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Abstract

In this paper, we proceed on determining the minimum ¢,,;, among the connected nonbi-
partite graphs on n > 5 vertices and with domination number ”T“ <v< ”Tfl Further results
obtained are as follows:

(i) among all nonbipartite connected graph of order n > 5 and with domination number
”Tfl, the minimum ¢y, is completely determined;

(ii) among all nonbipartite graphs of order n > 5, with odd-girth g, < 5 and domination
number at least ”TH <7< ”772, the minimum ¢,,;, is completely determined.
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1 Introduction

All graphs considered in this paper are connected, undirected and simple, i.e., no loops or multiple
edges are allowed. We denote by || S || the cardinality of a set S, and denote by G = G[V(G),
E(G)] a graph with vertex set V(G) = {v1,va,...,v,} and edge set E(G) where || V(G) ||= n is
the order and || E(G) ||= m is the size.

In a graph, if vertices v; and v; are adjacent (denoted by v; ~ v;), we say that they dominate
each other. A vertex set D of a graph G is said to be a dominating set if every vertex of V(G)\ D
is adjacent to (dominated by) at least one vertex in D. The domination number v(G) (v, for
short) is the minimum cardinality of all dominating sets of G. For a graph G, a dominating set
is called a minimal dominating set if its cardinality is 7(G). A well known result about v(G) is
that for a graph G of order n containing no isolated vertex, v < 5 [12]. A comprehensive study of
issues relevant to dominating set of a graph has been undertaken because of its good applications
18], [19].

Recall that Q(G) = D(G) + A(G) is called the signless Laplacian matriz (or Q-matriz) of G,
where D(G) = diag(di,da, ..., d,) with d; = deg(v;) being the degree of vertex v; (1 <i < n), and
A(Q) is the adjacency matrix of G. The signless Laplacian has attracted the attention of many

researchers and it is being promoted by many researchers [1], [2]-[6], [15].
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The least eigenvalue of Q(G), denote by Gmin(G) O Gmin, is called the least Q-eigenvalue of
G. Because Q(G) is positive semi-definite, we have ¢, (G) > 0. From [2], we know that, for a
connected graph G, ¢min(G) = 0 if and only if G is bipartite. Consequently, in [7], gmin was studied
as a measure of nonbipartiteness of a graph. One can notice that there are quite a few results about
Gmin- In [I], D.M. Cardoso et al. determined the graphs with the the minimum ¢,,;, among all
the connected nonbipartite graphs with a prescribed number of vertices. In [6], L. de Lima et al.
surveyed some known results about g, and also presented some new results. In [9], S. Fallat, Y.
Fan investigated the relations between g,,;, and some parameters reflecting the graph bipartiteness.
In [15], Y. Wang, Y. Fan investigated ¢, of a graph under some perturbations, and minimized
gmin among the connected graphs with fixed order which contains a given nonbipartite graph as an
induced subgraph. Recently, in [14], the authors determined all non-bipartite hamiltonian graphs
whose ¢in attains the minimum.

Recall that a lollipop graph Lg; is a graph composed of a cycle C = vjvy---v4v1 and a path
P = vgvg41 -+ vg4y with [ > 1. For given g and [, a graph of order n is called a F;-graph if it is
obtained by attaching n — g — | pendant vertices to some nonpendant vertices of a Ly;. If [ =1, a

F

.-graph is also called a sunlike graph. In a graph, a vertex is called a p-dominator (or support

vertex) if it dominates a pendant vertex. In a F,;-graph if each p-dominator other than vy ;1 is
attached with exactly one pendant vertex, then this graph is called a F,;-graph. A Fg-graph is
called a .7-";7l—gmph if vg is a p-dominator. In the following paper, for unity, for a F, ;-graph, C and

P are expressed as above.
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Let HY be a F3..—3-graph of order n > 4 where there are k > 0 p-dominators among v, ve,
., €—2 (e >3. see Fig. 1.1). If k > 1, in H¥, suppose vq; s are p-dominators where 1 < j < k,

1 <a <az < - <ap <e—2 and suppose v;; is the pendant vertex attached to v,;. Let
k k

HE = HE — 3 UrVa; + 2 UrVe—a—4j (see Fig. 1.1). If k = 0, then HY = H). If a > 1, we
j=1 j=1

denoted by 73 , the graph ’Hg‘fl of order n in which there are a p-dominators and v._; has only
one pendant vertex (where e =n — o+ 1); if a =0, we let 5o = C3 = vivav30].

In [10] and [I7], the authors first considered the relation between ¢, of a graph and its
domination number. Among all the nonbipartite graphs with both order n > 4 and domination
number v < "TH, they characterized the graphs with the minimum ¢,,,;,,. A remaining open problem
is that how about the ¢, of the connected nonbipartite graph on n vertices with domination
number % < 4 < 2 In [I8], the authors proceeded on considering this problem. Among
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the nonbipartite graphs of order n = 4, the minimum ¢,,;, is completely determined; among



the nonbipartite graphs of order n and with given domination number %, the minimum gy, is
completely determined; further results about the domination number, the ¢, of a graph as well
as their relation are represented. An open problem still left is that how to determine the minimum
Gmin Of the connected nonbipartite graph on n > 5 vertices with domination number "TH <y < "T_l
Let S = 7%, be of order n > 4 where « is the least integer such that [2=22=27+ o = 7. In [18], the
authors represented some structural characterizations about the minimum ¢, for this problem,
and conjectured that such S has the smallest g,;,. However, the problem seems really difficult to

solve. Motivated by proceeding on solving this problem, we go on with our research and get some

further results as follows.

Theorem 1.1 Let G be a nonbipartite connected graph of order n > 5 and with domination number

"T_l. Then ¢min(G) > qmm(%%l) with equality if and only if G = %’3%1

Theorem 1.2 Among all nonbipartite graphs of order n > 5, with odd-girth g, <5 (length of the
shortest odd cycle in this graph) and domination number "TH <v< "T_Q, then the least qmin attains

the minimum uniquely at a 73 o where o < "Tf?’ is the least integer such that [%] +a=-7.

2 Preliminary

In this section, we introduce some notations and some working lemmas.

Denote by P,, C,, K,, a path, a n-cycle (of length n), a complete graph of order n respectively.
If k is odd, we say Cj an odd cycle. The girth of a graph G, denoted by g, is the length of the
shortest cycle in G. The odd-girth for a nonbipartite graph G, denoted by g,(G) or g,, is the length
of the shortest odd cycle in this graph. G —v;v; denotes the graph obtained from G by deleting the
edge vjv; € E(G), and let G — v; denote the graph obtained from G by deleting the vertex v; and
the edges incident with v;. Similarly, G +v;v; is the graph obtained from G by adding an edge v;v;
between its two nonadjacent vertices v; and v;. Given an vertex set S, G — S denotes the graph
obtained by deleting all the vertices in S from G and the edges incident with any vertex in S.

A connected graph G of order n is called a unicyclic graph if |E(G)|| = n. For S C V(Q), let
G[S] denote the subgraph induced by S. Denoted by d;s;(vs,v5) the distance between two vertices
v; and v; in a graph G.

For a graph G of order n, let X = (1, %2,...,2,)7 € R" be defined on V(G), i.e., each vertex v;
is mapped to the entry z;; let |z;| denote the absolute value of x;. One can find that X7 Q(G)X =
ZvivjeE(G)(xi + x;)2. In addition, for an arbitrary unit vector X € R", ¢min(G) < XTQ(G)X,

with equality if and only if X is an eigenvector corresponding to ¢in(G).

Lemma 2.1 [3] Let G be a graph on n wvertices and m edges, and let e be an edge of G. Let
gL >qa > - > qn and s1 > s9 > -+ > s, be the Q-ceigenvalues of G and G — e respectively. Then
0<s5,<qn<--<s2<¢q2 <51 <q1.

Let G7 and Go be two disjoint graphs, and let v; € V(G1), va € V(G3). The coalescence of
G1 and Go, denoted by Gy (v1) ¢ G2(v2) or Gi(u) © Ga(u), is obtained from Gi, G by identifying



v; with vy and forming a new vertex u where for i = 1,2, G; can be trivial (that is, G; is only one
vertex). For a connected graph G = G1(u) o Ga(u), i =1, 2, G; is called a branch of G with root .
For a vector X = (z1,2,...,2,)] € R" defined on V(G), a branch H of G is called a zero branch
with respect to X if z; = 0 for all v; € V/(H); otherwise, it is called a nonzero branch with respect

to X.

Lemma 2.2 [15] Let G be a connected graph which contains a bipartite branch H with root vs,
and let X be an eigenvector of G corresponding to ¢min(G).

(i) If zs = 0, then H is a zero branch of G with respect to X ;

(ii) If xs # 0, then x, # O for every vertex v, € V(H). Furthermore, for every vertez v, € V(H),
TpTs U either positive or negative depending on whether v, is or is not in the same part of the

bipartite graph H as vs; consequently, xp,xy < 0 for each edge vyv, € E(H).

Lemma 2.3 [15] Let G be a connected nonbipartite graph of order n, and let X be an eigenvector
of G corresponding to Gmin(G). T is a tree which is a nonzero branch of G with respect to X and
with root vs. Then |x| < |xp| whenever vy, vy are vertices of T such that vy lies on the unique path

from v, to v,.

Lemma 2.4 [16] Let G = Gi(vz) ¢ T'(u) and G* = Gi(v1) ¢ T(u), where Gy is a connected
nonbipartite graph containing two distinct vertices vi,vs, and T is a nontrivial tree. If there exists
an eigenvector X = (x1, o, ..., Tk, ...). of G corresponding to Gmin(G) such that |x1| > |z2| or

|z1| = |x2] > 0, then gmin(G*) < gmin(G).

Lemma 2.5 [16] Let G = C(vg) ¢ B(vg) be a graph of order n, where C' = vgvivy -+ vo 1S @
cycle of length 2k 4+ 1, and B is a bipartite graph of order n — 2k. Then there exists an eigenvector
X = (zo, 21, T2, ..., Top )T corresponding to qmin(G) satisfying the following:

(1) |zo| = max{|z;||v; € V(C)} > 0;

(i) @ = Tog—iy1 fori=1,2,... k;

(iil) zxi—1 <0 fori=1,2,...,k, zorxo < 0 and xop_;112op—i12 < 0 fori=2,... k.
Moreover, if 2k + 1 < n, then the multiplicity of ¢min(G) is one, and then any eigenvector

corresponding to qmin(G) satisfies (1), (ii), (iii).

Lemma 2.6 [5] Let G be a connected graph of order n. Then qmin < d, where ¢ is the minimal

vertex degree of G.

Lemma 2.7 [17] Let G be a nonbipartite graph with domination number v(G). Then G contains
a nonbipartite unicyclic spanning subgraph H with both g,(H) = go(G) and v(H) = v(G).

Lemma 2.8 [17] Suppose a graph G contains pendant vertices. Then

(i) there must be a minimal dominating set of G containing all of its p-dominators but no any
pendant vertex;

(ii) if v is a p-dominator of G and at least two pendant vertices are adjacent to v, then any

minimal dominating set of G contains v but no any pendant vertex adjacent to v.



Lemma 2.9 [11] (i) For a path P,, we have v(P,) = [§].

(ii) For a cycle Cyp, we have v(Cp) = [5].

We define the corona G of graphs G and Gs as follows. The corona G = G o G5 is the graph
formed from one copy of G and || V(G1) || copies of Ga where the ith vertex of G is adjacent to
every vertex in the ith copy of Gs.

Lemma 2.10 [13] Let G be a graph of order n. ¥(G) = 5 if and only if the components of G are
the cycle Cy or the corona H o Ky for any connected graph H.

Denote by C7 . the graph obtained by attaching a C3 to an end vertex of a path of length £
and attaching n — 3 — k pendant vertices to the other end vertex of this path.

Lemma 2.11 [I7] Among all the nonbipartite graphs with both order n > 4 and domination num-
ber v < ”TH, we have

(i) if n = 3y—1, 3v, 37+1, then the graph with the minimal least Q-eigenvalue attains uniquely
at C{;, 4’

(ii) if n > 3y + 2, then the graph with the minimal least Q-eigenvalue attains uniquely at
Cg, 3v—3*

Lemma 2.12 [I8] Among all nonbipartite unicyclic graphs of order n, and with both domination
number vy and girth g (9 < n—1), the minimum qm:n attains at a Fy;-graph G for some l. Moreover,

T

for this graph G, suppose that X = (x1, x2, x3, ..., Tp)" 1S a unit eigenvector corresponding to

dmin(G). Then we have that |x4| > 0, and |x41—1| = max{|z;| | v; is a p-dominator}.

In HE, for j =1, 2, ..., k, suppose Ur._,_yy; 18 the pendant vertex attached to vertex ve_o_+;.
Suppose vy, s Vs - - -5 U, are the pendant vertices attached to vertex ve_j. If s > 2, let ’H§ =Mk —

s s
k=1 __ 4k
Ve—1-kVUr._1_4 +Ua—1vfrg_1_k - Z Ue—lij + Z leij- Let H4 - 7‘[2 “Ve—1-kVUr,_1_4 +U6—1UT5_1_k7
=2 j=2

ng_Q = Hi_l — Ve kUr._, + Ve 17, .
Lemma 2.13 [18]
(i) v(HF) < 7(H3).
i) Ife —k — 1 <2, then y(H5) = k + 1 and y(HY™Y) = y(HE) — 1;
i) Ife —k—1>3, then v(H) = [=2=4] + k + 1;
iv) y(HE) < y(H5);

v) Ife—k—-12>3, 571574 # t where t is a nonnegative integral number, then 7(7—[271) =

(
(
(
(

(vi) Ife —k—1> 3, ’3_];_4 — t where t is a nonnegative integral number, v(HY1) = ~(HE),
Y(H5 %) =y (HE) - 1.
Lemma 2.14 [18]

(1) 7(‘%,0) = 1;

(i) Ifa > 1 and n — 2a < 2, then v(/G3 o) = a;

(ili) If @« > 1 and n — 2a > 3, then v(H3,4) = [%} + a.



3 Domination number and the structure of a graph

Let G* be a sunlike graph of order n and with both girth g and k p-dominators vy, ve, ..., vy on C.

Lemma 3.1 Let G be a sunlike graph of order n and with both girth g and k p-dominators on C.
Then v(G) < v(G*), where v(G*) = k + (%ﬁ}

Proof. Supposev;,, vi,, ..., v;, arethe k p-dominators on Cin G, where 1 <y <ip < --- <1i; < g.
Suppose that there exists some 1 < z < k such that i,41 — i, > 2, where if z = k, we let ix11 = i3
and ipq1 — i = i1 + g — k. Let H =G — 37w,

Assertion 1If i, —i, < 3, then v(H) = 7(G). By Lemma 2.8 there is a minimal dominating
set D of G which contains all the k£ p-dominators but no any pendant vertex. Thus both v;_,, and
v;, are in D. Note the minimality of D and 2 <i,41—i, < 3. Then DN {v;, 41} =0 if i, —i, = 2;
DN {vi 41,vi,,,—1} =0 if i.41 —i, = 3. Thus D is also a dominating set of H. This implies that
v(H) < ~v(G). Note that for H, by Lemma [2Z8] there is a minimal dominating set D’ which
contains all the & p-dominators but no any pendant vertex. Thus both v;_,, and v;, are in D’
Then v;, 41 is dominated by D’ if i, 41 —i, = 2; vj, 41, v, —1 are is dominated by D" if i, —i, = 3.
Consequently, D’ is also a dominating set of G. This implies that v(G) < v(H). As a result, it
follows that v(H) = v(G). And then our assertion holds.

Assertion 2 If i,y — i, > 4, then v(G) = v(H) +v(P,, i..,) where P;_; | = v; 4ov; 43"
Vi..,—2. By Lemma 28] there is a minimal dominating set D of G’ which contains all the k p-
dominators but no any pendant vertex. Thus both v; ,, and v;, are in D. We claim that at
most one of v;_4+1, v 42 is in D. Otherwise, suppose that both v; 41 and v;_42 are in D. Then
D\ {vi_4+1} is also a dominating set of G, which contradicts the minimality of D. Consequently,
our claim holds. Similarly, we get that at most one of v; 2, v;.,,—1 is in D. Thus we let
D® = ((D U{vi.42,vi 1 —2}) \{vi41,vi 0 —1}) NV (Biiyy) i i1 € D, vi 21 € Ds let D° =
(D UA{vi42}) \Avi.1 ) NV (P ieyy) if viig1 € D and v, 1 ¢ D; let D° = ((D U {vi,,,—-2}) \
{vi, )N VI(P, i) ifvi,e1 € Dand v, 1 € D;let D° = (DNV (P, ,;.,,) if vi,41 ¢ D and
Vi, ,—1 ¢ D. Note that D* = D\ (V(P;, 4.,,) U{vi,+1, vi_.,—1}) is a dominating set of H, D°U D*
is a dominating set of G' with cardinality v(G), and note that D° is a dominating set of P;, ;__,.
Thus v(P;, i,.,) <|| D° ||. Note that both v;_,, 1 and v;, 4 are dominated by D*. Consequently,
for any minimal dominating set B of FP;_ ;, ., then BU D* is also a dominating set of G. Note that
| B ||=v(Pi.,i.;) <|| D° ||. As aresult, || BUD* ||[<[ D ||=~(G). Note that the minimality of
D. Then || D° ||=|| B ||= v(Pi.,i...), and then it follows that v(G) = v(H) +v(Pi. i,,,)-

Denote by 7;,;,,, the dominating index where we let ix1; = i3 if ¢« = k. Let 7, =0

if 4501 — 5 < 35 let 7,4, = Y(Pi,,,) if 441 —i; > 4. Thus from Assertion 1, Assertion 2

and Lemma 28 we get that v(G) = k + ZLI Tijijer- By Lemma 29l it follows that 7;, ., =
Y(Pijijn) = [ww if ij41 —i; > 4. Note that for any two nonnegative integers = and y, we

have [£] + [4] < [££2]. Then

b ZTisi 1¢0(i3+1 _i3_3) g—Fk—2
Y i =Y Tiie < ot < ,
1550541 1syls+1 — 3 —= 3
=1

Tis,igy1 750




Thus v(G) < k+ (945721. Noting that by Assertionl and Assertion 2, we have v(G*) = k+ (94572]

Then the result follows as desired. This completes the proof. O

Theorem 3.2 Suppose that G is a nonbipartite F,;-graph with v(G) = "Tfl, g > 5 and order
n > g+ 1, and suppose there are exactly f vertices of the unique cycle C such that none of them is
p-dominator. Then we get

(i) if f =g, then g =5;

(ii) of f # g, then f <3 and f # 2;

(iii) if f = 3, then the three vertices are consecutive on C, i.e., they are v;_1, v;, viy1 for some
1 <i<g, and each in (V(C)\ {vi—1, vi, vig1}) U V(P — vgqy) is a p-dominator (if i = 1, then

Vi—1 = ’Ug).

Proof. Denote by A the set of vertices of C and the pendant vertices attached to C. Let || A ||= z,
and let A" = V(G) \ A. Then v(G) < v(G[A]) +~v(G[A']). Note that A" = 0, or G[A'] is connected
with at least 2 vertices. Suppose f > 4.

(i) f = g. Then z— f = 0. This means that there is no p-dominator on C. So, G[A'] is connected
with at least 2 vertices. Thus, if f > 9, by Lemma [2:9] then v(G) < [%} +7(G[A) < "Tﬁc + % <
"771. Therefore f < 7.

Note that ¢ is odd and g = f now. Thus if v(G[A]) < 5L, then 4(G) < [£] +~(G[A4]) < 252

Hence, it follows that ~v(G[A']) = "Tﬁc Combined with Lemma 20 it follows that G[A'] =

2

2

pendant vertex attached to v,,. By Lemma 2.8 V(PL;)‘ ) is a minimal dominating set of G[A'].
Assume that f = 7. Note that G is a F, -graph. If G = C+vyv,, +G[A'], then V(P%)U{Uz, vs}
is a dominating set of G; if G = C+v,v,, +G[A'], then (V(Pn%f )\{vq, })U{va, v5,v7 } is a dominating
set of G. This implies that v(G) < "777 +2< an which contradicts v(G) = an Thus, it follows
that g = 5.
(ii) f # g. Note that there is no the case that z — f = 1. Then z — f > 2. By Lemma B.1]
v(GIA]) <~v(G*[A])=9g—f+ [%1 < z;f + [%L where G*[A] is a sunlike graph with vertex set

P._; o K;. Here, suppose Pn—; = Vg Vg, Vg, With t = ";f, and suppose v, is the unique
2

A, C contained in it and g — f p-dominators vy, v, ..., v4—s (defined as G* in Lemma [3.T)). Thus,
if f >4, then v(G) < Z;f + [%] +7(G[A]) < "%f + (%] < n—;f —i—% < 221, This contradicts
that v(G) = "Tfl Consequently, f < 3.

Suppose f = 2 and suppose that v;, v;, of C are the exact 2 vertices such that neither of them
is p-dominator. Note that by Lemma[Z8] there is a minimal dominating set D of G —v; — v}, which
contains all p-dominators but no any pendant vertex. Note that the vertices of C other than v,
vy are all p-dominators in both G — v; — v, and G. Thus, each of vj, vy is adjacent to at least one
p-dominator on C. So, D is also a dominating set of G. Note that there is no isolated vertex in
G —vj — vg. Then ¥(G — v; — vy) < %52, and then v(G) < 5%, which contradicts v(G) = 252
Then (ii) follows.

(iii) Suppose vg, vy, v. are the exact 3 vertices of C such that none of them is p-dominator. If
the 3 vertices v, vp, Ve are not consecutive, then each of them can be dominated by its adjacent p-

dominator. Note that by Lemmal[Z8] there are a minimal dominating set D of G —v, —vp — v, which



contains all p-dominators but no any pendant vertex. Thus such D is also a dominating set of G.
Note that there is no isolated vertex in G — v, —vp—ve. S0, ¥(G) <[| D ||= (G —vq —vp—vc) < 252,
which contradicts v(G) = ”Tfl Therefore, the 3 vertices v,, vp, v, are consecutive.

Suppose that the 3 vertices are v;_1, v;, viy1 for some 1 < i < g (here, if i = g, we let v;41 = vy;
if i =1, we let v;_1 =vy). Let H =G —v;—1 —v; — viy1. Note that there is no isolated vertex in
H. Thus, v(H) < 252, Next, we claim that y(H) = 252,

Claim 1~(H) = "T_?’ Otherwise, suppose y(H) < "T_?’, and suppose D is a minimal dominating
set of H. Then D U {v;} is a dominating set D of G. Thus, G < 1+ "T_?’ < "T_l, which contradicts
v(G) = %51, Then the claim holds.

By Lemma 2100 H = £ o K; for some acyclic graph £ of order "Tf?’

Claim 2 For any minimal dominating set D of H, in G, at least one of v;_1, v;, v;41 can not be
dominated by D. Otherwise, D is a dominating set of G too. Hence, v(G) < "T_?’, which contradicts
v(G) = %51, Then the claim holds.

If i = g, then let H = Hy U Hy, where Hy = G[A] —vg_1 —vg —v1, Hy = Q[Al] = P% o K

(if n = 2, then Hy is empty). Here, suppose Pn—: = ¥4, Va, - Ve, With ¢t = %5%, and suppose
2

v, is the unique pendant vertex attached to v,,. Thus there are two possible cases for G, i.e.,
G = GlA] + 0404, + Hy or G = G[A] +vgvr, + Ho. Let Z2 = (C\ {vg—1,vg,v1})U V(P%). Note that
the vertices in Z are all p-dominators in G. If G = G[A] + VgUq, + Ha, then Z is also a dominating
set of G; if G = G[A| 4+ vgv,, + Ha, then (Z\ {v,, })U{v,, } is a dominating set of G. Thus it follows
that v(G) < %52 < =L which contradicts v(G) = 2. This implies i # g.
If i # 1,9 — 1, then H is connected. Let Z = (V(C) \ {vi—1, vi;, viz1}) U V(P — vg4y), where
P = v4vg41 -+ - vg41. Then each vertex in Z is a p-dominator in G.
If i = 1, then let H = Hy U Hy, where Hy = G[A] — v, — v; — vg, Hy = G[A'] = P o K,
(if n = z, then Hy is empty). Here, suppose P% = UgyVay "+ * Vg, With t = %5%, and suppose
vy, is the unique pendant vertex attached to v,,. Thus there are two possible cases for G, i.e.,
G = GlA] + vgva, + Hy or G = G[A] + vgvr, + Ha. We say that G # G[A] + vyv,, + Ha. Otherwise,
suppose G = G[A] + vgv;, + Hy. Note that n — z is even now and G — {va,v1, vy, Vg, , Vs, } has no
n—>5

isolated vertex. Then for G — {v2,v1,vg,Vq,,vr }, it has a dominating set D with || D ||< %52,

Then D U {v1,v,} is a dominating set of G, which contradicts y(G) = Z;1. This implies that
G = G[A] + vgva, + Ho. It follows that each one in (V(C) \ {vg, v1, v2}) UV (P — vg4,) is a p-
dominator. Similarly, for i = g — 1, we get that each one in (V(C) \ {vg—2, vg—1, vg}) UV (P —vg4y)

is a p-dominator. Then (iii) follows. O

4 The ¢, among uncyclic graphs

Lemma 4.1 [18] Let G be a nonbipartite unicyclic graph of order n and with the odd cycle C =
vV - - - Vg1 in it. There is a unit eigenvector X = (x1, x2, ..., Ty, Tgil, Tgt2, -+ Tn-1, Tp )T
corresponding to Gmin(G), in which suppose |z1| = min{|x1|, |x2], ..., |z4]}, |s| = max{|z1], |z2],
ooy |zg|} where s > 2, satisfying that



(ii) |z1] = 0 if and only if vy = —x2 # 0; if |x1| = 0 and xjzip1 # 0 for some 1 <i < g—1,
then ;w41 < 0; moreover, if x; # 0, then sgn(x;) = (—1)%st#V1%) where H = G — vyv,.
(iii) if |z1] > 0, then
(1) if 3<s<g—1, then || < -+ < |zs_2| < |zs—1| < |xs| and |zg] < |xg—1] < -+ < |Tsy2| <
|[Zst1| < |wsl;
(2) if |xa| > |xg], then x12g > 0; for 1 <i < g—1, xxi1 <0; |21] < Jagl;
(3) if |x2| < |zgl|, then xixo > 0; for 2 <i < g—1, xizip1 < 0; xgzy <0; |21] < |22;
(4) if |x2| = |z4], then |z1| < |x2|, and exactly one of x1x4 > 0 and x1x2 > 0 holds, where
(4.1) if xyxg > 0, then for 1 <i<g—1, zjzip1 <0;
(4.2) if x1x9 > 0, then zjxi41 <0 for 2 <i<g—1 and zyz1 < 0;

(5) at least one of |xs1| and |xs—1| is less than |xs].

Lemma 4.2 [18] If G is a nonbipartite ]—";l—gmph with g > 5, n > g+ 1, then there is a graph H
with girth 3 and order n such that v(G) < v(H) and gmin(H) < ¢min(G).

Lemma 4.3 [18] Suppose that G is a nonbipartite Fs3;-graph of order n where C = vivov3vy.

X = (21, 22, ..., )T is a unit eigenvector corresponding to Gmin(G). Then |r3] = max{|zy],

|2, |23}

Theorem 4.4 Among all nonbipartite unicyclic graphs of order n > 5 with girth 3 and domination

number at least "TH <y< g, ify= "771, the qmin attains the minimum uniquely at H5 n—s.
72

Proof. The result follows from Lemmas 2.4] 2.12] 2.13] [4.3] and Theorem 0
Let K = {G| G be a nonbipartite F_ -graph of order n > 4 and domination number at least

"TH < v < %, where g is any odd number at least 3 and [ is any positive integral number} and

gk = min{gmin(G)| G € K}.

Lemma 4.5 [1§]

(i) If n =4, the gk attains uniquely at 3 ;;

(ii) If n > 5 and n — 27 > 2, then the least g > qmin(76,a) where o < "7_3 1s the least integer
such that [2=22=2] + a = 1.

Lemma 4.6 For a nonbipartite Fy;-graph graph G of order n > 5 and with g = 5, there exists a
graph H such that g(H) = 3, v(G) < v(H) and ¢min(H) < gmin(G).

Proof. If n =5, then G = C5. And then the result follows from Lemma 2Tl Next we consider
the case that n > 6. By Lemma 2.6l we get that g,n(G) < 1.

Case 1 There is no p-dominator on C. Then G is like Gy (see G; in Fig. 4.1). By Lemma
25 there is a unit eigenvector X = (&1, 22, ..., Tk, Thy1, Tha2, - -, Tn_1, Tn ). corresponding to
gmin(G) such that |z5| = max{|z1|, |z2|, |z3|, |z4|, |z5]} > 0, and =1 = x4, z2 = x3. By Lemma
41l we get that |za] > 0, |zo| < |z1| and xoz1 < 0. Let H = G — v3vg + v3v;. By Lemma 2.4 we
get that ¢min(H) < gmin(G). Let By = Hvy, va, v3], B = H— {v1, va, v3}. As Lemma B, we can



get a minimal dominating set D of H, which contains all p-dominators but no any pendant vertex
and no vy, such that D = {ve} U Ds, where {vy} is a dominating set of By, Ds is a dominating set

of By. Note that D is also a dominating set of G. So, v(G) < y(H).

USRI R R A P vs ] L] ws
U545 Us+s Vs+5
U1 V4 1 V4 U1 V4 U1 U4
Vg U3 V2 U3 V2 *U3 V3
Gy Go G3 Gy
’U5[ I I I [ IU5 Vs [ [
VUs+5 VUs+5
U1 Vg V1 V4 U1 vy —
. . v L
s U3 b5 3 U b -
Gs Ge Gr
L U5 Y5 [ [ } Us Us
Vs+5 Us+s U5+
vy Vg U1 Uy— LV )) - D, 01 (N
. . Ko 3 . .
V2 U3 V9 V3 2 s 02 U3 V2 V3
Gio G G2 Gi3 Gia
Us U5 I I U5 I [ U5 [ I Y5 I I
Vs+5
v
v V4T Vfy— (] V4 (V)
U2 3 V2 3 Vg U3 V9 U3 V2 U3
G1s Gie Gi7 G G

Fig. 4.1. G1 — Gy

Case 2 There is only 1 p-dominator on C (see Gy — G4 in Fig. 4.1).

Subcase 2.1 For Gg, let H = Gy — v3v4 +v3v;. As Case 1, it is proved that v(G2) < v(H) and
Gmin(H) < gmin(Ga)-

Subcase 2.2 For G3, suppose X = (1, 22, ..., Tn_1, Tn )’ is a unit eigenvector corresponding
t0 Gmin(G3).

Claim |z4] > |z1], |z5| > |z3|. Denote by vy the pendant vertex attached to vs. Suppose
0 < |x4] < |x1]. Let G;} = (3 — vgv + v1v;. By Lemma 2.4] then qmm(Gé) < Gmin(G3). This is
a contradiction because Gy = G3. Suppose |z4] = |21| = 0. By Lemma BT} we get that 2o # 0,
23 # 0. BY @umin(G3)72 = 229 + 13, @nin(G3)w3 = 223 + 72, We get 13 = x% Suppose zo > 0. Then
we get Gmin(G3)re = 209413 > 5. This means that gin(G3) > 1 which contradicts gmin(Gs) < 1.
Thus, |z4] > |x1|. Similarly, we get |x5| > |z3|. Then the claim holds.

Suppose |z1| = min{|z1|, |z2|, |z3|} and x; > 0. If |x2| > |z5]|, by LemmaldI] suppose x5 > 0.
Let H = G3 — v1v5. Also by Lemma .1} suppose for any j # 1,5, sgnz; = (—1)distH(”J'7v1). Let
H = G3 — vivs + v3v;. Because |z5| > |3, it follows that g, (H) < XTQH)X < XTQ(G3)X =
Gmin(G3). Let By = H[vy, va], By = H— {v1,v2}. As Lemma Bl we can get a minimal dominating
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set D of H, which contains all p-dominators but no any pendant vertex and no ws, such that
D = {v1} U Ds, where Dj is a dominating set of Bs. Note that D is also a dominating set of
Gs. So, v(G3) < v(H). If |zo| < |x5|, by Lemma A1l z1xe > 0. Let H = G35 — vqvy. Also by
Lemma (.1, suppose for any j # 1,2, sgnz; = (—1)disfH(”f’”1). Let H = G3 — v1v5 + vsvy. Because
|zs| > |z3|, it follows that ¢min(H) < gmin(G3) similarly. As the case that |zo| > |z5]|, it is proved
that v(G3) < v(H). If |z2| = |z5|, by Lemma [41] without loss of generality, suppose z1x5 > 0.
Let H = G5 — vivs + v3vy. As the case that |ze| > |x5], it is proved that gmin(H) < @gmin(G3),
V(G3) < ~(H).

For the both cases that |zo| = min{|z1|, |z2|, |z3|} and |z3| = min{|z1], |z2|, |z3]|}. As the
case that |x1| = min{|z;|, |x2|, |x3|}, it is proved that there exists a graph H such that g(H) = 3,
Y(G3) < v(H) and gmin(H) < gmin(Gs).

In a same way, for Gy, it is proved that there exists a graph H such that g(H) = 3, v(G4) < y(H)
and ¢min(H) < gmin(Ga).

And in a same way, for the cases that Case 3 there is exactly 2 p-dominators on C (see G5 —G1g
in Fig. 4.1); Case 4 there is exactly 3 p-dominators on C (see G11 — G5 in Fig. 4.1); Case 5 there
is exactly 4 p-dominators on C (see G156 — G1s in Fig. 4.1); Case 6 there is exactly 5 p-dominators
on C (see G1g in Fig. 4.1), it is proved that the exists a a graph H such that g(H) = 3, v(G) < y(H)
and gmin(H) < @min(G). Thus, the result follows as desired. O

V2

U3 Uy ' Unt1 v

(% X
Fig. 4.2. ,%”37%3
Lemma 4.7 Let G be a nonbipartite F, -graph of order n for some | and with domination number

2L Then gumin(G) > qmm(t%’gn%s) with equality if and only if G = %’3%3 (see Fig. 4.2).

Proof. Because G is nonbipartite, g is odd. If G is a F,-graph, then the theorem follows from
Lemma If g = 3, then the theorem follows from Theorem L4l For g = 5, the theorem follows
from Lemma Next we consider the case that G is not a ]:;,l—graph and suppose g > 7.

Let X = (21, z2, ..., T )T is a unit eigenvector corresponding to ¢pmin(G). Suppose x, =
min{ |z, |2, ..., |z4|}. Note that by Theorem B2 in G, there are at most 3 consecutive vertices
of C such that none of them is p-dominator, and there are 2 cases as follows to consider.

Case 1 In G, there is exactly one vertex of C which is not p-dominator. Note that G is not a
f;’l—graph. Then n > g+2 and v, is the only one vertex which is not p-dominator on C. By a same
discussion in the proof of Lemma H.3] (see [I8]), it is proved that z, = max{|z1], |z2|, ..., |T4-1],
|z4|}. Then we suppose a < g — 1. By Lemma 1] if a < g — 3, without loss of generality, suppose
Tl < Ta—1, Tat1Za 2> 0, [Te—1] 2> |Taq2]. Let G1 = G — vqVe—1 + VoVay2 (if [24—1] < |2442| and
a > 2, let Gy = G — Vgq1Vat2 + Vat1Va—1; if a = 1, let G; = G —vivg +viv3). If a = g — 2,
suppose |z4—1| < |xg_3|, Tg—124-2 > 0, and then let G = G — vg_1v5 + v4_1Vg-3. If a = g — 1,

because |x4| > |xg4_2|, then suppose z4_124—2 > 0. Let G1 = G — vg_1v4 + vg—1v4—3. Note that
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v(G1) < 252, As the proof of Lemma 2, we get that v(G) < v(G1) = 252, ¢min(G1) < @min(G).
Note that g(G1) = 3. Then the theorem follows from Theorem [£.4]

Case 2 In G, there are exactly 3 consecutive vertices of C such that each of them is not
p-dominator. Note that G is not a .7-";7l—graph. Combined with Theorem B2 the 3 vertices of
C such that each of them is not p-dominator are vy_o, v4—1, v4 Or vy, v1, v2. Without loss of
generality, we suppose the 3 vertices are vg_g, v4—1, v4. By Lemma 212 |z, > 0. We say that
|zg| > |74—2|. Otherwise, suppose |zy| < |z4_2|. Let G = G —vyv441 + vg4104—2. Then by Lemma
24, ¢nin(G) < @min(G). This is a contradiction because G = G. Hence |4| > |2,_2|. And then
a<g-—1.

Subcase 2.1 a < g — 4. By Lemma [LJ], without loss of generality, suppose z,11 < 4 1,
ZTar1%q > 0. As Case 1, it is proved that the theorem holds.

Subcase 2.2 a = g — 3. By Lemma [l suppose z4_2 < 244, Tg_224-3 > 0; suppose
|xg—4| > |z4—1|. Denote by v,,_, the pendant vertex attached to vy_3. Let G = G — vy_3vy_4 +
Vg—3Vg—1 — Vg—3Vr,_5 + VgUr,_5 (if g4 <y 1, let G1 = G — vy 205 1 + T4 274 4). As Case 1, it
is proved that the theorem holds.

Subcase 2.3 a = g — 2. By Lemma [l suppose z,_1 < x4-3, £g_124—2 > 0; suppose
|zg—3| > |z4|. Denote by v,,_, the pendant vertex attached to vy_3. Let G1 = G—vg_2vy 34420,
(if 2y 3 <@g, let G1 = G — vy 10+ Ty 1753 — Vg_3Vr,_5 +Vg0r,_5). As Case 1, it is proved that
the theorem holds.

Subcase 2.4 a = g — 1. Note |z4] > |z4_2|. By Lemma B.I] z4_2x,1 > 0. Without loss
of generality, suppose z4_3 > x4, let Gi = G — vg_2v5-3 + vg_2v, (if 243 < x4, let G =
G — Vg—1Vg + Tg—1Zg—3 — VgUg41 + Vg—3Vg+1). As Case 1, it is proved that the theorem holds. This
completes the proof. O

By Lemmas 2.12] 7] we get the following Theorem [4.8]

Theorem 4.8 Let G be a nonbipartite connected unicyclic graph of order n > 3 and with domina-

tion number "T_l Then ¢min(G) > qmm(t%’gn%s) with equality if and only if G = %’3%3

5 Proof of main results

Proof of Theorem .1l By Lemmas 21l 27 then G contains a nonbipartite unicyclic spanning
subgraph H with g,(H) = ¢o(G), v(H) = v(G) and ¢min(H) < Gmin(G). By Theorem A8 it
follows that g (H) > qmin(%’é”%—s ) with equality if and only if H & %7%3 Thus it follows that
Gmin(G) > Qmin(%,%_?’)'

Suppose that ¢min(G) = @min(H4 n=s). Then gpin(H) = qmm(t%’én%g) and H = %%4 For

)

N

convenience, we suppose that H = J; »—3. Suppose that Y is a unit eigenvector corresponding

to gmin(G). Note that (5 nos)

qjmn(H) <YTQH)Y <YTQ(Q)Y = ¢nin(G). Because

we suppose that ¢nin(G) = Qmm(f%%ﬁT—S), it follows that YTQ(H)Y = YTQ(G)Y and Q(H)Y =
Gmin(H)Y .

For %%4 (see Fig. 4.2), we claim that y3 > y1, y3 > ya2. Otherwise, suppose that y3 < y;.

Let H' = %7%—3 — v3v4 + v1vg4. By Lemma 24 it follows that ¢, (H') < qmm(%’é”%s) This is

12



a contradiction because H' = H = %’g%a . Thus our claim holds.

If G # H, combined with Lemma 23] then for any edge v;v; € E(H), it follows that x; +x; # 0,
and then YTQ(H)Y < YTQ(G)Y, which contradicts YTQ(H)Y = YTQ(G)Y. Then it follows that
Gmin(G) = qmm(%,%l ) if and only if G = %’é ot This completes the proof. O

In a same way, with Lemmas 2.13], 2.14] and (4.6l Theorem is proved.

Remark It can be seen that the conjecture in [I§] that S has the smallest g, holds for the

graphs with domination number v = "T_l and the graphs with girth at most 5. With references

[17] and [I§], it can also be seen that the minimum g,;, of the connected nonbipartite graph on

n > 5 vertices, with domination number "TH <v< "772 and girth g > 5, is still open.
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