Further results on the least Q -eigenvalue of a graph with fixed domination number ∗

Guanglong Yu^{a†} Yarong Wu^b Mingqing Zhai^c

^aDepartment of Mathematics, Lingnan normal nniversity, Zhanjiang, 524048, Guangdong, China

b SMU college of art and science, Shanghai maritime university, Shanghai, 200135, China

^c School of mathematics and finance, Chuzhou university, Chuzhou, 239000, Anhui, China

Abstract

In this paper, we proceed on determining the minimum q_{min} among the connected nonbipartite graphs on $n \geq 5$ vertices and with domination number $\frac{n+1}{3} < \gamma \leq \frac{n-1}{2}$. Further results obtained are as follows:

(i) among all nonbipartite connected graph of order $n \geq 5$ and with domination number $\frac{n-1}{2}$, the minimum q_{min} is completely determined;

(ii) among all nonbipartite graphs of order $n \geq 5$, with odd-girth $g_o \leq 5$ and domination number at least $\frac{n+1}{3} < \gamma \leq \frac{n-2}{2}$, the minimum q_{min} is completely determined.

AMS Classification: 05C50

Keywords: Domination number; Signless Laplacian; Nonbipartite graph; Least eigenvalue

1 Introduction

All graphs considered in this paper are connected, undirected and simple, i.e., no loops or multiple edges are allowed. We denote by $||S||$ the *cardinality* of a set S, and denote by $G = G[V(G)]$, $E(G)$ a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G)$ where $|| V(G) || = n$ is the *order* and $||E(G)|| = m$ is the *size*.

In a graph, if vertices v_i and v_j are adjacent (denoted by $v_i \sim v_j$), we say that they *dominate* each other. A vertex set D of a graph G is said to be a *dominating set* if every vertex of $V(G) \setminus D$ is adjacent to (dominated by) at least one vertex in D. The *domination number* $\gamma(G)$ (γ , for short) is the minimum cardinality of all dominating sets of G . For a graph G , a dominating set is called a *minimal dominating set* if its cardinality is $\gamma(G)$. A well known result about $\gamma(G)$ is that for a graph G of order n containing no isolated vertex, $\gamma \leq \frac{n}{2}$ $\frac{n}{2}$ [\[12\]](#page-12-0). A comprehensive study of issues relevant to dominating set of a graph has been undertaken because of its good applications [\[8\]](#page-12-1), [\[19\]](#page-12-2).

Recall that $Q(G) = D(G) + A(G)$ is called the *signless Laplacian matrix* (or Q -matrix) of G, where $D(G) = \text{diag}(d_1, d_2, \dots, d_n)$ with $d_i = d_{eg}(v_i)$ being the degree of vertex v_i $(1 \leq i \leq n)$, and $A(G)$ is the adjacency matrix of G. The signless Laplacian has attracted the attention of many researchers and it is being promoted by many researchers [\[1\]](#page-12-3), [\[2\]](#page-12-4)-[\[6\]](#page-12-5), [\[15\]](#page-12-6).

[∗]Supported by NSFC (Nos. 11771376 & 11571252), "333" Project of Jiangsu (2016) & KPPAT of Anhui (JXBJZD 2016082).

[†]E-mail addresses: yglong01@163.com.

The least eigenvalue of $Q(G)$, denote by $q_{min}(G)$ or q_{min} , is called the least Q-eigenvalue of G. Because $Q(G)$ is positive semi-definite, we have $q_{min}(G) \geq 0$. From [\[2\]](#page-12-4), we know that, for a connected graph G, $q_{min}(G) = 0$ if and only if G is bipartite. Consequently, in [\[7\]](#page-12-7), q_{min} was studied as a measure of nonbipartiteness of a graph. One can notice that there are quite a few results about q_{min} . In [\[1\]](#page-12-3), D.M. Cardoso et al. determined the graphs with the the minimum q_{min} among all the connected nonbipartite graphs with a prescribed number of vertices. In [\[6\]](#page-12-5), L. de Lima et al. surveyed some known results about q_{min} and also presented some new results. In [\[9\]](#page-12-8), S. Fallat, Y. Fan investigated the relations between q_{min} and some parameters reflecting the graph bipartiteness. In [\[15\]](#page-12-6), Y. Wang, Y. Fan investigated q_{min} of a graph under some perturbations, and minimized q_{min} among the connected graphs with fixed order which contains a given nonbipartite graph as an induced subgraph. Recently, in [\[14\]](#page-12-9), the authors determined all non-bipartite hamiltonian graphs whose q_{min} attains the minimum.

Recall that a *lollipop graph* $L_{q,l}$ is a graph composed of a cycle $\mathbb{C} = v_1v_2\cdots v_qv_1$ and a path $\mathbb{P} = v_g v_{g+1} \cdots v_{g+l}$ with $l \geq 1$. For given g and l, a graph of order n is called a $F_{g,l}$ -graph if it is obtained by attaching $n - g - l$ pendant vertices to some nonpendant vertices of a $L_{q,l}$. If $l = 1$, a $F_{q,l}$ -graph is also called a *sunlike* graph. In a graph, a vertex is called a *p*-dominator (or support *vertex*) if it dominates a pendant vertex. In a $F_{q,l}$ -graph if each p-dominator other than v_{q+l-1} is attached with exactly one pendant vertex, then this graph is called a $\mathcal{F}_{g,l}$ -graph. A $\mathcal{F}_{g,l}$ -graph is called a $\mathcal{F}_{g,l}^{\circ}$ -graph if v_g is a p-dominator. In the following paper, for unity, for a $\mathcal{F}_{g,l}$ -graph, $\mathbb C$ and P are expressed as above.

Let \mathcal{H}_1^k be a $\mathcal{F}_{3,\varepsilon-3}$ -graph of order $n \geq 4$ where there are $k \geq 0$ p-dominators among $v_1, v_2,$..., $\varepsilon - 2$ ($\varepsilon \ge 3$. see Fig. 1.1). If $k \ge 1$, in \mathcal{H}_1^k , suppose $v_{a_j}s$ are *p*-dominators where $1 \le j \le k$, $1 \le a_1 < a_2 < \cdots < a_k \le \varepsilon - 2$, and suppose v_{τ_j} is the pendant vertex attached to v_{a_j} . Let $\mathcal{H}_2^k\,=\,\mathcal{H}_1^k\,-\,\sum\,$ k $\sum_{j=1} \nu_{\tau_j} v_{a_j} + \sum_{j=1}$ k $\sum_{j=1} \nu_{\tau_j} v_{\varepsilon-2-k+j}$ (see Fig. 1.1). If $k=0$, then $\mathcal{H}_1^0 = \mathcal{H}_2^0$. If $\alpha \ge 1$, we denoted by $\mathscr{H}_{3,\alpha}$ the graph $\mathcal{H}_2^{\alpha-1}$ of order n in which there are α p-dominators and $v_{\varepsilon-1}$ has only one pendant vertex (where $\varepsilon = n - \alpha + 1$); if $\alpha = 0$, we let $\mathscr{H}_{3,0} = C_3 = v_1v_2v_3v_1$.

In [\[10\]](#page-12-10) and [\[17\]](#page-12-11), the authors first considered the relation between q_{min} of a graph and its domination number. Among all the nonbipartite graphs with both order $n \geq 4$ and domination number $\gamma \leq \frac{n+1}{3}$ $\frac{+1}{3}$, they characterized the graphs with the minimum q_{min} . A remaining open problem is that how about the q_{min} of the connected nonbipartite graph on n vertices with domination number $\frac{n+1}{3} < \gamma \leq \frac{n}{2}$ $\frac{n}{2}$. In [\[18\]](#page-12-12), the authors proceeded on considering this problem. Among the nonbipartite graphs of order $n = 4$, the minimum q_{min} is completely determined; among

the nonbipartite graphs of order n and with given domination number $\frac{n}{2}$, the minimum q_{min} is completely determined; further results about the domination number, the q_{min} of a graph as well as their relation are represented. An open problem still left is that how to determine the minimum q_{min} of the connected nonbipartite graph on $n \geq 5$ vertices with domination number $\frac{n+1}{3} < \gamma \leq \frac{n-1}{2}$ $\frac{-1}{2}$. Let $\mathbb{S} = \mathscr{H}_{3,\alpha}$ be of order $n \geq 4$ where α is the least integer such that $\lceil \frac{n-2\alpha-2}{3} \rceil$ $\frac{2\alpha-2}{3}$ + $\alpha = \gamma$. In [\[18\]](#page-12-12), the authors represented some structural characterizations about the minimum q_{min} for this problem, and conjectured that such $\mathcal S$ has the smallest q_{min} . However, the problem seems really difficult to solve. Motivated by proceeding on solving this problem, we go on with our research and get some further results as follows.

Theorem 1.1 Let G be a nonbipartite connected graph of order $n \geq 5$ and with domination number $n-1$ $\frac{-1}{2}$ *. Then* $q_{min}(G) \geq q_{min}(\mathcal{H}_{3,\frac{n-1}{2}})$ *with equality if and only if* $G \cong \mathcal{H}_{3,\frac{n-1}{2}}$ *.*

Theorem 1.2 *Among all nonbipartite graphs of order* $n \geq 5$ *, with odd-girth* $g_0 \leq 5$ *(length of the shortest odd cycle in this graph) and domination number* $\frac{n+1}{3} < \gamma \leq \frac{n-2}{2}$ $\frac{-2}{2}$, then the least q_{min} attains *the minimum uniquely at a* $\mathscr{H}_{3,\alpha}$ *where* $\alpha \leq \frac{n-3}{2}$ $\frac{-3}{2}$ is the least integer such that $\lceil \frac{n-2\alpha-2}{3} \rceil$ $\frac{2\alpha-2}{3}$ + $\alpha = \gamma$.

2 Preliminary

In this section, we introduce some notations and some working lemmas.

Denote by P_n , C_n , K_n , a path, a n-cycle (of length n), a complete graph of order n respectively. If k is odd, we say C_k an *odd cycle*. The *girth* of a graph G, denoted by g, is the length of the shortest cycle in G. The *odd-girth* for a nonbipartite graph G, denoted by $g_o(G)$ or g_o , is the length of the shortest odd cycle in this graph. $G-v_iv_j$ denotes the graph obtained from G by deleting the edge $v_i v_j \in E(G)$, and let $G - v_i$ denote the graph obtained from G by deleting the vertex v_i and the edges incident with v_i . Similarly, $G + v_i v_j$ is the graph obtained from G by adding an edge $v_i v_j$ between its two nonadjacent vertices v_i and v_j . Given an vertex set S, $G - S$ denotes the graph obtained by deleting all the vertices in S from G and the edges incident with any vertex in S .

A connected graph G of order n is called a unicyclic graph if $||E(G)|| = n$. For $S \subseteq V(G)$, let $G[S]$ denote the subgraph induced by S. Denoted by $d_{istG}(v_i, v_j)$ the $distance$ between two vertices v_i and v_j in a graph G .

For a graph G of order n, let $X = (x_1, x_2, \ldots, x_n)^T \in R^n$ be defined on $V(G)$, i.e., each vertex v_i is mapped to the entry x_i ; let $|x_i|$ denote the absolute value of x_i . One can find that $X^T Q(G) X =$ $\sum_{v_i v_j \in E(G)} (x_i + x_j)^2$. In addition, for an arbitrary unit vector $X \in R^n$, $q_{min}(G) \leq X^T Q(G) X$, with equality if and only if X is an eigenvector corresponding to $q_{min}(G)$.

Lemma 2.1 [\[3\]](#page-12-13) *Let* G *be a graph on* n *vertices and* m *edges, and let* e *be an edge of* G*. Let* $q_1 \geq q_2 \geq \cdots \geq q_n$ and $s_1 \geq s_2 \geq \cdots \geq s_n$ be the Q-eigenvalues of G and $G - e$ respectively. Then $0 \le s_n \le q_n \le \cdots \le s_2 \le q_2 \le s_1 \le q_1.$

Let G_1 and G_2 be two disjoint graphs, and let $v_1 \in V(G_1)$, $v_2 \in V(G_2)$. The *coalescence* of G_1 and G_2 , denoted by $G_1(v_1) \diamond G_2(v_2)$ or $G_1(u) \diamond G_2(u)$, is obtained from G_1 , G_2 by identifying

 v_1 with v_2 and forming a new vertex u where for $i = 1, 2, G_i$ can be trivial (that is, G_i is only one vertex). For a connected graph $G = G_1(u) \diamond G_2(u)$, $i = 1, 2, G_i$ is called a *branch* of G with root u. For a vector $X = (x_1, x_2, \ldots, x_n)^T \in R^n$ defined on $V(G)$, a branch H of G is called a zero branch with respect to X if $x_i = 0$ for all $v_i \in V(H)$; otherwise, it is called a nonzero branch with respect to X.

Lemma 2.2 [\[15\]](#page-12-6) Let G be a connected graph which contains a bipartite branch H with root v_s , *and let* X *be an eigenvector of* G *corresponding to* $q_{min}(G)$ *.*

(i) If $x_s = 0$, then H is a zero branch of G with respect to X;

(ii) If $x_s \neq 0$, then $x_p \neq 0$ for every vertex $v_p \in V(H)$. Furthermore, for every vertex $v_p \in V(H)$, $x_p x_s$ *is either positive or negative depending on whether* v_p *is or is not in the same part of the bipartite graph* H *as* v_s ; consequently, $x_p x_t < 0$ for each edge $v_p v_t \in E(H)$.

Lemma 2.3 [\[15\]](#page-12-6) *Let* G *be a connected nonbipartite graph of order* n*, and let* X *be an eigenvector of* G corresponding to $q_{min}(G)$. T is a tree which is a nonzero branch of G with respect to X and with root v_s . Then $|x_t| < |x_p|$ whenever v_p , v_t are vertices of T such that v_t lies on the unique path *from* v_s *to* v_p *.*

Lemma 2.4 [\[16\]](#page-12-14) Let $G = G_1(v_2) \diamond T(u)$ and $G^* = G_1(v_1) \diamond T(u)$, where G_1 is a connected *nonbipartite graph containing two distinct vertices* v_1, v_2 , and T *is a nontrivial tree. If there exists* an eigenvector $X = (x_1, x_2, \ldots, x_k, \ldots)^T$ of G corresponding to $q_{min}(G)$ such that $|x_1| > |x_2|$ or $|x_1| = |x_2| > 0$, then $q_{min}(G^*) < q_{min}(G)$.

Lemma 2.5 [\[16\]](#page-12-14) Let $G = C(v_0) \diamond B(v_0)$ be a graph of order n, where $C = v_0v_1v_2 \cdots v_{2k}$ is a *cycle of length* $2k + 1$ *, and* B *is a bipartite graph of order* $n - 2k$ *. Then there exists an eigenvector* $X = (x_0, x_1, x_2, \ldots, x_{2k})^T$ corresponding to $q_{min}(G)$ satisfying the following:

- (i) $|x_0| = \max\{|x_i| | v_i \in V(C)\} > 0;$
- (ii) $x_i = x_{2k-i+1}$ *for* $i = 1, 2, ..., k$;
- (iii) $x_i x_{i-1} \leq 0$ *for* $i = 1, 2, \ldots, k$, $x_{2k} x_0 \leq 0$ *and* $x_{2k-i+1} x_{2k-i+2} \leq 0$ *for* $i = 2, \ldots, k$ *.*

Moreover, if $2k + 1 < n$ *, then the multiplicity of* $q_{min}(G)$ *is one, and then any eigenvector corresponding to* $q_{min}(G)$ *satisfies* (i), (ii), (iii).

Lemma 2.6 [\[5\]](#page-12-15) Let G be a connected graph of order n. Then $q_{min} < \delta$, where δ is the minimal *vertex degree of* G*.*

Lemma 2.7 [\[17\]](#page-12-11) *Let* G *be a nonbipartite graph with domination number* $\gamma(G)$ *. Then* G *contains a nonbipartite unicyclic spanning subgraph* H *with both* $g_o(H) = g_o(G)$ *and* $\gamma(H) = \gamma(G)$ *.*

Lemma 2.8 [\[17\]](#page-12-11) *Suppose a graph* G *contains pendant vertices. Then*

(i) *there must be a minimal dominating set of* G *containing all of its* p*-dominators but no any pendant vertex;*

(ii) *if* v *is a* p*-dominator of* G *and at least two pendant vertices are adjacent to* v*, then any minimal dominating set of* G *contains* v *but no any pendant vertex adjacent to* v*.*

Lemma 2.9 [\[11\]](#page-12-16) *(i) For a path* P_n *, we have* $\gamma(P_n) = \lceil \frac{n}{3} \rceil$ $\frac{n}{3}$.

(ii) For a cycle C_n , we have $\gamma(C_n) = \lceil \frac{n}{3} \rceil$ $\frac{n}{3}$.

We define the corona G of graphs G_1 and G_2 as follows. The corona $G = G_1 \circ G_2$ is the graph formed from one copy of G_1 and $\|V(G_1)\|$ copies of G_2 where the *i*th vertex of G_1 is adjacent to every vertex in the *i*th copy of G_2 .

Lemma 2.10 [\[13\]](#page-12-17) Let G be a graph of order n. $\gamma(G) = \frac{n}{2}$ if and only if the components of G are *the cycle* C_4 *or the corona* $H \circ K_1$ *for any connected graph* H *.*

Denote by $C_{3,k}^*$ the graph obtained by attaching a C_3 to an end vertex of a path of length k and attaching $n-3-k$ pendant vertices to the other end vertex of this path.

Lemma 2.11 [\[17\]](#page-12-11) *Among all the nonbipartite graphs with both order* n ≥ 4 *and domination number* $\gamma \leq \frac{n+1}{3}$ $\frac{+1}{3}$ *, we have*

(i) if $n = 3\gamma - 1$, 3γ , $3\gamma + 1$, then the graph with the minimal least Q-eigenvalue attains uniquely at $C_{3, n-4}^*$;

(ii) if $n \geq 3\gamma + 2$, then the graph with the minimal least Q-eigenvalue attains uniquely at $C_{3,3\gamma-3}^*$.

Lemma 2.12 [\[18\]](#page-12-12) *Among all nonbipartite unicyclic graphs of order* n*, and with both domination number* γ *and girth* g ($g \leq n-1$), the minimum q_{min} attains at a $\mathcal{F}_{q,l}$ -graph G for some *l.* Moreover, *for this graph G, suppose that* $X = (x_1, x_2, x_3, \ldots, x_n)^T$ *is a unit eigenvector corresponding to* $q_{min}(G)$. Then we have that $|x_g| > 0$, and $|x_{g+l-1}| = \max\{|x_i| \mid v_i$ is a p-dominator $\}$.

In \mathcal{H}_2^k , for $j = 1, 2, ..., k$, suppose $v_{\tau_{\varepsilon-2-k+j}}$ is the pendant vertex attached to vertex $v_{\varepsilon-2-k+j}$. Suppose $v_{\omega_1}, v_{\omega_2}, \ldots, v_{\omega_s}$ are the pendant vertices attached to vertex $v_{\varepsilon-1}$. If $s \geq 2$, let $\mathcal{H}_3^k = \mathcal{H}_2^k$ $v_{\varepsilon-1-k}v_{\tau_{\varepsilon-1-k}}+v_{\varepsilon-1}v_{\tau_{\varepsilon-1-k}}-\sum^s$ $\sum_{j=2}^{s} v_{\varepsilon-1}v_{\omega_j} + \sum_{j=2}^{s}$ $\sum_{j=2}^{\infty} v_{\omega_1} v_{\omega_j}$. Let $\mathcal{H}_4^{k-1} = \mathcal{H}_2^k - v_{\varepsilon-1-k} v_{\tau_{\varepsilon-1-k}} + v_{\varepsilon-1} v_{\tau_{\varepsilon-1-k}},$ $\mathcal{H}_5^{k-2} = \mathcal{H}_4^{k-1} - v_{\varepsilon-k}v_{\tau_{\varepsilon-k}} + v_{\varepsilon-1}v_{\tau_{\varepsilon-k}}.$

Lemma 2.13 [\[18\]](#page-12-12)

- (i) $\gamma(\mathcal{H}_1^k) \leq \gamma(\mathcal{H}_2^k)$.
- (ii) *If* $\varepsilon k 1 \le 2$, then $\gamma(\mathcal{H}_2^k) = k + 1$ *and* $\gamma(\mathcal{H}_4^{k-1}) = \gamma(\mathcal{H}_2^k) 1$;
- (iii) $If \varepsilon k 1 \geq 3, then \ \gamma(\mathcal{H}_2^k) = \lceil \frac{\varepsilon k 4}{3} \rceil$ $\frac{k-4}{3}$ + k + 1;
- (iv) $\gamma(\mathcal{H}_2^k) \leq \gamma(\mathcal{H}_3^k)$;

(v) If $\varepsilon - k - 1 \geq 3$, $\frac{\varepsilon - k - 4}{3}$ $\frac{k-4}{3} \neq t$ where t *is a nonnegative integral number, then* $\gamma(\mathcal{H}_4^{k-1}) =$ $\gamma(\mathcal{H}_2^k) - 1;$

(vi) If $\varepsilon - k - 1 \geq 3$, $\frac{\varepsilon - k - 4}{3} = t$ where t *is a nonnegative integral number*, $\gamma(\mathcal{H}_4^{k-1}) = \gamma(\mathcal{H}_2^k)$, $\gamma(\mathcal{H}_5^{k-2}) = \gamma(\mathcal{H}_2^k) - 1.$

Lemma 2.14 [\[18\]](#page-12-12)

- (i) $\gamma(\mathcal{H}_{3,0}) = 1$;
- (ii) *If* $\alpha > 1$ *and* $n 2\alpha < 2$ *, then* $\gamma(\mathcal{H}_{3,\alpha}) = \alpha$ *;*
- (iii) *If* $\alpha \geq 1$ *and* $n 2\alpha \geq 3$, *then* $\gamma(\mathcal{H}_{3,\alpha}) = \lceil \frac{n-2\alpha-2}{3} \rceil$ $\frac{2\alpha-2}{3}$ + α .

3 Domination number and the structure of a graph

Let G^* be a sunlike graph of order n and with both girth g and k p-dominators v_1, v_2, \ldots, v_k on \mathbb{C} .

Lemma 3.1 *Let* G *be a sunlike graph of order* n *and with both girth* g *and* k p*-dominators on* C*. Then* $\gamma(G) \leq \gamma(G^*)$ *, where* $\gamma(G^*) = k + \lceil \frac{g-k-2}{3} \rceil$ $\frac{\kappa-2}{3}$.

Proof. Suppose $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ are the k p-dominators on $\mathbb C$ in G, where $1 \leq i_1 < i_2 < \cdots < i_k \leq g$. Suppose that there exists some $1 \leq z \leq k$ such that $i_{z+1} - i_z \geq 2$, where if $z = k$, we let $i_{k+1} = i_1$ and $i_{k+1} - i_k = i_1 + g - i_k$. Let $H = G - \sum_{s=i_k+1}^{i_{k+1}-1} v_s$.

Assertion 1 If $i_{z+1}-i_z \leq 3$, then $\gamma(H) = \gamma(G)$. By Lemma [2.8,](#page-3-0) there is a minimal dominating set D of G which contains all the k p-dominators but no any pendant vertex. Thus both $v_{i_{z+1}}$ and v_{i_z} are in D. Note the minimality of D and $2 \leq i_{z+1}-i_z \leq 3$. Then $D \cap \{v_{i_z+1}\} = \emptyset$ if $i_{z+1}-i_z = 2$; $D \cap \{v_{i_z+1}, v_{i_{z+1}-1}\} = \emptyset$ if $i_{z+1} - i_z = 3$. Thus D is also a dominating set of H. This implies that $\gamma(H) \leq \gamma(G)$. Note that for H, by Lemma [2.8,](#page-3-0) there is a minimal dominating set D' which contains all the k p-dominators but no any pendant vertex. Thus both $v_{i_{z+1}}$ and v_{i_z} are in D'. Then v_{i_z+1} is dominated by D' if $i_{z+1}-i_z=2$; v_{i_z+1} , $v_{i_{z+1}-1}$ are is dominated by D' if $i_{z+1}-i_z=3$. Consequently, D' is also a dominating set of G. This implies that $\gamma(G) \leq \gamma(H)$. As a result, it follows that $\gamma(H) = \gamma(G)$. And then our assertion holds.

Assertion 2 If $i_{z+1} - i_z \geq 4$, then $\gamma(G) = \gamma(H) + \gamma(P_{i_z, i_{z+1}})$ where $P_{i_z, i_{z+1}} = v_{i_z+2}v_{i_z+3} \cdots$ $v_{i_{z+1}-2}$. By Lemma [2.8,](#page-3-0) there is a minimal dominating set D of G which contains all the k pdominators but no any pendant vertex. Thus both $v_{i_{z+1}}$ and v_{i_z} are in D. We claim that at most one of v_{i_z+1} , v_{i_z+2} is in D. Otherwise, suppose that both v_{i_z+1} and v_{i_z+2} are in D. Then $D \setminus \{v_{i_z+1}\}\$ is also a dominating set of G, which contradicts the minimality of D. Consequently, our claim holds. Similarly, we get that at most one of $v_{i_{z+1}-2}$, $v_{i_{z+1}-1}$ is in D. Thus we let $D^{\circ} = ((D \cup \{v_{i_{z}+2}, v_{i_{z+1}-2}\}) \setminus \{v_{i_{z}+1}, v_{i_{z+1}-1}\}) \cap V(P_{i_{z}, i_{z+1}})$ if $v_{i_{z}+1} \in D$, $v_{i_{z+1}-1} \in D$; let $D^{\circ} =$ $((D \cup \{v_{i_{z}+2}\}) \setminus \{v_{i_{z}+1}\}) \cap V(P_{i_{z},i_{z+1}})$ if $v_{i_{z}+1} \in D$ and $v_{i_{z+1}-1} \notin D$; let $D^{\circ} = ((D \cup \{v_{i_{z+1}-2}\}) \setminus \{v_{i_{z}+1}-1\})$ ${v_{i_{z+1}-1}} \cap V(P_{i_z,i_{z+1}})$ if $v_{i_z+1} \notin D$ and $v_{i_{z+1}-1} \in D$; let $D^{\circ} = (D \cap V(P_{i_z,i_{z+1}}))$ if $v_{i_z+1} \notin D$ and $v_{i_{z+1}-1} \notin D$. Note that $D^* = D \setminus (V(P_{i_z,i_{z+1}}) \cup \{v_{i_z+1}, v_{i_{z+1}-1}\})$ is a dominating set of $H, D^* \cup D^*$ is a dominating set of G with cardinality $\gamma(G)$, and note that D° is a dominating set of $P_{i_z,i_{z+1}}$. Thus $\gamma(P_{i_z,i_{z+1}}) \leq ||D^{\circ}||$. Note that both $v_{i_{z+1}-1}$ and $v_{i_{z+1}}$ are dominated by D^* . Consequently, for any minimal dominating set B of $P_{i_z,i_{z+1}}$, then $B\cup D^*$ is also a dominating set of G. Note that $\|B\| = \gamma(P_{i_z,i_{z+1}}) \leq \|D^{\circ}\|$. As a result, $\|B \cup D^*\| \leq \|D\| = \gamma(G)$. Note that the minimality of D. Then $\parallel D^{\circ}\parallel=\parallel B\parallel=\gamma(P_{i_z,i_{z+1}}),$ and then it follows that $\gamma(G)=\gamma(H)+\gamma(P_{i_z,i_{z+1}}).$

Denote by $\tau_{i_j,i_{j+1}}$ the dominating index where we let $i_{k+1} = i_1$ if $i = k$. Let $\tau_{i_j,i_{j+1}} = 0$ if $i_{j+1} - i_j \leq 3$; let $\tau_{i_j, i_{j+1}} = \gamma(P_{i_j, i_{j+1}})$ if $i_{j+1} - i_j \geq 4$. Thus from Assertion 1, Assertion 2 and Lemma [2.8,](#page-3-0) we get that $\gamma(G) = k + \sum_{i=1}^{k} \tau_{i_j, i_{j+1}}$. By Lemma [2.9,](#page-3-1) it follows that $\tau_{i_j, i_{j+1}} =$ $\gamma(P_{i_j,i_{j+1}}) = \lceil \frac{i_{j+1} - i_j - 3}{3} \rceil$ $\frac{-i_j-3}{3}$ if $i_{j+1}-i_j\geq 4$. Note that for any two nonnegative integers x and y, we have $\frac{x}{3}$ $\frac{x}{3}$ + $\frac{y}{3}$ $\frac{y}{3}$ | $\leq \lceil \frac{x+y}{3} \rceil$. Then

$$
\sum_{i=1}^k \tau_{i_j,i_{j+1}} = \sum_{\tau_{i_s,i_{s+1}} \neq 0} \tau_{i_s,i_{s+1}} \le \left\lceil \frac{\sum_{\tau_{i_s,i_{s+1}} \neq 0} (i_{s+1} - i_s - 3)}{3} \right\rceil \le \left\lceil \frac{g - k - 2}{3} \right\rceil.
$$

Thus $\gamma(G) \leq k + \lceil \frac{g-k-2}{3} \rceil$ $\frac{k-2}{3}$. Noting that by Assertion1 and Assertion 2, we have $\gamma(G^*) = k + \lceil \frac{g-k-2}{3} \rceil$. $rac{k-2}{3}$. Then the result follows as desired. This completes the proof. \Box

Theorem 3.2 Suppose that G is a nonbipartite $\mathcal{F}_{g,l}$ -graph with $\gamma(\mathcal{G}) = \frac{n-1}{2}$, $g \geq 5$ and order $n \geq g+1$, and suppose there are exactly f vertices of the unique cycle $\mathbb C$ such that none of them is p*-dominator. Then we get*

- (i) *if* $f = q$ *, then* $q = 5$ *;*
- (ii) *if* $f \neq g$ *, then* $f \leq 3$ *and* $f \neq 2$ *;*

(iii) *if* $f = 3$ *, then the three vertices are consecutive on* \mathbb{C} *, i.e., they are* v_{i-1} *,* v_i *,* v_{i+1} *for some* $1 ≤ i < g$ *, and each in* $(V(\mathbb{C}) \setminus \{v_{i-1}, v_i, v_{i+1}\}) ∪ V(\mathbb{P} - v_{g+l})$ *is a p-dominator (if* $i = 1$ *, then* $v_{i-1} = v_q$).

Proof. Denote by A the set of vertices of $\mathbb C$ and the pendant vertices attached to $\mathbb C$. Let $||A||=z$, and let $A' = V(G) \setminus A$. Then $\gamma(G) \leq \gamma(G[A]) + \gamma(G[A'])$. Note that $A' = \emptyset$, or $G[A']$ is connected with at least 2 vertices. Suppose $f \geq 4$.

(i) $f = g$. Then $z - f = 0$. This means that there is no p-dominator on \mathbb{C} . So, $\mathcal{G}[A']$ is connected with at least 2 vertices. Thus, if $f \ge 9$, by Lemma [2.9,](#page-3-1) then $\gamma(\mathcal{G}) \le \lceil \frac{f}{3} \rceil + \gamma(\mathcal{G}[A']) \le \frac{n-f}{2} + \frac{f+2}{3} <$ $n-1$ $\frac{-1}{2}$. Therefore $f \leq 7$.

Note that g is odd and $g = f$ now. Thus if $\gamma(\mathcal{G}[A']) < \frac{n-f}{2}$ $\frac{-f}{2}$, then $\gamma(\mathcal{G}) \leq \lceil \frac{f}{3} \rceil + \gamma(\mathcal{G}[A']) < \frac{n-1}{2}$ $\frac{-1}{2}$. Hence, it follows that $\gamma(\mathcal{G}[A']) = \frac{n-f}{2}$. Combined with Lemma [2.10,](#page-4-0) it follows that $\mathcal{G}[A'] =$ $P_{\frac{n-f}{2}} \circ K_1$. Here, suppose $P_{\frac{n-f}{2}} = v_{a_1}v_{a_2}\cdots v_{a_t}$ with $t = \frac{n-f}{2}$ $\frac{-J}{2}$, and suppose v_{τ_1} is the unique pendant vertex attached to v_{a_1} . By Lemma [2.8,](#page-3-0) $V(P_{\frac{n-f}{2}})$ is a minimal dominating set of $\mathcal{G}[A']$.

Assume that $f = 7$. Note that $\mathcal G$ is a $\mathcal F_{g,l}$ -graph. If $\mathcal G = \mathbb C + v_gv_{a_1} + \mathcal G[A'],$ then $V(P_{\frac{n-f}{2}}) \cup \{v_2,v_5\}$ is a dominating set of G; if $\mathcal{G} = \mathbb{C} + v_g v_{\tau_1} + \mathcal{G}[A'],$ then $(V(P_{\frac{n-f}{2}}) \setminus \{v_{a_1}\}) \cup \{v_2, v_5, v_{\tau_1}\}$ is a dominating set of G. This implies that $\gamma(G) \leq \frac{n-7}{2} + 2 < \frac{n-1}{2}$ which contradicts $\gamma(G) = \frac{n-1}{2}$. Thus, it follows that $g = 5$.

(ii) $f \neq g$. Note that there is no the case that $z - f = 1$. Then $z - f \geq 2$. By Lemma [3.1,](#page-5-0) $\gamma(\mathcal{G}[A]) \leq \gamma(\mathcal{G}^*[A]) = g - f + \lceil \frac{f-2}{3} \rceil$ $\frac{-2}{3}$] $\leq \frac{z-f}{2} + \lceil \frac{f-2}{3} \rceil$ $\frac{-2}{3}$, where $\mathcal{G}^*[A]$ is a sunlike graph with vertex set A, $\mathbb C$ contained in it and $g - f$ p-dominators $v_1, v_2, \ldots, v_{g-f}$ (defined as $\mathcal G^*$ in Lemma [3.1\)](#page-5-0). Thus, if $f \geq 4$, then $\gamma(\mathcal{G}) \leq \frac{z-f}{2} + \lceil \frac{f-2}{3} \rceil$ $\frac{-2}{3}$] + $\gamma(\mathcal{G}[A']) \leq \frac{n-f}{2} + \lceil \frac{f-2}{3} \rceil$ $\frac{-2}{3}$] $\leq \frac{n-f}{2} + \frac{f}{3} < \frac{n-1}{2}$ $\frac{-1}{2}$. This contradicts that $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Consequently, $f \leq 3$.

Suppose $f = 2$ and suppose that v_j , v_k of $\mathbb C$ are the exact 2 vertices such that neither of them is p-dominator. Note that by Lemma [2.8,](#page-3-0) there is a minimal dominating set D of $\mathcal{G} - v_j - v_k$ which contains all p-dominators but no any pendant vertex. Note that the vertices of $\mathbb C$ other than v_j , v_k are all p-dominators in both $\mathcal{G} - v_j - v_k$ and \mathcal{G} . Thus, each of v_j , v_k is adjacent to at least one p-dominator on \mathbb{C} . So, D is also a dominating set of \mathcal{G} . Note that there is no isolated vertex in $\mathcal{G} - v_j - v_k$. Then $\gamma(\mathcal{G} - v_j - v_k) \leq \frac{n-2}{2}$ $\frac{-2}{2}$, and then $\gamma(\mathcal{G}) \leq \frac{n-2}{2}$ $\frac{-2}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Then (ii) follows.

(iii) Suppose v_a, v_b, v_c are the exact 3 vertices of C such that none of them is p-dominator. If the 3 vertices v_a, v_b, v_c are not consecutive, then each of them can be dominated by its adjacent p-dominator. Note that by Lemma [2.8,](#page-3-0) there are a minimal dominating set D of $\mathcal{G}-v_a-v_b-v_c$ which

contains all p-dominators but no any pendant vertex. Thus such D is also a dominating set of \mathcal{G} . Note that there is no isolated vertex in $\mathcal{G}-v_a-v_b-v_c$. So, $\gamma(\mathcal{G}) \leq ||D|| = \gamma(\mathcal{G}-v_a-v_b-v_c) \leq \frac{n-3}{2}$ $\frac{-3}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Therefore, the 3 vertices v_a, v_b, v_c are consecutive.

Suppose that the 3 vertices are v_{i-1} , v_i , v_{i+1} for some $1 \leq i \leq g$ (here, if $i = g$, we let $v_{i+1} = v_1$; if $i = 1$, we let $v_{i-1} = v_g$). Let $H = \mathcal{G} - v_{i-1} - v_i - v_{i+1}$. Note that there is no isolated vertex in *H*. Thus, $\gamma(H) \leq \frac{n-3}{2}$ $\frac{-3}{2}$. Next, we claim that $\gamma(H) = \frac{n-3}{2}$.

Claim 1 $\gamma(H) = \frac{n-3}{2}$. Otherwise, suppose $\gamma(H) < \frac{n-3}{2}$ $\frac{-3}{2}$, and suppose D is a minimal dominating set of H. Then $D \cup \{v_i\}$ is a dominating set D of G. Thus, $\mathcal{G} < 1 + \frac{n-3}{2} < \frac{n-1}{2}$ $\frac{-1}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Then the claim holds.

By Lemma [2.10,](#page-4-0) $H = \mathcal{L} \circ K_1$ for some acyclic graph \mathcal{L} of order $\frac{n-3}{2}$.

Claim 2 For any minimal dominating set D of H, in \mathcal{G} , at least one of v_{i-1} , v_i , v_{i+1} can not be dominated by D. Otherwise, D is a dominating set of G too. Hence, $\gamma(\mathcal{G}) \leq \frac{n-3}{2}$ $\frac{-3}{2}$, which contradicts $\gamma(\mathcal{G}) = \frac{n-1}{2}$. Then the claim holds.

If $i = g$, then let $H = H_1 \cup H_2$, where $H_1 = \mathcal{G}[A] - v_{g-1} - v_g - v_1$, $H_2 = \mathcal{G}[A'] = P_{\frac{n-s}{2}} \circ K_1$ (if $n = z$, then H_2 is empty). Here, suppose $P_{\frac{n-z}{2}} = v_{a_1}v_{a_2}\cdots v_{a_t}$ with $t = \frac{n-z}{2}$ $\frac{-z}{2}$, and suppose v_{τ_1} is the unique pendant vertex attached to v_{a_1} . Thus there are two possible cases for G, i.e., $\mathcal{G} = \mathcal{G}[A] + v_g v_{a_1} + H_2$ or $\mathcal{G} = \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. Let $\mathcal{Z} = (\mathbb{C} \setminus \{v_{g-1}, v_g, v_1\}) \cup V(P_{\frac{n-z}{2}})$. Note that the vertices in Z are all p-dominators in G. If $G = G[A] + v_gv_{a_1} + H_2$, then Z is also a dominating set of \mathcal{G} ; if $\mathcal{G} = \mathcal{G}[A] + v_g v_{\tau_1} + H_2$, then $(\mathcal{Z} \setminus \{v_{a_1}\}) \cup \{v_{\tau_1}\}\$ is a dominating set of \mathcal{G} . Thus it follows that $\gamma(G) \leq \frac{n-3}{2} < \frac{n-1}{2}$ which contradicts $\gamma(G) = \frac{n-1}{2}$. This implies $i \neq g$.

If $i \neq 1, g - 1$, then H is connected. Let $\mathcal{Z} = (V(\mathbb{C}) \setminus \{v_{i-1}, v_i, v_{i+1}\}) \cup V(\mathbb{P} - v_{g+l}),$ where $\mathbb{P} = v_g v_{g+1} \cdots v_{g+l}$. Then each vertex in \mathcal{Z} is a p-dominator in \mathcal{G} .

If $i = 1$, then let $H = H_1 \cup H_2$, where $H_1 = \mathcal{G}[A] - v_g - v_1 - v_2$, $H_2 = \mathcal{G}[A'] = P_{\frac{n-s}{2}} \circ K_1$ (if $n = z$, then H_2 is empty). Here, suppose $P_{\frac{n-z}{2}} = v_{a_1}v_{a_2}\cdots v_{a_t}$ with $t = \frac{n-z}{2}$ $\frac{-z}{2}$, and suppose v_{τ_1} is the unique pendant vertex attached to v_{a_1} . Thus there are two possible cases for G, i.e., $\mathcal{G} = \mathcal{G}[A] + v_g v_{a_1} + H_2$ or $\mathcal{G} = \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. We say that $\mathcal{G} \neq \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. Otherwise, suppose $\mathcal{G} = \mathcal{G}[A] + v_g v_{\tau_1} + H_2$. Note that $n-z$ is even now and $\mathcal{G} - \{v_2, v_1, v_g, v_{a_1}, v_{\tau_1}\}$ has no isolated vertex. Then for $G - \{v_2, v_1, v_g, v_{a_1}, v_{\tau_1}\}\$, it has a dominating set D with $||D|| \leq \frac{n-5}{2}$. Then $\mathbb{D}\cup \{v_1,v_{\tau_1}\}\$ is a dominating set of \mathcal{G} , which contradicts $\gamma(\mathcal{G})=\frac{n-1}{2}$. This implies that $\mathcal{G} = \mathcal{G}[A] + v_gv_{a_1} + H_2$. It follows that each one in $(V(\mathbb{C}) \setminus \{v_g, v_1, v_2\}) \cup V(\mathbb{P} - v_{g+l})$ is a pdominator. Similarly, for $i = g - 1$, we get that each one in $(V(\mathbb{C}) \setminus \{v_{g-2}, v_{g-1}, v_g\}) \cup V(\mathbb{P} - v_{g+l})$ is a *p*-dominator. Then (iii) follows. \Box

4 The q_{min} among uncyclic graphs

Lemma 4.1 [\[18\]](#page-12-12) Let G be a nonbipartite unicyclic graph of order n and with the odd cycle $C =$ $v_1v_2 \cdots v_gv_1$ *in it. There is a unit eigenvector* $X = (x_1, x_2, \ldots, x_g, x_{g+1}, x_{g+2}, \ldots, x_{n-1}, x_n)^T$ *corresponding to* $q_{min}(G)$ *, in which suppose* $|x_1| = min\{|x_1|, |x_2|, \ldots, |x_g|\}$ *,* $|x_s| = max\{|x_1|, |x_2|$ *,* \ldots , $|x_q|$ *where* $s \geq 2$ *, satisfying that*

(i) $|x_1| < |x_s|$;

(ii) $|x_1| = 0$ *if and only if* $x_g = -x_2 \neq 0$; *if* $|x_1| = 0$ *and* $x_i x_{i+1} \neq 0$ *for some* $1 \leq i \leq g - 1$ *, then* $x_i x_{i+1} < 0$ *; moreover, if* $x_j \neq 0$ *, then* $sgn(x_j) = (-1)^{d_{istH}(v_1, v_j)}$ where $H = G - v_1 v_g$.

(iii) *if* $|x_1| > 0$ *, then*

(1) *if* $3 \le s \le g-1$, then $|x_2| < \cdots < |x_{s-2}| < |x_{s-1}| \le |x_s|$ and $|x_g| < |x_{g-1}| < \cdots < |x_{s+2}| <$ $|x_{s+1}| \leq |x_{s}|;$

(2) if $|x_2| > |x_q|$ *, then* $x_1x_q > 0$ *; for* $1 \leq i \leq g-1$ *,* $x_ix_{i+1} < 0$ *;* $|x_1| \leq |x_q|$ *;*

(3) if $|x_2| < |x_q|$ *, then* $x_1x_2 > 0$ *; for* $2 \le i \le g-1$ *,* $x_ix_{i+1} < 0$ *;* $x_qx_1 < 0$ *;* $|x_1| \le |x_2|$ *;*

- (4) if $|x_2| = |x_q|$, then $|x_1| \leq |x_2|$, and exactly one of $x_1x_q > 0$ and $x_1x_2 > 0$ holds, where (4.1) *if* $x_1x_q > 0$ *, then for* $1 \leq i \leq g-1$ *,* $x_ix_{i+1} < 0$ *;*
	- (4.2) *if* $x_1x_2 > 0$ *, then* $x_ix_{i+1} < 0$ *for* $2 \le i \le g-1$ *and* $x_gx_1 < 0$ *;*
- (5) *at least one of* $|x_{s+1}|$ *and* $|x_{s-1}|$ *is less than* $|x_s|$ *.*

Lemma 4.2 [\[18\]](#page-12-12) If G is a nonbipartite $\mathcal{F}_{g,l}^{\circ}$ -graph with $g \geq 5$, $n \geq g+1$, then there is a graph \mathbb{H} *with girth* 3 *and order n such that* $\gamma(\mathcal{G}) \leq \gamma(\mathbb{H})$ *and* $q_{min}(\mathbb{H}) < q_{min}(\mathcal{G})$ *.*

Lemma 4.3 [\[18\]](#page-12-12) *Suppose that* G *is a nonbipartite* $\mathcal{F}_{3,l}$ -graph of order n where $\mathbb{C} = v_1v_2v_3v_1$. $X = (x_1, x_2, \ldots, x_n)^T$ is a unit eigenvector corresponding to $q_{min}(G)$. Then $|x_3| = \max\{|x_1|,$ $|x_2|, |x_3|\}.$

Theorem 4.4 *Among all nonbipartite unicyclic graphs of order* $n \geq 5$ *with girth* 3 *and domination number at least* $\frac{n+1}{3} < \gamma \leq \frac{n}{2}$, if $\gamma = \frac{n-1}{2}$, the q_{min} attains the minimum uniquely at $\mathscr{H}_{3, \frac{n-3}{2}}$.

Proof. The result follows from Lemmas [2.4,](#page-3-2) [2.12,](#page-4-1) [2.13,](#page-4-2) [4.3](#page-8-0) and Theorem [3.2](#page-6-0) \Box

Let $\mathcal{K} = \{G | G \}$ be a nonbipartite $\mathcal{F}_{g,l}^{\circ}$ -graph of order $n \geq 4$ and domination number at least $\frac{n+1}{3} < \gamma \leq \frac{n}{2}$ $\frac{n}{2}$, where g is any odd number at least 3 and l is any positive integral number and $q_{\mathcal{K}} = \min\{q_{min}(G)| \ G \in \mathcal{K}\}.$

Lemma 4.5 [\[18\]](#page-12-12)

(i) If $n = 4$, the q_K attains uniquely at $\mathcal{H}_{3,1}$;

(ii) *If* $n \geq 5$ *and* $n - 2\gamma \geq 2$, then the least $q_{\mathcal{K}} > q_{min}(\mathcal{H}_{3,\alpha})$ where $\alpha \leq \frac{n-3}{2}$ $\frac{-3}{2}$ *is the least integer such that* $\lceil \frac{n-2\alpha-2}{3} \rceil$ $\frac{2\alpha-2}{3}$ + $\alpha = \gamma$.

Lemma 4.6 For a nonbipartite $\mathcal{F}_{g,l}$ -graph graph G of order $n \geq 5$ and with $g = 5$, there exists a *graph* \mathbb{H} *such that* $g(\mathbb{H}) = 3$, $\gamma(G) \leq \gamma(\mathbb{H})$ *and* $q_{min}(\mathbb{H}) < q_{min}(G)$ *.*

Proof. If $n = 5$, then $G = C_5$. And then the result follows from Lemma [2.11.](#page-4-3) Next we consider the case that $n \geq 6$. By Lemma [2.6,](#page-3-3) we get that $q_{min}(G) < 1$.

Case 1 There is no p-dominator on \mathbb{C} . Then G is like G_1 (see G_1 in Fig. 4.1). By Lemma [2.5,](#page-3-4) there is a unit eigenvector $X = (x_1, x_2, \ldots, x_k, x_{k+1}, x_{k+2}, \ldots, x_{n-1}, x_n)^T$ corresponding to $q_{min}(G)$ such that $|x_5| = \max\{|x_1|, |x_2|, |x_3|, |x_4|, |x_5|\} > 0$, and $x_1 = x_4, x_2 = x_3$. By Lemma [4.1,](#page-7-0) we get that $|x_2| > 0$, $|x_2| < |x_1|$ and $x_2x_1 < 0$. Let $\mathbb{H} = G - v_3v_4 + v_3v_1$. By Lemma [2.4,](#page-3-2) we get that $q_{min}(\mathbb{H}) < q_{min}(G)$. Let $B_1 = \mathbb{H}[v_1, v_2, v_3], B_2 = \mathbb{H} - \{v_1, v_2, v_3\}$. As Lemma [3.1,](#page-5-0) we can get a minimal dominating set D of \mathbb{H} , which contains all p-dominators but no any pendant vertex and no v_1 , such that $D = \{v_2\} \cup D_2$, where $\{v_2\}$ is a dominating set of B_1, D_2 is a dominating set of B_2 . Note that D is also a dominating set of G. So, $\gamma(G) \leq \gamma(\mathbb{H})$.

Fig. 4.1. $G_1 - G_{19}$

Case 2 There is only 1 p-dominator on \mathbb{C} (see $G_2 - G_4$ in Fig. 4.1).

Subcase 2.1 For G_2 , let $\mathbb{H} = G_2 - v_3v_4 + v_3v_1$. As Case 1, it is proved that $\gamma(G_2) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) < q_{min}(G_2).$

Subcase 2.2 For G_3 , suppose $X = (x_1, x_2, \ldots, x_{n-1}, x_n)^T$ is a unit eigenvector corresponding to $q_{min}(G_3)$.

Claim $|x_4| > |x_1|, |x_5| > |x_3|$. Denote by v_k the pendant vertex attached to v_4 . Suppose $0 < |x_4| \le |x_1|$. Let $G'_3 = G_3 - v_4v_k + v_1v_k$. By Lemma [2.4,](#page-3-2) then $q_{min}(G'_3)$ S_3) < $q_{min}(G_3)$. This is a contradiction because G' $y'_3 \cong G_3$. Suppose $|x_4| = |x_1| = 0$. By Lemma [4.1,](#page-7-0) we get that $x_2 \neq 0$, $x_3 \neq 0$. By $q_{min}(G_3)x_2 = 2x_2 + x_3$, $q_{min}(G_3)x_3 = 2x_3 + x_2$, we get $x_2^2 = x_3^2$. Suppose $x_2 > 0$. Then we get $q_{min}(G_3)x_2 = 2x_2+x_3 \ge x_2$. This means that $q_{min}(G_3) \ge 1$ which contradicts $q_{min}(G_3) < 1$. Thus, $|x_4| > |x_1|$. Similarly, we get $|x_5| > |x_3|$. Then the claim holds.

Suppose $|x_1| = \min\{|x_1|, |x_2|, |x_3|\}$ and $x_1 \geq 0$. If $|x_2| > |x_5|$, by Lemma [4.1,](#page-7-0) suppose $x_1x_5 \geq 0$. Let $H = G_3 - v_1v_5$. Also by Lemma [4.1,](#page-7-0) suppose for any $j \neq 1, 5$, sgn $x_j = (-1)^{d_{istH}(v_j, v_1)}$. Let $\mathbb{H} = G_3 - v_1v_5 + v_3v_1$. Because $|x_5| > |x_3|$, it follows that $q_{min}(\mathbb{H}) \le X^T Q(\mathbb{H}) X < X^T Q(G_3) X =$ $q_{min}(G_3)$. Let $B_1 = \mathbb{H}[v_1, v_2], B_2 = \mathbb{H} - \{v_1, v_2\}$. As Lemma [3.1,](#page-5-0) we can get a minimal dominating set D of H, which contains all p-dominators but no any pendant vertex and no v_3 , such that $D = \{v_1\} \cup D_2$, where D_2 is a dominating set of B_2 . Note that D is also a dominating set of G₃. So, $\gamma(G_3) \leq \gamma(\mathbb{H})$. If $|x_2| < |x_5|$, by Lemma [4.1,](#page-7-0) $x_1x_2 \geq 0$. Let $H = G_3 - v_1v_2$. Also by Lemma [4.1,](#page-7-0) suppose for any $j \neq 1, 2$, $sgn x_j = (-1)^{d_{istH}(v_j, v_1)}$. Let $\mathbb{H} = G_3 - v_1v_5 + v_3v_1$. Because $|x_5| > |x_3|$, it follows that $q_{min}(\mathbb{H}) < q_{min}(G_3)$ similarly. As the case that $|x_2| > |x_5|$, it is proved that $\gamma(G_3) \leq \gamma(\mathbb{H})$. If $|x_2| = |x_5|$, by Lemma [4.1,](#page-7-0) without loss of generality, suppose $x_1x_5 \geq 0$. Let $\mathbb{H} = G_3 - v_1v_5 + v_3v_1$. As the case that $|x_2| > |x_5|$, it is proved that $q_{min}(\mathbb{H}) < q_{min}(G_3)$, $\gamma(G_3) \leq \gamma(\mathbb{H}).$

For the both cases that $|x_2| = \min\{|x_1|, |x_2|, |x_3|\}$ and $|x_3| = \min\{|x_1|, |x_2|, |x_3|\}$. As the case that $|x_1| = \min\{|x_1|, |x_2|, |x_3|\}$, it is proved that there exists a graph $\mathbb H$ such that $g(\mathbb H) = 3$, $\gamma(G_3) \leq \gamma(\mathbb{H})$ and $q_{min}(\mathbb{H}) < q_{min}(G_3)$.

In a same way, for G_4 , it is proved that there exists a graph $\mathbb H$ such that $g(\mathbb H) = 3, \gamma(G_4) \leq \gamma(\mathbb H)$ and $q_{min}(\mathbb{H}) < q_{min}(G_4)$.

And in a same way, for the cases that **Case 3** there is exactly 2 p-dominators on \mathbb{C} (see G_5-G_{10}) in Fig. 4.1); Case 4 there is exactly 3 p-dominators on \mathbb{C} (see $G_{11} - G_{15}$ in Fig. 4.1); Case 5 there is exactly 4 p-dominators on \mathbb{C} (see $G_{16} - G_{18}$ in Fig. 4.1); Case 6 there is exactly 5 p-dominators on $\mathbb C$ (see G_{19} in Fig. 4.1), it is proved that the exists a a graph $\mathbb H$ such that $g(\mathbb H) = 3, \gamma(G) \le \gamma(\mathbb H)$ and $q_{min}(\mathbb{H}) \leq q_{min}(G)$. Thus, the result follows as desired. \Box

Lemma 4.7 Let G be a nonbipartite $\mathcal{F}_{g,l}$ -graph of order n for some l and with domination number $n-1$ $\frac{-1}{2}$ *. Then* $q_{min}(G) \geq q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$ with equality if and only if $G \cong \mathscr{H}_{3,\frac{n-3}{2}}$ (see Fig. 4.2).

Proof. Because G is nonbipartite, g is odd. If G is a $\mathcal{F}_{g,l}^{\circ}$ -graph, then the theorem follows from Lemma [4.5.](#page-8-1) If $g = 3$, then the theorem follows from Theorem [4.4.](#page-8-2) For $g = 5$, the theorem follows from Lemma [4.6.](#page-8-3) Next we consider the case that G is not a $\mathcal{F}_{g,l}^{\circ}$ -graph and suppose $g \geq 7$.

Let $X = (x_1, x_2, ..., x_n)^T$ is a unit eigenvector corresponding to $q_{min}(G)$. Suppose $x_a =$ $\min\{|x_1|, |x_2|, \ldots, |x_q|\}.$ Note that by Theorem [3.2,](#page-6-0) in G, there are at most 3 consecutive vertices of C such that none of them is p-dominator, and there are 2 cases as follows to consider.

Case 1 In G, there is exactly one vertex of $\mathbb C$ which is not p-dominator. Note that G is not a $\mathcal{F}_{g,l}^{\circ}$ -graph. Then $n \geq g+2$ and v_g is the only one vertex which is not p-dominator on \mathbb{C} . By a same discussion in the proof of Lemma [4.3](#page-8-0) (see [\[18\]](#page-12-12)), it is proved that $x_g = \max\{|x_1|, |x_2|, \ldots, |x_{g-1}|,$ $|x_g|$. Then we suppose $a \leq g-1$. By Lemma [4.1,](#page-7-0) if $a \leq g-3$, without loss of generality, suppose $x_{a+1} \leq x_{a-1}, x_{a+1}x_a \geq 0, |x_{a-1}| \geq |x_{a+2}|.$ Let $G_1 = G - v_a v_{a-1} + v_a v_{a+2}$ (if $|x_{a-1}| \leq |x_{a+2}|$ and $a \geq 2$, let $G_1 = G - v_{a+1}v_{a+2} + v_{a+1}v_{a-1}$; if $a = 1$, let $G_1 = G - v_1v_g + v_1v_3$). If $a = g - 2$, suppose $|x_{g-1}| \le |x_{g-3}|$, $x_{g-1}x_{g-2} \ge 0$, and then let $G_1 = G - v_{g-1}v_g + v_{g-1}v_{g-3}$. If $a = g - 1$, because $|x_g| \ge |x_{g-2}|$, then suppose $x_{g-1}x_{g-2} \ge 0$. Let $G_1 = G - v_{g-1}v_g + v_{g-1}v_{g-3}$. Note that

 $\gamma(G_1) \leq \frac{n-1}{2}$. As the proof of Lemma [4.2,](#page-8-4) we get that $\gamma(G) \leq \gamma(G_1) = \frac{n-1}{2}$, $q_{min}(G_1) < q_{min}(G)$. Note that $g(G_1) = 3$. Then the theorem follows from Theorem [4.4.](#page-8-2)

Case 2 In G, there are exactly 3 consecutive vertices of $\mathbb C$ such that each of them is not p-dominator. Note that G is not a $\mathcal{F}_{g,l}^{\circ}$ -graph. Combined with Theorem [3.2,](#page-6-0) the 3 vertices of C such that each of them is not p-dominator are v_{g-2} , v_{g-1} , v_g or v_g , v_1 , v_2 . Without loss of generality, we suppose the 3 vertices are v_{g-2} , v_{g-1} , v_g . By Lemma [2.12,](#page-4-1) $|x_g| > 0$. We say that $|x_g| > |x_{g-2}|$. Otherwise, suppose $|x_g| \le |x_{g-2}|$. Let $G' = G - v_g v_{g+1} + v_{g+1} v_{g-2}$. Then by Lemma [2.4,](#page-3-2) $q_{min}(G') < q_{min}(G)$. This is a contradiction because $G' \cong G$. Hence $|x_g| > |x_{g-2}|$. And then $a \leq g-1$.

Subcase 2.1 $a \leq g - 4$. By Lemma [4.1,](#page-7-0) without loss of generality, suppose $x_{a+1} \leq x_{a-1}$, $x_{a+1}x_a \geq 0$. As Case 1, it is proved that the theorem holds.

Subcase 2.2 $a = g - 3$. By Lemma [4.1,](#page-7-0) suppose $x_{g-2} \le x_{g-4}$, $x_{g-2}x_{g-3} \ge 0$; suppose $|x_{g-4}| \ge |x_{g-1}|$. Denote by $v_{\tau_{g-3}}$ the pendant vertex attached to v_{g-3} . Let $G_1 = G - v_{g-3}v_{g-4} +$ $v_{g-3}v_{g-1} - v_{g-3}v_{\tau_{g-3}} + v_g v_{\tau_{g-3}}$ (if $x_{g-4} \le x_{g-1}$, let $G_1 = G - v_{g-2}v_{g-1} + x_{g-2}x_{g-4}$). As Case 1, it is proved that the theorem holds.

Subcase 2.3 $a = g - 2$. By Lemma [4.1,](#page-7-0) suppose $x_{g-1} \le x_{g-3}, x_{g-1}x_{g-2} \ge 0$; suppose $|x_{g-3}| \ge |x_g|$. Denote by $v_{\tau_{g-3}}$ the pendant vertex attached to v_{g-3} . Let $G_1 = G - v_{g-2}v_{g-3} + v_{g-2}v_g$ $(\text{if } x_{g-3} \le x_g, \text{ let } G_1 = G - v_{g-1}v_g + x_{g-1}x_{g-3} - v_{g-3}v_{\tau_{g-3}} + v_gv_{\tau_{g-3}}).$ As Case 1, it is proved that the theorem holds.

Subcase 2.4 $a = g - 1$. Note $|x_g| > |x_{g-2}|$. By Lemma [4.1,](#page-7-0) $x_{g-2}x_{g-1} \ge 0$. Without loss of generality, suppose $x_{g-3} \ge x_g$, let $G_1 = G - v_{g-2}v_{g-3} + v_{g-2}v_g$ (if $x_{g-3} \le x_g$, let $G_1 =$ $G - v_{g-1}v_g + x_{g-1}x_{g-3} - v_gv_{g+1} + v_{g-3}v_{g+1}$. As Case 1, it is proved that the theorem holds. This completes the proof. \Box

By Lemmas [2.12,](#page-4-1) [4.7,](#page-10-0) we get the following Theorem [4.8.](#page-11-0)

Theorem 4.8 Let G be a nonbipartite connected unicyclic graph of order $n \geq 3$ and with domina*tion number* $\frac{n-1}{2}$. Then $q_{min}(G) \geq q_{min}(\mathcal{H}_{3,\frac{n-3}{2}})$ *with equality if and only if* $G \cong \mathcal{H}_{3,\frac{n-3}{2}}$.

5 Proof of main results

Proof of Theorem [1.1.](#page-2-0) By Lemmas [2.1,](#page-2-1) [2.7,](#page-3-5) then G contains a nonbipartite unicyclic spanning subgraph H with $g_o(H) = g_o(G)$, $\gamma(H) = \gamma(G)$ and $q_{min}(H) \leq q_{min}(G)$. By Theorem [4.8,](#page-11-0) it follows that $q_{min}(H) \ge q_{min}(\mathscr{H}_{3,\frac{n-3}{2}})$ with equality if and only if $H \cong \mathscr{H}_{3,\frac{n-3}{2}}$. Thus it follows that $q_{min}(G) \geq q_{min}(\mathcal{H}_{3,\frac{n-3}{2}}).$

Suppose that $q_{min}(G) = q_{min}(\mathcal{H}_{3,\frac{n-3}{2}})$. Then $q_{min}(H) = q_{min}(\mathcal{H}_{3,\frac{n-3}{2}})$ and $H \cong \mathcal{H}_{3,\frac{n-3}{2}}$. For convenience, we suppose that $H = \mathscr{H}_{3,\frac{n-3}{2}}$. Suppose that Y is a unit eigenvector corresponding to $q_{min}(G)$. Note that $q_{min}(\mathcal{H}_{3,\frac{n-3}{2}}) = q_{min}(H) \leq Y^T Q(H) Y \leq Y^T Q(G) Y = q_{min}(G)$. Because we suppose that $q_{min}(G) = q_{min}(\mathcal{H}_{3,\frac{n-3}{2}})$, it follows that $Y^TQ(H)Y = Y^TQ(G)Y$ and $Q(H)Y =$ $q_{min}(H)Y$.

For $\mathscr{H}_{3,\frac{n-3}{2}}$ (see Fig. 4.2), we claim that $y_3 > y_1, y_3 > y_2$. Otherwise, suppose that $y_3 \le y_1$. Let $H' = \mathscr{H}_{3, \frac{n-3}{2}} - v_3v_4 + v_1v_4$. By Lemma [2.4,](#page-3-2) it follows that $q_{min}(H') < q_{min}(\mathscr{H}_{3, \frac{n-3}{2}})$. This is a contradiction because $H' \cong H \cong \mathscr{H}_{3, \frac{n-3}{2}}$. Thus our claim holds.

If $G \neq H$, combined with Lemma [2.3,](#page-3-6) then for any edge $v_i v_j \notin E(H)$, it follows that $x_i + x_j \neq 0$, and then $Y^TQ(H)Y < Y^TQ(G)Y$, which contradicts $Y^TQ(H)Y = Y^TQ(G)Y$. Then it follows that $q_{min}(G) = q_{min}(\mathscr{H}_{3,\frac{n-1}{2}})$ if and only if $G \cong \mathscr{H}_{3,\frac{n-1}{2}}$. This completes the proof. \Box

In a same way, with Lemmas [2.13,](#page-4-2) [2.14](#page-4-4) and [4.6,](#page-8-3) Theorem [1.2](#page-2-2) is proved.

Remark It can be seen that the conjecture in [\[18\]](#page-12-12) that \mathbb{S} has the smallest q_{min} holds for the graphs with domination number $\gamma = \frac{n-1}{2}$ $\frac{-1}{2}$ and the graphs with girth at most 5. With references [\[17\]](#page-12-11) and [\[18\]](#page-12-12), it can also be seen that the minimum q_{min} of the connected nonbipartite graph on $n \geq 5$ vertices, with domination number $\frac{n+1}{3} < \gamma \leq \frac{n-2}{2}$ $\frac{-2}{2}$ and girth $g \ge 5$, is still open.

References

- [1] D. Cardoso, D. Cvetković, P. Rowlinson, S. Simić, A sharp lower bound for the least eigenvalue of the signless Laplacian of a nonbipartite graph, Linear Algebra Appl. 429 (2008) 2770-2780.
- [2] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
- [3] D. Cvetković, P. Rowlinson, S. Simić, Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math. (beograd) 81 (95) (2007) 11-27.
- [4] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on signless Laplacian, III, Appl. Anal. Discr. Math. 4 (2010) 156-166.
- [5] K. Das, On conjectures involving second Largest signless Laplacian eigenvalue of graphs, Linear Algebra Appl. 432 (2010) 3018-3029.
- [6] L. de Lima, C. Oliveira, N. de Abreu, V. Nikiforov, The smallest eigenvalue of the signless Laplacian, Linear Algebra Appl. 435 (2011) 2570-2584.
- [7] M. Desai, V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994) 181-194.
- [8] A. Ephremides, J. Wieselthier, D. Baker, A design concept for reliable mobile radio networks with frequency hopping signaling, Proceedings of the IEEE. 75, (1987), 56-73.
- [9] S. Fallat, Y. Fan, Bipartiteness and the least eigenvalue of signless Laplacian of graphs, Linear Algebra Appl. 436 (2012), 3254-3267.
- [10] Y. Fan, Y. Tan, The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number, Discrete Math. 334 (2014) 20-25.
- [11] Michael A. Henninga, Simon Mukwembi, Domination, radius, and minimum degree, Disc. Appl. Math. 157 (2009) 2964-2968.
- [12] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ. 38 (1962).
- [13] C. Payan and N. H. Xuong, Domination-balanced graphs. J. Graph Theory, 6: 23-32, 1982.
- [14] R. Zhang, S. Guo, On the least Q-eigenvalue of a non-bipartite hamiltonian graph, Linear Algebra Appl. 538 (2018) 89-102.
- [15] Y. Wang, Y. Fan, The least eigenvalue of signless Laplacian of graphs under perturbation, Linear Algebra Appl. 436 (2012) 2084-2092.
- [16] G. Yu, S. Guo, M. Xu, On the least signless Laplacian eigenvalue of some graphs, Electron J. Linear Algebra 26 (2013) 560-573.
- [17] G. Yu, S. Guo, R. Zhang, Y. Wu, The domination number and the least Q-eigenvalue, Appl. Math. Comput. 244 (2014) 274-282.
- [18] G. Yu, M. Zhai, C. Yan , S. Guo, The least Q-eigenvalue with fixed domination number, Appl. Math. Comput. 339 (2018) 477-487.
- [19] J. Yu, N. Wang, G. Wang, D. Yu, Connected dominating sets in wireless ad hoc and sensor networks–A comprehensive survey, Comput. Commun. 36 (2013) 121-134.