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FREE BOUNDARY MINIMAL SURFACES AND

OVERDETERMINED BOUNDARY VALUE PROBLEMS

NIKOLAI NADIRASHVILI AND ALEXEI V. PENSKOI

Abstract. In this paper we establish a connection between free
boundary minimal surfaces in a ball in R3 and free boundary cones
arising in a one-phase problem. We prove that a doubly connected
minimal surface with free boundary in a ball is a catenoid.

1. Introduction

In this paper we investigate free boundary minimal surfaces in a
three-dimensional ball, i.e. proper branched minimal immersions of a
surface M

u : M −→ B
3 ⊂ R

3

such that u(M) meets the boundary sphere S2 = ∂B3 orthogonally. It is
a classical and developed subject, see e.g. the books [DHS10, DHT10a,
DHT10b]. A celebrated result due to J. C. C. Nitsche [Nit72] states
that if M is a disk then u(M) is also a plane disk.
Actually, in the paper [Nit72] a stronger result is announced. Namely,

that this statement holds for capillary surfaces and the angle between
u(M) and S2 is a constant. Details of the proof could be found in the
paper [RS97].
Recently, the result due to J. C. C. Nitsche was generalized by

A. Fraser and R. Schoen in the paper [FS15] to the case of a mini-
mal disk satisfying the free boundary condition in a constant curvature
ball of any dimension.
In this paper we prove that a free boundary doubly connected mini-

mal surface in a three-dimensional euclidean ball is a piece of a catenoid.
Since (i) a minimal map could be parametrized by a conformal pa-

rameter, (ii) a double-connected domain is conformally equivalent to
an annulus

(1) A = {z|ρ < |z| < 1} ⊂ C,
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and (iii) any ball could be transformed by a homotety to a unit ball, it
is sufficient to consider a map from annulus (1) to the unit ball B3

1 ⊂ R3

centered at the origin.

Theorem 1.1. Let u : Ā −→ B̄3
1 ⊂ R3 be a proper branched minimal

immersion such that u ∈ C2(A) ∩C1(Ā), u(∂A) ⊂ S2 = ∂B3
1 and u(A)

meets S2 orthogonally. Then u(A) is a part of a catenoid.

This result was conjectured by A. Fraser and M. Li in [FL14].
Recently A. Fraser and R. Schoen proved the existence of free bound-

ary minimal surfaces in B3 which have genus 0 and n boundary com-
ponents, see the papers [FS16], see also [FPZ17] .
Let us remark that A. Fraser and R. Schoen established in the pa-

pers [FS11, FS16] a remarkable connection between minimal surfaces
with free boundaries in a ball and Riemannian metrics on surfaces with
boundaries extremizing eigenvalues of the Steklov problem on these
surfaces. Let us also remark that connections of spectral isoperimetry
with minimal surfaces is known also for some other spectral problems,
see the paper [NS15].
In this paper we establish by means of the Minkowski transformation

a connection between free boundary minimal surfaces and the extremal
domains on the sphere S

2 for the Dirichlet problem. The last spectral
problem is related to the one-phase free boundary problem for homo-
geneous functions defined in cones. By virtue of this connection we
prove some new results for the one-phase free boundary problem.
The one-phase free boundary problem is a minimization of an integral

J(v) =

∫

G∩{v>0}

(|∇v|2 + 1)dx → min,

where v > 0. It appears in some models related to the cavitational
flow. If v is a minimizer and G+ = {x ∈ G, v(x) > 0} then v is a
solution of the following overdetermined problem in G,

(2)





v > 0 in G,

∆v = 0 on G+,

|∇v| = C on ∂G+ ∩G,

where C > O is a constant. H. W. Alt and L. A. Caffarelli proved
in the paper [AC81] that the question of regularity of the boundary
in the one-phase free boundary problem could be reduced to the one-
phase problem in a cone. Let KßRn be an open (n-dimensional) cone
with a smooth lateral boundary. We are interested in the following
overdetermined problem,
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(3)





∆v = 0 in K,

v = 0 on ∂K,

|∇v| = 1 on ∂K \ {0},
where v is a homogeneous degree 1 function. Let us emphasise that
the unknowns here are both v and K. One can define an energy for the
solutions of system (3) related to J , see the papers [AC81, CS05]. A
solution v of (3) is called stable if it is stable with respect to this energy.
L. A. Caffarlelli, D. Jerison and C. E. Kenig proved that in R3 the only
stable solutions of (3) are linear functions, the correspondent cone K

is a half-space, see the paper [CJK04]. This result was extended to the
dimension 4, see the paper [JS15]. On the other hand, D. De Silva and
D. Jerison gave an example of a nontrivial energy minimizing solution
in dimension 7, see the paper [DSJ09].
We show that result from the paper [CJK04] holds if we just assume

thatK is a simply connected cone instead of the stability of the solution
of system (3).

Theorem 1.2. Suppose that v and K ⊂ R3 is a solution of system (3).
Then
a) if K ∩ S2 is diffeomorphic to a disk then K is a half-space;
b) if K ∩ S2 is diffeomorphic to an anulus then R3 \K is a circular

cone formed by lines with aperture 2 arccos tanhα, where α is a solution
of the equation

√
α tanhα = 1.

The proof of Theorem 1.2 is based on the following involution on
the space of homogeneous order 1 functions. Let f be a homoge-
neous function of order 1 defined in a cone KßR3. Consider the surface
Hf = ∇f(K) called the hérisson of f (the notion was introduced in the
paper [LLR88]). The following theorem which goes back to Minkowski,
see [Bla21, § 78], holds:

Proposition 1.3. Let f be a homogeneous function of degree 1 defined
in a cone KßR3. Let N(Hf ) be a Gauss map of the hérisson Hf .
Then the map N : Hf −→ S2 is inverse at regular points of Hf to
∇f : S2 −→ Hf . Moreover at a regular point z ∈ Hf the sum of
curvature radii of the surface Hf is equal to the trace of the Hessian of
f at N(z).

In particular, from the proposition follows that if f is a harmonic
function then Hf is a minimal surface. It is interesting to notice that
the minimality of Hf follows also from the results of H. Lewy, see the
paper [Lew68].
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Proposition 1.4. Let v be a harmonic function defined in a domain
GßR3. Suppose that rank(Hess v) = 2 in G. Then the set ∇v(G) is a
minimal surface in R

3.

Proposition 1.4 also is a consequence of a deep theory of special
Lagrangian manifolds, see the paper [HL82].
It is interesting to notice that by a remarkable observation of M. Trai-

zet [Tra14] the entire solutions of the one-phase free boundary problem
(2) on the plane are related to complete minimal surfaces in R3. Traizet
constructed a Weierstrass-type map from entire solutions of (2) to im-
mersed minimal surfaces in R3. Surfaces constructed by Traizet are
symmetric with respect to a plane in R3 and hence they meet that
plane orthogonally. It appears that for the simply connected G there
are only two entire solutions of (2) with the corresponding minimal
surfaces a plane and a catenoid.
Notice that a restriction of homogeneous order 1 harmonic function

u on the sphere S2 is an eigenfunction of the Laplacian on K ∩ S2

with the eigenvalue 2. Thus we can set Theorem 1.2 with some gen-
eralizations in terms of overdetermined spectral problem. Let Ω be a
bounded two dimensional simply connected Riemannian surface of a
constant Gaussian curvature κ and with a smooth boundary ∂Ω. For
the Laplace-Beltrami operator ∆ on Ω suppose v be a solution of the
following overdetermined spectral problem:

(4)






∆v = λv in Ω,
v = α on ∂Ω,
|∇v| = β on ∂Ω,

It is expected that nontrivial solutions of system (4) exist only in a
disk. In the flat case and β = 0 that conjecture is known as the Schif-
fer’s conjecture. Its generalization (generalized Schiffer’s conjecture)
was widely discussed, see [Sch01]. It has a dual integral-geometrical
setting, [WCG95]. In the plane case (κ = 0) for β = 0 the above con-
jecture is equivalent to a long standing Pompeiu conjecture, see details
in a beautiful survey of L. Zalcman [Zal80]. On symmetric spaces the
problem was discussed in the paper [BZ80]. The case of the unbounded
domain Ω was discussed in the paper [BCN97]. For a flat unbounded
Ω and λ = α = 0 a nontrivial example of a solution of (4) comes from
the catenoid via the Traizet map. However, for bounded solutions v

the conjecture holds, see the paper [RRS17].
We prove the following

Theorem 1.5. Assume λ = −2κ and v is a solution of system (4).Then
Ω is a geodesic disk.
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2. Proofs of the theorems

Lemma 2.1. If the Gaussian curvature of a free-boundary mininal sur-
face in a three-dimensional ball is constant on a connected component
of a boundary, then this component of the boundary is an arc of a circle.

Proof. We can assume that the ball is of radius 1. Let N denote a unit
normal field on the surface. Let us choose a point p on the component
of the boundary. Since the surface meets the boundary sphere S2 = ∂B3

1

orthogonally, one can choose such an orthonormal basis in the three-
dimensional space that (i) N |p = (0, 0, 1), (ii) the unit tanget vector
to the component of the boundary at p is (0, 1, 0), (iii) the outward
normal vector to S2 at p is (1, 0, 0). Remark now that if we put the
origin at the center of the ball then p = (1, 0, 0) and the sphere is just
the standard unit sphere centered at the origin.
Let us parametrize the surface as (x, y, f(x, y)). Then one has

(5) f(1, 0) = 0, fx(1, 0) = fy(1, 0) = 0.

Then the component of the boundary can be parametrized as

(6) ω(t) = (g(t), t, f(g(t), t)).

Since ω′(0) = (0, 1, 0) and

(7) ω′(t) = (g′(t), 1, fx(g(t), t)g
′(t) + fy(g(t), t)),

one has

(8) g(0) = 1, g′(0) = 0.

Since the surface meets the sphere orthogonally, at each point ω(t) the
unit normal vector

N =
(−fx,−fy, 1)√
1 + f 2

x + f 2
y

is orthogonal to the radius vector of this point, i.e.

(9) − fx(g(t), t)g(t)− fy(g(t), t)t+ f(g(t), t) = 0.

If one takes the derivative of equation (9) with respect to t and one
substitutes t = 0, then one obtains fxy(1, 0) = 0 due to formulae (8).
This implies that

H|p =
fxx(1, 0) + fyy(1, 0)

2
, K|p = fxx(1, 0)fyy(1, 0).

Since the surface is minimal, one has H = 0. It follows that

(10) fyy(1, 0) =
√
−K.
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Let us take

l =

t∫

0

|ω′(t)|dt =
t∫

0

√
(g′(t)2 + 1 + (fx(g(t), t)g′(t) + fy(g(t), t))2 dt

as a natural parameter on the component of the boundary. Then equa-
tions (5) and (8) imply

dl

dt
(0) = 1,

d2l

dt2
(0) = 0.

It follows that

(11)
d2ω

dt2
(0) =

d2ω

dl2
(0)

(
dl

dt
(0)

)2

+
dω

dl
(0)

d2l

dt2
(0) =

d2ω

dl2
(0).

Let us take the derivative of equation (7), substitute t = 0 and use
(5) and (8). One obtains

(12)
d2ω

dt2
(0) = (g′′(0), 0, fyy(1, 0)).

Since the boundary belongs to the sphere, equation (5) imples

g(t)2 + t2 + f(g(t), t)2 = 1.

Let us take the second derivative and substitute t = 0. One obtains

(13) g′′(0) = −1.

Let us now compute the curvature of the boundary at the point p.

Equations (11), (12), (13) and (10) imply

k|p =
∣∣∣∣
d2ω

dl2
(0)

∣∣∣∣ =
∣∣∣∣
d2ω

dt2
(0)

∣∣∣∣ =
√

(g′′(0))2 + (fyy(1, 0))2 =
√
1−K.

Since K is a constant on the connected component of the boundary,
the curvature of this component is also a constant. It is well known
that a curve of constant curvature on a sphere is an arc of a circle.
This finishes the proof. �
Proof of Theorem 1.1. Let A be the annulus (1), and 〈· , ·〉 be the
standard C-bilinear scalar product on C3.

Consider a map u : Ā −→ B̄3
1 ⊂ R3 such that u ∈ C2(A) ∩ C1(Ā),

u(∂A) ⊂ S2 = ∂B3
1,

(14) uzz̄ = 0, 〈uz, uz〉 = 0,

and u(A) meets S2 orthogonally.
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Denote by N the unit normal field on u(A) and by u⊥
zz the component

of uzz normal to u(A), i.e.

uzz = u⊥
zz +

〈uzz, uz̄〉
〈uz, uz̄〉

uz +
〈uzz, uz〉
〈uz, uz̄〉

uz̄.

In fact, the second formula from (14) implies that 〈uzz, uz〉 = 0.
Consider polar coordinates r, θ such that z = reiθ. Since ur and uθ

are tangent to u(A), one has

(15) u⊥
zz =

e−2iθ

4

(
u⊥
rr −

2i

r
u⊥
rθ −

1

r2
u⊥
θθ

)
.

The free boundary condition, i.e. the condition that u(A) meets S
2

orthogonally, implies ur|∂A ⊥ S2. Hence, one has ur = λu on ∂A for
some function λ. It follows that

urθ = λθu+ λuθ =
λθ

λ
ur + λuθ

is a tangent vector. This means that u⊥
rθ = 0 on ∂A. Then equation (15)

implies that e4iθ〈u⊥
zz, u

⊥
zz〉 is real on ∂A. Since z4 = r4e4iθ, it follows that

z4〈u⊥
zz, u

⊥
zz〉 is real and positive on ∂A.

It is well-known that in a simple connected domain for a minimal
surface u there exists an adjoint surface u∗ such that f = u + iu∗ is
holomorphic and l = 〈f ′′, N〉 is a holomorphic function (including the
branch points), see e.g. [DHS10]. It follows that

(16) z4〈u⊥
zz, u

⊥
zz〉 =

z4

4
l2

is also a holomorphic function. A is not simply connected, but the prop-
erty of being holomorphic is local, one can check it in simple connected
neighbourhoods of points of A. Hence, z4〈u⊥

zz, u
⊥
zz〉 is holomorphic on

A. Since z4〈u⊥
zz, u

⊥
zz〉 is real on ∂A, this function is constant on A,

(17) z4〈u⊥
zz, u

⊥
zz〉 = k ∈ R, k > 0.

Let us now consider the celebrated Enneper-Weierstrass representa-
tion. For Φ = 2uz there exist a holomorphic function µ and meromor-
phic function ν 6≡ 0 such that µν2 is holomorphic and

Φ =

(
1

2
µ(1− ν2),

i

2
µ(1 + ν2), µν

)
.

It follows that

u(z) = u0 + Re

∫ z

z0

Φ(z) dz.
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Let z = x+ iy. Let us recall that

(18) ds2 = Λ(dx2 + dy2), Λ =
1

4
|µ|2(1 + |ν|2)2,

(19) l = 〈f ′′, N〉 = −µν ′,

see e.g. [DHS10]. Remark that f could be multivalued since A is not
simply connected, but f ′ = Φ is a holomorphic function.
Let us recall that z0 is a branch point if and only if z0 is a zero

of µ and µν2. Since there is no branch points on the boundary, see
e.g. [CM11], µ has no zeroes on ∂A.

Let us now consider the point z0 = 1 or z0 = ρ on ∂A. Remark that
any point on ∂A could be transformed by a rotation to one of these
two points. Consider the curve u(|z0|eiθ) ⊂ S2 parametrized by θ.

It is well known that for a curve lying on a sphere its osculating
spheres coincide with the initial sphere. It is also well known that
the circle obtained as intersection of the osculating sphere and the
osculating plane at a point of a curve touches this curve at the second
order at this point. It follows that there exist a circle γ(t) ⊂ S

2, where
t is an affine natural parameter, such that

u(z0) = γ(0), uθ(z0) = γ̇(0), uθθ(z0) = γ̈(0).

Performing, if necessary, a rotation and reflection of R3, we can assume
that (i) the circle γ is the circle γ3(t) = const, (ii) γ2(0) = 0, here the
superscripts mean the coordinate number, (iii) N(z0) 6= (0, 0, 1). Let
us remark that property (i) implies

(20) u3
θ(z0) = 0, u3

θθ(z0) = 0,

property (ii) implies

(21) u1
θ(z0) = 0,

and (iii) implies that ν does not have a pole at z0, see e.g. [DHS10].
Combining

(22) uθ = izuz − iz̄uz̄ = − Im(zΦ)

with equations (20) and (21), one has

uθ(z0) =
(
0,−Re

(z0
2
µ(1 + ν2)|z=z0

)
, 0
)
.

Computing |uθ(z0)| directly and using formula (18), we obtain the equa-
tion

∣∣∣Re
(z0
2
µ(z0)(1 + ν2(z0))

)∣∣∣ =
|z0|
2

|µ(z0)|(1 + |ν(z0)|2)|.
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It is easy to prove that for a, b ∈ C the inequality

|Re(a(1 + b2))| 6 |a|(1 + |b|2)
holds, and one has the equality if and only if a, b ∈ R or a = 0.
Since µ has no zeroes on ∂A, it follows that µ(z0), ν(z0) ∈ R.

Since γ(t) is a circle parametrized by an affine natural parameter,
(γ̈1(0), γ̈2(0)) ‖ (γ1(0), γ2(0)). Then γ2(0) = 0 implies

u2
θθ(z0) = γ̈2(0) = 0.

Since

uθθ = −Re(zΦ + z2Φ′),

one has

u2
θθ(z0) = −Re

(
z
i

2
µ(1 + ν2) + z2

i

2
(µ′(1 + ν2) + 2µνν ′)

)
|z=z0 = 0.

It follows that

(µ′(1 + ν2) + 2µνν ′)|z=z0 ∈ R.

But formula (17) implies µν ′|z=z0 ∈ R. It follows that µ′(z0), ν
′(z0) ∈ R.

Let us remark that

2µ(z0)|µ|θ(z0) =
∂

∂θ
|µ|2(z0) = (µθµ̄+ µµ̄θ)|z=z0 = (2Reµθ(z0))µ(z0).

Since µθ(z0) = izµ′(z0) is purely imaginary and µ(z0) 6= 0, one has
|µ|θ(z0) = 0. The same argument proves that at least one of quantities
|ν|θ(z0) or ν(z0) is zero.
Consider now

√
Λ = |µ|

2
(1 + |ν|2). One has

∂

∂θ

√
Λ(z0) =

( |µ|θ
2

(1 + |ν|2) + |µ||ν||ν|θ
)
|z=z0 = 0.

Since the formula Λθ = 0 does not change under rotations of z-plane
or isometries of R3, it holds for any point on ∂A. This means that θ is
an affine natural parameter on each connected component of u(∂A).
Moreover, the formula for Gaussian curvature, see e.g. [DHS10],

K = −
(

4|ν ′|
|µ|(1 + |ν|2)2

)2

and equations (16), (18) and (19) imply that K = − 4k
|z|4Λ2 is a constant

on each connected component of u(∂A).
Then Lemma 2.1 implies that each component of u(∂A) is a circle

lying on S2.
Let a circle σ be a boundary component of u(A) and p ∈ σ. Let

us consider the case when σ is not a great circle on S
2. In this case
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one can find a catenoid H which meets orthogonally S2 at σ. With-
out loss of generality we can assume that the initial minimal surface
could be locally parametrised as (x, y, f(x, y)) and the catenoid as
(x, y, h(x, y)). Since f satisfies the minimal surface equation and have
the same Cauchy data on σ in a neighbourhood of p as h, one has
f(x, y) = h(x, y) where both functions are defined. Then u(A) and H

coincide globally and u is a reparametrisation of a catenoid. Since all
conformal automorphisms of the annulus A are described by Schottky
theorem [Sch77],

z 7→ λz±1,

where |λ| = 1 or ρ, we obtain that u is a catenoid.
In the case when σ is a great circle the same argument could be

applied with a plane disk instead of a cathenoid. As a result, another
connected component of u(∂A) is inside the ball. This contradicts the
assumption u(∂A) ⊂ S2. This finishes the proof. �
Assuming a non-zero Dirichlet boundary condition on ∂K we will

consider a generalization of the problem (3):

(23)





∆v = 0 in K,

v = α|x| on ∂K,

|∇v| = 1 on ∂K \ {0},
where v is a homogeneous degree 1 function. We assume that α ∈ R

is a constant. Then the second boundary condition implies that α ∈
(−1, 1).
Let v be a homogeneous order 1 harmonic function defined in the

cone K and satisfying equation (23). Denote G = K ∩ S2, f = ∇v :
G → R3. Let γßG be the set of critical points of f , i.e., the set of
vanishing of the differential df . Since f is a real analytic map, γ is
either a set of isolated points in G, or it contains a one dimensional
ark γ′, see the paper [Whi65]. Consider the second case. Let γ̃ be
the conic extension of γ′ to R3.Then there is a linear function l in R3

such that l − v = 0, ∇v − ∇l = 0 on γ̃. Since l − v is a harmonic
function then by the uniqueness of the solution of the Cauchy problem
l = v in K and the theorem follows. Suppose now that γ′ is a set of
isolated points. By Proposition 1.3 surface ∇v(G \ γ′)ßR3 is a minimal
surface. By a theorem by Gulliver and Lawson, see [GL86] and [Mee07],
the surface Γ could be extended to the set γ′ as a branching minimal
surface Γ = ∇v(G). Assume now that v satisfies in K equation (3).
Since |∇v| = 1, ∂ΓßS2. Let x ∈ ∂K. Since v is a homogeneous order

1 function ∇v(x) = αx + βe, where |e| = 1, (x, e) = 0,
√

α2 + β2 = 1.
Thus the angle between vectors x and ∇v(x) is fixed for all points
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x ∈ ∂K. By Proposition 1.3 x is a unit normal to Γ at∇v(x) and hence
the angle between vectors N(∇v(x)) and ∇v(x) is fixed for all points
x ∈ ∂K. Thus Γ intersects sphere S

2 under a fixed angle in particular
if α = 0 then Γ meats sphere S2 orthogonally. Now Theorem 1.2 follow
from the theorem of Nitsche and from Theorem 1.1.
Remark. It is easy to see that the curves ∂Γ and ∂K ∩ S2

r are dual
curves on the sphere S2

r .
Proof of Theorem 1.5. Since the Gaussian curvature of Ω is 1

there exists an isometry
i : Ω −→ S

2

and i(Ω) is a domain possibly multi-sheeted on S2. Denote by u the
pull down of the function v from Ω to i(Ω)ßS2. We will assume that the
function u is extended as a homogeneous 1 function to a cone KßR3

over i(Ω), where K is possibly multi-sheeted cone. Then u satisfies
equation (23). The same argument as above shows that the surface ∇u

intersects sphere S2
r under a fixed angle. Hence Theorem 1.5 follows

from Nitsche’s theorem.
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