Further results on the least *Q*-eigenvalue of a graph with fixed domination number^{*}

Guanglong Yu a† Yarong Wu b Mingqing Zhai c

^aDepartment of Mathematics, Lingnan normal nniversity, Zhanjiang, 524048, Guangdong, China

^bSMU college of art and science, Shanghai maritime university, Shanghai, 200135, China

 c School of mathematics and finance, Chuzhou university, Chuzhou, 239000, Anhui, China

Abstract

In this paper, we proceed on determining the minimum q_{min} among the connected nonbipartite graphs on $n \ge 5$ vertices and with domination number $\frac{n+1}{3} < \gamma \le \frac{n-1}{2}$. Further results obtained are as follows:

(i) among all nonbipartite connected graph of order $n \ge 5$ and with domination number $\frac{n-1}{2}$, the minimum q_{min} is completely determined;

(ii) among all nonbipartite graphs of order $n \ge 5$, with odd-girth $g_o \le 5$ and domination number at least $\frac{n+1}{3} < \gamma \le \frac{n-2}{2}$, the minimum q_{min} is completely determined.

AMS Classification: 05C50

Keywords: Domination number; Signless Laplacian; Nonbipartite graph; Least eigenvalue

1 Introduction

All graphs considered in this paper are connected, undirected and simple, i.e., no loops or multiple edges are allowed. We denote by || S || the *cardinality* of a set S, and denote by G = G[V(G), E(G)] a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G) where || V(G) || = n is the *order* and || E(G) || = m is the *size*.

In a graph, if vertices v_i and v_j are adjacent (denoted by $v_i \sim v_j$), we say that they dominate each other. A vertex set D of a graph G is said to be a dominating set if every vertex of $V(G) \setminus D$ is adjacent to (dominated by) at least one vertex in D. The domination number $\gamma(G)$ (γ , for short) is the minimum cardinality of all dominating sets of G. For a graph G, a dominating set is called a minimal dominating set if its cardinality is $\gamma(G)$. A well known result about $\gamma(G)$ is that for a graph G of order n containing no isolated vertex, $\gamma \leq \frac{n}{2}$ [12]. A comprehensive study of issues relevant to dominating set of a graph has been undertaken because of its good applications [8], [19].

Recall that Q(G) = D(G) + A(G) is called the signless Laplacian matrix (or Q-matrix) of G, where $D(G) = \text{diag}(d_1, d_2, \dots, d_n)$ with $d_i = d_{eg}(v_i)$ being the degree of vertex v_i $(1 \le i \le n)$, and A(G) is the adjacency matrix of G. The signless Laplacian has attracted the attention of many researchers and it is being promoted by many researchers [1], [2]-[6], [15].

^{*}Supported by NSFC (Nos. 11771376 & 11571252), "333" Project of Jiangsu (2016) & KPPAT of Anhui (JXBJZD 2016082).

[†]E-mail addresses: yglong01@163.com.

The least eigenvalue of Q(G), denote by $q_{min}(G)$ or q_{min} , is called the *least Q-eigenvalue* of G. Because Q(G) is positive semi-definite, we have $q_{min}(G) \ge 0$. From [2], we know that, for a connected graph G, $q_{min}(G) = 0$ if and only if G is bipartite. Consequently, in [7], q_{min} was studied as a measure of nonbipartiteness of a graph. One can notice that there are quite a few results about q_{min} . In [1], D.M. Cardoso et al. determined the graphs with the the minimum q_{min} among all the connected nonbipartite graphs with a prescribed number of vertices. In [6], L. de Lima et al. surveyed some known results about q_{min} and also presented some new results. In [9], S. Fallat, Y. Fan investigated the relations between q_{min} and some parameters reflecting the graph bipartiteness. In [15], Y. Wang, Y. Fan investigated q_{min} of a graph under some perturbations, and minimized q_{min} among the connected graphs with fixed order which contains a given nonbipartite graph as an induced subgraph. Recently, in [14], the authors determined all non-bipartite hamiltonian graphs whose q_{min} attains the minimum.

Recall that a lollipop graph $L_{g,l}$ is a graph composed of a cycle $\mathbb{C} = v_1 v_2 \cdots v_g v_1$ and a path $\mathbb{P} = v_g v_{g+1} \cdots v_{g+l}$ with $l \geq 1$. For given g and l, a graph of order n is called a $F_{g,l}$ -graph if it is obtained by attaching n - g - l pendant vertices to some nonpendant vertices of a $L_{g,l}$. If l = 1, a $F_{g,l}$ -graph is also called a sunlike graph. In a graph, a vertex is called a p-dominator (or support vertex) if it dominates a pendant vertex. In a $F_{g,l}$ -graph if each p-dominator other than v_{g+l-1} is attached with exactly one pendant vertex, then this graph is called a $\mathcal{F}_{g,l}$ -graph. A $\mathcal{F}_{g,l}$ -graph if v_g is a p-dominator. In the following paper, for unity, for a $\mathcal{F}_{g,l}$ -graph, \mathbb{C} and \mathbb{P} are expressed as above.

Let \mathcal{H}_1^k be a $\mathcal{F}_{3,\varepsilon-3}$ -graph of order $n \geq 4$ where there are $k \geq 0$ *p*-dominators among $v_1, v_2, \ldots, \varepsilon - 2$ ($\varepsilon \geq 3$. see Fig. 1.1). If $k \geq 1$, in \mathcal{H}_1^k , suppose $v_{a_j}s$ are *p*-dominators where $1 \leq j \leq k$, $1 \leq a_1 < a_2 < \cdots < a_k \leq \varepsilon - 2$, and suppose v_{τ_j} is the pendant vertex attached to v_{a_j} . Let $\mathcal{H}_2^k = \mathcal{H}_1^k - \sum_{j=1}^k v_{\tau_j} v_{a_j} + \sum_{j=1}^k v_{\tau_j} v_{\varepsilon-2-k+j}$ (see Fig. 1.1). If k = 0, then $\mathcal{H}_1^0 = \mathcal{H}_2^0$. If $\alpha \geq 1$, we denoted by $\mathscr{H}_{3,\alpha}$ the graph $\mathcal{H}_2^{\alpha-1}$ of order n in which there are α *p*-dominators and $v_{\varepsilon-1}$ has only one pendant vertex (where $\varepsilon = n - \alpha + 1$); if $\alpha = 0$, we let $\mathscr{H}_{3,0} = C_3 = v_1 v_2 v_3 v_1$.

In [10] and [17], the authors first considered the relation between q_{min} of a graph and its domination number. Among all the nonbipartite graphs with both order $n \ge 4$ and domination number $\gamma \le \frac{n+1}{3}$, they characterized the graphs with the minimum q_{min} . A remaining open problem is that how about the q_{min} of the connected nonbipartite graph on n vertices with domination number $\frac{n+1}{3} < \gamma \le \frac{n}{2}$. In [18], the authors proceeded on considering this problem. Among the nonbipartite graphs of order n = 4, the minimum q_{min} is completely determined; among the nonbipartite graphs of order n and with given domination number $\frac{n}{2}$, the minimum q_{min} is completely determined; further results about the domination number, the q_{min} of a graph as well as their relation are represented. An open problem still left is that how to determine the minimum q_{min} of the connected nonbipartite graph on $n \ge 5$ vertices with domination number $\frac{n+1}{3} < \gamma \le \frac{n-1}{2}$. Let $\mathbb{S} = \mathscr{H}_{3,\alpha}$ be of order $n \ge 4$ where α is the least integer such that $\lceil \frac{n-2\alpha-2}{3} \rceil + \alpha = \gamma$. In [18], the authors represented some structural characterizations about the minimum q_{min} for this problem, and conjectured that such \mathbb{S} has the smallest q_{min} . However, the problem seems really difficult to solve. Motivated by proceeding on solving this problem, we go on with our research and get some further results as follows.

Theorem 1.1 Let G be a nonbipartite connected graph of order $n \ge 5$ and with domination number $\frac{n-1}{2}$. Then $q_{min}(G) \ge q_{min}(\mathscr{H}_{3,\frac{n-1}{2}})$ with equality if and only if $G \cong \mathscr{H}_{3,\frac{n-1}{2}}$.

Theorem 1.2 Among all nonbipartite graphs of order $n \ge 5$, with odd-girth $g_o \le 5$ (length of the shortest odd cycle in this graph) and domination number $\frac{n+1}{3} < \gamma \le \frac{n-2}{2}$, then the least q_{\min} attains the minimum uniquely at a $\mathscr{H}_{3,\alpha}$ where $\alpha \le \frac{n-3}{2}$ is the least integer such that $\lceil \frac{n-2\alpha-2}{3} \rceil + \alpha = \gamma$.

2 Preliminary

In this section, we introduce some notations and some working lemmas.

Denote by P_n , C_n , K_n , a path, a n-cycle (of length n), a complete graph of order n respectively. If k is odd, we say C_k an odd cycle. The girth of a graph G, denoted by g, is the length of the shortest cycle in G. The odd-girth for a nonbipartite graph G, denoted by $g_o(G)$ or g_o , is the length of the shortest odd cycle in this graph. $G - v_i v_j$ denotes the graph obtained from G by deleting the edge $v_i v_j \in E(G)$, and let $G - v_i$ denote the graph obtained from G by deleting the vertex v_i and the edges incident with v_i . Similarly, $G + v_i v_j$ is the graph obtained from G by adding an edge $v_i v_j$ between its two nonadjacent vertices v_i and v_j . Given an vertex set S, G - S denotes the graph obtained by deleting all the vertices in S from G and the edges incident with any vertex in S.

A connected graph G of order n is called a *unicyclic* graph if ||E(G)|| = n. For $S \subseteq V(G)$, let G[S] denote the subgraph induced by S. Denoted by $d_{istG}(v_i, v_j)$ the distance between two vertices v_i and v_j in a graph G.

For a graph G of order n, let $X = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$ be defined on V(G), i.e., each vertex v_i is mapped to the entry x_i ; let $|x_i|$ denote the *absolute value* of x_i . One can find that $X^TQ(G)X = \sum_{v_i v_j \in E(G)} (x_i + x_j)^2$. In addition, for an arbitrary unit vector $X \in \mathbb{R}^n$, $q_{min}(G) \leq X^TQ(G)X$, with equality if and only if X is an eigenvector corresponding to $q_{min}(G)$.

Lemma 2.1 [3] Let G be a graph on n vertices and m edges, and let e be an edge of G. Let $q_1 \ge q_2 \ge \cdots \ge q_n$ and $s_1 \ge s_2 \ge \cdots \ge s_n$ be the Q-eigenvalues of G and G - e respectively. Then $0 \le s_n \le q_n \le \cdots \le s_2 \le q_2 \le s_1 \le q_1$.

Let G_1 and G_2 be two disjoint graphs, and let $v_1 \in V(G_1)$, $v_2 \in V(G_2)$. The coalescence of G_1 and G_2 , denoted by $G_1(v_1) \diamond G_2(v_2)$ or $G_1(u) \diamond G_2(u)$, is obtained from G_1 , G_2 by identifying

 v_1 with v_2 and forming a new vertex u where for $i = 1, 2, G_i$ can be trivial (that is, G_i is only one vertex). For a connected graph $G = G_1(u) \diamond G_2(u)$, $i = 1, 2, G_i$ is called a *branch* of G with root u. For a vector $X = (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n$ defined on V(G), a branch H of G is called a *zero branch* with respect to X if $x_i = 0$ for all $v_i \in V(H)$; otherwise, it is called a *nonzero branch* with respect to X.

Lemma 2.2 [15] Let G be a connected graph which contains a bipartite branch H with root v_s , and let X be an eigenvector of G corresponding to $q_{min}(G)$.

(i) If $x_s = 0$, then H is a zero branch of G with respect to X;

(ii) If $x_s \neq 0$, then $x_p \neq 0$ for every vertex $v_p \in V(H)$. Furthermore, for every vertex $v_p \in V(H)$, $x_p x_s$ is either positive or negative depending on whether v_p is or is not in the same part of the bipartite graph H as v_s ; consequently, $x_p x_t < 0$ for each edge $v_p v_t \in E(H)$.

Lemma 2.3 [15] Let G be a connected nonbipartite graph of order n, and let X be an eigenvector of G corresponding to $q_{min}(G)$. T is a tree which is a nonzero branch of G with respect to X and with root v_s . Then $|x_t| < |x_p|$ whenever v_p , v_t are vertices of T such that v_t lies on the unique path from v_s to v_p .

Lemma 2.4 [16] Let $G = G_1(v_2) \diamond T(u)$ and $G^* = G_1(v_1) \diamond T(u)$, where G_1 is a connected nonbipartite graph containing two distinct vertices v_1, v_2 , and T is a nontrivial tree. If there exists an eigenvector $X = (x_1, x_2, ..., x_k, ...)^T$ of G corresponding to $q_{min}(G)$ such that $|x_1| > |x_2|$ or $|x_1| = |x_2| > 0$, then $q_{min}(G^*) < q_{min}(G)$.

Lemma 2.5 [16] Let $G = C(v_0) \diamond B(v_0)$ be a graph of order n, where $C = v_0v_1v_2 \cdots v_{2k}$ is a cycle of length 2k + 1, and B is a bipartite graph of order n - 2k. Then there exists an eigenvector $X = (x_0, x_1, x_2, \dots, x_{2k})^T$ corresponding to $q_{min}(G)$ satisfying the following:

- (i) $|x_0| = \max\{|x_i| \mid v_i \in V(C)\} > 0;$
- (ii) $x_i = x_{2k-i+1}$ for i = 1, 2, ..., k;
- (iii) $x_i x_{i-1} \leq 0$ for i = 1, 2, ..., k, $x_{2k} x_0 \leq 0$ and $x_{2k-i+1} x_{2k-i+2} \leq 0$ for i = 2, ..., k.

Moreover, if 2k + 1 < n, then the multiplicity of $q_{min}(G)$ is one, and then any eigenvector corresponding to $q_{min}(G)$ satisfies (i), (ii), (iii).

Lemma 2.6 [5] Let G be a connected graph of order n. Then $q_{min} < \delta$, where δ is the minimal vertex degree of G.

Lemma 2.7 [17] Let G be a nonbipartite graph with domination number $\gamma(G)$. Then G contains a nonbipartite unicyclic spanning subgraph H with both $g_o(H) = g_o(G)$ and $\gamma(H) = \gamma(G)$.

Lemma 2.8 [17] Suppose a graph G contains pendant vertices. Then

(i) there must be a minimal dominating set of G containing all of its p-dominators but no any pendant vertex;

(ii) if v is a p-dominator of G and at least two pendant vertices are adjacent to v, then any minimal dominating set of G contains v but no any pendant vertex adjacent to v.

Lemma 2.9 [11] (i) For a path P_n , we have $\gamma(P_n) = \lceil \frac{n}{3} \rceil$.

(ii) For a cycle C_n , we have $\gamma(C_n) = \lceil \frac{n}{3} \rceil$.

We define the corona G of graphs G_1 and G_2 as follows. The corona $G = G_1 \circ G_2$ is the graph formed from one copy of G_1 and $|| V(G_1) ||$ copies of G_2 where the *i*th vertex of G_1 is adjacent to every vertex in the *i*th copy of G_2 .

Lemma 2.10 [13] Let G be a graph of order n. $\gamma(G) = \frac{n}{2}$ if and only if the components of G are the cycle C_4 or the corona $H \circ K_1$ for any connected graph H.

Denote by $C_{3,k}^*$ the graph obtained by attaching a C_3 to an end vertex of a path of length k and attaching n-3-k pendant vertices to the other end vertex of this path.

Lemma 2.11 [17] Among all the nonbipartite graphs with both order $n \ge 4$ and domination number $\gamma \le \frac{n+1}{3}$, we have

(i) if $n = 3\gamma - 1$, 3γ , $3\gamma + 1$, then the graph with the minimal least *Q*-eigenvalue attains uniquely at $C_{3,n-4}^*$;

(ii) if $n \ge 3\gamma + 2$, then the graph with the minimal least *Q*-eigenvalue attains uniquely at $C^*_{3,3\gamma-3}$.

Lemma 2.12 [18] Among all nonbipartite unicyclic graphs of order n, and with both domination number γ and girth g ($g \le n-1$), the minimum q_{min} attains at a $\mathcal{F}_{g,l}$ -graph G for some l. Moreover, for this graph G, suppose that $X = (x_1, x_2, x_3, \ldots, x_n)^T$ is a unit eigenvector corresponding to $q_{min}(G)$. Then we have that $|x_g| > 0$, and $|x_{g+l-1}| = \max\{|x_i| \mid v_i \text{ is a } p\text{-dominator}\}$.

In \mathcal{H}_{2}^{k} , for j = 1, 2, ..., k, suppose $v_{\tau_{\varepsilon-2-k+j}}$ is the pendant vertex attached to vertex $v_{\varepsilon-2-k+j}$. Suppose $v_{\omega_{1}}, v_{\omega_{2}}, ..., v_{\omega_{s}}$ are the pendant vertices attached to vertex $v_{\varepsilon-1}$. If $s \geq 2$, let $\mathcal{H}_{3}^{k} = \mathcal{H}_{2}^{k} - v_{\varepsilon-1-k}v_{\tau_{\varepsilon-1-k}} + v_{\varepsilon-1}v_{\tau_{\varepsilon-1-k}} - \sum_{j=2}^{s} v_{\varepsilon-1}v_{\omega_{j}} + \sum_{j=2}^{s} v_{\omega_{1}}v_{\omega_{j}}$. Let $\mathcal{H}_{4}^{k-1} = \mathcal{H}_{2}^{k} - v_{\varepsilon-1-k}v_{\tau_{\varepsilon-1-k}} + v_{\varepsilon-1}v_{\tau_{\varepsilon-1-k}}$, $\mathcal{H}_{5}^{k-2} = \mathcal{H}_{4}^{k-1} - v_{\varepsilon-k}v_{\tau_{\varepsilon-k}} + v_{\varepsilon-1}v_{\tau_{\varepsilon-k}}$.

Lemma 2.13 [18]

- (i) $\gamma(\mathcal{H}_1^k) \leq \gamma(\mathcal{H}_2^k)$.
- (ii) If $\varepsilon k 1 \leq 2$, then $\gamma(\mathcal{H}_2^k) = k + 1$ and $\gamma(\mathcal{H}_4^{k-1}) = \gamma(\mathcal{H}_2^k) 1$;
- (iii) If $\varepsilon k 1 \ge 3$, then $\gamma(\mathcal{H}_2^k) = \lceil \frac{\varepsilon k 4}{3} \rceil + k + 1$;
- (iv) $\gamma(\mathcal{H}_2^k) \leq \gamma(\mathcal{H}_3^k);$

(v) If $\varepsilon - k - 1 \ge 3$, $\frac{\varepsilon - k - 4}{3} \ne t$ where t is a nonnegative integral number, then $\gamma(\mathcal{H}_4^{k-1}) = \gamma(\mathcal{H}_2^k) - 1$;

(vi) If $\varepsilon - k - 1 \ge 3$, $\frac{\varepsilon - k - 4}{3} = t$ where t is a nonnegative integral number, $\gamma(\mathcal{H}_4^{k-1}) = \gamma(\mathcal{H}_2^k)$, $\gamma(\mathcal{H}_5^{k-2}) = \gamma(\mathcal{H}_2^k) - 1$.

Lemma 2.14 [18]

- (i) $\gamma(\mathscr{H}_{3,0}) = 1;$
- (ii) If $\alpha \geq 1$ and $n 2\alpha \leq 2$, then $\gamma(\mathscr{H}_{3,\alpha}) = \alpha$;
- (iii) If $\alpha \geq 1$ and $n 2\alpha \geq 3$, then $\gamma(\mathscr{H}_{3,\alpha}) = \lceil \frac{n 2\alpha 2}{3} \rceil + \alpha$.

3 Domination number and the structure of a graph

Let G^* be a sunlike graph of order n and with both girth g and k p-dominators v_1, v_2, \ldots, v_k on \mathbb{C} .

Lemma 3.1 Let G be a sunlike graph of order n and with both girth g and k p-dominators on \mathbb{C} . Then $\gamma(G) \leq \gamma(G^*)$, where $\gamma(G^*) = k + \lceil \frac{g-k-2}{3} \rceil$.

Proof. Suppose $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ are the k p-dominators on \mathbb{C} in G, where $1 \leq i_1 < i_2 < \cdots < i_k \leq g$. Suppose that there exists some $1 \leq z \leq k$ such that $i_{z+1} - i_z \geq 2$, where if z = k, we let $i_{k+1} = i_1$ and $i_{k+1} - i_k = i_1 + g - i_k$. Let $H = G - \sum_{s=i_z+1}^{i_{z+1}-1} v_s$.

Assertion 1 If $i_{z+1} - i_z \leq 3$, then $\gamma(H) = \gamma(G)$. By Lemma 2.8, there is a minimal dominating set D of G which contains all the k p-dominators but no any pendant vertex. Thus both $v_{i_{z+1}}$ and v_{i_z} are in D. Note the minimality of D and $2 \leq i_{z+1} - i_z \leq 3$. Then $D \cap \{v_{i_z+1}\} = \emptyset$ if $i_{z+1} - i_z = 2$; $D \cap \{v_{i_z+1}, v_{i_{z+1}-1}\} = \emptyset$ if $i_{z+1} - i_z = 3$. Thus D is also a dominating set of H. This implies that $\gamma(H) \leq \gamma(G)$. Note that for H, by Lemma 2.8, there is a minimal dominating set D' which contains all the k p-dominators but no any pendant vertex. Thus both $v_{i_{z+1}}$ and v_{i_z} are in D'. Then v_{i_z+1} is dominated by D' if $i_{z+1} - i_z = 2$; $v_{i_z+1}, v_{i_{z+1}-1}$ are is dominated by D' if $i_{z+1} - i_z = 3$. Consequently, D' is also a dominating set of G. This implies that $\gamma(G) \leq \gamma(H)$. As a result, it follows that $\gamma(H) = \gamma(G)$. And then our assertion holds.

Assertion 2 If $i_{z+1} - i_z \geq 4$, then $\gamma(G) = \gamma(H) + \gamma(P_{i_z,i_{z+1}})$ where $P_{i_z,i_{z+1}} = v_{i_z+2}v_{i_z+3}\cdots v_{i_{z+1}-2}$. By Lemma 2.8, there is a minimal dominating set D of G which contains all the k p-dominators but no any pendant vertex. Thus both $v_{i_{z+1}}$ and v_{i_z} are in D. We claim that at most one of v_{i_z+1} , v_{i_z+2} is in D. Otherwise, suppose that both v_{i_z+1} and v_{i_z+2} are in D. Then $D \setminus \{v_{i_z+1}\}$ is also a dominating set of G, which contradicts the minimality of D. Consequently, our claim holds. Similarly, we get that at most one of v_{i_z+1-2} , v_{i_z+1-1} is in D. Thus we let $D^{\circ} = ((D \cup \{v_{i_z+2}, v_{i_{z+1}-2}\}) \setminus \{v_{i_z+1}, v_{i_z+1-1}\}) \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \in D$, $v_{i_z+1-1} \in D$; let $D^{\circ} = ((D \cup \{v_{i_z+2}\}) \setminus \{v_{i_z+1}, v_{i_z+1}, v_{i_z+1-1}\}) \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \in D$, $v_{i_z+1-2}\}) \setminus \{v_{i_z+1}, v_{i_z+1-2}\} \setminus \{v_{i_z+1}, v_{i_z+1-1}\}) \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \notin D$; let $D^{\circ} = ((D \cup \{v_{i_z+2}, v_{i_z+1})) \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \in D$, $v_{i_z+1-2}\}) \setminus \{v_{i_z+1}, v_{i_z+1-1}\} \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \notin D^{\circ} = (D \cap V(P_{i_z,i_{z+1}}))$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \notin D^{\circ} = (D \cap V(P_{i_z,i_{z+1}}))$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \in D$; let $D^{\circ} = (D \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \in D$; let $D^{\circ} = (D \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \in D$; let $D^{\circ} = (D \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \in D$; let $D^{\circ} = (D \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \in D$; let $D^{\circ} = (D \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_z+1-1} \in D$; let D° is a dominating set of H, $D^{\circ} \cup D^{\ast}$ is a dominating set of G with cardinality $\gamma(G)$, and note that D° is a dominating set of $P_{i_z,i_{z+1}}$. Thus $\gamma(P_{i_z,i_{z+1}}) \leq \|D^{\circ}\|$. Note that both v_{i_z+1-1} and v_{i_z+1} are

Denote by $\tau_{i_j,i_{j+1}}$ the dominating index where we let $i_{k+1} = i_1$ if i = k. Let $\tau_{i_j,i_{j+1}} = 0$ if $i_{j+1} - i_j \leq 3$; let $\tau_{i_j,i_{j+1}} = \gamma(P_{i_j,i_{j+1}})$ if $i_{j+1} - i_j \geq 4$. Thus from Assertion 1, Assertion 2 and Lemma 2.8, we get that $\gamma(G) = k + \sum_{i=1}^{k} \tau_{i_j,i_{j+1}}$. By Lemma 2.9, it follows that $\tau_{i_j,i_{j+1}} = \gamma(P_{i_j,i_{j+1}}) = \lceil \frac{i_{j+1}-i_j-3}{3} \rceil$ if $i_{j+1} - i_j \geq 4$. Note that for any two nonnegative integers x and y, we have $\lceil \frac{x}{3} \rceil + \lceil \frac{y}{3} \rceil \leq \lceil \frac{x+y}{3} \rceil$. Then

$$\sum_{i=1}^{k} \tau_{i_{j},i_{j+1}} = \sum_{\tau_{i_{s},i_{s+1}} \neq 0} \tau_{i_{s},i_{s+1}} \le \left\lceil \frac{\sum_{\tau_{i_{s},i_{s+1}} \neq 0} (i_{s+1} - i_{s} - 3)}{3} \right\rceil \le \left\lceil \frac{g - k - 2}{3} \right\rceil.$$

Thus $\gamma(G) \leq k + \lceil \frac{g-k-2}{3} \rceil$. Noting that by Assertion1 and Assertion 2, we have $\gamma(G^*) = k + \lceil \frac{g-k-2}{3} \rceil$. Then the result follows as desired. This completes the proof. \Box

Theorem 3.2 Suppose that \mathcal{G} is a nonbipartite $\mathcal{F}_{g,l}$ -graph with $\gamma(\mathcal{G}) = \frac{n-1}{2}$, $g \geq 5$ and order $n \geq g+1$, and suppose there are exactly f vertices of the unique cycle \mathbb{C} such that none of them is p-dominator. Then we get

- (i) if f = g, then g = 5;
- (ii) if $f \neq g$, then $f \leq 3$ and $f \neq 2$;

(iii) if f = 3, then the three vertices are consecutive on \mathbb{C} , i.e., they are v_{i-1} , v_i , v_{i+1} for some $1 \leq i < g$, and each in $(V(\mathbb{C}) \setminus \{v_{i-1}, v_i, v_{i+1}\}) \cup V(\mathbb{P} - v_{g+l})$ is a p-dominator (if i = 1, then $v_{i-1} = v_g$).

Proof. Denote by A the set of vertices of \mathbb{C} and the pendant vertices attached to \mathbb{C} . Let ||A|| = z, and let $A' = V(\mathcal{G}) \setminus A$. Then $\gamma(\mathcal{G}) \leq \gamma(\mathcal{G}[A]) + \gamma(\mathcal{G}[A'])$. Note that $A' = \emptyset$, or $\mathcal{G}[A']$ is connected with at least 2 vertices. Suppose $f \geq 4$.

(i) f = g. Then z - f = 0. This means that there is no *p*-dominator on \mathbb{C} . So, $\mathcal{G}[A']$ is connected with at least 2 vertices. Thus, if $f \ge 9$, by Lemma 2.9, then $\gamma(\mathcal{G}) \le \lceil \frac{f}{3} \rceil + \gamma(\mathcal{G}[A']) \le \frac{n-f}{2} + \frac{f+2}{3} < \frac{n-1}{2}$. Therefore $f \le 7$.

Note that g is odd and g = f now. Thus if $\gamma(\mathcal{G}[A']) < \frac{n-f}{2}$, then $\gamma(\mathcal{G}) \leq \lceil \frac{f}{3} \rceil + \gamma(\mathcal{G}[A']) < \frac{n-1}{2}$. Hence, it follows that $\gamma(\mathcal{G}[A']) = \frac{n-f}{2}$. Combined with Lemma 2.10, it follows that $\mathcal{G}[A'] = P_{\frac{n-f}{2}} \circ K_1$. Here, suppose $P_{\frac{n-f}{2}} = v_{a_1}v_{a_2}\cdots v_{a_t}$ with $t = \frac{n-f}{2}$, and suppose v_{τ_1} is the unique pendant vertex attached to v_{a_1} . By Lemma 2.8, $V(P_{\frac{n-f}{2}})$ is a minimal dominating set of $\mathcal{G}[A']$.

Assume that f = 7. Note that \mathcal{G} is a $\mathcal{F}_{g,l}$ -graph. If $\mathcal{G} = \mathbb{C} + v_g v_{a_1} + \mathcal{G}[A']$, then $V(P_{\frac{n-f}{2}}) \cup \{v_2, v_5\}$ is a dominating set of \mathcal{G} ; if $\mathcal{G} = \mathbb{C} + v_g v_{\tau_1} + \mathcal{G}[A']$, then $(V(P_{\frac{n-f}{2}}) \setminus \{v_{a_1}\}) \cup \{v_2, v_5, v_{\tau_1}\}$ is a dominating set of \mathcal{G} . This implies that $\gamma(\mathcal{G}) \leq \frac{n-7}{2} + 2 < \frac{n-1}{2}$ which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Thus, it follows that g = 5.

(ii) $f \neq g$. Note that there is no the case that z - f = 1. Then $z - f \geq 2$. By Lemma 3.1, $\gamma(\mathcal{G}[A]) \leq \gamma(\mathcal{G}^*[A]) = g - f + \lceil \frac{f-2}{3} \rceil \leq \frac{z-f}{2} + \lceil \frac{f-2}{3} \rceil$, where $\mathcal{G}^*[A]$ is a sunlike graph with vertex set A, \mathbb{C} contained in it and g - f p-dominators $v_1, v_2, \ldots, v_{g-f}$ (defined as \mathcal{G}^* in Lemma 3.1). Thus, if $f \geq 4$, then $\gamma(\mathcal{G}) \leq \frac{z-f}{2} + \lceil \frac{f-2}{3} \rceil + \gamma(\mathcal{G}[A']) \leq \frac{n-f}{2} + \lceil \frac{f-2}{3} \rceil \leq \frac{n-f}{2} + \frac{f}{3} < \frac{n-1}{2}$. This contradicts that $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Consequently, $f \leq 3$.

Suppose f = 2 and suppose that v_j , v_k of \mathbb{C} are the exact 2 vertices such that neither of them is *p*-dominator. Note that by Lemma 2.8, there is a minimal dominating set D of $\mathcal{G} - v_j - v_k$ which contains all *p*-dominators but no any pendant vertex. Note that the vertices of \mathbb{C} other than v_j , v_k are all *p*-dominators in both $\mathcal{G} - v_j - v_k$ and \mathcal{G} . Thus, each of v_j , v_k is adjacent to at least one *p*-dominator on \mathbb{C} . So, D is also a dominating set of \mathcal{G} . Note that there is no isolated vertex in $\mathcal{G} - v_j - v_k$. Then $\gamma(\mathcal{G} - v_j - v_k) \leq \frac{n-2}{2}$, and then $\gamma(\mathcal{G}) \leq \frac{n-2}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Then (ii) follows.

(iii) Suppose v_a , v_b , v_c are the exact 3 vertices of \mathbb{C} such that none of them is *p*-dominator. If the 3 vertices v_a , v_b , v_c are not consecutive, then each of them can be dominated by its adjacent *p*dominator. Note that by Lemma 2.8, there are a minimal dominating set D of $\mathcal{G} - v_a - v_b - v_c$ which contains all *p*-dominators but no any pendant vertex. Thus such *D* is also a dominating set of \mathcal{G} . Note that there is no isolated vertex in $\mathcal{G} - v_a - v_b - v_c$. So, $\gamma(\mathcal{G}) \leq ||D|| = \gamma(\mathcal{G} - v_a - v_b - v_c) \leq \frac{n-3}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Therefore, the 3 vertices v_a, v_b, v_c are consecutive.

Suppose that the 3 vertices are v_{i-1} , v_i , v_{i+1} for some $1 \le i \le g$ (here, if i = g, we let $v_{i+1} = v_1$; if i = 1, we let $v_{i-1} = v_g$). Let $H = \mathcal{G} - v_{i-1} - v_i - v_{i+1}$. Note that there is no isolated vertex in H. Thus, $\gamma(H) \le \frac{n-3}{2}$. Next, we claim that $\gamma(H) = \frac{n-3}{2}$.

Claim $1 \gamma(H) = \frac{n-3}{2}$. Otherwise, suppose $\gamma(H) < \frac{n-3}{2}$, and suppose D is a minimal dominating set of H. Then $D \cup \{v_i\}$ is a dominating set D of \mathcal{G} . Thus, $\mathcal{G} < 1 + \frac{n-3}{2} < \frac{n-1}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Then the claim holds.

By Lemma 2.10, $H = \mathcal{L} \circ K_1$ for some acyclic graph \mathcal{L} of order $\frac{n-3}{2}$.

Claim 2 For any minimal dominating set D of H, in \mathcal{G} , at least one of v_{i-1} , v_i , v_{i+1} can not be dominated by D. Otherwise, D is a dominating set of \mathcal{G} too. Hence, $\gamma(\mathcal{G}) \leq \frac{n-3}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Then the claim holds.

If i = g, then let $H = H_1 \cup H_2$, where $H_1 = \mathcal{G}[A] - v_{g-1} - v_g - v_1$, $H_2 = \mathcal{G}[A'] = P_{\frac{n-z}{2}} \circ K_1$ (if n = z, then H_2 is empty). Here, suppose $P_{\frac{n-z}{2}} = v_{a_1}v_{a_2}\cdots v_{a_t}$ with $t = \frac{n-z}{2}$, and suppose v_{τ_1} is the unique pendant vertex attached to v_{a_1} . Thus there are two possible cases for G, i.e., $\mathcal{G} = \mathcal{G}[A] + v_g v_{a_1} + H_2$ or $\mathcal{G} = \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. Let $\mathcal{Z} = (\mathbb{C} \setminus \{v_{g-1}, v_g, v_1\}) \cup V(P_{\frac{n-z}{2}})$. Note that the vertices in \mathcal{Z} are all p-dominators in \mathcal{G} . If $\mathcal{G} = \mathcal{G}[A] + v_g v_{a_1} + H_2$, then $(\mathcal{Z} \setminus \{v_{a_1}\}) \cup \{v_{\tau_1}\}$ is a dominating set of \mathcal{G} . Thus it follows that $\gamma(\mathcal{G}) \leq \frac{n-3}{2} < \frac{n-1}{2}$ which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. This implies $i \neq g$.

If $i \neq 1, g-1$, then *H* is connected. Let $\mathcal{Z} = (V(\mathbb{C}) \setminus \{v_{i-1}, v_i, v_{i+1}\}) \cup V(\mathbb{P} - v_{g+l})$, where $\mathbb{P} = v_g v_{g+1} \cdots v_{g+l}$. Then each vertex in \mathcal{Z} is a *p*-dominator in \mathcal{G} .

If i = 1, then let $H = H_1 \cup H_2$, where $H_1 = \mathcal{G}[A] - v_g - v_1 - v_2$, $H_2 = \mathcal{G}[A'] = P_{\frac{n-z}{2}} \circ K_1$ (if n = z, then H_2 is empty). Here, suppose $P_{\frac{n-z}{2}} = v_{a_1}v_{a_2}\cdots v_{a_t}$ with $t = \frac{n-z}{2}$, and suppose v_{τ_1} is the unique pendant vertex attached to v_{a_1} . Thus there are two possible cases for G, i.e., $\mathcal{G} = \mathcal{G}[A] + v_g v_{a_1} + H_2$ or $\mathcal{G} = \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. We say that $\mathcal{G} \neq \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. Otherwise, suppose $\mathcal{G} = \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. Note that n - z is even now and $\mathcal{G} - \{v_2, v_1, v_g, v_{a_1}, v_{\tau_1}\}$ has no isolated vertex. Then for $\mathcal{G} - \{v_2, v_1, v_g, v_{a_1}, v_{\tau_1}\}$, it has a dominating set \mathbb{D} with $\parallel \mathbb{D} \parallel \leq \frac{n-5}{2}$. Then $\mathbb{D} \cup \{v_1, v_{\tau_1}\}$ is a dominating set of \mathcal{G} , which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. This implies that $\mathcal{G} = \mathcal{G}[A] + v_g v_{a_1} + H_2$. It follows that each one in $(V(\mathbb{C}) \setminus \{v_g, v_1, v_2\}) \cup V(\mathbb{P} - v_{g+l})$ is a pdominator. Similarly, for i = g - 1, we get that each one in $(V(\mathbb{C}) \setminus \{v_{g-2}, v_{g-1}, v_g\}) \cup V(\mathbb{P} - v_{g+l})$

4 The q_{min} among uncyclic graphs

Lemma 4.1 [18] Let G be a nonbipartite unicyclic graph of order n and with the odd cycle $C = v_1v_2\cdots v_gv_1$ in it. There is a unit eigenvector $X = (x_1, x_2, \ldots, x_g, x_{g+1}, x_{g+2}, \ldots, x_{n-1}, x_n)^T$ corresponding to $q_{min}(G)$, in which suppose $|x_1| = \min\{|x_1|, |x_2|, \ldots, |x_g|\}$, $|x_s| = \max\{|x_1|, |x_2|, \ldots, |x_g|\}$ where $s \ge 2$, satisfying that

(i) $|x_1| < |x_s|;$

(ii) $|x_1| = 0$ if and only if $x_g = -x_2 \neq 0$; if $|x_1| = 0$ and $x_i x_{i+1} \neq 0$ for some $1 \leq i \leq g-1$, then $x_i x_{i+1} < 0$; moreover, if $x_j \neq 0$, then $sgn(x_j) = (-1)^{d_{istH}(v_1, v_j)}$ where $H = G - v_1 v_g$.

(iii) if $|x_1| > 0$, then

(1) if $3 \le s \le g-1$, then $|x_2| < \cdots < |x_{s-2}| < |x_{s-1}| \le |x_s|$ and $|x_g| < |x_{g-1}| < \cdots < |x_{s+2}| < |x_{s+1}| \le |x_s|$;

(2) if $|x_2| > |x_g|$, then $x_1x_g > 0$; for $1 \le i \le g - 1$, $x_ix_{i+1} < 0$; $|x_1| \le |x_g|$;

(3) if $|x_2| < |x_g|$, then $x_1x_2 > 0$; for $2 \le i \le g-1$, $x_ix_{i+1} < 0$; $x_gx_1 < 0$; $|x_1| \le |x_2|$;

- (4) if $|x_2| = |x_g|$, then $|x_1| \le |x_2|$, and exactly one of $x_1x_g > 0$ and $x_1x_2 > 0$ holds, where
 - (4.1) if $x_1x_g > 0$, then for $1 \le i \le g 1$, $x_ix_{i+1} < 0$;

(4.2) if $x_1x_2 > 0$, then $x_ix_{i+1} < 0$ for $2 \le i \le g-1$ and $x_gx_1 < 0$;

(5) at least one of $|x_{s+1}|$ and $|x_{s-1}|$ is less than $|x_s|$.

Lemma 4.2 [18] If \mathcal{G} is a nonbipartite $\mathcal{F}_{g,l}^{\circ}$ -graph with $g \geq 5$, $n \geq g+1$, then there is a graph \mathbb{H} with girth 3 and order n such that $\gamma(\mathcal{G}) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) < q_{min}(\mathcal{G})$.

Lemma 4.3 [18] Suppose that G is a nonbipartite $\mathcal{F}_{3,l}$ -graph of order n where $\mathbb{C} = v_1 v_2 v_3 v_1$. $X = (x_1, x_2, \ldots, x_n)^T$ is a unit eigenvector corresponding to $q_{min}(G)$. Then $|x_3| = \max\{|x_1|, |x_2|, |x_3|\}$.

Theorem 4.4 Among all nonbipartite unicyclic graphs of order $n \ge 5$ with girth 3 and domination number at least $\frac{n+1}{3} < \gamma \le \frac{n}{2}$, if $\gamma = \frac{n-1}{2}$, the q_{min} attains the minimum uniquely at $\mathscr{H}_{3,\frac{n-3}{2}}$.

Proof. The result follows from Lemmas 2.4, 2.12, 2.13, 4.3 and Theorem 3.2 \Box

Let $\mathcal{K} = \{G \mid G \text{ be a nonbipartite } \mathcal{F}_{g,l}^{\circ}\text{-graph of order } n \geq 4 \text{ and domination number at least } \frac{n+1}{3} < \gamma \leq \frac{n}{2}, \text{ where } g \text{ is any odd number at least } 3 \text{ and } l \text{ is any positive integral number} \}$ and $q_{\mathcal{K}} = \min\{q_{min}(G) \mid G \in \mathcal{K}\}.$

Lemma 4.5 [18]

(i) If n = 4, the $q_{\mathcal{K}}$ attains uniquely at $\mathscr{H}_{3,1}$;

(ii) If $n \ge 5$ and $n - 2\gamma \ge 2$, then the least $q_{\mathcal{K}} > q_{min}(\mathscr{H}_{3,\alpha})$ where $\alpha \le \frac{n-3}{2}$ is the least integer such that $\left\lceil \frac{n-2\alpha-2}{3} \right\rceil + \alpha = \gamma$.

Lemma 4.6 For a nonbipartite $\mathcal{F}_{g,l}$ -graph graph G of order $n \geq 5$ and with g = 5, there exists a graph \mathbb{H} such that $g(\mathbb{H}) = 3$, $\gamma(G) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) < q_{min}(G)$.

Proof. If n = 5, then $G = C_5$. And then the result follows from Lemma 2.11. Next we consider the case that $n \ge 6$. By Lemma 2.6, we get that $q_{min}(G) < 1$.

Case 1 There is no *p*-dominator on \mathbb{C} . Then *G* is like G_1 (see G_1 in Fig. 4.1). By Lemma 2.5, there is a unit eigenvector $X = (x_1, x_2, ..., x_k, x_{k+1}, x_{k+2}, ..., x_{n-1}, x_n)^T$ corresponding to $q_{min}(G)$ such that $|x_5| = \max\{|x_1|, |x_2|, |x_3|, |x_4|, |x_5|\} > 0$, and $x_1 = x_4, x_2 = x_3$. By Lemma 4.1, we get that $|x_2| > 0$, $|x_2| < |x_1|$ and $x_2x_1 < 0$. Let $\mathbb{H} = G - v_3v_4 + v_3v_1$. By Lemma 2.4, we get that $q_{min}(\mathbb{H}) < q_{min}(G)$. Let $B_1 = \mathbb{H}[v_1, v_2, v_3], B_2 = \mathbb{H} - \{v_1, v_2, v_3\}$. As Lemma 3.1, we can

get a minimal dominating set D of \mathbb{H} , which contains all p-dominators but no any pendant vertex and no v_1 , such that $D = \{v_2\} \cup D_2$, where $\{v_2\}$ is a dominating set of B_1 , D_2 is a dominating set of B_2 . Note that D is also a dominating set of G. So, $\gamma(G) \leq \gamma(\mathbb{H})$.

Fig. 4.1. $G_1 - G_{19}$

Case 2 There is only 1 *p*-dominator on \mathbb{C} (see $G_2 - G_4$ in Fig. 4.1).

Subcase 2.1 For G_2 , let $\mathbb{H} = G_2 - v_3v_4 + v_3v_1$. As Case 1, it is proved that $\gamma(G_2) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) < q_{min}(G_2)$.

Subcase 2.2 For G_3 , suppose $X = (x_1, x_2, ..., x_{n-1}, x_n)^T$ is a unit eigenvector corresponding to $q_{min}(G_3)$.

Claim $|x_4| > |x_1|$, $|x_5| > |x_3|$. Denote by v_k the pendant vertex attached to v_4 . Suppose $0 < |x_4| \le |x_1|$. Let $G'_3 = G_3 - v_4 v_k + v_1 v_k$. By Lemma 2.4, then $q_{min}(G'_3) < q_{min}(G_3)$. This is a contradiction because $G'_3 \cong G_3$. Suppose $|x_4| = |x_1| = 0$. By Lemma 4.1, we get that $x_2 \neq 0$, $x_3 \neq 0$. By $q_{min}(G_3)x_2 = 2x_2 + x_3$, $q_{min}(G_3)x_3 = 2x_3 + x_2$, we get $x_2^2 = x_3^2$. Suppose $x_2 > 0$. Then we get $q_{min}(G_3)x_2 = 2x_2 + x_3 \ge x_2$. This means that $q_{min}(G_3) \ge 1$ which contradicts $q_{min}(G_3) < 1$. Thus, $|x_4| > |x_1|$. Similarly, we get $|x_5| > |x_3|$. Then the claim holds.

Suppose $|x_1| = \min\{|x_1|, |x_2|, |x_3|\}$ and $x_1 \ge 0$. If $|x_2| > |x_5|$, by Lemma 4.1, suppose $x_1x_5 \ge 0$. Let $H = G_3 - v_1v_5$. Also by Lemma 4.1, suppose for any $j \ne 1, 5$, $\operatorname{sgn} x_j = (-1)^{d_{istH}(v_j, v_1)}$. Let $\mathbb{H} = G_3 - v_1v_5 + v_3v_1$. Because $|x_5| > |x_3|$, it follows that $q_{min}(\mathbb{H}) \le X^T Q(\mathbb{H}) X < X^T Q(G_3) X = q_{min}(G_3)$. Let $B_1 = \mathbb{H}[v_1, v_2], B_2 = \mathbb{H} - \{v_1, v_2\}$. As Lemma 3.1, we can get a minimal dominating set D of \mathbb{H} , which contains all p-dominators but no any pendant vertex and no v_3 , such that $D = \{v_1\} \cup D_2$, where D_2 is a dominating set of B_2 . Note that D is also a dominating set of G_3 . So, $\gamma(G_3) \leq \gamma(\mathbb{H})$. If $|x_2| < |x_5|$, by Lemma 4.1, $x_1x_2 \geq 0$. Let $H = G_3 - v_1v_2$. Also by Lemma 4.1, suppose for any $j \neq 1, 2$, $\operatorname{sgn} x_j = (-1)^{d_{istH}(v_j,v_1)}$. Let $\mathbb{H} = G_3 - v_1v_5 + v_3v_1$. Because $|x_5| > |x_3|$, it follows that $q_{min}(\mathbb{H}) < q_{min}(G_3)$ similarly. As the case that $|x_2| > |x_5|$, it is proved that $\gamma(G_3) \leq \gamma(\mathbb{H})$. If $|x_2| = |x_5|$, by Lemma 4.1, without loss of generality, suppose $x_1x_5 \geq 0$. Let $\mathbb{H} = G_3 - v_1v_5 + v_3v_1$. As the case that $|x_2| > |x_5|$, it is proved that $\gamma(G_3) \leq \gamma(\mathbb{H})$.

For the both cases that $|x_2| = \min\{|x_1|, |x_2|, |x_3|\}$ and $|x_3| = \min\{|x_1|, |x_2|, |x_3|\}$. As the case that $|x_1| = \min\{|x_1|, |x_2|, |x_3|\}$, it is proved that there exists a graph \mathbb{H} such that $g(\mathbb{H}) = 3$, $\gamma(G_3) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) < q_{min}(G_3)$.

In a same way, for G_4 , it is proved that there exists a graph \mathbb{H} such that $g(\mathbb{H}) = 3$, $\gamma(G_4) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) < q_{min}(G_4)$.

And in a same way, for the cases that **Case 3** there is exactly 2 *p*-dominators on \mathbb{C} (see $G_5 - G_{10}$ in Fig. 4.1); **Case 4** there is exactly 3 *p*-dominators on \mathbb{C} (see $G_{11} - G_{15}$ in Fig. 4.1); **Case 5** there is exactly 4 *p*-dominators on \mathbb{C} (see $G_{16} - G_{18}$ in Fig. 4.1); **Case 6** there is exactly 5 *p*-dominators on \mathbb{C} (see G_{19} in Fig. 4.1), it is proved that the exists a graph \mathbb{H} such that $g(\mathbb{H}) = 3$, $\gamma(G) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) \leq q_{min}(G)$. Thus, the result follows as desired. \Box

Lemma 4.7 Let G be a nonbipartite $\mathcal{F}_{g,l}$ -graph of order n for some l and with domination number $\frac{n-1}{2}$. Then $q_{min}(G) \ge q_{min}(\mathcal{H}_{3,\frac{n-3}{2}})$ with equality if and only if $G \cong \mathcal{H}_{3,\frac{n-3}{2}}$ (see Fig. 4.2).

Proof. Because G is nonbipartite, g is odd. If G is a $\mathcal{F}_{g,l}^{\circ}$ -graph, then the theorem follows from Lemma 4.5. If g = 3, then the theorem follows from Theorem 4.4. For g = 5, the theorem follows from Lemma 4.6. Next we consider the case that G is not a $\mathcal{F}_{g,l}^{\circ}$ -graph and suppose $g \geq 7$.

Let $X = (x_1, x_2, ..., x_n)^T$ is a unit eigenvector corresponding to $q_{min}(G)$. Suppose $x_a = \min\{|x_1|, |x_2|, ..., |x_g|\}$. Note that by Theorem 3.2, in G, there are at most 3 consecutive vertices of \mathbb{C} such that none of them is *p*-dominator, and there are 2 cases as follows to consider.

Case 1 In *G*, there is exactly one vertex of \mathbb{C} which is not *p*-dominator. Note that *G* is not a $\mathcal{F}_{g,l}^{\circ}$ -graph. Then $n \geq g+2$ and v_g is the only one vertex which is not *p*-dominator on \mathbb{C} . By a same discussion in the proof of Lemma 4.3 (see [18]), it is proved that $x_g = \max\{|x_1|, |x_2|, \ldots, |x_{g-1}|, |x_g|\}$. Then we suppose $a \leq g-1$. By Lemma 4.1, if $a \leq g-3$, without loss of generality, suppose $x_{a+1} \leq x_{a-1}, x_{a+1}x_a \geq 0, |x_{a-1}| \geq |x_{a+2}|$. Let $G_1 = G - v_a v_{a-1} + v_a v_{a+2}$ (if $|x_{a-1}| \leq |x_{a+2}|$ and $a \geq 2$, let $G_1 = G - v_{a+1}v_{a+2} + v_{a+1}v_{a-1}$; if a = 1, let $G_1 = G - v_1v_g + v_1v_3$). If a = g-2, suppose $|x_{g-1}| \leq |x_{g-3}|, x_{g-1}x_{g-2} \geq 0$, and then let $G_1 = G - v_{g-1}v_g + v_{g-1}v_{g-3}$. If a = g-1, because $|x_g| \geq |x_{g-2}|$, then suppose $x_{g-1}x_{g-2} \geq 0$. Let $G_1 = G - v_{g-1}v_g + v_{g-1}v_{g-3}$.

 $\gamma(G_1) \leq \frac{n-1}{2}$. As the proof of Lemma 4.2, we get that $\gamma(G) \leq \gamma(G_1) = \frac{n-1}{2}$, $q_{min}(G_1) < q_{min}(G)$. Note that $g(G_1) = 3$. Then the theorem follows from Theorem 4.4.

Case 2 In G, there are exactly 3 consecutive vertices of \mathbb{C} such that each of them is not p-dominator. Note that G is not a $\mathcal{F}_{g,l}^{\circ}$ -graph. Combined with Theorem 3.2, the 3 vertices of \mathbb{C} such that each of them is not p-dominator are v_{g-2} , v_{g-1} , v_g or v_g , v_1 , v_2 . Without loss of generality, we suppose the 3 vertices are v_{g-2} , v_{g-1} , v_g . By Lemma 2.12, $|x_g| > 0$. We say that $|x_g| > |x_{g-2}|$. Otherwise, suppose $|x_g| \leq |x_{g-2}|$. Let $G' = G - v_g v_{g+1} + v_{g+1} v_{g-2}$. Then by Lemma 2.4, $q_{min}(G') < q_{min}(G)$. This is a contradiction because $G' \cong G$. Hence $|x_g| > |x_{g-2}|$. And then $a \leq g-1$.

Subcase 2.1 $a \leq g - 4$. By Lemma 4.1, without loss of generality, suppose $x_{a+1} \leq x_{a-1}$, $x_{a+1}x_a \geq 0$. As Case 1, it is proved that the theorem holds.

Subcase 2.2 a = g - 3. By Lemma 4.1, suppose $x_{g-2} \leq x_{g-4}, x_{g-2}x_{g-3} \geq 0$; suppose $|x_{g-4}| \geq |x_{g-1}|$. Denote by $v_{\tau_{g-3}}$ the pendant vertex attached to v_{g-3} . Let $G_1 = G - v_{g-3}v_{g-4} + v_{g-3}v_{g-1} - v_{g-3}v_{\tau_{g-3}} + v_gv_{\tau_{g-3}}$ (if $x_{g-4} \leq x_{g-1}$, let $G_1 = G - v_{g-2}v_{g-1} + x_{g-2}x_{g-4}$). As Case 1, it is proved that the theorem holds.

Subcase 2.3 a = g - 2. By Lemma 4.1, suppose $x_{g-1} \leq x_{g-3}, x_{g-1}x_{g-2} \geq 0$; suppose $|x_{g-3}| \geq |x_g|$. Denote by $v_{\tau_{g-3}}$ the pendant vertex attached to v_{g-3} . Let $G_1 = G - v_{g-2}v_{g-3} + v_{g-2}v_g$ (if $x_{g-3} \leq x_g$, let $G_1 = G - v_{g-1}v_g + x_{g-1}x_{g-3} - v_{g-3}v_{\tau_{g-3}} + v_gv_{\tau_{g-3}}$). As Case 1, it is proved that the theorem holds.

Subcase 2.4 a = g - 1. Note $|x_g| > |x_{g-2}|$. By Lemma 4.1, $x_{g-2}x_{g-1} \ge 0$. Without loss of generality, suppose $x_{g-3} \ge x_g$, let $G_1 = G - v_{g-2}v_{g-3} + v_{g-2}v_g$ (if $x_{g-3} \le x_g$, let $G_1 = G - v_{g-1}v_g + x_{g-1}x_{g-3} - v_gv_{g+1} + v_{g-3}v_{g+1}$). As Case 1, it is proved that the theorem holds. This completes the proof. \Box

By Lemmas 2.12, 4.7, we get the following Theorem 4.8.

Theorem 4.8 Let G be a nonbipartite connected unicyclic graph of order $n \ge 3$ and with domination number $\frac{n-1}{2}$. Then $q_{min}(G) \ge q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$ with equality if and only if $G \cong \mathscr{H}_{3,\frac{n-3}{2}}$.

5 Proof of main results

Proof of Theorem 1.1. By Lemmas 2.1, 2.7, then G contains a nonbipartite unicyclic spanning subgraph H with $g_o(H) = g_o(G)$, $\gamma(H) = \gamma(G)$ and $q_{min}(H) \leq q_{min}(G)$. By Theorem 4.8, it follows that $q_{min}(H) \geq q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$ with equality if and only if $H \cong \mathscr{H}_{3,\frac{n-3}{2}}$. Thus it follows that $q_{min}(G) \geq q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$.

Suppose that $q_{min}(G) = q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$. Then $q_{min}(H) = q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$ and $H \cong \mathscr{H}_{3,\frac{n-3}{2}}$. For convenience, we suppose that $H = \mathscr{H}_{3,\frac{n-3}{2}}$. Suppose that Y is a unit eigenvector corresponding to $q_{min}(G)$. Note that $q_{min}(\mathscr{H}_{3,\frac{n-3}{2}}) = q_{min}(H) \leq Y^T Q(H) Y \leq Y^T Q(G) Y = q_{min}(G)$. Because we suppose that $q_{min}(G) = q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$, it follows that $Y^T Q(H) Y = Y^T Q(G) Y$ and $Q(H) Y = q_{min}(H) Y$.

For $\mathscr{H}_{3,\frac{n-3}{2}}$ (see Fig. 4.2), we claim that $y_3 > y_1$, $y_3 > y_2$. Otherwise, suppose that $y_3 \le y_1$. Let $H' = \mathscr{H}_{3,\frac{n-3}{2}} - v_3v_4 + v_1v_4$. By Lemma 2.4, it follows that $q_{min}(H') < q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$. This is a contradiction because $H' \cong H \cong \mathscr{H}_{3,\frac{n-3}{2}}$. Thus our claim holds.

If $G \neq H$, combined with Lemma 2.3, then for any edge $v_i v_j \notin E(H)$, it follows that $x_i + x_j \neq 0$, and then $Y^T Q(H) Y < Y^T Q(G) Y$, which contradicts $Y^T Q(H) Y = Y^T Q(G) Y$. Then it follows that $q_{min}(G) = q_{min}(\mathscr{H}_{3,\frac{n-1}{2}})$ if and only if $G \cong \mathscr{H}_{3,\frac{n-1}{2}}$. This completes the proof. \Box

In a same way, with Lemmas 2.13, 2.14 and 4.6, Theorem 1.2 is proved.

Remark It can be seen that the conjecture in [18] that S has the smallest q_{min} holds for the graphs with domination number $\gamma = \frac{n-1}{2}$ and the graphs with girth at most 5. With references [17] and [18], it can also be seen that the minimum q_{min} of the connected nonbipartite graph on $n \geq 5$ vertices, with domination number $\frac{n+1}{3} < \gamma \leq \frac{n-2}{2}$ and girth $g \geq 5$, is still open.

References

- D. Cardoso, D. Cvetković, P. Rowlinson, S. Simić, A sharp lower bound for the least eigenvalue of the signless Laplacian of a nonbipartite graph, Linear Algebra Appl. 429 (2008) 2770-2780.
- [2] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
- [3] D. Cvetković, P. Rowlinson, S. Simić, Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math. (beograd) 81 (95) (2007) 11-27.
- [4] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on signless Laplacian, III, Appl. Anal. Discr. Math. 4 (2010) 156-166.
- [5] K. Das, On conjectures involving second Largest signless Laplacian eigenvalue of graphs, Linear Algebra Appl. 432 (2010) 3018-3029.
- [6] L. de Lima, C. Oliveira, N. de Abreu, V. Nikiforov, The smallest eigenvalue of the signless Laplacian, Linear Algebra Appl. 435 (2011) 2570-2584.
- [7] M. Desai, V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994) 181-194.
- [8] A. Ephremides, J. Wieselthier, D. Baker, A design concept for reliable mobile radio networks with frequency hopping signaling, Proceedings of the IEEE. 75, (1987), 56-73.
- [9] S. Fallat, Y. Fan, Bipartiteness and the least eigenvalue of signless Laplacian of graphs, Linear Algebra Appl. 436 (2012), 3254-3267.
- [10] Y. Fan, Y. Tan, The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number, Discrete Math. 334 (2014) 20-25.
- [11] Michael A. Henninga, Simon Mukwembi, Domination, radius, and minimum degree, Disc. Appl. Math. 157 (2009) 2964-2968.
- [12] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ. 38 (1962).
- [13] C. Payan and N. H. Xuong, Domination-balanced graphs. J. Graph Theory, 6: 23-32, 1982.
- [14] R. Zhang, S. Guo, On the least Q-eigenvalue of a non-bipartite hamiltonian graph, Linear Algebra Appl. 538 (2018) 89-102.
- [15] Y. Wang, Y. Fan, The least eigenvalue of signless Laplacian of graphs under perturbation, Linear Algebra Appl. 436 (2012) 2084-2092.
- [16] G. Yu, S. Guo, M. Xu, On the least signless Laplacian eigenvalue of some graphs, Electron J. Linear Algebra 26 (2013) 560-573.
- [17] G. Yu, S. Guo, R. Zhang, Y. Wu, The domination number and the least Q-eigenvalue, Appl. Math. Comput. 244 (2014) 274-282.
- [18] G. Yu, M. Zhai, C. Yan, S. Guo, The least Q-eigenvalue with fixed domination number, Appl. Math. Comput. 339 (2018) 477-487.
- [19] J. Yu, N. Wang, G. Wang, D. Yu, Connected dominating sets in wireless ad hoc and sensor networks–A comprehensive survey, Comput. Commun. 36 (2013) 121-134.