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Abstract

We generalize Picard-Lindelof theorem/ the method of characteristics to the following system of
PDE: Cil(x, y)∂yi/∂xl+∂yi/∂xm = Di(x, y). With a Lipschitz or Cr Cil, Di : [−a, a]m×[−b, b]n → R

and initial condition Ii : [−ā, ā]m−1 → (−b, b), ā ≤ a, we obtain a local unique Lipschitz or Cr

solution f , respectively that satisfies the initial condition, fi(v, 0) = Ii(v), v ∈ [−ā, ā]m−1. To
construct the solution we set bounds on the value of the solution by discretizing the domain of the
solution along the direction perpendicular to the initial condition hyperplane. As the number of
discretization hyperplanes is taken to infinity the upper and lower bounds of the solution approach
each other, hence this gives a unique function for the solution (Ufs). A locality condition is derived
based on the constants of the problem. The dependence of Cil, Di and Ii on parameters, the
generalization to nonlinear systems of PDE and the application to hyperbolic quasilinear systems of
first order PDE in two independent variables is discussed.
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1. Introduction and outline

The method of characteristics for solving a first order partial differential equation in an unknown

function has been known to mathematicians in the past centuries, however, the generalization of

this method to systems of first order PDE has remained unknown (e.g.[1]: Chapter VI, Section 7 it

is stated that there is no analog of the method of characteristics for systems of first order PDE). In

this work we will prove theorems, in particular Theorem 1.1 below, that will generalize the result

obtained using the method of characteristics, typically applicable to one equation with one unknown

function, to systems of first order PDE which the partial derivatives of each function appear in

separate equations. Theorem 1.1 can also be considered as the generalization of the Picard-Lindelof

theorem of ODE to PDE. The main result of this work proven is Section 3 is the following Theorem:

Theorem 1.1 (A generalization of Picard-Lindelof theorem/ the method of character-

istics to systems of PDE) Let Cil, Di : P → R, i = 1, ..., n, l = 1, ...,m− 1, m ≥ 2, be Lipschitz

continuous or Cr (r ≥ 1) functions defined on the parallelpiped P ≡ P1 × P2 with P1 ≡ {x ∈

R
m| ‖x− x0‖∞ ≤ a, x0 ∈ R

m} and P2 ≡ {y ∈ R
n| ‖y − y0‖∞ ≤ b, y0 ∈ R

n}. And let the Lipschitz

continuous or Cr initial condition function I : V → P2 for V ≡ {x ∈ P1|xm = x0m, |xl − x0l| ≤ ā},

0 < ā ≤ a and M‖I−y0‖ < b with M‖I−y0‖ ≡ max{‖I(u)− y0‖∞ |u ∈ V } be given. The following

system of partial differential equations

Ci1(x, y)
∂yi
∂x1

+ ...+ Cim−1(x, y)
∂yi

∂xm−1
+

∂yi
∂xm

= Di(x, y) (1.1)

has a unique Lipschitz continuous 1 or Cr solution respectively, f : B → P2 for V ⊂ B ⊆ P1, B

containing a neighbourhood of Vint, with Vint ≡ {x ∈ P1|xm = x0m, |xl − x0l| < ā} and f reducing

to the initial condition function I on V , f(u) = I(u) for u ∈ V .

The proof of Theorem 1.1 is far from trivial. The main difficulty in generalizing the method

of characteristics to the system of PDE of the type 1.1 is that the characteristic curves for each

equation are distinct therefore it cannot be reduced to systems of ODE. One way to gain control

over these characteristics is to set bounds on the value of the solution satisfying an initial condition

and the characteristic curves which are distinct for each equation by discretizing the hyperplanes

along the direction perpendicular to the initial condition hyperplane. If the bounds are set in an

appropriate and optimal way it can be shown that in the limit that the number of discretization

hyperplanes is taken to infinity the bounds for the value of the solution and the characteristic curves

approach each other, hence this gives a unique function for the solution (Ufs).

It should be noted that there is a more general and abstract theorem in hyperbolic systems of

partial differential equations that is related to the system of PDE of relation 1.1, however the condi-

tions of that theorem, being a more general result are not as minimal as the conditions of Theorem

1.1. For example the differentiability assumptions of that theorem have to increase proportional to

1By Lipschitz continuous solution we mean a Lipschitz continuous function that solves the system of PDE 1.1 at its
differentiable points. By Rademacher theorem (for a proof refer to [4]) a Lipschitz continuous function is differentiable
almost everywhere.
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the number of independent variables used in the hyperbolic system of PDE in order for the solution

to be a bounded ordinary function possessing finite derivatives to a certain order (for more details

refer to [3], Chapter VI, Section 10). On the other hand the conditions of Theorem 1.1 are as min-

imal as they can be. Another interesting feature of Theorem 1.1 is the method which it is proven

with, which is an elegant generalization of the method of characteristics, applicable to one equation

with one unknown function, to the system of PDE of 1.1. The difference now is that there are many

characteristics coming out of each point of the domain which the solution is being constructed on,

therefore it is not possible to reduce it to systems of ODE. As described in the previous paragraph

one way to gain control over these characteristics and the value of the solution, is to set bounds on

them by discretizing the hyperplanes parallel to the initial condition hyperplane and later show that

these bounds approach each other as the number of discretization hyperplanes goes to infinity. Also

we derive explicit expressions for the locality condition and the Lipschitz constant of the solution of

the PDE of Theorem 1.1 based on the constants of the problem as follows:

α <
1

exp (θ(c1)c1α)n(m− 1)LC(LI + 1/n)
, c1 = nLD − (m− 1)LC (1.2)

Lf =
(LI + 1/n) exp(c1α)

1− n(m− 1)LCα(LI + 1/n) exp (θ(c1)c1α)
− 1/n (1.3)

LUfs = max
{
Lf ,M‖D‖ + Lf(m− 1)M‖C‖

}
(1.4)

LC and LD refer to the Lipschitz constants of the Cil and Di functions on P , respectively. θ(c1) is

the step function. LI is the Lipschitz constant of the initial condition functions Ii on V . M‖D‖ and

M‖C‖ refer to a bound for |Di| and |Cil| on P , respectively. The extent which, in general, the solution

can be constructed in the xm direction above or below the initial condition hyperplane is given by the

locality condition of 1.2: −α ≤ xm − x0m ≤ +α. Also α ≤ ᾱ with ᾱ = min{a, (b−M‖I−y0‖)/M‖D‖}

to make sure the domain and range of the solution lie within P1 and P2, respectively. With Lf in

relation 1.3 being the Lipschitz constant of the solution along the hyperplanes parallel to the initial

condition hyperplane, LUfs in relation 1.4 gives the total Lipschitz constant of the solution on its

domain of construction.

One of the applications of Theorem 1.1 is in regard to hyperbolic quasilinear systems of first

order PDE in two independent variables which, as an example, are used to describe the one dimen-

sional space flow of fluids. These systems of PDE can be reduced to the PDE of Theorem 1.1 by

differentiating the system, diagonalizing its coefficient matrix and performing a change of function

variables, therefore Theorem 1.1 and the method which its solution is constructed (this is discussed

in Section 3) offer an alternative way, which is more direct and convenient especially for finding a

numerical solution, as compared to other methods, e.g. iteration methods [3], for constructing the

solution of hyperbolic quasilinear systems of first order PDE in two independent variables.

In order to illustrate the main idea of proving Theorem 1.1 in a simpler context, in Section 2

we present an alternative proof of the Picard-Lindelof theorem of ODE by setting upper and lower

bounds on the value of the solution of the system of ODE: y′ = f(t, y), y(t0) = y0, by discretizing

3



the time interval [t0, t0 + α] into 2N partitions at the N ’th step

yN,k
i,m ≤ yi(t0 + kα/2N) ≤ yN,k

i,M , k = 1, ..., 2N , yN,0
i,M = yN,0

i,m = y0i (1.5)

and find a recursion relation for ∆yN,k ≥ yN,k
i,M − yN,k

i,m

∆yN,k = ∆yN,k−1(1 + nLfδt) + Cδt2 + ǫδt, ∆yN,0 = 0 (1.6)

δt = α/2N , C a bounded constant, Lf the Lipschitz constant of f(t, y) and ǫ → 0 as δt → 0. After

solving relation 1.6 we find ∆yN,k ∼ 1/2N + ǫ therefore as N → ∞, the upper and lower bounds

for the solution in 1.5 approach each other, hence this gives a unique function for the solution to

the system of ODE. We will see that this alternative way of proving the Picard-Lindelof theorem is

more easily generalizable to the quasilinear system of PDE of 1.1. Setting upper and lower bounds

on the value of the solution enables us to have more control over the possible range of values of

the solution and the bounds at the N + 1’th step of partitioning naturally fall within the bounds

at the N ’th step of partitioning, therefore with denoting the set of possible ranges of values for

the solution on the time interval at the N ’th step of partitioning by RN , these sets form a nested

sequence RN ⊇ RN+1 ⊇ RN+2 ⊇ ... , hence in order to show that this nested sequence converges

to the graph of a unique function for solution we only need to show that at the N ’th step of the

partitioning the difference between the upper and lower bounds of the solution is of order 1/2N .

In the current methods which we make successive approximations to the solution without finding

bounds for the solution, e.g. by making successive approximations to the solution from the integral

equation of the system of ODE as in [1] or considering the discretization of the system of ODE as

when solving it numerically, in order to show convergence to a solution the difference between the

approximations to the solution at the N ’th step and the N + 1’th step have to be found and finally

show that the sequence of approximations to the solution at the N ’th step converges uniformly to

a solution. In these methods when the existence of the solution is proven one is not sure about its

uniqueness and therefore a uniqueness proof has to be presented separately. In the method described

above which we set bounds on the value of the solution the proof of the existence of the solution

is not separate from proving the uniqueness of the solution, since in order to demonstrate existence

it has to be shown that the bounds set on the solution at the N ’th step form a nested sequence

and approach each other as N → ∞ which automatically shows uniqueness as well. This implies

that this method is only applicable to when the conditions of the theorem are such that we obtain

a unique solution (e.g. when f(t, y) in the system of ODE above is Lipschitz), and it cannot be ap-

plied to show the existence of a solution only (e.g. it cannot be applied to when f(t, y) is continuous).

In Section 3 we prove Theorem 1.1. We implement the same idea used in Section 2 and de-

scribed in the paragraph after Theorem 1.1 to prove this result. A standard domain S+ is defined

as

S+ ≡ {x ∈ P1| 0 ≤ xm − x0m ≤ α, −ā+MCl
(xm − x0m) ≤ xl − x0l ≤ ā+mCl

(xm − x0m)} (1.7)
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and the solution is constructed on this domain. mCl
and MCl

refer to a lower and upper bound for

Cil for i = 1, ..., n on P , respectively. α > 0 is chosen small enough. Similarly an S− domain can

be defined for below the initial condition hyperplane 3. The domain between the initial condition

hyperplane at xm = x0m in S+ and the hyperplane xm = x0m + α in S+ is divided into 2N equal

partitions for N = 0, 1, ... . The hyperplanes at xm = x0m + kα/2N in S+ are denoted by V N,k for

k = 1, ..., 2N and V N,0 ≡ V . Upper and lower bound functions independent of the assumed solution

are defined on V N,k: fN,k
i,M : V N,k → R and fN,k

i,m : V N,k → R such that if f(x) is a solution to 1.1

satisfying the initial condition then

fN,k
i,m (x) ≤ fi(x) ≤ fN,k

i,M (x), x ∈ V N,k (1.8)

and fN,0
i,m = fN,0

i,M ≡ Ii. Next in order to find a similar recursion relation as 1.6 for ∆fN,k ≥

fN,k
i,M (x) − fN,k

i,m (x), x ∈ V N,k we need to introduce the Lipschitz constants LN,k of fN,k
i,M and fN,k

i,m

and to show that ∆fN,k → 0 as N → ∞ we need to show that these Lipschitz constants are bounded.

This is done by finding a recursion relation for the Lipschitz constants in Section 3.1 and showing

that they are locally (i.e. close enough to the initial condition hyperplane) bounded in Section 3.2.

The recursion relation for ∆fN,k, LN,k and a bound for the Lipschitz constants LN,k ≤ LN,2N are

given by

∆fN,k = ∆fN,k−1
(
1 + C1

α

2N

)
+ C2

( α

2N

)2

(1.9)

LN,k=LN,k−1
(
1 +(m−1)LC

α

2N
+nLD

α

2N

)
+n(m−1)LC

α

2N
(
LN,k−1

)2
+LD

α

2N
(1.10)

LN,2N ≤
(LI + 1/n) exp(c1α)

1− n(m− 1)LCα(LI + 1/n) exp (θ(c1)c1α)
− 1/n ≡ Lf (1.11)

with ∆fN,0 = 0 and LN,0 = LI . C1 and C2 are bounded constants. If the locality condition of 1.2

is satisfied, it can be shown that LN,k are bounded for all N and k, with their bound given by Lf

in relation 1.11.

In Appendix B it is shown in detail that the bounds for the solution at the N + 1 step of

partitioning of S+ lie within the bounds of the N step of partitioning. Therefore with denoting the

set of possible ranges of values of the solution on S+ at the N step of partitioning by PN
+ we have

PN
+ ⊇ PN+1

+ ⊇ ... and (x, f(x)) ∈ PN
+ for x ∈ S+. Solving the recursion relation of 1.9 for ∆fN,k

we find ∆fN,k ∼ 1/2N hence PN
+ converges to the graph of a unique function for the solution (Ufs)

as N → ∞.

Finally in Section 3.3 it is shown that the Ufs obtained in the previous Subsections solves the

system of PDE of Theorem 1.1 at its differentiable points subject to the initial condition. When

the coefficients Cil, Di and the initial condition Ii are C1 in order to prove that Ufs is C1 on the

3A list of equivalent definitions for when constructing the solution on the S− domain is given in Appendix A.
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hyperplanes V N,k the following functions are defined recursively

fN,k
i (x) = fN,k−1

i

(
x− Ci

(
xν , fN,k−1(xν)

)
α/2N

)
+Di

(
xν , fN,k−1(xν)

)
α/2N (1.12)

fN,0
i ≡ Ii, x ∈ V N,k, xν = x− ν

α

2N
, ν = (mCl

+MCl
) êl/2 + êm, Ci = (Ci1, ..., Cim−1, 1)

the functions fN,k
i (x) are defined such that fN,k

i,m (x) ≤ fN,k
i (x) ≤ fN,k

i,M (x) for x ∈ V N,k. A fixed

V N,kN is considered for kN ∈ {1, ..., 2N} and q = kN/2N held fixed as N → ∞. Based on the

discussion above it is clear that the sequence of functions fN,kN

i (x) converges uniformly to Ufs(x) on

V N,kN , furthermore it is shown that the sequence of their partial derivatives ∂fN,kN

i /∂xl is bounded

and equicontinuous, therefore there is a subsequence of their partial derivatives that converges

uniformly. From this it is concluded that Ufs(x) is C1 on V N,kN , this is then easily generalized

to all hyperplanes parallel to the initial condition hyperplane in S+. Based on this fact it is then

shown that Ufs solves the system of PDE of 1.1 subject to the initial condition and is C1 on S+.

Note that relation 1.12 can be used to solve the system of PDE of 1.1 numerically on S+. One

might attempt to show that the discretized functions in 1.12 converge to the solution of the PDE

of Theorem 1.1. In this case one has to evaluate the difference between fN,k
i (x) and fN+1,2k

i (x)

and show that this difference is of order 1/2N uniformly on V N,k for k = 1, ..., 2N , this is also a

possibility, however as mentioned earlier in the approach which we set bounds on the values of the

solution things are more under control, therefore it is a more convenient and reliable method hence

this will be the approach we consider in this work.

Section 4 discusses the generalizations and application of Theorem 1.1. In Subsection 4.1 it

is shown that the Lipschitz or Cr dependence of the initial condition and coefficients Cil and Di

on parameters is inherited to the solution, Subsection 4.2 discusses the generalization of Theorem

1.1 to non-linear systems of PDE and in Subsection 4.3 the application of Theorem 1.1 in regard

to quasilinear hyperbolic first order systems of PDE in two independent variables is briefly discussed.

The generalization of Picard-Lindelof theorem/ the method of characteristics to systems of PDE

is a result concerning the classical theory of partial differential equations which has remained un-

known in the past centuries. As far as the author is concerned this result, in the form stated in

Theorem 1.1 with minimal differentiability assumptions and explicit expressions for the locality

condition and the Lipschitz constant of the solution, is not approachable using known methods or

theorems and the only way is by direct construction of the solution. Here our main focus will be on

proving this result and briefly discuss some of its generalizations and application but leave further

investigations for future works.
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2. An alternative proof of the Picard-Lindelof theorem of ODE

In this Section we demonstrate the main idea in proving Theorem 1.1 in the simpler context of

ordinary differential equations. Consider Picard-Lindelof theorem 4:

Theorem 2.1 (Picard-Lindelof theorem) Let y, f ∈ R
n; f(t, y) continuous on a parallelepiped

R : −a ≤ t− t0 ≤ a, ‖y − y0‖∞ ≤ b and Lipschitz continuous with respect to y. Let M‖f‖ be a bound

for ‖f(t, y)‖∞ on R; α = min{a, b/M‖f‖}. Then

y′ = f(t, y), y(t0) = y0 (2.1)

has a unique solution y = y(t) on [t0 − α, t0 + α].

The standard proofs of this theorem are textbook material [1]. Here we present an alternative way

to prove this theorem.

Proof (Alternative proof of Picard-Lindelof theorem). Lets assume the system of ODE

2.1 has a solution. We can integrate 2.1 for this solution to obtain

yi(t) = y0i +

∫ t

t0

fi(t̄, y(t̄))dt̄, y(t0) = y0 (2.2)

to first approximation the maximum and minimum values of this solution at t = t0 +α are given by

y0,1i,m ≡ y0i + αm0,1
fi

≤ yi(t0 + α) ≤ y0i + αM0,1
fi

≡ y0,1i,M , i = 1, ..., n (2.3)

where M0,1
fi

and m0,1
fi

denote the maximum and minimum values of fi(t, y) in the region R0,1 ≡{
(t, y)

∣∣0 ≤ t− t0 ≤ α, ‖y − y0‖∞ ≤ M‖f‖α
}
. Next we divide the interval [t0, t0 + α] in half. The

maximum and minimum values of the solution at t = t0 + α/2 are given by

y1,1i,m ≡ y0i +m1,1
fi

α/2 ≤ yi(t0 + α/2) ≤ y0i +M1,1
fi

α/2 ≡ y1,1i,M (2.4)

where M1,1
fi

and m1,1
fi

are the maximum and minimum values of fi(t, y) in R1,1 ≡ {(t, y)|0 ≤ t− t0 ≤

α/2, ‖y− y0‖∞ ≤ M‖f‖α/2}, respectively. Now we use the bounds in (2.4) for the possible range of

the solution at t = t0 + α/2 as a range of possible initial conditions at t = t0 + α/2 to find a better

range of values for the solution at t = t0 + α. This is given by

y1,2i,m ≡ y1,1i,m +m1,2
fi

α/2 ≤ yi(t0 + α) ≤ y1,1i,M +M1,2
fi

α/2 ≡ y1,2i,M (2.5)

where M1,2
fi

and m1,2
fi

are the maximum and minimum values of fi(t, y) in R1,2 ≡ {(t, y)|α/2 ≤

t − t0 ≤ α, y1,1i,m − M‖f‖α/2 ≤ yi ≤ y1,1i,M + M‖f‖α/2}, respectively. We continue this process by

dividing the interval [t0, t0 + α] into 2N equal intervals for N = 0, 1, 2, ... and set bounds on the

4We make use of the maximum or infinity norm: ‖x‖∞ = max
t

|xt| and the 1-norm: ‖x‖1 =
∑

t |xt| throughout

the paper.
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solution at t = t0 + kα/2N for k = 1, ..., 2N

yN,k
i,m ≡ yN,k−1

i,m +mN,k
fi

α/2N ≤ yi(t0 + kα/2N) ≤ yN,k−1
i,M +MN,k

fi
α/2N ≡ yN,k

i,M

RN,k ≡
{
(t, y)

∣∣∣(k − 1)
α

2N
≤ t− t0 ≤ k

α

2N
, yN,k−1

i,m −M‖f‖
α

2N
≤ yi ≤ yN,k−1

i,M +M‖f‖
α

2N

} (2.6)

with yN,0
i,m = yN,0

i,M = y0i and MN,k
fi

and mN,k
fi

denoting the maximum and minimum values of fi(t, y)

in RN,k, respectively. From 2.6 it can be verified that the bounds for the solution at the N +1 step

of the partitioning lie within the bounds at the N step of the partitioning 5, therefore with defining

RN ≡ ∪2N

k=1R
N,k we have, RN ⊇ RN+1 ⊇ RN+2 ⊇ ... and clearly based on how RN is defined we

have (t, y(t)) ∈ RN for t ∈ [t0, t0 + α], hence if we show that as N → ∞ , yN,k
i,M − yN,k

i,m → 0 for

k = 1, ..., 2N it can be concluded that the regions RN will shrink to a graph of a unique function for

the solution to 2.1. To show this consider the following recursion relation

yN,k
i,M − yN,k

i,m = yN,k−1
i,M − yN,k−1

i,m +
(
MN,k

fi
−mN,k

fi

)
α/2N (2.8)

by assumption the function f satisfies the Lipschitz condition in its y coordinates and being a

continuous function defined on the compact region RN,k it assumes its maximum and minimum

values MN,k
fi

and mN,k
fi

at certain points in RN,k therefore we have

MN,k
fi

−mN,k
fi

≤
∑

i

{
yN,k−1
i,M +M‖f‖α/2

N −
(
yN,k−1
i,m −M‖f‖α/2

N
)}

Lf + ǫ (2.9)

with Lf being the Lipschitz constant of the function f(t, y) with respect to y. Since the function

f(t, y) is continuous and it is defined on a compact set it is uniformly continuous therefore for any

ǫ > 0 there is a δ > 0 (independent of y) such that if |t − t′| < δ, |fi(t, y) − fi(t
′, y)| < ǫ. Now we

can choose N large enough such that α/2N < δ. This defines the ǫ used in relation 2.9. Using 2.9

we can derive an upperbound for 2.8

yN,k
i,M − yN,k

i,m ≤ ∆yN,k−1+
∑

i

{
∆yN,k−1Lfα/2

N + LfM‖f‖α/2
N−1α/2N

}
+ ǫα/2N ≡ ∆yN,k (2.10)

5This can be seen as follows, with assuming yN+1,2k−2
i,m ≥ yN,k−1

i,m , yN+1,2k−2
i,M

≤ yN,k−1
i,M

(note that this is true for

k − 1 = 0) we have to show yN+1,2k
i,m ≥ yN,k

i,m , yN+1,2k
i,M

≤ yN,k
i,M

,

yN+1,2k
i,M

= yN+1,2k−1
i,M

+MN+1,2k
fi

α

2N+1
= yN+1,2k−2

i,M
+

1

2

(
MN+1,2k−1

fi
+MN+1,2k

fi

) α

2N
(2.7)

MN+1,2k−1
fi

≤ MN,k
fi

, MN+1,2k
fi

≤ MN,k
fi

since RN+1,2k−1 ⊂ RN,k and RN+1,2k ⊂ RN,k and by assumption

yN+1,2k−2
i,M

≤ yN,k−1
i,M

, therefore this proves yN+1,2k
i,M

≤ yN,k
i,M

, the proof of yN+1,2k
i,m ≥ yN,k

i,m is similar.

It is clear that RN+1,2k−1 ⊂ RN,k since by assumption yN+1,2k−2
i,m ≥ yN,k−1

i,m and yN+1,2k−2
i,M

≤ yN,k−1
i,M

and

RN+1,2k ⊂ RN,k since yN+1,2k−1
i,m = yN+1,2k−2

i,m + mN+1,2k−1
fi

α/2N+1 ≥ yN,k−1
i,m − M‖f‖α/2

N+1 and similarly

yN+1,2k−1
i,M

= yN+1,2k−2
i,M

+MN+1,2k−1
fi

α/2N+1 ≤ yN,k−1
i,M

+ M‖f‖α/2
N+1 hence their yi range is a subset of the yi

range of RN,k and their t range is also clearly a subset of the t range of RN,k .
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with yN,k−1
i,M − yN,k−1

i,m ≤ ∆yN,k−1. From 2.10 we have

∆yN,k = ∆yN,k−1(1 + nLfδt) + Cδt2 + ǫδt (2.11)

with C ≡ 2nLfM‖f‖ and δt ≡ α/2N . Solving 2.11 with noting that ∆yN,0 = 0 we find

∆yN,k=(Cδt2+ ǫδt){1+(1+nLfδt)+...+(1 + nLfδt)
k−1}=(Cδt+ ǫ){(1 + nLfδt)

k − 1}/(nLf)

≤ (Cδt+ ǫ)
{
exp

(
nLfαk/2

N
)
− 1

}
/(nLf) (2.12)

From 2.12 it can be easily seen that as N → ∞, ∆yN,k → 0 for any k = 1, ..., 2N hence RN converges

to a graph of a unique function for the solution (Ufs) on [t0, t0 + α]. It can be shown that Ufs

indeed solves 2.1:

Ufsi(t+∆t)− Ufsi(t) = Ufsi(t+∆t)− (Ufsi(t) + ∆tfi(t, Ufs(t))) + ∆tfi(t, Ufs(t))

= O(∆t2) + ǫO(∆t) + ∆tfi(t, Ufs(t)) =⇒ Ufs′(t) = f(t, Ufs(t))) (2.13)

with ǫ → 0 as ∆t → 0. The second equality follows from 2.11, for N = 0, k = 1, δt = |∆t|
6, ∆y0,0 = 0, with considering y0 = Ufs(t) as the initial condition at t ∈ [0, α] and noting that

y0,1i,m ≤ Ufsi(t + ∆t) ≤ y0,1i,M and y0,1i,m ≤ Ufsi(t) + ∆tfi(t, Ufs(t)) ≤ y0,1i,M . It is clear that with a

similar procedure we can construct a unique solution on [−α+ t0, t0]. ✷

3. A generalization of Picard-Lindelof theorem/ the method of characteristics to sys-

tems of PDE

In this Section we will apply the idea used in the previous Section for proving the Picard-Lindelof

theorem to prove the theorem below.

Theorem 3.1 (A generalization of Picard-Lindelof theorem/ the method of character-

istics to systems of PDE) Let Cil, Di : P → R, i = 1, ..., n, l = 1, ...,m− 1, m ≥ 2, be Lipschitz

continuous or Cr (r ≥ 1) functions defined on the parallelpiped P ≡ P1 × P2 with P1 ≡ {x ∈

R
m| ‖x− x0‖∞ ≤ a, x0 ∈ R

m} and P2 ≡ {y ∈ R
n| ‖y − y0‖∞ ≤ b, y0 ∈ R

n}. And let the Lipschitz

continuous or Cr initial condition function I : V → P2 for V ≡ {x ∈ P1|xm = x0m, |xl − x0l| ≤ ā},

0 < ā ≤ a and M‖I−y0‖ < b with M‖I−y0‖ ≡ max{‖I(u)− y0‖∞ |u ∈ V } be given. The following

system of partial differential equations

Ci1(x, y)
∂yi
∂x1

+ ...+ Cim−1(x, y)
∂yi

∂xm−1
+

∂yi
∂xm

= Di(x, y) (3.1)

6∆t can also be considered negative. Although relation 2.11 was derived by assuming we are moving in the
positive time direction, clearly it is equivalently valid for when moving in the negative time direction (e.g. for when
constructing the solution on [−α+ t0, t0] with δt = α/2N > 0 ).
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has a unique Lipschitz continuous 7 or Cr solution respectively, f : B → P2 for V ⊂ B ⊆ P1, B

containing a neighbourhood of Vint, with Vint ≡ {x ∈ P1|xm = x0m, |xl − x0l| < ā} and f reducing

to the initial condition function I on V , f(u) = I(u) for u ∈ V .

Proof. In a similar approach as the alternative proof of the Picard-Lindelof theorem presented in

the previous Section we assume a solution exists and find bounds for this solution by dividing the

domain along the xm direction into equal partitions and later show that these bounds approach each

other as the number of partitions goes to infinity.

First we define a standard domain to construct the solution on. Let M‖D‖ be a bound for |Di|

on P and ᾱ = min{a, (b −M‖I−y0‖)/M‖D‖}. Let MCl
and mCl

denote an upper and lower bound

for Cil for i = 1, ..., n on P , respectively. We define the plus standard domain

S+ ≡ {x ∈ P1| 0 ≤ xm − x0m ≤ α, −ā+MCl
(xm − x0m) ≤ xl − x0l ≤ ā+mCl

(xm − x0m)} (3.2)

with α > 0 chosen sufficiently small as to satisfy the following conditions: i) a locality criteria (the

first relation of 3.47) to be derived in Subsection 3.2, ii) α ≤ ᾱ, iii) to ensure the inequalities for xl

in the definition of 3.2 are satisfied. Similarly an S− domain can be defined for below the hyperplane

V 8. The standard domain S+ is defined in a way as to ensure the following two properties. If a

solution f to 3.1 on S+ exists satisfying the initial condition then:

i) f(S+) ⊆ P2.

ii) Each characteristic curve x(i) of this solution lies within S+ and connects with a point in the

initial condition domain V .

In what follows we will construct a unique solution to 3.1 on S+ that satisfies the initial condition.

We will be using lots of notations and definitions. For a p ∈ S+ after integrating 3.1 based on an

assumed solution f on S+ that satisfies the initial condition we obtain the following integral and

characteristic equations:

fi(p) = fi(p
(i)
0 ) +

∫ pm

x0m

Di(x
(i)(t), f(x(i)(t)))dt, x(i)(x0m) = p

(i)
0 ∈ V, x(i)(pm) = p

dx
(i)
j (t)

dt
= Cij(x

(i)(t), f(x(i)(t))), Cim ≡ 1, j = 1, ...,m

(3.3)

note that the parameter of the characteristic equations t, is the same as the xm coordinate. Next

we divide S+ along the xm direction into 2N for N = 0, 1, ... equal partitions and find upper and

lower bounds for the value of the assumed solution f at the intersection of these partitions in S+,

we have

fN,k
i,m (x) ≡ fN,k−1

i,m,Vres.
(x) +mN,k

Di
(x)

α

2N
≤ fi(x) ≤ fN,k−1

i,M,Vres.
(x) +MN,k

Di
(x)

α

2N
≡ fN,k

i,M (x)

x ∈ V N,k, V N,k ≡ {z ∈ S+|zm = x0m + kα/2N}, V N,0 ≡ V, k = 1, ..., 2N
(3.4)

7By Lipschitz continuous solution we mean a Lipschitz continuous function that solves the system of PDE 3.1 at
its differentiable points. By Rademacher theorem a Lipschitz continuous function is differentiable almost everywhere.

8A list of equivalent definitions for when constructing the solution on the S− domain can be found in Appendix A.

10



fN,0
i,M (z) = fN,0

i,m (z) ≡ Ii(z) for z ∈ V . fN,k
i,M , fN,k

i,m : V N,k → R form upper and lower bounds for the

value of the solution on V N,k. fN,k−1
i,M,Vres.

(x), fN,k−1
i,m,Vres.

(x), MN,k
Di

(x) and mN,k
Di

(x) for x ∈ V N,k will be

defined below. The bounds of relation 3.4 can be understood better in terms of the first relation of

3.3. Writing this relation for x ∈ V N,k as the final point and xi ∈ V N,k−1 as the initial point we

have

fi(x) = fi(x
i) +

∫ x0m+kα/2N

x0m+(k−1)α/2N
Di(x

(i)(t), f(x(i)(t)))dt, x(i)(xm) = x, x(i)(xi
m) = xi (3.5)

note that xm = x0m + kα/2N for x ∈ V N,k and xi
m = x0m + (k − 1)α/2N for xi ∈ V N,k−1.

The bounds of relation 3.4 are such that fN,k−1
i,m,Vres.

(x) ≤ fi(x
i) ≤ fN,k−1

i,M,Vres.
(x) and mN,k

Di
(x) ≤

Di(x
(i)(t), f(x(i)(t))) ≤ MN,k

Di
(x) for (k − 1)α/2N ≤ t− x0m ≤ kα/2N . Next we give precise defini-

tions for these bounds. We first define fN,k−1
i,M,V (x), fN,k−1

i,m,V (x), MN,k
Di

(x) and mN,k
Di

(x) for x ∈ V N,k:

fN,k−1
i,M,V (x) ≡ max

{
fN,k−1
i,M (z)

∣∣∣z ∈ SN,k
+,x ∩ V N,k−1

}
,

fN,k−1
i,m,V (x) ≡ min

{
fN,k−1
i,m (z)

∣∣∣z ∈ SN,k
+,x ∩ V N,k−1

}
,

MN,k
Di

(x)≡max
{
Di(z, y)

∣∣∣(z, y) ∈ PN,k
+,x

}
,mN,k

Di
(x)≡min

{
Di(z, y)

∣∣∣(z, y) ∈ PN,k
+,x

}
(3.6)

with SN,k
+,x and PN,k

+,x for x ∈ V N,k given by

SN,k
+,x ≡

{
z ∈ S+

∣∣−α/2N ≤ zm − xm ≤ 0,

MCl
(zm − xm) ≤ zl − xl ≤ mCl

(zm − xm)}

PN,k
+,x ≡ {(z, y)

∣∣∣z ∈ SN,k
+,x , fN,k−1

i,m,V (x)−M‖D‖
α

2N
≤ yi ≤ fN,k−1

i,M,V (x) +M‖D‖
α

2N
, i = 1, ..., n}

(3.7)

for when the characteristic curves x(i)(t) of the assumed solution f pass through a x ∈ V N,k for

i = 1, ..., n, i.e. x(i)(xm) = x, SN,k
+,x is defined in a way as to ensure that x(i)(t) ∈ SN,k

+,x for

−α/2N ≤ t− xm ≤ 0 and PN,k
+,x is defined in a way as to ensure that

(
x(i)(t), f(x(i)(t))

)
∈ PN,k

+,x for

−α/2N ≤ t− xm ≤ 0. fN,k−1
i,M,Vres.

(x) and fN,k−1
i,m,Vres.

(x) for x ∈ V N,k are given by

fN,k−1
i,M,Vres.

(x) ≡ max
{
fN,k−1
i,M (z)

∣∣∣z ∈ V N,k−1
res.,i,x

}

fN,k−1
i,m,Vres.

(x) ≡ min
{
fN,k−1
i,m (z)

∣∣∣z ∈ V N,k−1
res.,i,x

}
(3.8)

V N,k−1
res.,i,x ≡

{
z ∈ SN,k

+,x ∩ V N,k−1
∣∣∣−MN,k

Cil
(x)α/2N ≤ zl − xl ≤ −mN,k

Cil
(x)α/2N

}

with MN,k
Cil

(x) and mN,k
Cil

(x) having similar definitions as MN,k
Di

(x) and mN,k
Di

(x) in relation 3.6 re-

spectively with Di replaced by Cil

MN,k
Cil

(x) ≡ max
{
Cil(z, y)

∣∣∣(z, y) ∈ PN,k
+,x

}
, mN,k

Cil
(x) ≡ min

{
Cil(z, y)

∣∣∣(z, y) ∈ PN,k
+,x

}
(3.9)

From the definitions above it can be verified that the bounds of relation 3.4 for the assumed

solution are correct. For example the maximum of fi at a point x ∈ V N,k consists of the maximum
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value of fi in a region of V N,k−1 which the characteristic curve of fi passing through this region

has the possibility of passing through x, this region of V N,k−1 is given by V N,k−1
res.,i,x defined in 3.8 and

the maximum value is given by fN,k−1
i,M,Vres.

(x), plus the maximum value which fi can change when its

characteristic curve passing through SN,k
+,x reaches x, this is given by MN,k

Di
(x)α/2N .

Also it can be verified that the bounds for the solution at the N + 1 step of the partitioning lie

within the bounds of the N step. This is discussed in detail in Appendix B, therefore with defining

PN
+ ≡ ∪2N

k=1(∪x∈V N,kPN,k
+,x ) we have PN

+ ⊇ PN+1
+ ⊇ ... . From the definitions and relations above

it is clear that the graph of the assumed solution on S+ lies within the set PN
+ at the N step of

partitioning, (x, f(x)) ∈ PN
+ for x ∈ S+, therefore in order to show that PN

+ converges to the graph

of a unique function for the solution (Ufs) we only need to show that fN,k
i,M (x) − fN,k

i,m (x) → 0 as

N → ∞.

For this we will try to find a similar recursion relation as in 2.11 for ∆fN,k ≥ fN,k
i,M (x)− fN,k

i,m (x),

∀x ∈ V N,k. Starting from 3.4 we have

fN,k
i,M (x)− fN,k

i,m (x) = fN,k−1
i,M,Vres.

(x)− fN,k−1
i,m,Vres.

(x) +
{
MN,k

Di
(x)−mN,k

Di
(x)

}
α/2N (3.10)

an upper bound for MN,k
Di

(x)−mN,k
Di

(x) is given by

MN,k
Di

(x) −mN,k
Di

(x) ≤

{∑

i

{
fN,k−1
i,M,V (x)− fN,k−1

i,m,V (x) + 2M‖D‖
α

2N

}

+
∑

l

(MCl
−mCl

)
α

2N
+

α

2N

}
LD

(3.11)

with LD a Lipschitz constant for the Di functions and the expression in brackets corresponds to an

upperbound for the distance ‖p1 − p2‖1 between any two points p1, p2 ∈ PN,k
+,x defined in 3.7. We

also need to find an upper bound for fN,k−1
i,M,V (x) − fN,k−1

i,m,V (x) in 3.11. For this we will assume the

functions fN,k
i,M (x) and fN,k

i,m (x) are Lipschitz with Lipschitz constant LN,k. We will show this to be

true and derive a recursion relation for the Lipschitz constants LN,k in Subsection 3.1. We have

fN,k−1
i,M,V (x)−fN,k−1

i,m,V (x) = fN,k−1
i,M (xi

max)− fN,k−1
i,M (xi

min) +
(
fN,k−1
i,M (xi

min)− fN,k−1
i,m (xi

min)
)

≤ LN,k−1
∑

l

(MCl
−mCl

)α/2N +
(
fN,k−1
i,M (xi

min)− fN,k−1
i,m (xi

min)
) (3.12)

with xi
max and xi

min denoting the points in SN,k
+,x ∩ V N,k−1 which fN,k−1

i,M and fN,k−1
i,m assume their

maximum and minimum values in SN,k
+,x ∩ V N,k−1, respectively. Combining 3.11 and 3.12 we have

MN,k
Di

(x) −mN,k
Di

(x) ≤

{
n∆fN,k−1 + LN,k−1n

∑

l

(MCl
−mCl

)
α

2N

+

(
2nM‖D‖ +

∑

l

(MCl
−mCl

) + 1

)
α

2N

}
LD

(3.13)
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with ∆fN,k−1 an upper bound for the following quantity

fN,k−1
i,M (z)− fN,k−1

i,m (z) ≤ ∆fN,k−1, ∀z ∈ V N,k−1 (3.14)

note that based on 3.14, we can take ∆fN,0 = 0 since we defined fN,0
i,M = fN,0

i,m = Ii. Similarly we

can obtain a bound for fN,k−1
i,M,Vres.

(x) − fN,k−1
i,m,Vres.

(x) in 3.10

fN,k−1
i,M,Vres.

(x)−fN,k−1
i,m,Vres.

(x) =fN,k−1
i,M (zimax)−fN,k−1

i,M (zimin)+
(
fN,k−1
i,M (zimin)−fN,k−1

i,m (zimin)
)

≤ LN,k−1
∑

l

(
MN,k

Cil
(x) −mN,k

Cil
(x)

) α

2N
+
(
fN,k−1
i,M (zimin)−fN,k−1

i,m (zimin)
)

(3.15)

with zimax and zimin denoting the points in V N,k−1
res.,i,x which fN,k−1

i,M and fN,k−1
i,m assume their maximum

and minimum values in V N,k−1
res.,i,x , respectively. Similar to 3.13 we can obtain a bound for MN,k

Cil
(x)−

mN,k
Cil

(x). We have

MN,k
Cil

(x)−mN,k
Cil

(x) ≤

{
n∆fN,k−1 + LN,k−1n

∑

l

(MCl
−mCl

)
α

2N

+

(
2nM‖D‖ +

∑

l

(MCl
−mCl

) + 1

)
α

2N

}
LC

(3.16)

with LC a Lipschitz constant for the Cil functions. Now using 3.13, 3.15 and 3.16 we can find a

bound for 3.10, we have

∆fN,k ≡ ∆fN,k−1 +
(
LC(m− 1)LN,k−1 + LD

) α

2N

{
n∆fN,k−1 + LN,k−1n

∑

l

(MCl
−mCl

)
α

2N
+

(
2nM‖D‖ +

∑

l

(MCl
−mCl

) + 1

)
α

2N

}
≥ fN,k

i,M (x) − fN,k
i,m (x), ∀x ∈ V N,k (3.17)

In Subsection 3.1 we will derive a recursion relation for the Lipschitz constants LN,k and in Subsection

3.2 we will show that they are locally (i.e. for a sufficiently small α) bounded. With knowing this

we can write 3.17 as

∆fN,k = ∆fN,k−1
(
1 + C1α/2

N
)
+ C2

(
α/2N

)2
(3.18)

with C1 and C2 being constants which bound the following quantities

C1 ≥ n(m− 1)LCL
N,k−1 + nLD (3.19)

C2 ≥
(
(m− 1)LCL

N,k−1 + LD

){
LN,k−1n

∑

l

(MCl
−mCl

) + 2nM‖D‖ +
∑

l

(MCl
−mCl

) + 1

}

3.18 is the recursion relation similar to 2.11 we were looking for. For completeness we include the

recursion relation for the Lipschitz constants to be derived in Subsection 3.1, the locality criteria

for α and a bound for the Lipschitz constants LN,k, to be derived in Subsection 3.2, and a Lipschitz
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constant for the unique function for the solution (Ufs) to Theorem 3.1 to be derived below, here

∆fN,k = ∆fN,k−1
(
1 + C1

α

2N

)
+ C2

( α

2N

)2

LN,k = LN,k−1
(
1 + (m− 1)LC

α

2N
+ nLD

α

2N

)
+ n(m− 1)LC

α

2N
(
LN,k−1

)2
+ LD

α

2N

α <
1

exp (θ(c1)c1α)n(m− 1)LC(LI + 1/n)
, c1 = nLD − (m− 1)LC (3.20)

LN,2N ≤
(LI + 1/n) exp(c1α)

1− n(m− 1)LCα(LI + 1/n) exp(θ(c1)c1α)
− 1/n ≡ Lf

LUfs = max
{
Lf ,M‖D‖ + Lf(m− 1)M‖C‖

}

Relations 3.20 constitute the main relations of Theorem 3.1. LI refers to the Lipschitz constant of

the initial condition function I and θ(c1) the step function.

With knowing that the Lipschitz constants LN,k are locally bounded we can use the first relation

in 3.20 to show that ∆fN,k → 0 as N → ∞ similar to the steps in relation 2.12

∆fN,k = C2(α/2
N)2{1 + (1 + C1α/2

N ) + ...+ (1 + C1α/2
N)k−1}

= C2/C1α/2
N{(1 + C1α/2

N)k − 1} (3.21)

=⇒ ∆fN,k ≤ C2/C1{exp(C1αk/2
N )− 1}α/2N

from relation 3.21 it is clear that ∆fN,k → 0 as N → ∞, hence PN
+ converges to the graph of

a unique function for the solution (Ufs) to Theorem 3.1. We will prove in Subsection 3.3 that

Ufs indeed solves the PDE of Theorem 3.1 subject to the initial condition. Before moving on to

the next Subsection we show that Ufs is also Lipschitz in the xm direction. Lf in relation 3.20

can be considered as the Lipschitz constant of Ufs along the hyperplanes xm = const. in S+ for

x0m ≤ const. ≤ x0m + α. Consider V N,kN and V N,k′

N for q = kN/2N and q′ = k′N/2N held fixed

as N → ∞ and ∆xm = q′ − q for q′ > q. It can be easily seen that a bound for the difference

|f
N,k′

N

i,M (x + êm∆xm) − fN,kN

i,M (x)| for x ∈ V N,kN and x + êm∆xm ∈ V N,k′

N is M‖D‖∆xm + Lf (m−

1)M‖C‖∆xm, with M‖C‖ being a bound for |Cil| on P and êm the unit vector in the xm direction,

hence M‖D‖+LfM‖C‖(m−1) can be considered as a Lipschitz constant for Ufs in the xm direction.

Therefore

LUfs = max{Lf ,M‖D‖ + Lf(m− 1)M‖C‖} (3.22)

is a Lipschitz constant for Ufs on S+ (or S−). Note that relations of 3.20 are equivalently valid for

when constructing the solution on the S− domain with α > 0 being the extent which, in general,

the solution can be constructed below the initial condition hyperplane V . A list of the equivalent of

the definitions used in this Section for when constructing the solution on the S− domain is given in

Appendix A.
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3.1. A recursion relation for the Lipschitz constants LN,k

In this Subsection we will obtain a recursion relation for the Lipschitz constants LN,k of the

functions fN,k
i,M (x). A similar result will be reached if we work with the functions fN,k

i,m (x). Let

LN,0 = LI , with LI being the Lipschitz constant of the initial condition functions Ii. Take two

separate points p1, p2 ∈ V N,k. With assuming LN,k−1 is known we would like to find an expression

for LN,k

|fN,k
i,M (p1)− fN,k

i,M (p2)| ≤ LN,k
∑

l

|p1l − p2l|, l = 1, ...,m− 1 (3.23)

For this we will make use of the following Lemma:

Lemma 1. Let g : W ⊆ R
n → R be a Lipschitz continuous function with Lipschitz constant Lg for

the 1-norm. W1,W2 ⊆ W be compact sets and consider d with the following characteristics:

∀w1 ∈ W1, ∃w2 ∈ W2 :‖w1 − w2‖1≤ d, and vice versa: ∀w2∈W2, ∃w1∈W1 :‖w1 − w2‖1≤d

then we have the following relations: |Mg(W1) −Mg(W2)| ≤ Lgd and |mg(W1) −mg(W2)| ≤ Lgd.

Where Mg(Wr) and mg(Wr) denote the maximum and minimum values of g in Wr for r = 1, 2,

respectively.

Proof. By the assumption of compactness of Wr and continuity of g there exists wr ∈ Wr such that

g(wr) = Mg(Wr) for r = 1, 2. By assumption of the lemma there is a y2 ∈ W2 such that ‖w1−y2‖1 ≤

d so we have |g(w1) − g(y2)| ≤ Lgd and since g(y2) ≤ g(w2) we have : g(w2) + Lgd ≥ g(w1) and

similarly it can be concluded g(w1)+Lgd ≥ g(w2) which proves |Mg(W1)−Mg(W2)| ≤ Lgd. Similarly

it can be concluded that |mg(W1)−mg(W2)| ≤ Lgd.

Note: Consider B1 ≡
∏n

h=1[ah, bh], B2 ≡
∏n

h=1[ch, dh] ⊂ R
n. Then d =

∑n
h=1 max{|ah − ch|, |bh −

dh|} has the characteristics of the distance d in Lemma 1 with respect to the subsets B1 and B2.

From 3.4

fN,k
i,M (p1)− fN,k

i,M (p2) = fN,k−1
i,M,Vres.

(p1)− fN,k−1
i,M,Vres.

(p2) +
(
MN,k

Di
(p1)−MN,k

Di
(p2)

) α

2N
(3.24)

assuming d1 has the characteristics of the distance d in Lemma 1 for the two sets V N,k−1
res.,i,p1

and

V N,k−1
res.,i,p2

we have

|fN,k−1
i,M,Vres.

(p1)− fN,k−1
i,M,Vres.

(p2)| ≤ LN,k−1d1 (3.25)

based on the definitions of V N,k−1
res.,i,pr

for r = 1, 2 in 3.8 and the Note after Lemma 1 we can find an

expression for d1

d1≥
∑

l

max
{∣∣∣p1l−p2l+

(
MN,k

Cil
(p2)−MN,k

Cil
(p1)

) α

2N

∣∣∣,
∣∣∣p1l−p2l+

(
mN,k

Cil
(p2)−mN,k

Cil
(p1)

) α

2N

∣∣∣
}

(3.26)
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a bound for
∣∣∣MN,k

Cil
(p1)−MN,k

Cil
(p2)

∣∣∣ or
∣∣∣mN,k

Cil
(p1)−mN,k

Cil
(p2)

∣∣∣ is given by

∣∣∣MN,k
Cil

(p1)−MN,k
Cil

(p2)
∣∣∣ ≤ LCd2,

∣∣∣mN,k
Cil

(p1)−mN,k
Cil

(p2)
∣∣∣ ≤ LCd2 (3.27)

with d2 having the characteristics of the distance d in Lemma 1 for the two sets PN,k
+,p1

and PN,k
+,p2

.

Based on the definitions of PN,k
+,pr

for r = 1, 2 in 3.7 and the Note after Lemma 1 we can find an

expression for d2

d2 ≥
∑

l

|p1l − p2l|+
∑

i

max
{∣∣∣fN,k−1

i,M,V (p1)− fN,k−1
i,M,V (p2)

∣∣∣ ,
∣∣∣fN,k−1

i,m,V (p1)− fN,k−1
i,m,V (p2)

∣∣∣
}

(3.28)

a bound for
∣∣∣fN,k−1

i,M,V (p1)− fN,k−1
i,M,V (p2)

∣∣∣ or
∣∣∣fN,k−1

i,m,V (p1)− fN,k−1
i,m,V (p2)

∣∣∣ is given by

∣∣∣fN,k−1
i,M,V (p1)− fN,k−1

i,M,V (p2)
∣∣∣ ≤ LN,k−1

∑

l

|p1l − p2l|

∣∣∣fN,k−1
i,m,V (p1)− fN,k−1

i,m,V (p2)
∣∣∣ ≤ LN,k−1

∑

l

|p1l − p2l|
(3.29)

from the definitions of 3.6 and 3.7 it can be verified that
∑

l |p1l − p2l| has the characteristics of the

distance d in Lemma 1 for the two sets SN,k
+,p1

∩ V N,k−1 and SN,k
+,p2

∩ V N,k−1.

From 3.28 and 3.29, d2 is given by

d2 =
∑

l

|p1l − p2l|
(
1 + nLN,k−1

)
(3.30)

and from 3.26 and 3.27 d1 is given by

d1 =
∑

l

|p1l − p2l|+ (m− 1)LC
α

2N
d2 (3.31)

Similarly a bound for
∣∣∣MN,k

Di
(p1)−MN,k

Di
(p2)

∣∣∣ is given by

∣∣∣MN,k
Di

(p1)−MN,k
Di

(p2)
∣∣∣ ≤ LDd2 (3.32)

From 3.25, 3.30, 3.31 and 3.32 we obtain a bound for 3.24

∣∣∣fN,k
i,M (p1)− fN,k

i,M (p2)
∣∣∣ ≤

{
LN,k−1

(
1 + (m− 1)LC

α

2N
+ (m− 1)LC

α

2N
nLN,k−1

)

+LD
α

2N
(
1 + nLN,k−1

)}∑

l

|p1l − p2l|
(3.33)

Comparing 3.23 and 3.33 we find an expression for LN,k

LN,k=LN,k−1
(
1 + (m− 1)LC

α

2N
+ nLD

α

2N

)
+ n(m− 1)LC

α

2N
(
LN,k−1

)2
+ LD

α

2N
(3.34)
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3.2. Local boundedness of LN,k

The nonlinear term ∼
(
LN,k−1

)2
in 3.34 is the term that can lead to an unbounded increase of

the Lipschitz constants LN,k, but if the coefficient of this term (∼ n(m − 1)LCα) is small enough

we expect to be able to show that the Lipschitz constants are bounded. We first rewrite 3.34 in a

simpler form

bk = bk−1γ + (bk−1)
2, bk ≡ c2

α

2N
(LN,k + 1/n), k = 1, ..., 2N

γ =
(
1 + c1α/2

N
)
, c1 = nLD − (m− 1)LC , c2 = n(m− 1)LC

(3.35)

For convenience we have suppressed the index N in bk. Note that for c1 > 0, γ > 1 but for c1 < 0

and a sufficiently large N , 0 < γ < 1 with γ → 1 as N → ∞. The first few terms of the sequence bk

read

b1 = b0γ + b0
2

b2 = γ2b0 + (γ + γ2)b0
2 + 2γb0

3 + b0
4

(3.36)

From 3.35 and 3.36 it is clear that bk is a polynomial of degree 2k in b0

bk′ =
2k

′

∑

h=1

Ch
k′(γ)bh0 , Ch

k′ = 0 for h > 2k
′

or h < 1, k′ ∈ N ∪ {0} (3.37)

with Ch
k′ (γ) a polynomial in γ. To show the local boundedness of LN,k we need to find a bound for

the coefficients Ch
k . For this insert bk−1 from relation 3.37 into relation 3.35 to obtain

bk = γCh
k−1b

h
0 +

(
Ch

k−1b
h
0

)2
= γCh

k−1b
h
0 +

2k∑

h1=2

h1−1∑

h2=1

Ch1−h2

k−1 Ch2

k−1b
h1

0 (3.38)

summation over h is implicit. From 3.38 a recursion relation for the coefficients Ch
k can be derived

Ch
k = γCh

k−1 + 2Ch−1
k−1C

1
k−1 + ...+ 2C

h/2+1
k−1 C

h/2−1
k−1 +

(
C

h/2
k−1

)2

, if h is even

Ch
k = γCh

k−1 + 2Ch−1
k−1C

1
k−1 + ...+ 2C

(h+1)/2
k−1 C

(h−1)/2
k−1 , if h is odd

(3.39)

In what follows we will show that the coefficients Ch
k are bounded by the inequalities below

Ch
k ≤ kh−1γkh, γ ≥ 1

Ch
k ≤ kh−1γk−1 , 1/2 ≤ γ < 1

(3.40)

one might be able to improve the bounds in 3.40 and accordingly improve the bounds of relation

3.47 by a more careful study of the coefficients Ch
k . But these bounds suffice to capture the main

features of a locality condition for α.

From relation 3.35 and 3.36 it can be verified that C1
k = γk and C2

k =
∑2k−2

h=k−1 γ
h , satisfying

the inequalities of 3.40. So assuming Ch′

k ≤ kh
′−1γkh′

holds for 1 ≤ h′ < h lets try to prove
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Ch
k ≤ kh−1γkh for γ ≥ 1 and for h ≥ 3. Applying this to 3.39 we have

Ch
k ≤ γCh

k−1 + 2(h/2− 1)(k − 1)h−2γh(k−1) + (k − 1)h−2γh(k−1), if h is even

Ch
k ≤ γCh

k−1 + 2
(h− 1)

2
(k − 1)h−2γh(k−1), if h is odd

(3.41)

so in both cases we obtain

Ch
k ≤ γCh

k−1 + (h− 1)(k − 1)h−2γh(k−1) (3.42)

applying this inequality to Ch
k−1, C

h
k−2, ... we obtain

Ch
k ≤ γkCh

0 + (h− 1)0(h−2)γ0+k−1 + (h− 1)1(h−2)γh+k−2 + ...+ (h− 1)(k − 2)h−2γh(k−2)+1

+ (h− 1)(k − 1)h−2γh(k−1) ≤ 0 + γkh

∫ k

0

(h− 1)xh−2dx = kh−1γkh (3.43)

note that Ch
0 = 0 for h ≥ 3. We also used the fact that γkh ≥ γh(k−1−r)+r for γ ≥ 1, r = 0, ..., k− 1,

k = 1, ..., 2N and h ≥ 3 in the above relation.

Similarly if we assume Ch′

k ≤ kh
′−1γk−1 holds for 1 ≤ h′ < h, it is possible to prove that

Ch
k ≤ kh−1γk−1 for 1/2 ≤ γ < 1 and h ≥ 3. Applying this to 3.39 for both even and odd cases we

obtain

Ch
k ≤ γCh

k−1 + (h− 1)(k − 1)h−2γ2(k−2) (3.44)

applying this inequality to Ch
k−1, C

h
k−2, ... we have

Ch
k ≤γkCh

0 + (h−1){0(h−2)γ−2+k−1 +1(h−2)γ0+k−2+ 2(h−2)γ2+k−3 + ...+ (k−2)h−2γ2(k−3)+1}

+(h−1)(k−1)h−2γ2(k−2)≤ 0 +γk−1(h−1)
{∫ 2

0

xh−2dx+

∫ k

2

xh−2dx
}
=kh−1γk−1 (3.45)

we used the fact that γk̃−1 ≥ γ2(k̃−2−r)+r,r = 0, ..., k̃ − 3, k̃ = 3, ..., 2N and
∫ 2

0
xh−2dx ≥ 1/γ for

1/2 ≤ γ < 1 in the above relation. Hence the inequalities of 3.40 are proven. Applying 3.40 to 3.37

for k = 2N we find

c2α(L
N,2N + 1/n) = 2Nb2N ≤

22
N

∑

h=1

(2Nb0γ
2N )h <

c2α(LI + 1/n) exp(c1α)

1− c2α(LI + 1/n) exp(c1α)
, c1 ≥ 0

c2α(L
N,2N+1/n)=2Nb2N ≤

22
N

∑

h=1

γ2N

γ
(2Nb0)

h<
1

γ

exp(c1α)c2α(LI + 1/n)

1− c2α(LI + 1/n)
, c1<0, 1/2 ≤ γ < 1

(3.46)

with LN,0 = LI the Lipschitz constant of the initial condition function I. We used γ2N = (1 +

(αc1)/2
N)2

N

≤ exp(c1α) in the above relations and assumed 2Nb0 exp(c1α) < 1 in the first relation

and 2Nb0 < 1 in the second relation of 3.46. From these assumptions and 3.46 we can find a locality
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condition for α and a bound for the Lipschitz constants LN,k ≤ LN,2N 9

α <
1

exp (θ(c1)c1α)n(m− 1)LC(LI + 1/n)
, c1 = nLD − (m− 1)LC

LN,2N ≤
(LI + 1/n) exp(c1α)

1− n(m− 1)LCα(LI + 1/n) exp(θ(c1)c1α)
− 1/n ≡ Lf

(3.47)

with θ(c!) the step function.

3.3. Unique function for solution (Ufs) solves Theorem 3.1

In this Subsection we will show that the Ufs obtained in the previous Subsections is the solution

of the system of PDE of Theorem 3.1. With the Lipschitz condition for the initial condition and

the coefficients Cil and Di, Ufs is Lipschitz. Due to Radamechar theorem it is differentiable

almost everywhere. Here we will show that Ufs solves the system of PDE at its differentiable

points. Consider two hyperplanes in S+: Vβ = {z ∈ S+|zm = β, x0m ≤ β ≤ x0m + α} and

Vβ+δβ = {z ∈ S+|zm = β + δβ, x0m ≤ β + δβ ≤ x0m + α} for δβ > 0. Define the function g for

x− êmδβ ∈ Vβ and x ∈ Vβ+δβ

gi(x) ≡ Ufsi (x− Ci(x
ν , Ufs (xν)) δβ) +Di(x

ν , Ufs(xν))δβ, (3.48)

Ci = (Ci1, ..., Cim−1, 1), xν = x− νδβ, with ν = (mCl
+MCl

)êl/2 + êm

êj is the unit m-vector in the xj direction. Similar to before we can take Vβ as the initial condition

hyperplane and Vβ+δβ as the final hyperplane, but we will not partition the space in between, instead

we take the limit δβ → 0. Based on how gi(x) is defined it can be seen to lie within the upper and

lower bounds for the solution10: f0,1
i,m(x) ≤ gi(x) ≤ f0,1

i,M (x). Using the first relation of (3.20) with

N = 0, k = 1, α = |δβ| and noting that ∆f0,0 = 0, we have

∆f0,1 = C2(δβ)
2 (3.49)

9We have dropped the 1/γ factor on the righthand side of the second relation of 3.46 as γ → 1 for N → ∞.

But now since LN,2N is an increasing function of N and the second relation of 3.47 is true in the limit of N → ∞

then it must be true for all N ∈ {0} ∪ N. To see how LN,2N is an increasing function of N consider LN,k =

LN,k−1
(
1 + e1/2N

)
+(e2/2N )

(
LN,k−1

)2
+ e3/2N from 3.34 with e1, e2, e3 ≥ 0. It suffices to show LN+1,2k ≥ LN,k

for k = 1, ...,2N . Note that LN+1,0 = LN,0 = LI , therefore lets assume LN+1,2(k−1) ≥ LN,k−1 and try to prove

LN+1,2k ≥ LN,k . We have LN+1,2k−1 = LN+1,2k−2
(
1 + e1/2N+1

)
+ (e2/2N+1)

(
LN+1,2k−2

)2
+ e3/2N+1 and

LN+1,2k = LN+1,2k−1
(
1 + e1/2N+1

)
+(e2/2N+1)

(
LN+1,2k−1

)2
+e3/2N+1 ⇒ LN+1,2k = LN+1,2k−2

(
1 + e1/2N

)
+

(e2/2N )
(
LN+1,2k−2

)2
+ e3/2N + terms greater than or equal to zero. This proves LN+1,2k ≥ LN,k.

10e.g. it can be verified that xν ∈ S0,1
+,x, (x

ν , Ufs(xν)) ∈ P 0,1
+,x therefore m0,1

Di
(x) ≤ Di(x

ν , Ufs(xν)) ≤ M0,1
Di

(x)

and −M0,1
Cil

(x) ≤ −Cil(x
ν , Ufs(xν)) ≤ −m0,1

Cil
(x) hence (x − Ci(xν , Ufs(xν))δβ) ∈ V 0,0

res.,i,x and f0,0
i,m,Vres.

(x) ≤

Ufsi(x− Ci(x
ν , Ufs(xν))δβ) ≤ f0,0

i,M,Vres.
(x).
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since Ufsi(x) also lies within the upper and lower bounds for the solution f0,1
i,m(x) ≤ Ufsi(x) ≤

f0,1
i,M (x), based on relation 3.49 we have |gi(x)− Ufsi(x)| = O(δβ2). Therefore

Ufsi(x)−Ufsi(x− êmδβ) = Ufsi(x)− gi(x) + gi(x) − Ufsi(x− êmδβ)=

O(δβ2) + Ufsi(x− êmδβ)−
∂

∂xl
Ufsi(x− êmδβ)Cil(x

ν , Ufs(xν))δβ+

R(δβ) +Di(x
ν , Ufs(xν))δβ−Ufsi(x − êmδβ) (3.50)

with R(δβ)/δβ → 0 as δβ → 0 and we used the fact that Ufsi is differentiable at x − êmδβ. Note

that x − êmδβ ∈ Vβ is a fixed point and x ∈ Vβ+δβ is varied as δβ → 0. Another point to consider

here is that we only used the fact that Ufsi is differentiable on Vβ and did not need to assume it is

differentiable in the xm direction in 3.50. Dividing relation 3.50 by δβ and taking the limit δβ → 0

we find

Cil(x, Ufs(x))
∂

∂xl
Ufsi(x) +

∂

∂xm
Ufsi(x) = Di(x, Ufs(x)) (3.51)

This shows that Ufs solves the PDE of relation 3.1 at its differentiable points subject to the initial

condition 11.

Next we will show that if the initial condition and the coefficients Cil and Di are C1 then Ufs

is C1. We first show that Ufs(x) is C1 on V N,k. We will make use of the following two theorems in

mathematical analysis [2]:

1. Arzela-Ascoli theorem: Any bounded equicontinuous sequence of functions in C0(
∏d

h=1[ah, bh],R)

has a uniformly convergent subsequence.

2. Theorem: The uniform limit of a sequence of functions in C1(
∏d

h=1[ah, bh],R) is C
1 provided

that the sequence of its partial derivatives also converges uniformly and the partial derivative

of the uniform limit function is the same as the uniform limit of the partial derivative.

Consider the collection of functions fN,k
i : V N,k → R defined recursively as follows

fN,k
i (x) = fN,k−1

i (x− Ci(x
ν , fN,k−1(xν))α/2N ) +Di(x

ν , fN,k−1(xν))α/2N

fN,0
i ≡ Ii, x ∈ V N,k, xν = x− ν

α

2N
, ν = (mCl

+MCl
)êl/2 + êm (3.52)

from the way the functions fN,k
i are defined it can be seen 12

fN,k
i,m (x) ≤ fN,k

i (x) ≤ fN,k
i,M (x), x ∈ V N,k (3.53)

we consider a fixed V N,kN (for 1 ≤ kN ≤ 2N ) at xm = x0m + qα with q = kN/2N held fixed as

11Although the construction of Ufs was done by moving in the positive xm direction it is clear that with similar
methods it is possible to start from an initial condition hyperplane and construct the solution in the negative xm

direction (c.f. Appendix A). Therefore the discussion here is equivalently valid for when making the replacement
δβ → −δβ for δβ > 0 and evaluating the derivative of Ufsi in the negative xm direction.

12A similar reasoning as the footnote of the previous page holds here: xν ∈ SN,k
+,x , (xν , Ufs(xν)) ∈ PN,k

+,x

therefore mN,k
Di

(x) ≤ Di(x
ν , Ufs(xν)) ≤ MN,k

Di
(x) and −MN,k

Cil
(x) ≤ −Cil(x

ν , Ufs(xν)) ≤ −mN,k
Cil

(x) hence

(x− Ci(xν , Ufs(xν))α/2N ) ∈ V N,k−1
res.,i,x and fN,k−1

i,m,Vres.
(x) ≤ Ufsi(x− Ci(xν , Ufs(xν))α/2N ) ≤ fN,k−1

i,M,Vres.
(x).
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N → ∞. To show that Ufs is differentiable on V N,kN we have to show the following:

1. Uniform convergence of the sequence of functions fN,kN

i on V N,kN .

2. Uniform convergence of the sequence (or at least a subsequence) of the partial derivatives

∂fN,kN

i /∂xl on V N,kN .

To show the uniform convergence of a subsequence of the partial derivatives it suffices to show the

following:

2.1 Boundedness of the sequence of partial derivatives ∂fN,kN

i /∂xl.

2.2 Equicontinuity of the sequence of partial derivatives ∂fN,kN

i /∂xl.

The first statement follows from relation 3.53 and the fact that as N → ∞ the upper and lower

bounds approach each other uniformly on V N,kN as shown in 3.21. To show statements 2.1 and 2.2

we take the partial derivative of 3.5213

∂

∂xl
fN,k̄
i (x) = fN,k̄−1

i,zl
(z) +

{
−Cih,xl

(pν)α/2N − Cih,ys
(pν)fN,k̄−1

s,xl
(xν)α/2N

}
fN,k̄−1
i,zh

(z)

+Di,xl
(pν)

α

2N
+Di,ys

(pν)fN,k̄−1
s,xl

(xν)
α

2N
, 1≤ h≤ m− 1, 1≤ s≤ n, 1 ≤ k̄≤ kN (3.54)

with pν = (xν , fN,k−1(xν)) and z = x − Ci(p
ν)α/2N in the above relation. Summation over h

and s is implicit. To show the boundedness of the sequence of derivatives we assume a bound

LN,k̄−1
f ≥ |∂fN,k̄−1

i (x′)/∂x′
l| is known for the partial derivatives of fN,k̄−1

i (x′) for x′ ∈ V N,k̄−1 and

look for LN,k̄
f ≥ |∂fN,k̄

i (x)/∂xl|. From 3.54 we can find such recursion relation

LN,k̄
f ≡LN,k̄−1

f

(
1+(m−1)LC

α

2N
+ nLD

α

2N

)
+n(m−1)LC

(
LN,k̄−1
f

)2α

2N
+LD

α

2N
≥|fN,k̄

i,xl
(x)| (3.55)

where LC and LD are Lipschitz constants for Cil(x, y) and Di(x, y) which bound |Cil,xl
(x, y)|,

|Ci,ys
(x, y)| and |Di,xl

(x, y)|, |Di,ys
(x, y)| respectively, for (x, y) ∈ P . Relation 3.55 is exactly

similar to relation 3.34 obtained previously for the Lipschitz constants LN,k. This proves 2.1 that

the sequence fN,kN

i,xl
is bounded (locally in α). To prove 2.2 we have to show that the sequence

fN,kN

i,xl
is equicontinuous. The C1 assumption for the initial condition and the coefficients Cil(x, y)

and Di(x, y) implies that fN,kN

i,xl
is continuous and since they are defined on a compact set they are

uniformly continuous, therefore we only have to show that for a ǫ > 0 there is a common δ > 0,

independent of N , such that if ‖x− x̃‖1 < δ → |fN,kN

i,xl
(x)− fN,kN

i,xl
(x̃)| < ǫ, for x, x̃ ∈ V N,kN .

Taking the functions fN,k̄−1
i (x′) as known, for an ǫN,k̄−1 > 0 choose δN,k̄−1 > 0 such that if

‖x′ − x̃′‖1 < δN,k̄−1 for x′, x̃′ ∈ V N,k̄−1 and ‖p′ − p̃′‖1 < δN,k̄−1(1 +Lf ) for p
′, p̃′ ∈ P with Lf given

by 3.20, then

|fN,k̄−1
i,x′

l

(x′)− fN,k̄−1
i,x̃′

l

(x̃′)| < ǫN,k̄−1

|Cil′,ys
(p′)− Cil′,ys

(p̃′)| < ǫN,k̄−1, |Cil′,xl
(p′)− Cil′,xl

(p̃′)| < ǫN,k̄−1 (3.56)

|Di,ys
(p′)−Di,ys

(p̃′)| < ǫN,k̄−1, |Di,xl
(p′)−Di,xl

(p̃′)| < ǫN,k̄−1

13For brevity we have used the symbol H,xl
≡ ∂H/∂xl.
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l′ = 1, ...,m− 1. For these ǫN,k̄−1 and δN,k̄−1 lets see which ǫN,k̄ and δN,k̄ we will obtain for fN,k̄
i,xl

.

For this lets evaluate |fN,k̄
i,xl

(x) − fN,k̄
i,xl

(x̃)| using the right hand side of 3.54 for x, x̃ ∈ V N,k̄ and

‖x− x̃‖1 < δN,k̄ . Note that the difference of the product of any number of terms can be written in

terms of the difference of each of the terms multiplied by other terms, for example

A1A2...At − Ã1Ã2...Ãt = δA1A2...At + Ã1δA2A3...At + ...+ Ã1Ã2...Ãt−1δAt (3.57)

for δAh ≡ Ah − Ãh, 1 ≤ h ≤ t. Therefore the difference of the right hand side of 3.54 can be

written in terms of the difference of each of the terms at their corresponding two distinct points

multiplied by other terms which are bounded. Their two distinct points are either xν = x− να/2N

and x̃ν ≡ x̃−να/2N or pν = (xν , fN,k̄−1(xν)) and p̃ν ≡ (x̃ν , fN,k̄−1(x̃ν)) or z = x−Ci(p
ν)α/2N and

z̃ ≡ x̃−Ci(p̃
ν)α/2N . A bound for the difference between these points are ‖pν − p̃ν‖1 < δN,k̄(1+Lf )

or ‖xν−x̃ν‖1 < δN,k̄ or ‖z−z̃‖1 < δN,k̄(1+LC(1+Lf)α/2
N ). Assuming δN,k̄(1+LC(1+Lf)α/2

N ) =

δN,k̄−1 (note that with this assumption δN,k̄ ≤ δN,k̄−1 and δN,k̄(1+Lf) ≤ δN,k̄−1(1+Lf)) and using

3.56 we can find a bound for |fN,k̄
i,xl

(x) − fN,k̄
i,xl

(x̃)|

|fN,k̄
i,xl

(x) − fN,k̄
i,xl

(x̃)| < ǫN,k̄−1 + ǫN,k̄−1Gα/2N = ǫN,k̄ (3.58)

with G ≥ 0 a bounded constant. Therefore the δN,k̄ (≤ δN,k̄−1) and ǫN,k̄ (≥ ǫN,k̄−1) obtained for

fN,k̄
i,xl

14 in terms of δN,k̄−1 and ǫN,k̄−1 and eventually in terms of δN,0 and ǫN,0 are as follows

ǫN,k̄ = ǫN,k̄−1(1 +Gα/2N ) = ǫN,0(1 +Gα/2N )k̄ (3.59)

δN,k̄ = δN,k̄−1/(1 + LC(1 + Lf )α/2
N ) = δN,0/(1 + LC(1 + Lf )α/2

N)k̄

for k̄ = kN = q2N we have

ǫN, q2N = ǫ0(1 +Gα/2N)q2
N

< ǫ0 exp(Gqα) = ǫ (3.60)

δN,q2N = δ0/(1 + LC(1 + Lf)α/2
N )q2

N

> δ0/ exp(LC(1 + Lf )qα) = δ (3.61)

where ǫ0 = ǫN,0, δ0 = δN,0. Therefore for a ǫ > 0, we can choose ǫ0 small enough such that 3.60 is

satisfied: ǫ0 exp(Gqα) = ǫ. For this δ0 has to be chosen such that

‖z − z̃‖1 < δ0 → |Ii,xl
(z)− Ii,xl

(z̃)| < ǫ0 z, z̃ ∈ V

‖p− p̃‖1 < δ0(1 + Lf ) → |Cil′,ys
(p)− Cil′,ys

(p̃)| < ǫ0, (3.62)

|Cil′,xl
(p)− Cil′,xl

(p̃)| < ǫ0, |Di,ys
(p)−Di,ys

(p̃)| < ǫ0, |Di,xl
(p)−Di,xl

(p̃)| < ǫ0, p, p̃ ∈ P

for the δ0 of 3.62 the N independent δ is given by 3.61: δ = δ0/ exp(LC(1+Lf)qα). This shows that

the sequence fN,kN

i,xl
is equicontinuous and therefore statement 2.2 is proven. Therefore there exists

14Note that for the δN,k̄ and ǫN,k̄ obtained, relation 3.56 for the derivatives of Cil and Di is also satisfied: p, p̃ ∈ P ,
‖p − p̃‖1 < δN,k̄(1 + Lf ) → |Cil′,ys(p) − Cil′,ys(p̃)| < ǫN,k̄, |Cil′,xl

(p) − Cil′,xl
(p̃)| < ǫN,k̄, |Di,ys(p) −Di,ys(p̃)| <

ǫN,k̄, |Di,xl
(p)−Di,xl

(p̃)| < ǫN,k̄ since δN,k̄ ≤ δN,k̄−1 and ǫN,k̄ ≥ ǫN,k̄−1.
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a subsequence of fN,kN

i,xl
for l = 1, ...,m−1 that converges uniformly and since the sequence of fN,kN

i

converges uniformly to Ufsi on V N,kN this shows that Ufsi,xl
(x) exists and is continuous in the

direction of the variables xl for l = 1, ...,m− 1 on V N,kN . Since the hyperplanes V N,kN are dense in

S+ this easily generalizes to all hyperplanes parallel to the initial condition hyperplane in S+ (e.g. by

varying α). Next we show that Ufsi,xl
(x) is continuous in the xm direction. Consider Vβ and Vβ+δβ

for δβ > 0, defined at the beginning of Subsection 3.3, as the initial condition and final hyperplane,

respectively. We discretize the space in between along the xm direction similar to before. Consider

3.54 with α replaced by δβ and V N,0 and V N,2N corresponding to Vβ and Vβ+δβ , respectively,

with noting that all the terms have a bounded behaviour as N → ∞ the recursion relation can

be written as fN,2N

i,xl
(x) = fN,2N−1

i,xl
(x − êmδβ/2N + êlO

′
l(δβ)/2

N ) + O′(δβ)/2N with O′
l(δβ) and

O′(δβ) terms of order δβ, therefore upon solving this relation for fN,2N

i,xl
(x) (x ∈ Vβ+δβ) in terms

of fN,0
i,x′

l

(x′) = Ufsi,x′

l
(x′) (x′ ∈ Vβ), we find fN,2N

i,xl
(x) = Ufsi,xl

(x − êmδβ + êlO
N
l (δβ)) + ON (δβ),

with x − êmδβ + êlO
N
l (δβ) ∈ Vβ , O

N
l (δβ) and ON (δβ) terms of order δβ. From fN,2N

i,xl
there is a

subsequence (e.g. fan,2
an

i,xl
) that converges uniformly to Ufsi,xl

(x), therefore 15

Ufsi,xl
(x)−Ufsi,xl

(x− êmδβ) = lim
n→∞

{fan,2
an

i,xl
(x)} − Ufsi,xl

(x − êmδβ)

= Ufsi,xl
(x− êmδβ + êlOl(δβ)) +O(δβ) − Ufsi,xl

(x− êmδβ) (3.63)

we already proved that Ufsi,xl
is continuous in the direction of the variables xl on Vβ , therefore

upon taking the limit δβ → 0 in 3.63 (note that for x ∈ Vβ+δβ , x − êmδβ ∈ Vβ is a fixed point) it

can be concluded that Ufsi,xl
is continuous in the xm direction16. From 3.50 and 3.51 it follows

that Ufsi(x) solves the system of PDE of 3.1 subject to the initial condition for all x ∈ S+ and

that Ufsi,xm
(x) exists and is continuous. Similarly with assuming that the initial condition and

the coefficients Cil and Di are Cr+1 for r ≥ 1 we can show that the solution is Cr+1. For this

consider the r + 1 partial derivatives of 3.52, by similar methods it can be shown that the sequence

of a r + 1 partial derivative of fN,kN

i is bounded and equicontinuous and with a subsequence of its

lower r derivative converging uniformly, it can be concluded that the r+1 partial derivative of Ufsi

in the xl directions exists and is continuous in the xl directions for 1 ≤ l ≤ m − 1, also similar

to the argument above it can be concluded that the r + 1 partial derivative in the xl directions is

continuous in the xm direction. Then using 3.51 it can be shown that all r+1 partial derivatives in

the xj direction for j = 1, ...,m exist and are continuous.

Note that with the Lipschitz or Cr assumption on the coefficients and the initial condition we

obtain a Lipschitz or Cr solution, respectively but the characteristic curves and the solution along

15limn→∞ êlO
an

l
(δβ) ≡ êlOl(δβ) and limn→∞ Oan(δβ) ≡ O(δβ), these limits are well defined. To see this consider

fan,2an

i,xl
(x) = Ufsi,xl

(x− êmδβ + êlO
an
l

(δβ)) +Oan(δβ), as noted fan,2an

i,xl
(x) converges to Ufsi,xl

(x). x− êmδβ +

êlO
an

l
(δβ) ∈ Vβ converges to the point in Vβ which the characteristic curve of the solution fi passing through

x ∈ Vβ+δβ passes through in Vβ , therefore the Oan(δβ) term also has a well defined limit as n → ∞.
16As previously noted although the construction of Ufs was done by moving in the positive xm direction it is clear

that with similar methods it is possible to start from an initial condition hyperplane and construct the solution in the
negative xm direction (c.f. Appendix A). Therefore the discussion in this page is equivalently valid for when making
the replacement δβ → −δβ for δβ > 0 and showing the continuity of Ufsi,xl

(x) in the negative xm direction.
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these curves will be C1 with Lipschitz continuous derivative and Cr+1, respectively as can be seen

from relation 3.3.

Although the solution was constructed on S+ by a similar procedure we can define an S− domain

and construct a unique solution there (c.f. Appendix A), it is also possible to extend the domain of

the solution to a larger one by applying the same procedure on regions near the boundaries of the

domain S ≡ S+∪S−. Further proceedings in the positive or negative xm direction, depending on the

specific problem considered, might lead to regions of overlapping characteristics or an unbounded

increase of the solution or its derivatives which would limit the domain with a well defined unique

solution. Nevertheless we would expect there to exist a maximal domain with a unique well defined

solution. For instance consider the union of all domains which a unique well defined solution exists

with unique characteristics connecting the points of the domain to the initial condition domain.

Other regions of the domain P1 are regions which no solution, that is related to the initial condition,

exists, i.e. there is no characteristic connecting that region to the initial condition domain, or

multiple solutions exist with multiple characteristics connecting a point in that region to the initial

condition domain. ✷

4. Generalizations and application of Theorem 3.1

4.1. Dependence of initial condition and coefficients on parameters

In this Subsection we consider the dependence of the initial condition I and coefficients Cil and

Di on parameters and show that their Lipschitz or Cr dependence on the parameters is inherited to

the solution. The Proposition is as follows:

Proposition 4.1. Consider extending the definition of Cil, Di and Ii of Theorem 3.1 to C̄il :

P × P3 → R, D̄i : P × P3 → R and Īi : V × P3 → R with P3 ≡ {w ∈ R
d| ‖w − w0‖∞ ≤ c},

P ≡ P1 × P2 with P1, P2 and V defined in Theorem 3.1. Let C̄il, D̄i and Īi be Lipschitz or Cr with

Īi(x,w0) = Ii(x), C̄il(x, y, w0) = Cil(x, y) and D̄i(x, y, w0) = Di(x, y), also let M‖Ī−y0‖ < b with

M‖Ī−y0‖ ≡ max{‖Ī(u,w)− y0‖∞|(u,w) ∈ V ×P3}. Then the following system of partial differential

equations:

C̄i1(x, y, w)
∂yi
∂x1

+ ...+ C̄im−1(x, y, w)
∂yi

∂xm−1
+

∂yi
∂xm

= D̄i(x, y, w) (4.1)

has a unique Lipschitz continuous or Cr solution respectively, f̄ : B × P3 → P2 for V ⊂ B ⊆ P1, B

containing a neighbourhood of Vint, with Vint defined in Theorem 3.1 and f̄ reducing to the initial

condition function Ī on V × P3, f̄(u,w) = Ī(u,w) for (u,w) ∈ V × P3.

The construction of Ufs which was done in Section 3 can similarly be done here for a fixed w

(or in other words for a spectator w argument) by replacing the constants of the problem

M‖D‖,M‖C‖,MCl
,mCl

, LC , LD defined on P with M‖D̄‖,M‖C̄‖,MC̄l
,mC̄l

, LC̄ , LD̄

defined on P × P3 and LI defined on V with LĪ defined on V × P3

(4.2)

and accordingly relation 3.20 and the relations in Section 3 that involve these constants would be

modified in this way.
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To show that ¯Ufs(x,w) is Lipschitz with respect to its w argument consider the sequence of

functions in 3.52. Now with the initial condition and coefficients depending on the parameter w the

recursion relation picks up a w dependence

f̄N,k
i (x,w)= f̄N,k−1

i

(
x− C̄i

(
xν̄ , f̄N,k−1

(
xν̄ , w

)
, w

) α

2N
, w

)
+D̄i

(
xν̄ , f̄N,k−1(xν̄ , w), w

) α

2N

f̄N,0
i (x,w) ≡ Īi(x,w), x ∈ V̄ N,k, xν̄ = x− ν̄

α

2N
, ν̄ = (mC̄l

+MC̄l
)êl/2 + êm (4.3)

The sequence of f̄N,kN

i (x,w) converges uniformly to ¯Ufs(x,w) on V̄ N,kN × P3 for q = kN/2N

fixed as N → ∞ and 1 ≤ kN ≤ 2N as can be seen from relation 3.21 after applying 4.2. Therefore

if it is shown that f̄N,kN

i (x,w) has a bounded Lipschitz constant with respect to w, this implies

that ¯Ufs(x,w) is Lipschitz with respect to w on all V̄ N,kN which then easily generalizes to all

points in the domain S̄+(e.g. by varying α) . Lets assume f̄N,k−1
i (x,w) is Lipschitz with Lipschitz

constant LN,k−1

f̄
and try to find the Lipschitz constant of f̄N,k

i (x,w). Consider two different points

(x,w), (x̃, w̃) ∈ V̄ N,k × P3. We would like to find LN,k

f̄
such that |f̄N,k

i (x,w) − f̄N,k
i (x̃, w̃)| ≤

LN,k

f̄
{
∑

l |xl − x̃l| +
∑d

u=1 |wu − w̃u|}. First lets evaluate the difference between each of the terms

in 4.3

∣∣D̄i

(
xν̄ , f̄N,k−1(xν̄ , w), w

)
− D̄i

(
x̃ν̄ , f̄N,k−1(x̃ν̄ , w̃), w̃

)∣∣ ≤ LD̄

(
1 + nLN,k−1

f̄

)
(4.4)

{∑

l

|xl − x̃l|+
∑

u

|wu − w̃u|
}

∣∣∣f̄N,k−1
i

(
x−C̄i

(
xν̄, f̄N,k−1(xν̄, w), w

) α

2N
, w

)
−f̄N,k−1

i

(
x̃−C̄i

(
x̃ν̄, f̄N,k−1(x̃ν̄, w̃), w̃

) α
2N

,w̃
)∣∣∣

≤ LN,k−1

f̄

{
1 +

α

2N
LC̄(m− 1)

(
1 + nLN,k−1

f̄

)}{∑

l

|xl − x̃l|+
∑

u

|wu − w̃u|
}

(4.5)

using the above relations we can find a bound for
∣∣∣f̄N,k

i (x,w) − f̄N,k
i (x̃, w̃)

∣∣∣

∣∣∣f̄N,k
i (x,w) − f̄N,k

i (x̃, w̃)
∣∣∣ ≤

{ α

2N
LD̄

(
1 + nLN,k−1

f̄

)
+

LN,k−1

f̄

(
1 +

α

2N
LC̄(m− 1)

(
1 + nLN,k−1

f̄

))}{∑

l

|xl − x̃l|+
∑

u

|wu − w̃u|
}

(4.6)

from 4.6 we obtain a similar recursion relation as 3.34 (but with 4.2 applied) for the Lipschitz

constants

LN,k

f̄
≡ LN,k−1

f̄

(
1 +

(
(m− 1)LC̄ + nLD̄

) α

2N

)
+ n(m− 1)LC̄

α

2N

(
LN,k−1

f̄

)2

+ LD̄

α

2N
(4.7)

This shows that the sequence of Lipschitz constants is locally bounded for all N and k, therefore
¯Ufs is also Lipschitz with respect to its parametric dependence with L ¯Ufs = max{Lf̄ ,M‖D̄‖+(m−

1)Lf̄M‖C̄‖} being its Lipschitz constant on S̄+ × P3(or S̄− × P3). Next we show that ¯Ufs is C1

with respect to the x and w space. First we show this on the hyperplanes V̄ N,k. For this it suffices

to show Statements 1, 2.1 and 2.2 in Subsection 3.3 for the sequence f̄N,kN

i (x,w) with q = kN/2N

held fixed. Statement 1 was discussed below relation 4.3: the uniform convergence of f̄N,kN

i (x,w)
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to ¯Ufs(x,w) as N → ∞ follows from relation 3.21 after applying 4.2. f̄N,kN

i,xl
(x,w) and f̄N,kN

i,wu
(x,w)

are locally bounded for all N since the Lipschitz constant of f̄N,kN (x,w) obeys relation 4.7, hence

this shows Statement 2.1. To show Statement 2.2 take the partial derivative of 4.3 with respect to

wu and xl

∂

∂wu
f̄N,k̄
i (x,w)= f̄N,k̄−1

i,wu
(z̄,w)+

(
−C̄ih,wu

(p̄ν̄)
α

2N
−C̄ih,ys

(p̄ν̄)f̄N,k̄−1
s,wu

(xν̄,w)
α

2N

)
f̄N,k̄−1
i,z̄h

(z̄, w)

+ D̄i,wu
(p̄ν̄)

α

2N
+ D̄i,ys

(p̄ν̄)f̄N,k̄−1
s,wu

(xν̄ , w)
α

2N
,

∂

∂xl
f̄N,k̄
i (x,w)= f̄N,k̄−1

i,z̄l
(z̄, w) +

(
−C̄ih,xl

(p̄ν̄)
α

2N
− C̄ih,ys

(p̄ν̄)f̄N,k̄−1
s,xl

(xν̄)
α

2N

)
f̄N,k̄−1
i,z̄h

(z̄, w)

+ D̄i,xl
(p̄ν̄)

α

2N
+ D̄i,ys

(p̄ν̄)f̄N,k̄−1
s,xl

(xν̄ , w)
α

2N
,

p̄ν̄≡
(
xν̄ , f̄N,k−1(xν̄ , w), w

)
, z̄ = x− C̄i

(
p̄ν̄
) α

2N
, 1 ≤ h ≤ m− 1, 1 ≤ s ≤ n, 1 ≤ k̄ ≤ kN

(4.8)

summation over h and s is implicit. Showing that the sequences f̄N,kN

i,wu
(x,w) and f̄N,kN

i,xl
(x,w) are

equicontinuous is similar to how this was done for the partial xl derivatives in Subsection 3.3 as

the structure of the recursion relation is the same, therefore by similar arguments starting from

the paragraph below relation 3.62 until a few sentences after relation 3.63 we can conclude that

∂ ¯Ufsi/∂wu and ∂ ¯Ufsi/∂xj (j = 1, ...,m) exist and are continuous with respect to the x and w

space. Also with similar arguments as in the paragraph below relation 3.63 we can conclude that

with a Cr+1 assumption on C̄il, D̄i and Īi, ¯Ufs(x,w) will be Cr+1 with respect to x and w.

4.2. Generalization to nonlinear systems of PDE

In this Subsection we will generalize the result of Section 3 to nonlinear systems of PDE. For

this we need to conjecture the following for a linear homogeneous first order system of PDE that

will be derived later in this Subsection.

Conjecture 1. The following linear homogeneous first order system of PDE:

∂y

∂xm
+Al(x)

∂y

∂xl
+B(x)y = 0 (4.9)

with Al(x) and B(x), n × n C1 matrices defined on P1, can have at most one C1 solution locally

that satisfies a C1 initial condition Ii : V → R, yi(u) = Ii(u) , u ∈ V , with P1 and V defined similar

to Theorem 3.1.

Note: If the matrices Al in 4.9 are symmetric the above conjecture is true according to [3].

The nonlinear system of PDE that is reducible to the system of PDE of Theorem 3.1 by differ-

entiation is 17:

Gi(x, y,∇yi) = 0, i = 1, ..., n (4.10)

we assume Gi : P1 × P2 × Qi → R is defined with Qi ≡ {z ∈ Rm|‖z − pi0‖∞ ≤ c}, the points

pi0 ∈ R
m and c > 0 will be defined below. The initial condition is given by Ii : V → R and we

17The derivation presented here is similar to the one in [1] except that it is for a system of PDE.
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demand that the functions yi solving 4.10 reduce to yi(u) = Ii(u) for u ∈ V and M‖I−y0‖ < b. P1,

P2, V and M‖I−y0‖ are defined similar to Theorem 3.1. With the C3 assumption on Gi and the

initial condition Ii we will obtain a C3 solution. In order for the existence of a solution to 4.10 that

reduces to the initial condition on V to be possible the functions p0i = p0i (u) for u ∈ V must exist

which satisfy the following relations:

Gi(u, I(u), p
0
i (u)) = 0, (4.11)

p0il(u)−
∂Ii(u)

∂ul
= 0, (4.12)

∂Gi

∂pim
6= 0 at (u, I(u), p0i (u)) (4.13)

p0il is C2 from 4.12, therefore due to the implicit function theorem p0im will also be C2 18. pi0 and

c > 0 are such that ∀u ∈ V → ‖p0i (u)− pi0‖∞ < c. Differentiating 4.10 with respect to xj we have

Gi,piq
(x, y, pi)

∂pij
∂xq

= −
∂Gi

∂xj
−

∂Gi

∂ys
psj , s = 1, ..., n, q = 1, ...,m

Gi,piq
(x, y, pi)

∂yi
∂xq

= Gi,piq
(x, y, pi)piq

(4.14)

summation over q and s is implicit. We have commuted the order of the partial derivatives and

replaced ∂yi/∂xj → pij . From 4.13 it is clear that ∂Gi/∂pim 6= 0 in a neighbourhood of the set of

points (u, I(u), p0i (u)) ∈ P1 × P2 ×Qi for u ∈ V , therefore upon dividing 4.14 by Gi,pim
(x, y, pi) we

obtain a system of PDE similar to relation 3.1 which then a unique solution y(x) and pi(x) can be

constructed locally that would reduce to y(u) = I(u) and pi(u) = p0i (u) for u ∈ V similar to the

way it was done in Section 3. With the C3 assumption on the initial condition Ii and Gi in 4.10,

the coefficients and the initial condition in 4.14 will be C2 and therefore we obtain a C2 solution to

4.14.

Now it is possible to show that the yi of 4.14 solve the system of PDE of 4.10 and are C3

assuming Conjecture 1 holds. For this we introduce new coordinate systems corresponding to the

initial condition hyperplane and the parameter of the characteristic equations of 4.14. We denote

these by u
(i)
1 , ...., u

(i)
m−1 and (u

(i)
m ≡) t(i). By the theory of ordinary differential equations the map

x = x(u(i)) is C2. To show that y solves 4.10 we need to show the following equations:

Gi(x, y(x), pi(x)) = 0, (4.15)

∂yi(x)

∂xj
− pij(x) = 0 (4.16)

from 4.11 it is clear that 4.15 and from 4.12 and the second equation of 4.14 it is clear that 4.16 are

true on the initial condition hyperplane V . We need to show that they hold locally near the initial

18It is usually assumed that relations 4.11 - 4.13 hold for a point u0 ∈ V which then due to the implicit function
theorem it can be inferred that they hold locally in a neighbourhood of u0 ∈ V . Since we want the solution to reduce
to the initial condition on V we have assumed that 4.11 - 4.13 hold on V .
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condition hyperplane. Showing 4.16 is equivalent to showing dyi = pijdxj . In the coordinate system

of the initial condition hyperplane u
(i)
1 , ..., u

(i)
m−1 and the characteristic parameter (u

(i)
m ≡) t(i) this

is equivalent to the following relations:

λil(u
(i)) ≡

∂yi

∂u
(i)
l

− piq
∂xq

∂u
(i)
l

= 0 (4.17)

λim(u(i)) ≡
∂yi
∂t(i)

− piq
∂xq

∂t(i)
= 0 (4.18)

4.18 is automatically satisfied from the second equation of 4.14 and the characteristic relation

∂xq/∂t
(i) = Gi,piq

. 4.17 and 4.15 need to be shown. For this we take a derivative with respect

to t(i) of these equations. We have

∂

∂t(i)
Gi(x, y(x), pi(x)) = Gi,xj

∂xj

∂t(i)
+Gi,ys

∂ys
∂xj

∂xj

∂t(i)
+Gi,pij

∂pij
∂t(i)

= Gi,xj
Gi,pij

+Gi,ys
Gi,pij

∂ys
∂xj

+Gi,pij

(
−
∂Gi

∂xj
−

∂Gi

∂ys
psj

)

= Gi,ys
Gi,pij

(
∂ys
∂xj

− psj

)
= Gi,ys

Gi,pij

∂u
(s)
q

∂xj
λsq(u

(s)) (4.19)

∂

∂t(i)
λil(u

(i)) =
∂

∂u
(i)
l

{Gi,piq
piq} −

(
−
∂Gi

∂xq
−

∂Gi

∂ys
psq

)
∂xq

∂u
(i)
l

− piq
∂Gi,piq

∂u
(i)
l

= Gi,piq

∂piq

∂u
(i)
l

+
∂Gi

∂xq

∂xq

∂u
(i)
l

+
∂Gi

∂ys
psq

∂xq

∂u
(i)
l

=
∂Gi

∂u
(i)
l

−
∂Gi

∂ys

∂ys

∂u
(i)
l

+
∂Gi

∂ys
psq

∂xq

∂u
(i)
l

=
∂Gi

∂u
(i)
l

−
∂Gi

∂ys

∂u
(s)
j

∂u
(i)
l

λsj(u
(s)) (4.20)

summation over s, q and j is implicit. The change of the order of the partial derivatives are allowed

since yi and xj are C2 (If we had started with a C2 assumption on the Gi and the initial condition

functions Ii, yi and the xq of 4.14 would have been C1 as a function of u
(i)
j but the change of

the order of the partial derivatives in 4.20 would still be allowed since ∂yi/∂t
(i) and ∂xq/∂t

(i) are

C1). We also used the fact that the inverse map u(i) = u(i)(x) is differentiable, in particular C2,

in the above relations, this follows from the fact that the map x = x(u(i)) is C2 and we know that

det{∂xj/∂u
(i)
q } 6= 0 near the initial condition hyperplane since at the initial condition hyperplane

the coordinates u
(i)
1 , ...., u

(i)
m−1 are the same as x1, ...., xm−1 and dxm = Gi,pim

dt(i) for Gi,pim
6= 0.

Considering everything as a function of x with u(i) = u(i)(x) and rewriting ∂/∂t(i) in terms of partial

derivatives with respect to x and noting that λim = 0, we obtain

Gi,piq

∂Ḡi(x)

∂xq
= Gi,ys

Gi,pij

∂u
(s)
l′

∂xj
λ̄sl′ (x)

Gi,piq

∂λ̄il(x)

∂xq
−

∂Ḡi(x)

∂xq

∂xq

∂u
(i)
l

= −Gi,ys

∂u
(s)
l′

∂u
(i)
l

λ̄sl′ (x)

(4.21)
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l′ = 1, ..,m − 1. Considering the coefficients of ∂Ḡi/∂xq, ∂λ̄il/∂xq and λ̄sl′ as known functions

of x, which based on the assumptions of the theorem are C1, it can be seen that the functions

Ḡi(x) ≡ Gi(x, y(x), pi(x)) and λ̄il(x) ≡ λil(u
(i)(x)) satisfy a linear homogeneous first order partial

differential equation19 in the form of relation 4.9 20, and since they vanish on the initial condition

hyperplane V , assuming Conjecture 1 holds, they should also vanish near the initial condition

hyperplane 21. Therefore 4.15 and relations 4.17 and 4.18 (or equivalently 4.16) are valid near V .

This shows that y = y(x) of 4.14 solves the system of PDE of 4.10 near V and since pij is C2, y

would be C3. It is also possible to combine the results of Subsections 4.1 and 4.2 easily by extending

the definition of the initial condition and Gi functions of 4.10 to have a parametric dependence w on

a compact parameter space. With assuming the conditions and assumptions in this Subsection hold

for any fixed w (or in other words for any spectator w argument) in the compact parameter space

the discussion of this Subsection is similarly valid without any change. The only point to note is

that with a C3 assumption on the initial condition and the functions Gi, the solutions obtained for

the system of PDE of 4.14 will be C2 with respect to the x and w space, therefore yi and ∂yi/∂xj

(= pij) will be C2 with respect to the x and w space.

At the end of this Subsection we note that the initial condition can also be defined on an

arbitrary hypersurface instead of a hyperplane. In this case it is possible to reduce the problem to

one that is defined on a hyperplane by a change of variables. Consider the following C3 hypersurface

x : U → R
m, x = x(u1, ..., um−1) for U ≡ [−a, a]m−1, and ∂x(u)/∂u has rankm−1. We demand that

the functions y solving 4.10 reduce to y(x(u)) = I(u) on this hypersurface for some set of C3 initial

condition functions Ii : U → R. Since the rank of ∂x/∂u is m− 1 at any point u0 ∈ U there exists

m−1 rows of the matrix ∂x/∂u that are linearly independent. Without loss of generality we take the

first m− 1 rows to be linearly independent. Therefore we can change coordinates from u1, ..., um−1

19In order for λsl to satisfy a linear system of PDE, ys should be at least two times differentiable, this is the main
reason the coefficients and the initial condition in 4.10 were assumed C3 so that the solution of 4.14 and in particular
ys would be C2. We do not rule out the possibility of improving this C3 differentiability assumption. For example
with a C2 assumption on the coefficients Gi and Ii, 4.19 and 4.20 are still valid as the change of the order of partial
derivatives is still allowed as mentioned in the sentences below equation 4.20. In this case 4.19 and 4.20 are linear
homogeneous partial differential equations for Gi and λsl in different coordinate systems(!) with coefficients that are
at least continuous and it obviously has a solution of zero based on an initial condition of zero. If this can be defined
properly and a similar conjecture as Conjecture 1 holds for it then it is possible to start with a C2 assumption on Gi

and Ii. A more optimum differentiability assumption is that we start with a C1 assumption with Lipschitz continuous
derivatives on Gi and Ii, in this case if we assume there is a C1 solution with Lipschitz continuous derivatives to 4.10
then this solution will inevitably be given by the unique Lipschitz solution to 4.14. In this case it might be possible
to show that this Lipschitz solution solves 4.10 near V as this is true for when we only have one equation with one
unknown function (when n = 1) in 4.10 as stated in [1].

20With Gi,pim 6= 0 near V after dividing 4.21 by Gi,pim we obtain a similar form as 4.9. Note that the
term ∼ ∂Ḡi(x)/∂xm in the second relation of 4.21 can be eliminated by multiplying the first relation of 4.21 by

(∂xm/∂u
(i)
l

)/Gi,pim and adding it to the second relation of 4.21.
214.21 clearly has a solution of zero based on an initial condition of zero. We might ask the question as to whether

this is a unique solution. Here we will try to argue in favour of a unique solution. Having another solution other than
zero would lead to some unsatisfactory results. For example if we have a non-zero solution then a constant multiple
of that solution would also be a solution based on an initial condition of zero and this generates an infinite family
of solutions. Or considering the discretization of the system of PDE of 4.21 the values of the discretized solution
obtained at each discretized hyperplane parallel to the initial condition hyperplane would all be zero, therefore it
seems that a non-trivial solution cannot be captured by the discretization of the system of PDE of 4.21. Also from [3]
it is known that when the Al matrices are symmetric, 4.9 can have at most one solution. Therefore it seems plausible
to conjecture that Conjecture 1 holds for general n× n C1 matrices Al and accordingly the linear homogeneous first
order system of PDE of 4.21 would admit at most one solution locally based on an initial condition of zero.
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to x1, ..., xm−1 near u = u0. Since det{∂xl/∂ul′} 6= 0 (l, l′ = 1, ...,m− 1) near u0 the inverse map

u = u(x1, ..., xm−1) is also C3. Next we change coordinates from (x1, ..., xm−1, xm(u(x1, ..., xm−1)))

to (x1, ..., xm−1, x
′
m) with x′

m = xm − xm(u(x1, ..., xm−1)) and in this new coordinate system the

hypersurface near x(u0) is given by x′
m = 0. Note that the functions Gi of 4.10 and the initial

condition functions Ii remain C3 in this new coordinate system, Gi(x, y,∇yi) = Gi(x1, ..., xm−1, x
′
m+

xm(u(x1, ..., xm−1)), y, ∂yi/∂x1, ..., ∂yi/∂xm−1, ∂yi/∂x
′
m), Ii = Ii(u(x1, ..., xm−1)).

4.3. Application to hyperbolic quasilinear systems of first order PDE in two independent variables

In this Subsection we will show that a hyperbolic quasilinear system of first order PDE in two

independent variables can be reduced to the system of PDE of Theorem 3.1. Consider the following

hyperbolic quasilinear system of first order PDE in two independent variables x1 and x2

∂y

∂x2
+A(x, y)

∂y

∂x1
= B(x, y) (4.22)

A(x, y) andB(x, y) are n×n and n×1C1 matrices, respectively, with Lipschitz continuous derivatives

defined on P1 ×P2 with P1, for m = 2, and P2 defined similar to Theorem 3.1. It is assumed that A

has n real eigenvalues τ i(x, y) which form a diagonal matrix T(x, y) and n linearly independent left

eigenvectors li(x, y) which form a matrix Λ(x, y) with determinant one, T and Λ are also considered

C1 with Lipschitz continuous derivatives 22. Furthermore we demand that the functions yi reduce

to a set of initial condition functions on V , fi(u) = Ii(u) for u ∈ V , Ii : V → R being C1 with

Lipschitz continuous derivatives and V , for m = 2, defined similar to Theorem 3.1.

To reduce the system of PDE above to the form of Theorem 3.1 take the derivative of 4.22 with

respect to xr

∂pr
∂x2

+A
∂pr
∂x1

= B,xr
+ psrB,ys

−A,xr
p1 − psrA,ys

p1 ≡ C(x, y, p1, p2) (4.23)

summation over s = 1, .., n is implicit, we have changed the order of the partial derivatives 23 and

replaced ∂y/∂xr → pr for r = 1, 2 and psr ≡ (pr)s. Next multiply 4.23 by Λ and define the new

function variables p̄r ≡ Λpr, we have

∂p̄r
∂x2

+T
∂p̄r
∂x1

= (Λ,x2
+ Λ,ys

ps2)pr +T(Λ,x1
+ Λ,ys

ps1)pr + ΛC (4.24)

and the PDE for y is given by

∂y

∂x2
+T

∂y

∂x1
= p2 +Tp1 (4.25)

(or ∂y/∂x2 = p2 is also a valid choice instead of 4.25) the system of PDE of 4.24 and 4.25, in

22For when the eigenvalues τ i are distinct this follows from the fact that A is C1 with Lipschitz continuous
derivatives.

23The change of the order of derivatives is allowed almost everywhere since based on the differentiability assumptions
on A, B and Ii, the partial derivative of the solution, ∂y/∂xr , will be Lipschitz and therefore is differentiable almost
everywhere.
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terms of the functions y and p̄r (with pr = Λ−1p̄r), has the form of Theorem 3.1 with coefficients

and initial condition that are Lipschitz. The initial condition is given by y(u) = I(u), p̄1(u) =

Λ(u, I(u))∂I(u)/∂u1 and p̄2(u) = Λ(u, I(u)){B(u, I(u)) − A(u, I(u))∂I(u)/∂u1} for u ∈ V . From

[3] it is known that 4.22 has a local unique C1 solution with Lipschitz continuous derivatives that

satisfies the initial condition, therefore it is clear that this solution is given by the local unique

Lipschitz solution of 4.24 and 4.25: y and ∂y/∂xr = pr = Λ−1p̄r. This shows that Theorem 3.1

gives an alternative way, which is more direct and convenient especially for finding a numerical

solution (e.g. The discretized form of the solution can be obtained by considering relation 3.52

for the system of PDE of 4.24 and 4.25), as compared to other methods, e.g. iteration methods

[3], for the construction of the solution of hyperbolic quasilinear systems of first order PDE in two

independent variables.

Appendix A.

In this Appendix we will list the equivalent definitions and relations of Section 3 for when

constructing a solution on the S− domain. The S− domain is defined as

S−≡{x ∈ P1|−α ≤ xm − x0m ≤ 0,−ā+mCl
(xm − x0m) ≤ xl − x0l ≤ ā+MCl

(xm − x0m)} (A.1)

and α satisfies the 3 conditions listed below relation 3.2. MCl
and mCl

, similar to before, refer to

an upper and lower bound for Cil for i = 1, ..., n on P, respectively. Relation 3.4 is modified to

fN,k
i,m (x) ≡ fN,k−1

i,m,Vres.
(x) −MN,k

Di
(x)

α

2N
≤ fi(x) ≤ fN,k−1

i,M,Vres.
(x)−mN,k

Di
(x)

α

2N
≡ fN,k

i,M (x)

x ∈ V N,k
− , V N,k

− ≡
{
z ∈ S−

∣∣zm = x0m − kα/2N
}
, V N,0

− ≡ V, k = 1, ..., 2N (A.2)

fN,0
i,M (x) = fN,0

i,m (x) ≡ Ii(x) for x ∈ V . fN,k
i,M , fN,k

i,m : V N,k
− → R. fN,k−1

i,M,V (x), fN,k−1
i,m,V (x), MN,k

Di
(x) and

mN,k
Di

(x) for x ∈ V N,k
− are given by

fN,k−1
i,M,V (x) ≡ max

{
fN,k−1
i,M (z)

∣∣∣z ∈ SN,k
−,x ∩ V N,k−1

−

}
,

fN,k−1
i,m,V (x) ≡ min

{
fN,k−1
i,m (z)

∣∣∣z ∈ SN,k
−,x ∩ V N,k−1

−

}
,

MN,k
Di

(x)≡max
{
Di(z, y)

∣∣∣(z, y) ∈ PN,k
−,x

}
,mN,k

Di
(x)≡min

{
Di(z, y)

∣∣∣(z, y) ∈ PN,k
−,x

}
(A.3)

SN,k
−,x and PN,k

−,x for x ∈ V N,k
− are given by

SN,k
−,x ≡

{
z ∈ S−

∣∣0 ≤ zm − xm ≤ α/2N , (A.4)

mCl
(zm − xm) ≤ zl − xl ≤ MCl

(zm − xm)}

PN,k
−,x ≡

{
(z, y)

∣∣∣z ∈ SN,k
−,x , fN,k−1

i,m,V (x)−M‖D‖
α

2N
≤ yi ≤ fN,k−1

i,M,V (x) +M‖D‖
α

2N
, i = 1, ..., n

}
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fN,k−1
i,M,Vres.

(x) and fN,k−1
i,m,Vres.

(x) for x ∈ V N,k
− given by

fN,k−1
i,M,Vres.

(x) ≡ max
{
fN,k−1
i,M (z)

∣∣∣z ∈ V N,k−1
res.,i,x

}

fN,k−1
i,m,Vres.

(x) ≡ min
{
fN,k−1
i,m (z)

∣∣∣z ∈ V N,k−1
res.,i,x

}
(A.5)

V N,k−1
res.,i,x ≡

{
z ∈ SN,k

−,x ∩ V N,k−1
−

∣∣∣mN,k
Cil

(x)α/2N ≤ zl − xl ≤ MN,k
Cil

(x)α/2N
}

and MN,k
Cil

(x) and mN,k
Cil

(x) given by

MN,k
Cil

(x) ≡ max
{
Cil(z, y)

∣∣∣(z, y) ∈ PN,k
−,x

}
, mN,k

Cil
(x) ≡ min

{
Cil(z, y)

∣∣∣(z, y) ∈ PN,k
−,x

}
(A.6)

Relation 3.52 is modified to

fN,k
i (x) = fN,k−1

i (x+ Ci(x
ν , fN,k−1(xν))α/2N )−Di(x

ν , fN,k−1(xν))α/2N

fN,0
i ≡ Ii, x ∈ V N,k

− , xν = x+ ν
α

2N
, ν = (mCl

+MCl
)êl/2 + êm (A.7)

Relations 3.19 and 3.20 are equivalently valid with α > 0 being the extent which, in general,

the solution can be constructed below the initial condition hyperplane and ∆fN,k a bound for

fN,k
i,M (x) − fN,k

i,m (x) for x ∈ V N,k
− and LN,k being the Lipschitz constant of fN,k

i,M or fN,k
i,m defined in

A.2 on V N,k
− .

Appendix B.

In this Appendix we will show in detail that the bounds set for the solution in Section 3 at the

N + 1 step of the partitioning lie within the bounds of the N step of the partitioning. PN,k
+,x for

x ∈ V N,k in Section 3 was defined such that if f is a solution to the system of PDE 3.1 subject to

the initial condition and its characteristic curves x(i)(t) for i = 1, ..., n pass through the point x,

x(i)(xm) = x with xm = x0m + kα/2N , then (x(i)(t), f(x(i)(t))) ∈ PN,k
+,x for −α/2N ≤ t − xm ≤ 0,

therefore with defining PN
+ ≡ ∪2N

k=1(∪z∈V N,kPN,k
+,z ) we have (z, f(z)) ∈ PN

+ , ∀z ∈ S+, i.e. the graph

of the solution on S+ is a subset of PN
+ . Here we will show that PN+1

+ ⊆ PN
+ .

Lets assume (i): fN,k−1
i,m (x̄) ≤ f

N+1,2(k−1)
i,m (x̄) and f

N+1,2(k−1)
i,M (x̄) ≤ fN,k−1

i,M (x̄) for x̄ ∈ V N,k−1 =

V N+1,2(k−1) (note that this is true for k − 1 = 0) and try to prove (ii): fN,k
i,m (x) ≤ fN+1,2k

i,m (x) and

fN+1,2k
i,M (x) ≤ fN,k

i,M (x) for x ∈ V N,k = V N+1,2k.

Here we show fN+1,2k
i,M (x) ≤ fN,k

i,M (x), the proof of fN,k
i,m (x) ≤ fN+1,2k

i,m (x) is similar. Based on the

definitions in Section 3

fN+1,2k
i,M (x) = fN+1,2k−1

i,M (xi
1) +MN+1,2k

Di
(x)α/2N+1

= fN+1,2k−2
i,M (xi

2) +MN+1,2k−1
Di

(xi
1)α/2

N+1 +MN+1,2k
Di

(x)α/2N+1 (B.1)

fN,k
i,M (x) = fN,k−1

i,M (xi) +MN,k
Di

(x)α/2N

xi
1 ∈ V N+1,2k−1

res.,i,x , xi
2 ∈ V N+1,2k−2

res.,i,xi
1

and xi ∈ V N,k−1
res.,i,x are the points which fN+1,2k−1

i,M , fN+1,2k−2
i,M and

fN,k−1
i,M assume their maximum values in V N+1,2k−1

res.,i,x , V N+1,2k−2

res.,i,xi
1

and V N,k−1
res.,i,x respectively. It can
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be shown that V N+1,2k−2
res.,i,xi

1

⊆ V N,k−1
res.,i,x therefore from the assumption f

N+1,2(k−1)
i,M (x̄) ≤ fN,k−1

i,M (x̄),

x̄ ∈ V N,k−1 it follows that fN+1,2k−2
i,M (xi

2) ≤ fN,k−1
i,M (xi). Also it can be shown that PN+1,2k

+,x ⊆ PN,k
+,x

and PN+1,2k−1

+,xi
1

⊆ PN,k
+,x therefore MN+1,2k

Di
(x) ≤ MN,k

Di
(x) and MN+1,2k−1

Di
(xi

1) ≤ MN,k
Di

(x), this

proves fN+1,2k
i,M (x) ≤ fN,k

i,M (x).

To complete the proof we have to show V N+1,2k−2

res.,i,xi
1

⊆ V N,k−1
res.,i,x , PN+1,2k

+,x ⊆ PN,k
+,x and PN+1,2k−1

+,xi
1

⊆

PN,k
+,x . Take x′ ∈ SN+1,2k

+,x ∩ V N+1,2k−1(= SN,k
+,x ∩ V N+1,2k−1) , it is clear that SN+1,2k

+,x ⊂ SN,k
+,x and

SN+1,2k−1
+,x′ ⊂ SN,k

+,x from their definitions given by 3.7, also lets review the definitions of PN+1,2k−1
+,x′ ,

PN,k
+,x and PN+1,2k

+,x

PN+1,2k
+,x =

{
(z, y)

∣∣∣z ∈ SN+1,2k
+,x , fN+1,2k−1

i,m,V (x) −M‖D‖
α

2N+1
≤ yi ≤ fN+1,2k−1

i,M,V (x) +M‖D‖
α

2N+1

}

PN,k
+,x =

{
(z, y)

∣∣∣z ∈ SN,k
+,x , f

N,k−1
i,m,V (x) −M‖D‖

α

2N
≤ yi ≤ fN,k−1

i,M,V (x) +M‖D‖
α

2N

}
(B.2)

PN+1,2k−1
+,x′ =

{
(z, y)

∣∣∣z ∈ SN+1,2k−1
+,x′ , fN+1,2k−2

i,m,V (x′)−M‖D‖
α

2N+1
≤ yi≤ fN+1,2k−2

i,M,V (x′) +M‖D‖
α

2N+1

}

from B.2 it is clear that PN+1,2k−1
+,x′ ⊂ PN,k

+,x , since {SN+1,2k−1
+,x′ ⊂ SN,k

+,x} and {fN+1,2k−2
i,m,V (x′) ≥

fN,k−1
i,m,V (x) and fN+1,2k−2

i,M,V (x′) ≤ fN,k−1
i,M,V (x) by assumption (i) and the fact that (SN+1,2k−1

+,x′ ∩

V N+1,2k−2) ⊂ (SN,k
+,x ∩ V N,k−1)}. Now because xi

1 ∈ V N+1,2k−1
res.,i,x ⊆ SN+1,2k

+,x ∩ V N+1,2k−1 this shows

that PN+1,2k−1
+,xi

1

⊂ PN,k
+,x . Also PN+1,2k

+,x ⊂ PN,k
+,x since SN+1,2k

+,x ⊂ SN,k
+,x and

fN+1,2k−1
i,m (x′) = fN+1,2k−2

i,m,Vres.
(x′) +mN+1,2k−1

Di
(x′)α/2N+1 ≥ fN,k−1

i,m,V (x) −M‖D‖α/2
N+1

fN+1,2k−1
i,M (x′) = fN+1,2k−2

i,M,Vres.
(x′) +MN+1,2k−1

Di
(x′)α/2N+1 ≤ fN,k−1

i,M,V (x) +M‖D‖α/2
N+1

(B.3)

the last inequalities in the above relation follow from the fact that V N+1,2k−2
res.,i,x′ ⊂ (SN+1,2k−1

+,x′ ∩

V N+1,2k−2) ⊂ (SN,k
+,x ∩V N,k−1). From B.3 it can be concluded that fN+1,2k−1

i,m,V (x)−M‖D‖α/2
N+1 ≥

fN,k−1
i,m,V (x)−M‖D‖α/2

N and fN+1,2k−1
i,M,V (x)+M‖D‖α/2

N+1 ≤ fN,k−1
i,M,V (x)+M‖D‖α/2

N since B.3 holds

for all x′ ∈ SN+1,2k
+,x ∩ V N+1,2k−1, therefore this shows PN+1,2k

+,x ⊂ PN,k
+,x .

To show V N+1,2k−2

res.,i,xi
1

⊆ V N,k−1
res.,i,x , lets review their definitions

V N+1,2k−2

res.,i,xi
1

≡
{
z∈SN+1,2k−1

+,xi
1

∩V N+1,2k−2
∣∣∣−MN+1,2k−1

Cil
(xi

1)
α

2N+1
≤zl−xi

1l ≤−mN+1,2k−1
Cil

(xi
1)

α

2N+1

}

V N,k−1
res.,i,x ≡

{
z ∈ SN,k

+,x ∩ V N,k−1
∣∣∣−MN,k

Cil
(x)α/2N ≤ zl − xl ≤ −mN,k

Cil
(x)α/2N

}
(B.4)

and V N+1,2k−1
res.,i,x is given by

V N+1,2k−1
res.,i,x ≡

{
z∈SN+1,2k

+,x ∩ V N+1,2k−1
∣∣∣−MN+1,2k

Cil
(x)

α

2N+1
≤ zl−xl ≤−mN+1,2k

Cil
(x)

α

2N+1

}
(B.5)

for xi
1 ∈ V N+1,2k−1

res.,i,x adding the inequalities in B.5 and in the first relation of B.4 we can conclude

that if z ∈ V N+1,2k−2
res.,i,xi

1

then

−
1

2

(
MN+1,2k

Cil
(x) +MN+1,2k−1

Cil
(xi

1)
) α

2N
≤zl − xl ≤−

1

2

(
mN+1,2k−1

Cil
(xi

1) +mN+1,2k
Cil

(x)
) α

2N
(B.6)
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as previously shown PN+1,2k
+,x ⊂ PN,k

+,x , P
N+1,2k−1
+,xi

1

⊂ PN,k
+,x therefore

−
1

2

(
mN+1,2k−1

Cil
(xi

1) +mN+1,2k
Cil

(x)
)
≤ −mN,k

Cil
(x)

−
1

2

(
MN+1,2k−1

Cil
(xi

1) +MN+1,2k
Cil

(x)
)
≥ −MN,k

Cil
(x)

(B.7)

this shows V N+1,2k−2

res.,i,xi
1

⊆ V N,k−1
res.,i,x . From the discussion above it is clear that PN+1

+ ⊆ PN
+ .

References

[1] Hartman, Philip. ”Ordinary differential equations, Classics in Applied Mathematics, vol. 38, Society for Indus-

trial and Applied Mathematics (SIAM), Philadelphia, PA, 2002, Corrected reprint of the second (1982) edition.”

[2] Pugh, Charles Chapman, and C. C. Pugh. Real mathematical analysis. Vol. 2011. New York/Heidelberg/Berlin:

Springer, 2002.

[3] Courant, Richard, and David Hilbert. ”Methods of Mathematical Physics. Volume II, Partial Differential Equa-

tions, R. Courant.” (1962).

[4] Heinonen, Juha. Lectures on Lipschitz analysis. No. 100. University of Jyvskyl, 2005.

34


	1 Introduction and outline
	2 An alternative proof of the Picard-Lindelof theorem of ODE
	3 A generalization of Picard-Lindelof theorem/ the method of characteristics to systems of PDE
	3.1 A recursion relation for the Lipschitz constants LN,k
	3.2 Local boundedness of LN,k
	3.3 Unique function for solution (Ufs) solves Theorem 3.1

	4 Generalizations and application of Theorem 3.1
	4.1 Dependence of initial condition and coefficients on parameters
	4.2 Generalization to nonlinear systems of PDE
	4.3 Application to hyperbolic quasilinear systems of first order PDE in two independent variables

	Appendix  A 
	Appendix  B 

