on St x Py(or S= x P3). Next we show that Ufs is C!
with respect to the x and w space. First we show this on the hyperplanes V¢, For this it suffices
to show Statements 1, 2.1 and 2.2 in Subsection B3] for the sequence fN N (2, w) with ¢ = ky /2N

held fixed. Statement 1 was discussed below relation 3t the uniform convergence of fiN’kN (z,w)
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to U fs(x,w) as N — oo follows from relation B.21] after applying E.21 fZNIlkN (x,w) and ﬁNw]ZN (x,w)
are locally bounded for all N since the Lipschitz constant of f¥-*~(z,w) obeys relation 7, hence
this shows Statement 2.1. To show Statement 2.2 take the partial derivative of with respect to

w, and x;

- = FY )= 3w (~Cin (07 5y = O, 0F) TN ) ) F e w)

+ Di () g7 + Dt (0T (@ w) 5

R w) = P ) + (~Conan () = Cona, 0V (0 ) FE o) (49)
+ D (") g + Di (0) 12 (0" w) 3

]—J,Vu}ﬁ” (z,w) and fLF (2, w) are

summation over h and s is implicit. Showing that the sequences iy

equicontinuous is similar to how this was done for the partial x; derivatives in Subsection B.3] as
the structure of the recursion relation is the same, therefore by similar arguments starting from
the paragraph below relation until a few sentences after relation [3.63] we can conclude that
OU fs; /0w, and OU fs;/0x; (j = 1,...,m) exist and are continuous with respect to the z and w
space. Also with similar arguments as in the paragraph below relation we can conclude that

with a C™t! assumption on Ci, D; and I, U}s(x, w) will be C™+1 with respect to x and w.

4.2. Generalization to nonlinear systems of PDE
In this Subsection we will generalize the result of Section Bl to nonlinear systems of PDE. For

this we need to conjecture the following for a linear homogeneous first order system of PDE that

will be derived later in this Subsection.

Conjecture 1. The following linear homogeneous first order system of PDE:

Yy Yy

— + A(x)=— +B =0 4.9

L+ Aua) 5+ Blaly (1.9)
with Aj(x) and B(x), n x n C' matrices defined on Py, can have at most one C* solution locally
that satisfies a C1 initial condition I; : V — R, y;(u) = I;(u) , w € V, with P, and V defined similar
to Theorem [31].

Note: If the matrices 4; in L9 are symmetric the above conjecture is true according to [3].
The nonlinear system of PDE that is reducible to the system of PDE of Theorem [3.1] by differ-
entiation is :

Gi(z,y,Vy;) =0, i=1,..,n (4.10)

we assume G; : Pp X Py x @Q; — R is defined with Q; = {z € R™|||z — piolloo < ¢}, the points

pio € R™ and ¢ > 0 will be defined below. The initial condition is given by I; : V. — R and we

7The derivation presented here is similar to the one in [] except that it is for a system of PDE.
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demand that the functions y; solving E.I0 reduce to y;(u) = I;(u) for uw € V and My, < b. P,
Py, V and Mj;_,, are defined similar to Theorem B.Il With the C? assumption on G; and the
initial condition I; we will obtain a C?® solution. In order for the existence of a solution to that
reduces to the initial condition on V to be possible the functions p{ = p?(u) for u € V must exist

which satisfy the following relations:

pa(u) — 8;—57) =0, (4.12)
Sh A0 at (u, (), pb(w) (4.13)

pY is C? from [LI2] therefore due to the implicit function theorem p?, will also be C? . pio and
¢ > 0 are such that Yu € V — ||pd(u) — pio||s < c. Differentiating FET0] with respect to x; we have
Opi; 0G;  0G;
Gip,. (x,y,pi) =L = — - ——Dsi

1,Piq ( y pl) 6:Eq 6$J 6y5 pSJ

0y;
Gi,piq (x,y,pi) —&vz = Gi,piq (z,y, pi)piq
q

s=1
(4.14)

summation over ¢ and s is implicit. We have commuted the order of the partial derivatives and
replaced 0y;/0x; — pij. From I3 it is clear that 0G;/0pim # 0 in a neighbourhood of the set of
points (u, I(u),pd(u)) € Pi x Py x Q; for u € V, therefore upon dividing @14 by G p,. (z,y,p;) we
obtain a system of PDE similar to relation Bl which then a unique solution y(z) and p;(z) can be
constructed locally that would reduce to y(u) = I(u) and p;(u) = p?(u) for u € V similar to the
way it was done in Section Bl With the C® assumption on the initial condition I; and G; in EI0],
the coefficients and the initial condition in .14 will be C? and therefore we obtain a C? solution to
414

Now it is possible to show that the y; of 14| solve the system of PDE of and are C?
assuming Conjecture [I] holds. For this we introduce new coordinate systems corresponding to the
initial condition hyperplane and the parameter of the characteristic equations of .14l We denote
these by ugi), vy Ui;?q and (u%) =) t). By the theory of ordinary differential equations the map

z = x(u?) is C2. To show that y solves EI0 we need to show the following equations:

Gl(,f,y(,f),pl(l')) =0, (415)
WD) () =0 (416)

from [IT]it is clear that .15 and from 12 and the second equation of E14]it is clear that .16 are
true on the initial condition hyperplane V. We need to show that they hold locally near the initial

181t is usually assumed that relations A11] - B3] hold for a point ug € V which then due to the implicit function
theorem it can be inferred that they hold locally in a neighbourhood of ug € V. Since we want the solution to reduce
to the initial condition on V we have assumed that [Z11]- T3] hold on V.
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condition hyperplane. Showing [4.16lis equivalent to showing dy; = p;;dz;. In the coordinate system

of the initial condition hyperplane ugi),. u'Y | and the characteristic parameter (usy? =) t() this

o Um—1
is equivalent to the following relations:
Aa(u®)= 22— —L =0 (4.17)
oul” M gl
Jy; 8xq

Aim (u) = =0 (4.18)

ot~ Piagety

[AI] is automatically satisfied from the second equation of 14| and the characteristic relation
Oxq/0tW = G p,,. EIT and EI5 need to be shown. For this we take a derivative with respect

to t() of these equations. We have

9 } o~ Oz - Oys Oz ~ Opyj
g iy (@) Pil@)) = G, gy & Gy T Cir gty
ay oG; 0G;
=G, %G ipi; T Giy. Gi i,Dij 8 -+ Gz,mj ( 8333 8—y5psj)
ays 8’[1,(5) s
= Gi,ys Gi,pij <a—$] _psj) - Gi,ys G'L \Pij a (1 )\sq (’U,( )) (419)
0 ) 0 0G; 0G; ox 8G
- \. (7’) _ . . _ v q %,Diq
ot® Ait (u) 5ul(i){Gz’p“’plq} ( Oz 8ys psq) ou l(i) (9 (z

5plq 0G: Dry  0G: du, _ G 8G1 dys,  0G; Oz,

= Yipia () z+ S0 A @ Ay A 5. Psa 0y
P 8 833(1 ou, @ Jys 8 ( Oou, ) Oy, 8ul( ) Oy, qaul( )
(s)
=53 J(l) Aej(u®) (4.20)
3ul Ys 8

summation over s,q and j is implicit. The change of the order of the partial derivatives are allowed
since y; and x; are C? (If we had started with a C? assumption on the G; and the initial condition
functions I;, y; and the z, of 414 would have been C' as a function of ugi) but the change of
the order of the partial derivatives in would still be allowed since dy; /0t and dz, /0t are
C"). We also used the fact that the inverse map u(® = u(¥(z) is differentiable, in particular C2,
in the above relations, this follows from the fact that the map 2 = z(u(?) is C? and we know that
det{0z;/ 8u¢(1i)} # 0 near the initial condition hyperplane since at the initial condition hyperplane

the coordinates ugi), s f,?f

are the same as 1, ...., oy, and dz,, = Gip,, dt@ for G; . # 0.
Considering everything as a function of  with «() = «( () and rewriting /9t in terms of partial

derivatives with respect to x and noting that \;,, = 0, we obtain

aG,(x) ol
G%Piq axq - Gzyys qupij a—wj)‘Sl/ (:E)
Ma(z) 0Gs(z) Ox ou'? (4-21)
Gi B i — ‘ q = —Gi S—l,-)\sl/ (:E)
P Oxq dzq 8ull) Y oul?

l
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I”!’=1,..,,m — 1. Considering the coefficients of Béi/axq, 85\1-1/8:10(1 and Mg as known functions
of x, which based on the assumptions of the theorem are C', it can be seen that the functions
Gi(x) = Gi(z,y(x), pi(x)) and Ny (x) = Ay (u?(x)) satisfy a linear homogeneous first order partial
differential equatio in the form of relation , and since they vanish on the initial condition
hyperplane V', assuming Conjecture [ holds, they should also vanish near the initial condition
hyperplane . Therefore and relations [£17] and [£.1§ (or equivalently [L.16) are valid near V.
This shows that y = y(z) of 14 solves the system of PDE of 10 near V and since p;; is C?, y
would be C3. Tt is also possible to combine the results of Subsections E1l and E2 easily by extending
the definition of the initial condition and G; functions of .10 to have a parametric dependence w on
a compact parameter space. With assuming the conditions and assumptions in this Subsection hold
for any fixed w (or in other words for any spectator w argument) in the compact parameter space
the discussion of this Subsection is similarly valid without any change. The only point to note is
that with a C® assumption on the initial condition and the functions G, the solutions obtained for
the system of PDE of .14 will be C? with respect to the z and w space, therefore y; and dy;/0z;
(= pij) will be C? with respect to the z and w space.

At the end of this Subsection we note that the initial condition can also be defined on an
arbitrary hypersurface instead of a hyperplane. In this case it is possible to reduce the problem to
one that is defined on a hyperplane by a change of variables. Consider the following C® hypersurface
2:U—=R™ 2 =2x(u,....;um—1) for U = [—a,a]™ !, and dx(u)/Ou has rank m—1. We demand that
the functions y solving reduce to y(z(u)) = I(u) on this hypersurface for some set of C* initial
condition functions I; : U — R. Since the rank of 9z/0u is m — 1 at any point ug € U there exists
m—1 rows of the matrix dz/0u that are linearly independent. Without loss of generality we take the

first m — 1 rows to be linearly independent. Therefore we can change coordinates from w1, ..., Up—1

19Tn order for Ay to satisfy a linear system of PDE, ys should be at least two times differentiable, this is the main
reason the coefficients and the initial condition in @10 were assumed C3 so that the solution of i14] and in particular
ys would be C2. We do not rule out the possibility of improving this C® differentiability assumption. For example
with a C? assumption on the coefficients G; and I, and are still valid as the change of the order of partial
derivatives is still allowed as mentioned in the sentences below equation In this case and are linear
homogeneous partial differential equations for G; and Ay in different coordinate systems(!) with coefficients that are
at least continuous and it obviously has a solution of zero based on an initial condition of zero. If this can be defined
properly and a similar conjecture as Conjecture 1 holds for it then it is possible to start with a C? assumption on G;
and I;. A more optimum differentiability assumption is that we start with a C'! assumption with Lipschitz continuous
derivatives on G; and I;, in this case if we assume there is a C'! solution with Lipschitz continuous derivatives to E10]
then this solution will inevitably be given by the unique Lipschitz solution to @14l In this case it might be possible
to show that this Lipschitz solution solves 10l near V as this is true for when we only have one equation with one
unknown function (when n = 1) in 10 as stated in |1].

20With Gyp,,, # 0 near V after dividing 221l by G;,p,,, we obtain a similar form as 0] Note that the
term ~ O0G;(z)/0%m in the second relation of 2I] can be eliminated by multiplying the first relation of ELZ1] by

(8:cm/8ul(l))/G’i,pim and adding it to the second relation of 271

2127 clearly has a solution of zero based on an initial condition of zero. We might ask the question as to whether
this is a unique solution. Here we will try to argue in favour of a unique solution. Having another solution other than
zero would lead to some unsatisfactory results. For example if we have a non-zero solution then a constant multiple
of that solution would also be a solution based on an initial condition of zero and this generates an infinite family
of solutions. Or considering the discretization of the system of PDE of 2]] the values of the discretized solution
obtained at each discretized hyperplane parallel to the initial condition hyperplane would all be zero, therefore it
seems that a non-trivial solution cannot be captured by the discretization of the system of PDE of 211 Also from |3]
it is known that when the A; matrices are symmetric, [£.9] can have at most one solution. Therefore it seems plausible
to conjecture that Conjecture [[lholds for general n x n C! matrices A; and accordingly the linear homogeneous first
order system of PDE of L21] would admit at most one solution locally based on an initial condition of zero.
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t0 1, ..., Tm—1 near u = ug. Since det{dx;/Ouy} # 0 (I,I' = 1,...,m — 1) near up the inverse map
= u(ry,...,Tm_1) is also C3. Next we change coordinates from (21, ..., Zym_1, Tm (W(T1, ..., Tr_1)))
to (z1, .o, Tm—1,2,,) With 2/, = zp, — zpm(u(z1,...,2m—1)) and in this new coordinate system the
hypersurface near z(ug) is given by 2/, = 0. Note that the functions G; of and the initial
condition functions I; remain C? in this new coordinate system, G;(x,y, Vy;) = Gi(21, ..., Trm—1, T}, +

xm(u(l‘l, ---7$m—1)),y73yi/3$1, ---aayi/aszlvayi/axgn% I; = Ii(u(331, ---wrmfl))-

4.8. Application to hyperbolic quasilinear systems of first order PDE in two independent variables

In this Subsection we will show that a hyperbolic quasilinear system of first order PDE in two
independent variables can be reduced to the system of PDE of Theorem 3.l Consider the following

hyperbolic quasilinear system of first order PDE in two independent variables z1 and zo

Jy

Jy
s + A(w,y) 77—

o B(z,y) (4.22)

A(z,y) and B(z,y) are nxn and nx 1 C! matrices, respectively, with Lipschitz continuous derivatives
defined on P; x Py with Py, for m = 2, and P, defined similar to Theorem 3.1l It is assumed that A
has n real eigenvalues 7¢(z, y) which form a diagonal matrix T(z,y) and n linearly independent left
eigenvectors [*(x,y) which form a matrix A(z,y) with determinant one, T and A are also considered
C' with Lipschitz continuous derivatives
to a set of initial condition functions on V, fi(u) = Ij(u) for u € V, I; : V. — R being C' with
Lipschitz continuous derivatives and V', for m = 2, defined similar to Theorem [3.1]

To reduce the system of PDE above to the form of Theorem Bl take the derivative of 222l with

respect to x,

1. Furthermore we demand that the functions y; reduce

8[)7« 8pr
8I2 + Aaftl

= B,wT +ps7‘B,yS - A,wrpl - psrA7ysp1 = C(:Eu yaplap2) (423)

summation over s = 1,..,n is implicit, we have changed the order of the partial derivatives|*] and
replaced dy/0x,. — p, for r = 1,2 and ps. = (pr)s- Next multiply 23 by A and define the new
function variables p, = Ap,, we have

Opr

Opr
u +T = (A,wz + A7ysp82)pr + T(A7CE1 + A,yspsl)pr +AC (4'24)
8I2 83:1

and the PDE for y is given by

Jy dy
— 4+ T—= = T 4.2
(91:2 + 6$1 p2 + p1 ( 5)

(or Oy/O0ze = po is also a valid choice instead of E.25]) the system of PDE of [4.24] and {.25] in

22For when the eigenvalues 7% are distinct this follows from the fact that A is C! with Lipschitz continuous
derivatives.

23The change of the order of derivatives is allowed almost everywhere since based on the differentiability assumptions
on A, B and I;, the partial derivative of the solution, dy/dx, will be Lipschitz and therefore is differentiable almost
everywhere.
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terms of the functions y and p, (with p, = A~1p,.), has the form of Theorem 3.1l with coefficients
and initial condition that are Lipschitz. The initial condition is given by y(u) = I(u), p1(u) =
Au, I(w)0I(u)/0uy and pa(u) = A(u, I(u)){B(u,I(u)) — A(u, I(u))0I(u)/0ur} for w € V. From
[3] it is known that has a local unique C! solution with Lipschitz continuous derivatives that
satisfies the initial condition, therefore it is clear that this solution is given by the local unique
Lipschitz solution of and y and dy/dzx, = p, = A~'p,. This shows that Theorem [B.1]
gives an alternative way, which is more direct and convenient especially for finding a numerical
solution (e.g. The discretized form of the solution can be obtained by considering relation
for the system of PDE of and [A27]), as compared to other methods, e.g. iteration methods
[3], for the construction of the solution of hyperbolic quasilinear systems of first order PDE in two

independent variables.

Appendix A.

In this Appendix we will list the equivalent definitions and relations of Section [ for when

constructing a solution on the S_ domain. The S_ domain is defined as
S_={r e Pl-a<zy —2om <0,—a+me,(Tm — Tom) < x1 —xo1 < a+ Mce,(Tm — zom) } (A1)

and « satisfies the 3 conditions listed below relation Mc, and m¢,, similar to before, refer to

an upper and lower bound for C;; for ¢ = 1,...,n on P, respectively. Relation [3.4] is modified to

_ « _ a
PN @) = P (@)~ MEM @) < fule) < SN (@) - miH ) e = k)
T € V,N’k, vk = {z esS_ ‘zm = 2o — ka /2N }, VN =y k=1,.. 2N (A.2)

fZNA? r) = f.N’O(gc) =Ii(z) forx e V. fﬁ\’f, ﬁf VIR R leIVf;,l(:C), mek‘_,l(x), Mgk(:v) and

i,m Q

mg’, (z) for € V'F are given by

K3

Sy @) = max {1512
£ @) = min {2 () o € SV VYA N

A i,m

Mgi’k(:v)zmax {Di(z,y) ‘(z, y) € Pf’f} ,mgzk(:v)zmin {Di(z,y) ‘(z, y) € Pf’f}

z € S]_V:f Nyt } ,

N,k
S

-,

and Pivf for z € V¥ are given by

SN’k*{ZGS,‘ngm—xmga/QN, (A.4)

-z

me, (2m — Tm) < 21— 21 < Moy (2m — xm) }

N,k _ N,k ;N,k—1 a N.,k—1 a
Pf,:c = {(Zuy) ‘Z € S—,f? (x)_M||D||2_N < Yi < fi,M,V (CE) + M||D||2_N72 = 1, ,n}

i,m,V
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fN](jile& (x) and lemk‘_,rles (z) for z € V¥ given by

/L7

N k— _ N k— Nk
fi,M,VrleS, (z) = max {fi,M H2)|z € Vies.i wl}
It @) = min { £ @) |2 € VA5 (A.5)

YNk - {z € S],Vf Ny Nkt ’mgf(x)a/QN <z —x < Mcj\vfi’lk(x)oz/2N}

res.,i,x

and Mglk(:zz) and mc "(x) given by

Mévlk(gc) = max {Cil(z,y) ‘(z, y) € Piv)’f} , mg k( ) = min {Cil(z,y) ‘(z, y) € Pivwk} (A.6)
Relation is modified to

£ @) = ;0 e+ G, fY T @)a/2N) = Digat, fY T @)a /2N

o) . .
fiN’O =L, zeVVF =24 Von, V= (me, + Mc,)ér/2 + én, (A7)
Relations [3.19 and [3.20 are equivalently valid with o > 0 being the extent which, in general,

the solution can be constructed below the initial condition hyperplane and Af™* a bound for
fNAf(;v) — f-N’k(x) for z € VVF and LN+ being the Lipschitz constant of leI\; or ka defined in

i, i,m

[A2 on vk,

Appendix B.

In this Appendix we will show in detail that the bounds set for the solution in Section [Bl at the
N + 1 step of the partitioning lie within the bounds of the N step of the partitioning. PJr * for
x € VNVF in Section [3 was defined such that if f is a solution to the system of PDE B.1l subject to
the initial condition and its characteristic curves (9 (¢) for i = 1,...,n pass through the point z,
2 (2,,) = 2 with 2, = 20, + ka /2N, then (z() (1), f(zD(t))) € Pﬁ’f for —a/2N <t -z, <0,
therefore with defining P = U%Zl (UZGVN,kPﬁf) we have (z, f(z)) € PY, Vz € Sy, i.e. the graph
of the solution on Sy is a subset of PY. Here we will show that P ™! C P,

Lets assume (i): ka Y(z) < fNJrl 2k 1)( ) and fNJrl 2(k=1) ( ) < ka 1( ) for . € VNA-L =
VN+12(k=1) (pote that this is true for k — 1 = 0) and try to prove (ii): fz Pk z) < fNJrl %k (z) and
fiNA}rl,Qk( ) < leM( ) for z € VN = YN+12k,

Here we show fNJrl 2k (z) < fi,M (x), the proof of lemk(:zz) < fijynfl’% (x) is similar. Based on the

definitions in Section [3]

N+1,2k N41,2k—1, N+1,2k
fing 7 (@) = fiur (z1) + Mp, () /2N

;,VA;MH’(:EQ) + My @t )a /2N 4 MY TV (@) /2N (B.1)
£ @) = 15 @) + MY (@)a/2N

N+1,2k—1 i N+1,2k—2 i N,k—1 N+1,2k—1  pN+1,2k—2
€ Vies. in S iy and z* € V. .J", . are the points which f L and

N,k 1 N+1,2k—1  1,N+1,2k—2 k—1 .
fi7 »  assume their maximum values in Vi "7 » Vies.yisut and V]reb .z respectively. It can
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be shown that Vr]\:rll;lk eyl kz ! therefore from the assumption fNJrl 2k 1)(90) < Z-Jyj\f_l(:i),

z € VNF=Lit follows that £37"*2(xh) < f;7 ' (2%). Also it can be shown that P 72" € pYV'f
and Pf“ 2=t pYY therefore Myt 2’“(gg) < My*(@) and MRV (@) < MJM(x), this
proves fﬁ\}l 2k(:zc) < sz(:E)

To complete the proof we have to show Vri\?llflk Zcyh kml , Pf:l 2k Pfrvf and Pﬁtl 2l
Pff Take 2’ € S’N+1 2k NFL2k-1 S’ivf VN+L2ZE=1) 1t is clear that S’NH’WC SN’]’C and

N+1,2k—1 . s : N+1 2k—1
Sy C S * from their definitions given by B.7 also lets review the definitions of P ,

Nk N+1 2%
Py and Py

N+1,2k N+1,2k pN+1,2k—1 o N+1,2k—1 «
Pra = {(z,y) ‘z €S¢e i fimyT @ = Mppjgrm Svi S finy (@) +MHDH2NT}

N,k N,k—1 o N,k—1 «

Py = {(Zay) z € S+ o fimy (@) = M||D||2_N <y < finv (@) + M||D||2_N} (B.2)
N+1,2k—1__ N+1,2k—1 ;N+1,2k—2/ « N+1,2k—2/ 1 a
Pl {(Z WizeSie ™ s fimy @) =Mipigymm S vis finy (@) M) gr
from [B.2] it is clear that Pj_v+1’2k_1 C Pﬁf, since {Sﬁ;r,l’%_l C Sivf d {f lNH 22 >

fﬂf;l(x) and fNJrl 2k— 2(1:’) < ka 1( ) by assumption (i) and the fact that (Sf’;l’%*l N

Z)

~ Nk _ N+12k—1 ~ oN+1,2k P
VNHL2R=2) (SN VNED} Now because o € Vo 2 € ST q VNVHL2E—1 this shows

N+1,2k—1 N,k N+1,2k Nk _: N+1.2k — gN, N
that P+@’i C P, . Also Py, C Py, since Sy " C Sy a nd

fN-‘rl 2k— 1( I) — fN+1,2k—2(x/) +mg:—1,2k—l(x/) /2N+1 > fZNk 1((E) _ MHDHOC/2N+1

4,1, Vies.

L o g B v (B.3)
fi]yV]\-/iI-LQk 1($/) — fljj[]\zlvilz 2($/) +M[J\)/;+1,2kr 1($/)O[/2N+1 < ka (ZE) —|—MHD”OZ/2N+1

the last inequalities in the above relation follow from the fact that V{e\frzl; P2 e (Sivi,l’%*l N

VN+L2k=2) (Sivf N VYN 1) From [B.3lit can be concluded that fZN'|r1 2k— Y(z) — Mpjo/2V+t >
fiN,;lk‘_,l(:c)—M”D”aﬂN and fN+1 2Rl )+ M pja/2N Tt < fN Ko )+ M| pja/2" sinceB3 holds

for all 2/ € SYTH2 N VN+1L2k=1 therefore this shows Py " 2k P+1’zk.

N+1,2k—2 N,k—1 . . .
To show VT C V. n " lets review their definitions
res.,i wl res.,1,T

N+1,2k—2__ N+1 2k—1 N+1,2k—2 N+1,2k—1, 4 i _ N+1,2k—1, i a
res.,i,xi { ES z} nv } MC-LL ( 1)2N+1 Sa— T < meg, ($1)2N+1 }
Nk—1 _ N,k N k—1 N,k N N,k N

vitl={ze sﬂ nv ‘—MC“ (2)a/2" < 21—y < —mF(@)a/2 | (B.4)

N+1,2k—1 .
and Vo' is given by

Y N+L2ZE—1_ {ZESN+1 2k~ 7 N+1,2k— 1‘ MN+1,2k($)

res.,i,T Cit

N+1,2k «@
NI S AT o <—me,! ($)2N+1} (B.5)

for 2% € Vr{e\iil; *=1 adding the inequalities in [B5 and in the first relation of [B4] we can conclude

that if z € VY T12572 then

res.,t Il
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as previously shown Pf:l’% C Piv’k C Pff therefore

117

N+1,2k—1
P+,z§

1 _ .
=5 (M @) A mE @) < —m (@)

2 Cit Ci
1/ N412k—1, 4 N+1,2k Nk (B.7)
- 5 (M @) + MET M @) 2 MY @)

this shows Kiiilfl-k*z - Vr{evs’ki;l . From the discussion above it is clear that Piv 1l c Piv .
it ot
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