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In this paper we study minimax and adaptation rates in general isotonic
regression. For uniform deterministic and random designs in [0, 1]d with d ≥
2 and N(0, 1) noise, the minimax rate for the `2 risk is known to be bounded
from below by n−1/d when the unknown mean function f is non-decreasing
and its range is bounded by a constant, while the least squares estimator (LSE)
is known to nearly achieve the minimax rate up to a factor (logn)γ where n
is the sample size, γ = 4 in the lattice design and γ = max{9/2, (d2 +
d+ 1)/2} in the random design. Moreover, the LSE is known to achieve the
adaptation rate (K/n)−2/d{1 ∨ log(n/K)}2γ when f is piecewise constant
on K hyper-rectangles in a partition of [0, 1]d.

Due to the minimax theorem, the LSE is identical on every design point
to both the max-min and min-max estimators over all upper and lower sets
containing the design point. This motivates our consideration of estimators
which lie in-between the max-min and min-max estimators over possibly
smaller classes of upper and lower sets, including a subclass of block
estimators. Under a q-th moment condition on the noise, we develop `q risk
bounds for such general estimators for isotonic regression on graphs. For
uniform deterministic and random designs in [0, 1]d with d ≥ 3, our `2
risk bound for the block estimator matches the minimax rate n−1/d when
the range of f is bounded and achieves the near parametric adaptation rate
(K/n){1 ∨ log(n/K)}d when f is K-piecewise constant. Furthermore, the
block estimator possesses the following oracle property in variable selection:
When f depends on only a subset S of variables, the `2 risk of the block
estimator automatically achieves up to a poly-logarithmic factor the minimax
rate based on the oracular knowledge of S.

Keywords: Isotonic regression, multiple isotonic regression, isotonic regression on graphs, max-
min estimator, min-max estimator, block estimator, lattice design, random design, minimax rate,
adaptive estimation, variable selection, oracle property.

1. Introduction. Let G = (V,E) be a directed graph with vertex set V and edge set E. For a
and b in V , we say that a is a descendant of b if E contains a chain of edges from vj to vj+1 such
that b = v0 and a = vm for some finite m ≥ 0. We write a � b if a = b or a is a descendant of
b. A function f : V → R is non-decreasing on the graph G if f(a) ≤ f(b) whenever a � b. Let
F be the class of all non-decreasing functions on G. In isotonic regression, we observe xi ∈ V and
yi ∈ R satisfying

yi = f(xi) + εi, i = 1, . . . , n, for some f ∈ F,(1)
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where ε1, . . . , εn are independent noise variables with E εi = 0 and Var(εi) ≤ σ2 given the
(deterministic or random) design points {xi}. Note that we allow |V | > n.

An interesting special case of (1) is the multiple isotonic regression where V ⊂ Rd is a
subset of a certain Euclidean space of dimension d, and for a = (a1, . . . , ad)

T ∈ Rd and
b = (b1, . . . , bd)

T ∈ Rd, a � b iff aj ≤ bj for all 1 ≤ j ≤ d. In this case, F is the class of
all non-decreasing functions on V .

Let fn = (f(x1), . . . , f(xn))T and f̂n = (f̂n(x1), . . . , f̂n(xn))T for any estimator f̂n of f .
We are interested in the estimation of f under the (normalized) `q risk

Rq(f̂n,fn) =
1

n
E
∥∥∥f̂n − fn∥∥∥q

q
=

1

n

n∑
i=1

E
∣∣∣f̂n(xi)− f(xi)

∣∣∣q.(2)

In this case, a specification of f̂n is sufficient for the definition of f̂n. For multiple isotonic
regression with random design in V ⊆ Rd, we are also interested in the Lq risk

R∗q(f̂n, f) = E‖f̂n − f‖qLq(V ) = E
∫
V

∣∣∣f̂n(x)− f(x)
∣∣∣qdx.(3)

The literature of univariate isotonic regression (d = 1) encompasses at least the past six decades;
See for example Brunk (1955), Ayer et al. (1955), Grenander (1956), Rao (1969), Groeneboom
(1984), van de Geer (1990, 1993), Donoho (1990), Birgé and Massart (1993), Woodroofe and Sun
(1993), Wang and Chen (1996), Durot (2007), Durot (2008), and Yang and Barber (2017) among
many others for some key developments. The least squares estimator (LSE), say f̂ (lse)

n , has been the
focus of this literature. We describe in some detail here existing results on minimax and adaptation
rates as they are directly related to our study. For any a < b, the `q risk of the LSE in the interval
[a, b] is bounded by

E
∑

a≤xi≤b

∣∣∣f̂ (lse)
n (xi)− f(xi)

∣∣∣q ≤ Cqσq{na,b(∆a,b(fn/σ)

na,b
∧ 1

)q/3
+

na,b∑
j=1

j−q/2
}
,(4)

where ∆a,b(fn/σ) = maxa≤xi<xj≤b{f(xj) − f(xi)}/σ is the range-to-noise ratio for the mean
vector fn in [a, b], na,b = #{j : a ≤ xj ≤ b} is the number of design points in the interval, and
Cq is a constant depending on q only. This result can be found in Meyer and Woodroofe (2000) for
na,b = n, q = 2 and εi ∼ N(0, σ2), and in Zhang (2002) for general a < b and 1 ≤ q < 3 under
a (q ∨ 2)-th moment condition on εi. For ∆−∞,∞(fn/σ) ≤ ∆∗n � 1, (4) yields the cube-root rate
σq(∆∗n/n)q/3 for the LSE in terms of the `q risk in (2). By summing over the risk bound (4) over
K intervals [ak, bk] with ∆ak,bk(fn/σ) = 0, the LSE can be seen to achieve the near parametric
adaptation rate (K/n){1∨ log(n/K)} in the mean squared risk when the unknown f is piecewise
constant on the K intervals and xi ∈ ∪Kk=1[ak, bk] for all i ≤ n. This adaptation rate was explicitly
given in Chatterjee et al. (2015). However, Gao et al. (2017) proved that the sharp adaptation rate
in the mean squared risk, achieved by a penalized LSE, is (K/n) log log(16n/K) in the piecewise
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constant case. Moreover, by summing over the risk bound (4) over a growing number of disjoint
intervals, the LSE has been shown to converge faster than the cube root rate when the measure
f(dx) is singular to the Lebesgue measure (Zhang, 2002).

Compared with the rich literature on univariate isotonic regression, our understanding of the
multiple isotonic regression, i.e. V ⊂ Rd with d > 1, is quite limited. A major difficulty is that the
design points are typically only partially ordered. Univariate risk bounds can be directly applied
to linearly ordered paths in V , but this typically does not yield a nearly minimax rate. However,
significant advances have been made recently on the minimax and adaptation rates for the LSE. For
n1 × · · · × nd lattice designs with n =

∏d
j=1 nj , the LSE provides

R2(f̂
(lse)

n ,fn) ≤ Cdσ2

{
∆(fn/σ)n−1/d(log n)γ + n−2/d(log n)2γ

}
(5)

in certain settings, where ∆(fn/σ) = max1≤i<j≤n |f(xi) − f(xj)|/σ is the range-to-noise ratio
of the mean over the design points. For Gaussian εi and n1 = · · · = nd, the minimax rate is
bounded from below by

inf
f̂n

sup
∆(fn/σ)≤∆∗n

R2(f̂n,fn) ≥ σ2 min
{

1, C0n
−1/d∆∗n

}
.(6)

Moreover, when f is piecewise constant on K hyper-rectangles in a partition of the lattice,

R2(f̂
(lse)

n ,fn) ≤ Cdσ2(K/n)2/d{1 ∨ log(n/K)}2γ .(7)

For d = 2 and Gaussian noise, Chatterjee et al. (2018) proved the above mean squared risk bounds
with γ = 4. Thus, up to a logarithmic factor, the LSE is nearly rate minimax for a wide range
of ∆∗n and also nearly adaptive to the parametric rate σ2K/n when f is piecewise constant on K
rectangles. Han et al. (2017) extended the results of Chatterjee et al. (2018) from d = 2 to d > 2
under the conditions n1 = · · · = nd and ∆(fn/σ) ≤ ∆∗n = 1 in (5) and (6), and also proved
parallel results for random designs with a larger γ = max{9/2, (d2 +d+ 1)/2}. However, there is
still a gap of a poly-logarithmic factor between such upper and lower minimax bounds for d ≥ 2,
and it is still unclear from (7) the feasibility of near adaptation to the parametric rate σ2K/n for
d ≥ 3 when f is piecewise constant on K hyper-rectangles.

We have also seen some progresses in adaptive estimation to variable selection in isotonic
regression on lattices with maxj≤d nj ≤ Cdn

1/d. When the unknown mean function depends on
only a known subset of s variables, say f(x) = fS(xS) where xS = (xj , j ∈ S)T with |S| = s,
one may use the LSE, say f̂ (lse)

n,S , based on the average of yi given xS to attain

R2(f̂
(lse)

n,S ,fn) ≤

Cdσ
2
S

[
∆(fn/σS)n−1/d(log n)γ + n−2/d(log n)2γ

]
, s ≥ 2,

Cdσ
2
S

[
{(∆(fn/σS)n−1/d) ∧ 1}2/3 + n−1/d log n

]
, s = 1,

(8)

with σ2
S = σ2/

∏
j 6∈S nj ≤ Cdσ

2/n1−s/d, which would match the minimax rate for Gaussian εi
for a proper range of ∆(fn/σS) as we discussed in the previous paragraph. For unknown S with
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d ≥ 2 and ∆(fn/σ) ≤ 1 = σ, Han et al. (2017) proved that the LSE f̂
(lse)
n for the general f

automatically achieves the rate n−4/(3d)(log n)16/3 for s = d− 1 and n−2/d(log n)8 for s ≤ d− 2.
As ∆(fn/σS) � n(d−s)/(2d) in their setting, (8) would yield the rates n−(d−s)/(2d)−1/d for s ≥ 2
and n−(d−1)/d−(3−d)+/(3d) for s = 1 up to a logarithmic factor. These oracle minimax rates nearly
match the adaptation rates in Han et al. (2017) for d − s = 2 or (d, s) = (2, 1), but not for other
configurations of (d, s).

We consider isotonic regression on directed graphs, i.e. with general domain V in (1), including
V ⊂ Rd as a special case. In this general setting, Robertson et al. (1988) proved the following
minimax formula for the LSE on the design points:

f̂ (lse)
n (x) = max

U3x
min
L3x

yU∩L = min
L3x

max
U3x

yU∩L(9)

for x = xi, i = 1, . . . , n, where the maximum is taken over all upper sets U containing x, the
minimum over all lower sets L containing x, and yA is the average of the observed yi over xi ∈ A
for any A ⊆ V . As the high complexity of the upper and lower sets for d ≥ 2 could be the culprit
behind the possible suboptimal performance of the LSE in convergence and adaptation rates, we
consider a class of block estimators involving rectangular upper and lower sets. As the minimax
theorem no longer holds in this setting in general, the block estimator, say f̂ (block)

n (x), is defined
as any estimator in-between the following max-min and min-max estimators,

f̂ (max−min)
n (x) = max

u�x,nu,∗>0
min

x�v,nu,v>0
y[u,v], ∀ x ∈ V,

f̂ (min−max)
n (x) = min

x�v,n∗,v>0
max

u�x,nu,v>0
y[u,v], ∀ x ∈ V,(10)

where [u,v] = {x : u � x � v}, nu,v = #{i ≤ n : xi ∈ [u,v]}, nu,∗ = #{i ≤ n : u � xi}
and n∗,v = #{i ≤ n : xi � v}. The idea of replacing the general level sets U ∩ L by rectangular
blocks [u,v] is not new as a preliminary version of the block estimator in the case of V = [0, 1]d

was considered in Fokianos et al. (2017). Some more delicate details of different versions of the
block estimator are discussed in Section 2.

We derive in Section 3 a general `q risk bound for the above block estimator on graphs. For
n1 × · · · × nd lattice designs with d ≥ 2, our general risk bound yields

R2

(
f̂

(block)

n ,fn

)
≤ Cdσ2 min

{
1,∆(fn/σ)n−1/d(log n)I{d=2} + n−1(log n)d

}
(11)

when maxj≤d nj ≤ Cdn1/d, compared with (5) and (6), and the adaptation rate

R2

(
f̂

(block)

n ,fn

)
≤ Cdσ2(K/n){1 ∨ log(n/K)}d(12)

when the true f is non-decreasing and piecewise constant on K hyper-rectangles, compared with
(7).

We also explore the phase transition of the risk bounds, both the minimax lower bound and the
upper risk bound for the block estimator, by presenting them using its effective dimension s in
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the sense that the risk bound only depends on the largest s nj’s. For example, when n1 ≥ n2 ≥
· · · ≥ nd and n3/2

2 /n
1/2
1 ≤ ∆(fn/σ), we show that the risk bound for the block estimator in d-

dimensional isotonic regression with n design points is almost no different from that in univariate
isotonic regression with n1 design points. This phase transition, captured by effective dimension,
proved for d = 2 in Chatterjee et al. (2018), is new for d > 2.

Moreover, perhaps more interestingly, we prove that when the unknown f depends on an
unknown set of s variables, the block estimator achieves near adaptation to the oracle selection
in the sense that for ∆(fn/σ) ≤ ∆∗n,

R2(f̂
(block)

n ,fn)(13)

≤

Cdσ
2
S min

[
(log n)d−s,∆∗nn

(d−s−2)/(2d)(log n)I{s=2} + n−s/d(log n)d
]
, s ≥ 2,

Cdσ
2
S min

[
(log n)d−1,

(
∆∗nn

(d−s−2)/(2d)
)2/3

+ n−1/d(log n)d
]
, s = 1,

with σ2
S = σ2/

∏
j 6∈S nj ≤ Cdσ

2/n1−s/d, while the oracle minimax rate with the knowledge of S
is bounded from below by

inf
f̂n

sup
fn

{
R2(f̂n,fn) : fn ∈ Fn, f(x) = fS(xS),∆(fn/σ) ≤ ∆∗n

}
(14)

≥

Cdσ
2n−1+s/d min

[
1,∆∗nn

(d−s−2)/(2d)
]
, s ≥ 2,

Cdσ
2n−1+1/d min

[
1,
(
∆∗nn

(d−3)/(2d)
)2/3]

, s = 1,

where Fn = {fn : f ∈ F}.
Let f

∗
n be the noiseless version of the block estimator. When the isotonic regression model is

misspecified in the sense of having a non-monotone regression function, we prove that the error
bounds discussed above still hold if f

∗
n is treated as the estimation target; (11), (12) and (13)

are valid with fn replaced by f
∗
n when f 6∈ F in (1). However, such results are of a less ideal

form compared with the existing oracle inequalities for the LSE under misspecified monotonicity
assumption (Chatterjee et al., 2015; Bellec, 2018; Chatterjee et al., 2018; Han et al., 2017).

We summarize our main results as follows. In terms of the mean squared risk, the block estimator
is rate minimax for ∆(fn/σ) ≤ ∆∗n with a wide range of ∆∗n (with no extra logarithmic factor for
d 6= 2), achieves near parametric adaptation in the piecewise constant case, and also achieves near
adaptation to the oracle minimax rate in variable selection. Furthermore, we prove parallel results
for the integrated risk for i.i.d. random designs in [0, 1]d when the joint density of the design point
is uniformly bounded away from zero and infinity. In addition to Sections 2 and 3, we present in
Section 4 some simulation results to demonstrate the advantage of the block estimator over the
LSE in multiple isotonic regression. The full proofs of all theorems, propositions and lemmas in
this paper are relegated to the supplement (Deng and Zhang, 2019).

Here and in the sequel, the following notation is used. For {a, b} ⊂ V , we say b is larger than
a when a � b, and we set [a, b] = {x ∈ V : a � x � b} as a block in G = (V,E). We denote
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by nA the number of sampled points in A, i.e. nA = #{i ≤ n : xi ∈ A}, and set na,b = n[a,b],
na,∗ = #{i ≤ n : a � xi}, and n∗,b = #{i ≤ n : xi � b}. For a = (a1, . . . , ad)

T ∈ Rd
and b = (b1, . . . , bd)

T ∈ Rd, a � b iff aj ≤ bj for all 1 ≤ j ≤ d, and this is also expressed as
a ≤ b. We denote by C a positive numerical constant, and Cindex a positive constant depending on
the “index” only. For example, Cq,d is a positive constant depending on (q, d) only. For the sake of
convenience, the value of such a constant with the same subscript may change from one appearance
to the next. We may write x .index y when x ≤ Cindex y. Finally, we set log+(x) = 1 ∨ log x.

2. The least squares and block estimators. Given design points xi ∈ V and responses yi ∈
R, the isotonic LSE is formally defined as

f̂ (lse)
n = arg min

f∈F

n∑
i=1

{
yi − f(xi)

}2
,

where F = {f : f(u) ≤ f(v) ∀ u � v} is the set of all non-decreasing functions on the directed
graph G = (V,E). As the squared loss only involves the value of f at the design points, this LSE
is any non-decreasing extension of the LSE of the mean vector fn = (f(x1), . . . , f(xn))T in (1),

f̂
(lse)

n = arg min
fn∈Fn

‖y − fn‖22,(15)

where y = (y1, . . . , yn)T and Fn = {fn : f ∈ F} ⊂ Rn. As Fn is defined with no more

than
(
n
2

)
linear constraints, f̂

(lse)

n can be computed with quadratic programming. Potentially more
efficient algorithms for the LSE have been developed in Dykstra (1983), Kyng et al. (2015) and
Stout (2015), among others.

As mentioned in the introduction, the LSE f̂
(lse)

n has an explicit representation in the minimax
formula (9) for isotonic regression on graphs in general (Robertson et al., 1988), although this fact
is better known in the univariate case. As the high complexity of the general upper and lower sets
in the minimax formula seems to be the cause of the analytical or possibly real gap between the
risk of the LSE and the optimal minimax and adaptation rates, we consider in this paper block
estimators f̂ (block)

n of the form

min
{
f̂ (max−min)
n (x), f̂ (min−max)

n (x)
}

≤ f̂ (block)
n (x)(16)

≤ max
{
f̂ (max−min)
n (x), f̂ (min−max)

n (x)
}
, ∀ x ∈ V,

where f̂ (max−min)
n and f̂ (min−max)

n are the block max-min and min-max estimators given in (10).
It is clear from (10) that both the max-min and min-max estimators are non-decreasing on the graph
G = (V,E) as the maximum is taken over increasing classes indexed by x ∈ V and the minimum
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over decreasing classes. However, the monotonicity of the block estimator, f̂ (block)
n ∈ F or even

f̂
(block)

n ∈ Fn, is optional in our analysis. A practical monotone solution is

f̂ (block)
n (x) =

1

2

{
f̂ (max−min)
n (x) + f̂ (min−max)

n (x)
}
, ∀x ∈ V.(17)

We note that the estimator (16) is defined on the entire V . This is needed as we shall consider
the Lq risk (3) as well as the `q risk (2). It would be tempting to define the block estimator by

max
u�x

min
x�v

y[u,v] ≤ f̂ (block)(x) ≤ min
x�v

max
u�x

y[u,v]

(Fokianos et al., 2017). However, unfortunately, when x is not a design point, y[u,v] is undefined

when [u,v] contains no data point, and f̂ (max−min)
n (x) ≤ f̂

(min−max)
n (x) is not guaranteed to

hold even for properly defined max-min and min-max estimators in (10), even in the univariate
case. For example, for V = [0, 1] with two data points (x1, y1) = (0, 1) and (x2, y2) = (1, 2), (10)
gives f̂ (max−min)

n (0.5) = 2 > 1 = f̂
(min−max)
n (0.5). We do have

f̂ (max−min)
n (xi) ≤ f̂ (min−max)

n (xi), i = 1, . . . , n,(18)

but the minimax formula f̂ (max−min)
n = f̂

(min−max)
n may fail even on the design points as the

example in Figure 1 demonstrates.

FIG 1. Responses yi on a 4 × 2 lattice design: At design point x = (4, 1), f̂ (max−min)
n (x) = 0.4 is attained by the

mean inside the magenta box and f̂ (min−max)
n (x) = 0.725 attained by the mean inside the green box.

In the rest of this section, we prove that the max-min and min-max estimators defined with upper
and lower sets in a graph G, including the LSE, can always be expressed as the block estimators
defined as in (16) but over a larger graph than G, so that our analysis of general block estimators is
also relevant to the LSE. We present our argument in a more general setting as follows.

Formally, a subset of vertices U ⊆ V is called an upper set if U = {x : f(x) > t} for some
f ∈ F and real t, or equivalently the indicator function 1U is non-decreasing on G, i.e. 1U ∈ F;
a subset L ⊆ V is called a lower set if L = {x : f(x) ≤ t} for some f ∈ F and t ∈ R, i.e. the
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FIG 2. Amendment of G to include U ∩ L = ∪j∈{1,2},k∈{1,2,3}[uj ,vk] where u(new) has two inbound edges from u1

and u2 and v(new) has three outbound edges to v1, v2 and v3

complement of an upper set. Let U be the collection of all upper sets, L the collection of all lower
sets, and

Ux ⊆ {U ∈ U : x ∈ U} and Lx ⊆ {L ∈ L : x ∈ L}

be certain subsets of the collections of upper and lower sets containing x. The max-min and min-
max estimator can be defined in general as

f̂ (max−min)
n (x) = max

U∈Ux,nU>0
min

L∈Lx,nU∩L>0
yU∩L, x ∈ V,

f̂ (min−max)
n (x) = min

L∈Lx,nL>0
max

U∈Ux,nU∩L>0
yU∩L, x ∈ V,(19)

where nA = {i ≤ n : xi ∈ A}. These max-min and min-max estimators are non-decreasing in
x on the entire graph if Ux is non-decreasing in x and Lx non-increasing in x: Ux ⊆ Ux′ and
Lx ⊇ Lx′ for all ordered pairs x � x′.

By (9), the LSE is a special case of (19) when Ux and Lx are taken to be the largest possible. The
block max-min and min-max estimators (10) are special cases of (19) with Ux = {[u, ∗] : u � x}
and Lx = {[∗,v] : x � v}. Conversely, the LSE, and more generally (19), can be written as

f̂ (max−min)
n (x) = max

u∈Ax,nu,∗>0
min

v∈Bx,nu,v>0
y[u,v], x ∈ V,

f̂ (min−max)
n (x) = min

v∈Bx,n∗,v>0
max

u∈Ax,nu,v>0
y[u,v], x ∈ V,(20)

based on the average response in blocks [u,v] for suitableAx andBx in a larger graphG∗ in which
G is a subgraph. We defineG∗ by amendingGwith new nodes and edges as follows. For each upper
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set U , we amend G with node u(new) = u(new,U) and edges {u→ u(new) : u ∈ U}, whereas for
each lower set L, we amend G with node v(new) = v(new,L) and edges {v(new) → v : v ∈ L}.
Define in the new graph G∗ the estimators (20) with Ax = {u(new,U) : U ∈ Ux} and Bx =
{v(new,L) : L ∈ Lx}. Then, the restriction of (20) on G is identical to (19) as [u(new,U),v(new,L)]
contains the same set of design points as U ∩ L. This can be seen as follows. For any pair of
upper and lower sets U and L, [u(new,U),v(new,L)] ⊃ U ∩ L by the definition of u(new,U) and
v(new,L) and the associated collections of new edges. On the other hand, for any design point
xi ∈ [u(new,U),v(new,L)], u(new,U) � xi could happen only if u � xi for some u ∈ U as there is
no other way to connect to u(new,U) in G∗, while xi � v(new,L) could happen only if xi � v for
some v ∈ L. Thus, yU∩L = y[u(new,U),v(new,L)]. Figure 2 demonstrate a [u(new),v(new)] when G is
a 2-dimensional lattice.

Our theoretical results on general graph in Subsection 3.1 below are applicable to the LSE by
writing the LSE as a block estimator on a much larger amended graph. However, the more specific
results in multiple isotonic regression in Subsections 3.2-3.7 are not application to the LSE as they
are based the calculation of the variability bounds in (21) and (22) below for the lattice and random
designs, not on the enlarged graph.

3. Theoretical results . In this section, we first analyze the block estimator f̂ (block)
n (x) in (16)

for graphs under the most general setting. Specific risk bounds are then given for multiple isotonic
regression with fixed lattice designs and random designs.

3.1. General isotonic regression on graph. We shall extend the risk bounds of Zhang (2002)
from the real line to general graphs. To this end, we first derive an upper bound for the total risk in
subsets V0 ⊂ V ,

Tq(V0) =
∑
xi∈V0

E
∣∣∣f̂ (block)
n (xi)− f(xi)

∣∣∣q,
based on the value of the true f on V0. Such bounds automatically produce adaptive risk bounds
when the true f is “piecewise constant” in a partition of V . Given V0, let rq,+(m) be a non-
increasing function of m ∈ N+ satisfying

rq,+(m) ≥ max

{
E
(

max
u�x

∑
xi∈[u,v]

εi
nu,v

)q
+

: nx,v = m,x � v and v ∈ V0

}
.(21)

This function bounds the error of the block estimator from the positive side when the positive part
of its bias is no greater than the positive part of the maximum average of at least m noise variables.
Similarly, to control the estimation error from the negative side, let rq,−(m) be a non-increasing
function satisfying

rq,−(m) ≥ max

{
E
(

min
v�x

∑
xi∈[u,v]

εi
nu,v

)q
−

: nu,x = m,u � x and u ∈ V0

}
.(22)
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With the above functions rq,±(m), we define for x ∈ V0

mx,− = max
{
nu,x : f(u) ≥ f(x)− r1/q

q,−(nu,x),u � x and u ∈ V0

}
,

ux = arg max
u∈V0:u�x

{
nu,x : f(u) ≥ f(x)− r1/q

q,−(nu,x)
}
,(23)

mx = mx,+ = max
{
nx,v : f(v) ≤ f(x) + r

1/q
q,+(nx,v),x � v and v ∈ V0

}
,

vx = arg max
v∈V0:x�v

{
nx,v : f(v) ≤ f(x) + r

1/q
q,+(nx,v)

}
.

Roughly speaking, the above quantities provide configurations in which the bias of f̂n(xi) is of no
greater order than its variability from the negative and positive sides, so that the error of the block
estimator is of no greater order than an average of mxi,− noise variables on the negative side and
the average of mx = mxi,+ noise variables on the positive side. Thus, it makes sense to count the
frequencies of mxi,− and mxi as follows,

`−(m) = #
{
i : xi ∈ V0,mxi,− ≤ m

}
, `+(m) = #

{
i : xi ∈ V0,mxi ≤ m

}
.(24)

We note that the functions rq,± in (21) and (22) do not depend on f , and all the quantities in (23)
and (24) depend on the true f only through {f(x) : x ∈ V0}.

THEOREM 1. Assume f is non-decreasing on a graph G = (V,E). Let rq,±(m) be given by
(21) and (22), and `±(m) by (24). Then it holds for any block estimator f̂ (block)

n (x) in (16) that

E
{
f̂ (block)
n (xi)− f(xi)

}q
+
≤ 2qrq,+(mxi), ∀xi ∈ V0,(25)

E
{
f̂ (block)
n (xi)− f(xi)

}q
−
≤ 2qrq,−(mxi,−), ∀xi ∈ V0.

Consequently, for any upper bounds `∗±(m) ≥ `±(m) with `∗±(0) = 0,

Tq(V0) ≤
∞∑
m=1

2qrq,+(m)
{
`∗+(m)− `∗+(m− 1)

}
(26)

+
∞∑
m=1

2qrq,−(m)
{
`∗−(m)− `∗−(m− 1)

}
.

Theorem 1 provides risk bound for the block estimator (16) over a subset V0 of design points in
terms of upper bound functions rq,±(m) and `∗±(m). Ideally, we would like to have

rq,±(m) = Cq,dσ
qm−q/2(27)

in (21) and (22). When the design points in V0 are linear and the (q ∨ 2)-th moment of the noise
variable is uniformly bounded, (21) and (22) hold for the above choice of rq,±(m). This choice of
rq,±(m) is also valid when V is a lattice in Rd and εi are independent variables with uniformly
bounded (q ∨ 2)-th moment, as we will prove in Subsection 3.3.
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3.2. Minimax lower bound in multiple isotonic regression with lattice designs. We study in
the rest of this section multiple isotonic regression in V ⊆ Rd where a � b iff a ≤ b, i.e.
aj ≤ bj ∀ 1 ≤ j ≤ d, for all a = (a1, . . . , ad)

T and b = (b1, . . . , bd)
T , and F is the class of all

non-decreasing functions f(t1, . . . , td) ↑ tj , ∀ j = 1, . . . , d.

The lattice design we are considering is given by

V =
{
xi : 1 ≤ i ≤ n

}
= [1,n] =

d∏
j=1

{1, . . . , nj},(28)

wheren = (n1, . . . , nd)
T with positive integers nj and n =

∏d
j=1 nj . Here [1,n] is treated as a set

of integer-valued vectors in Nd, forming a lattice. Occasionally, we may also use [u,v] to denote
a hyper-rectangle of real numbers in continuum. This slight abuse of notation typically would not
lead to confusion, for example in xi ∈ [u,v], but we would be specific if necessary. Without loss
of generality, we assume in this subsection n1 ≥ n2 ≥ · · · ≥ nd. In the above lattice design, we
provide a minimax lower bound in multiple isotonic regression as follows.

PROPOSITION 1. Suppose εi ∼ N(0, σ2). Let ∆(fn/σ) = {f(n) − f(1)}/σ, nd+1 = 1,
n∗s =

∏s
j=1 nj , ts = n∗s/n

s
s, td+2 = ∞ and sq = d2/(q − 1)e ∧ (d + 1). Let h0(t) = ∆∗n

√
t and

define piecewise H(t) = min
{

1, h0(t)/(n∗s/t)
1/(s∧d)

}
, t ∈ [ts, ts+1], s = 1, . . . , d+ 1. Then,

inf
f̂

sup
{
Rq(f̂ ,fn) : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
(29)

&q,d σq max
{

(t ∧ n)−q/2H(t) : t ∧ h0(t) ≥ 1
}

= σq ×



1, n1 ≤ ∆∗n, (s = 0)(
∆∗n/(n

∗
s)

1/s
)qs/(2+s)

ns+1/t
1/2
s+1 ≤ ∆∗n ≤ ns/t1/2s , (1 ≤ s < sq)

∆∗n/
(
nst

(q−1)/2
s

)
, t−1/2

s ≤ ∆∗n ≤ ns/t1/2s , (s = sq ≤ d)

(∆∗n)q−2/s/(n∗s)
1/s, t

−1/2
s+1 ≤ ∆∗n ≤ t−1/2

s , (sq ≤ s ≤ d)

n−q/2, 0 ≤ ∆∗n ≤ n−1/2. (s = d+ 1)

In particular, when n1 = · · · = nd = n1/d and ∆∗n ≥ n−1/2, the right-hand side of (29) is

σq ×

{
min

{
1,
(
∆∗n/n

1/d
)qd/(d+2)}

, q ≤ 1 + 2/d,

min
{

1,∆∗n/n
1/d, (∆∗n)q−2/d

/
n1/d

}
, q ≥ 1 + 2/d.

(30)

On the right-hand side of (29), the breaking points on [0,∞) for ∆∗n are

0, n−1/2 = t
−1/2
d+1 , t

−1/2
d , . . . , t−1/2

sq , nsq/t
1/2
sq , . . . , n1/t

1/2
1 = n1.
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Note that 1 lies in between t−1/2
sq and nsq/t

1/2
sq . The above minimax lower bound also depends on

the loss function through q and the dimension of the lattice. For q ≥ 3, we have sq = 1, so that

inf
f̂

sup
{
Rq(f̂ ,fn) : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
&q,d σ

q min
(

1,∆∗n/n1

)
for ∆∗n ≥ 1. However for q = 2, we have sq = 2, so that (29) yields

inf
f̂

sup
{
R2(f̂ ,fn) : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
(31)

&d σ2 ×


1, n1 ≤ ∆∗n, (s = 0)(
∆∗n/n1

)2/3
, n

3/2
2 /n

1/2
1 ≤ ∆∗n ≤ n1, (s = 1)

∆∗n/(n1n2)1/2,
√
n2/n1 ≤ ∆∗n ≤ n

3/2
2 /n

1/2
1 . (s = 2)

For ∆∗n � 1, this matches the lower bound for the `2 minimax rate in Chatterjee et al. (2018) for
d = 2 and Han et al. (2017) for d ≥ 3. For 5/3 ≤ q < 2 ≤ d, we have sq = 3.

If (29) is achievable, the integer parameter s can be viewed as the effective dimension of
the isotonic regression problem as the rate depends on n only through n1, . . . , ns when ns+1 is
sufficiently small; the rate would also be achievable by separate s-dimensional isotonic regression
in the

∏d
j=s+1 nj = n/n∗s individual s-dimensional sheets with fixed xs+1, . . . , xd. For example, in

(31), the minimax rate can be achieved by f̂n = y for s = 0, by the row-by-row univariate isotonic
regression for s = 1, and by individual bivariate isotonic least squares up to a factor of (log n)4 for
s = 2 (Chatterjee et al., 2018). We will prove in the next subsection that the block estimator (16)
achieves the rate in (29) for a wide range of ∆∗n, so that Proposition 1 indeed provides the minimax
rate.

In the proof of Proposition 1, we divide [1,n′] ⊂ V = [1,n] into a K1 × · · · × Kd lattice
of hyper-rectangles of size m1 × · · · × md, indexed by k = (k1, . . . , kd)

T , kj = 1, . . . ,Kj ,
j = 1, . . . , d, and consider the class of piecewise constant functions f(x) = g(k) satisfying

g(k) = σmin
{

∆∗n, (m
∗)−1/2

[
θ(k) + (k1 + · · ·+ kd − k∗)+

]}
, θ(k) ∈ {0, 1},

and f(x) = σ∆∗n for x ∈ [1,n] \ [1,n′], where m∗ =
∏d
j=1mj is the size of the hyper-rectangle.

As g(k) is non-decreasing in kj for each j for all θ(k) ∈ {0, 1}, this construction provides a lower
bound for the `q risk proportional to the product of σq(m∗)−q/2 and the number of free θ(k). This
is summarized in the following lemma.

LEMMA 1. Under the conditions of Proposition 1,

inf
f̂

sup
{
E
∥∥f̂ − fn∥∥qq : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
(32)

≥ cqcdσ
qn max

m∈M

{
1

(m∗)q/2
min

( √
m∗∆∗n

maxjbnj/mjc
, 1

)}
,
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where cq = infδ Eµ∼Bernoulli(1/2)

∣∣δ(N(µ, 1)) − µ
∣∣q
q

is the Bayes risk for estimating µ with the
Bernoulli(1/2) prior based on a single N(µ, 1) observation, cd is a constant depending on d only,

M =
{
m = (m1, · · · ,md) : mj ∈ N+,mj ≤ nj ∀j ≤ d,

√
m∗∆∗n ≥ 1

}
,

and m∗ =
∏
j≤dmj . Moreover, the optimal configuration ofm in (32) must satisfy either mj = 1

or bnj/mjc = max1≤j≤dbnj/mjc for each j.

3.3. The block estimator in multiple isotonic regression with lattice designs. We further divide
this subsection into three separate sub-subsections to study the performance of the block estimator
at a single design point xi, in an arbitrary sub-block [a, b] ⊂ [1,n], and on the entire lattice [1,n].
It is of great interest to show that the block estimator in (16) matches the minimax lower bound
given in Proposition 1, which will be done in the third sub-subsection for general q and d.

3.3.1. Risk of the block estimator at a single design point. For any given point in the design
lattice, the following proposition asserts that the block estimator matches certain one-sided oracle
estimators in the rate of one-sided Lq risks.

PROPOSITION 2. Let f̂ (block)
n (x) be the block estimator in (16) with the lattice design V =

[1,n] in (28). Let q ≥ 1 and rq,±(m) be as in (21) and (22). Assume εi are independent N(0, σ2)
random variables. Then, for any design point xi ∈ [1,n],

E
(
f̂ (block)
n (xi)− f(xi)

)q
+
≤ 2qrq,+(mxi) ≤ Cq,d min

xi≤v≤n
E
(
y[xi,v] − f(xi)

)q
+
,(33)

where y[u,v] =
∑
u≤xi≤v yi/nu,v, and

E
(
f̂ (block)
n (xi)− f(xi)

)q
−
≤ 2qrq,−(mxi) ≤ Cq,d min

1≤u≤xi
E
(
y[u,xi] − f(xi)

)q
−
.(34)

Consequently, with Eg being the expectation under which yi = g(xi) + εi,

E
∣∣∣f̂ (block)
n (xi)− f(xi)

∣∣∣q(35)

≤ Cq,d min
u≤xi≤v

{
Eg
∣∣∣y[u,v] − g(xi)

∣∣∣q : g ∈ F, g(v) = f(v) ∀v ≥ xi
}

+Cq,d min
u≤xi≤v

{
Eg
∣∣∣y[u,v] − g(xi)

∣∣∣q : g ∈ F, g(u) = f(u) ∀u ≤ xi
}
.

Suppose we are confined to consider only block mean estimators y[u,v] with no negative bias
in the estimation of f(xi) but we also want to control the positive side of the error. As f is non-
decreasing but otherwise unknown, we are thus forced to choose u ≥ xi. As y[u,v] with xi ≤ u ≤
v would have larger bias and variance than y[xi,v], the optimal [u,v] is given by

min
u=xi≤v≤n

E
(
y[xi,v] − f(xi)

)q
+
.
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The above minimum can be viewed as an oracle benchmark under the no-negative-bias constraint
as the solution of the optimal v still depends on f . Although the block estimator (16) is unlikely to
be unbiased, (33) and (34) assert that its one-sided risks match the rates of such oracle benchmarks
from both the positive and negative sides. Another interpretation of the performance of the block
estimator is (35) in which the oracle expert has to guard against the worst case scenarios in the
uncertainty of f on either sides, but not simultaneously on both.

We prove Proposition 2 with an application of Theorem 1. This requires more explicit variability
bounds rq,±(m) in (21) and (22) as in (27). This validity of (27) is a consequence of the following
lemma, which extends Doob’s inequality to certain multiple indexed sub-martingales. It plays a
key role in removing the normality assumption on the noise ε1, . . . , εn in our analysis.

LEMMA 2. Let T = T1 × · · · × Td ⊆ Rd be an index set with Tj ⊆ R. Let {ft, t ∈ T}
be a collection of random variables. Suppose for each j and each (s1, . . . , sj−1, tj+1, . . . , td),
{fs1,...,sj−1,t,tj+1,...,td , t ∈ Tj} is a sub-martingale with respect to certain filtration {F(j)

t , t ∈ Tj}.
Then, for all q > 1 and t ∈ T,

E max
s∈T,s≤t

∣∣fs∣∣q ≤ (q/(q − 1))qd E
∣∣ft∣∣q.

In particular when εi’s are independent random variables with Eεi = 0,

Emax
s≤t

∣∣∣∣ ∑
xi≤s

εi

∣∣∣∣q ≤
(q/(q − 1))qd E

∣∣∑
xi≤t εi

∣∣q, q ≥ 2,(
4dE

∣∣∑
xi≤t εi

∣∣2)q/2, 1 ≤ q < 2.

3.3.2. Risk of the block estimator in a sub-block. To automatically deal with adaptation which
gives better risk bound when f(·) is piecewise constant, we first consider the risk in one of such
“piece”, a hyper-rectangle [a, b] ⊆ V = [1,n].

THEOREM 2. Let f̂ (block)
n (x) be the block estimator in (16) with the lattice design V = [1,n]

in (28). Assume εi are independent random variables with E εi = 0 and E|εi|q∨2 ≤ σq∨2. Let
a ≤ b be integer vectors in V = [1,n] and ñj = bj − aj + 1. Suppose ñ1 ≥ · · · ≥ ñd. Define
ñ = na,b, ñd+1 = 1, ñ∗s =

∏s
j=1 ñj and ts = ñ∗s/ñ

s
s (with 1 = t1 ≤ · · · ≤ td ≤ td+1 = ñ). Then,

for q ≥ 1 and any f ∈ F with ∆a,b(fn/σ) = {f(b)− f(a)}/σ ≤ ∆∗n,

Tq([a, b]) =
∑

xi∈[a,b]

E
∣∣f̂ (block)
n (xi)− f(xi)

∣∣q(36)

≤ C∗q,d na,b σ
q

(
H̃(1) +

∫ na,b

1

H̃(dt)

tq/2
+

1

na,b

d∏
j=1

∫ ñj

0

dt

(t ∨ 1)q/2

)
,

where H̃(t) is a non-decreasing and continuous function of t, defined piecewise by H̃(t) =
min

{
1,∆∗nt

1/2(t/ñ∗s)
1/s
}

for ts ≤ t ≤ ts+1, s = 1, . . . , d, and C∗q,d is continuous in q ∈ [1,∞)
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and non-decreasing in d. Moreover,

H̃(1) +

∫ na,b

1
t−q/2H̃(dt)(37)

.q,d


1, ñ1 ≤ ∆∗n, (s = 0)(
∆∗n/(ñ

∗
s)

1/s
)qs/(2+s)

, ñs+1/t
1/2
s+1 ≤ ∆∗n ≤ ñs/t1/2s , (1 ≤ s < sq)(

∆∗n/
(
ñst

(q−1)/2
s

))
Λs, ∆∗n ≤ ñs/t1/2s , (s = sq ≤ d)

where sq = d2/(q − 1)e ∧ (d+ 1) is as in Proposition 1 and

Λs =

[
log+

(
min

{ ñs
ñs+1

,
ñs/(ñ

∗
s)

1/(s+2)

(∆∗n)2/(s+2)

})]I{2/(q−1)=s}
.(38)

REMARK 1. The last component on the right-hand side of (36) is bounded by

σq
d∏
j=1

∫ bj−aj+1

0

dt

(t ∨ 1)q/2
.q,d σ

q

[
n

1−q/2
a,b +

( d∏
j=1

log+(bj − aj + 1)
)I{q=2}

]
.(39)

When ∆a,b(fn/σ) = 0, H̃(t) = 0 for all t, so that (39) is an upper bound for the rate of the total
risk Tq([a, b]) in the block [a, b] by Theorem 2, for any a ≤ b. This yields the adaptation rate
stated in Subsection 3.4.

REMARK 2. The function H̃(t) is defined in the same way as H(t) is in Proposition 1 but
for the dimensions {ñj = bj − aj + 1, j ≤ d} of [a, b] and range-to-noise ratio within [a, b].
When [a, b] = [1,n], we have H̃(t) = H(t) for all t ∈ [1, n]. Thus, as discussed below (31), the
integer parameter s in (37), completely determined by {ñj}, ∆∗n and q, has the interpretation as
the effective dimension for the estimation of f in [a, b] subject to {f(b)− f(a)}/σ ≤ ∆∗n. We note
that as H̃(t) is a smooth fit of pieces proportional to t1/2+1/s or 1, the upper limit of the integration
is actually t∗ = min{t ≥ 1 : H̃(t) = 1 or t = ña,b}, which depends on ∆∗n, and the effective
dimension s is then determined by the comparison between t∗ and ts and the critical sq.

In addition to the validity of (27) as variability bounds in (21) and (22), which follows from
Lemme 2, the proof of Theorem 2 requires the complexity bounds for the `±(m) in (24). We
outline here an analysis of the count `+(m) in (24) in the case where ñj/ñd are integers and
m ≥ td = ñ/ñdd. We note that td = 1 when ñj = ñd for all j. Upper bounds for both `±(m) in the
general setting are given in the proof of Theorem 2 in subsection A3.3 of the supplement.

To find upper bounds for `+(m), we partition V0 = [a, b] into an ñd × · · · × ñd lattice of
small “unit blocks” of size (ñ1/ñd)× · · · × (ñd/ñd), each composed of td = ñ/ñdd design points.
Consider a line of such unit blocks Lk in the “anti-diagonal” direction and a region Dj between
two contours of the unknown f(x) at the levels c and c + r

1/q
q,+(3dm). In Figure 3, we color in

red the unit blocks in Lk with nonempty intersection with Dj . Due to the monotonicity of the
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FIG 3. Upper bound for the number of design points with mxi ≤ m, an example: d = 2, td = ñ/ñdd, m = kdtd with
k = 3, a line segment of unit blocks in the anti-diagonal direction is colored in red, depicting its intersection with the
region Dj between two contours of f ; x is a design point k blocks away from the upper boundary of Dj , v ∈ Dj;
m, nx,v and the upper bound (k + 2)dm are respectively the number of points inside the rectangles colored in dashed
green, gray and blue; asmx ≥ nx,v > m in this example, design points inside the intersection ofDj and these red unit
blocks with mxi ≤ m must belong to one of the k+ 1 = 4 upper-right unit blocks colored in red, and there are at most
(k + 1)td = 4td such points in this example with k = 3. For general k and m = kdtd, (k + 1)td ≤ 2m1/dt

1−1/d
d .

`+(m), it suffices to consider m = kdtd for some integer k ≥ 1. If x ≤ v in Lk ∩ Dj are
separated by k unit blocks as depicted in Figure 3, then m = kdtd < nx,v ≤ (k + 2)dtd ≤ 3dm

and f(v) − f(x) ≤ r
1/q
q,+(3dm) ≤ r

1/q
q,+(nx,v), so that mx ≥ nx,v > m. Thus, the intersection

contains no more than (k + 1)td ≤ 2m1/dt
1−1/d
d design points xi with mxi ≤ m, all within k

unit blocks from the upper contour. Let J = d{f(b) − f(a)}/r1/q
q,+(3dm)e. We divide [a, b] into

J such regions Dj between consecutive contours with a ∈ D1 and b ∈ DJ . The last region DJ is
special. For x ∈ DJ with nx,b > m, there must exist v ∈ [x, b] such that m < nx,v ≤ 2m, so
that mx ≥ nx,v > m due to f(v) ≤ f(x) + r

1/q
q,+(3dm) ≤ f(x) + r

1/q
q,+(nx,v). Thus, as there are

no more than dñd−1
d such Lk and J − 1 ≤ {f(b)− f(a)}/r1/q

q,+(3dm) ≤ ∆∗nσ/r
1/q
q,+(3dm) regions

Dj not containing b, for m = kdtd with integer k ≥ 1

`+(m)

≤ min
{
ñ, dñd−1

d

(
∆∗nσ/r

1/q
q,+(3dm)

)(
2m1/dt

1−1/d
d

)}
+ #

{
xi ∈ [a, b] : nxi,b ≤ m

}
= ñmin

{
1,m1/d+1/2

(
∆∗n/ñ

1/d
)(

2d3d/2
/
C

1/q
q,d

)}
+ #

{
xi ∈ [a, b] : nxi,b ≤ m

}
with the variability bound rq,+(m) = Cq,dσ

qm−q/2 in (27). It follows that

`±(m) ≤ `∗±(m) = ñH̃(m) + #
{
xi ∈ [a, b] : nxi,b ≤ m

}
∀m ≥ td(40)

when C
1/q
q,d ≥ (21/d+1/2)d2d3d/2. In subsection A3.3 of the supplement, we extend the above

inequality to all m ≥ 1 and prove (36) by applying (26) of Theorem 1 with the above `∗±(m) and
the rq,±(m) in (27).
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Theorem 2 is a comprehensive statement which gives rise to many conclusions. In the next sub-
subsection, we prove that the block estimator is rate minimax in the `q risk for the entire lattice
[1,n] in a wide range of configurations of n, q and ∆∗n. In the next two subsections, we study the
adaptation rate when f(·) is a piecewise constant function, and the variable selection rate when
f(·) only depends on a subset of variables.

3.3.3. Risk of the block estimator on the entire lattice and rate minimaxity. We assume without
loss of generality in this sub-subsection n1 ≥ · · · ≥ nd. A direct comparison between Proposition 1
and Theorem 2 yields the following Theorem 3.

THEOREM 3. Let f̂ (block)
n (x) be the block estimator in (16) with the lattice design V = [1,n]

as in (28). Assume εi are independent random variables with E εi = 0 and E|εi|q∨2 ≤ σq∨2. Let
sq = d2/(q − 1)e ∧ (d + 1), n∗s =

∏s
j=1 nj for s ≤ d + 1 with nd+1 = 1, and ∆(fn/σ) =

{f(n)− f(1)}/σ. Then, for q ≥ 1,

sup
{
Rq(f̂

(block)

n ,fn) : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
(41)

.q,d Λ(match) inf
f̂

sup
fn∈Fn

{
Rq(f̂ ,fn) : ∆(fn/σ) ≤ ∆∗n

}
+
σq

n

( d∏
j=1

log+(nj)
)I{q=2}

holds when ∆∗n &q,d t
−1/2
sq =

(
n∗sq/n

sq
sq

)−1/2, where Λ(match) ≤ log n is defined by

Λ(match) =

[
log+

(
min

{ nsq
nsq+1

,
nsq/(n

∗
sq)

1/(sq+2)

(∆∗n)2/(sq+2)

})]I{ 2
q−1

=sq≤d,∆∗n≤nsq/t
1/2
sq }

.(42)

Moreover, when maxj≤d nj .d n1/d and ∆(fn/σ) ≤ ∆∗n,

Rq(f̂
(block)

n ,fn)(43)

.q,d σq min

{
1,
( ∆∗n
n1/d

)min{1, qd
d+2
}
[

log+

(
n ∧

(n1/d

∆∗n

)2d/(d+2)
)]δ1

+
(log n)dδ2

n(q/2)∧1

}
,

holds for all ∆∗n ≥ 0, where δ1 = I{ qd
d+2 = 1} and δ2 = I{q = 2}.

REMARK 3. It can be seen in our analysis that the logarithmic term presents for q = 2, as
the last component on the right-hand side of (36), (41) and (43), due to the lack of data near the
extreme points {a, b} or {1,n} of the domain.

Compared with Proposition 1, Theorem 3 shows that the risk of the block estimator matches the
minimax rate when ∆∗n ≥ t

−1/2
sq =

(∏sq
j=1(nj/nsq)

)−1/2 (∆∗n ≥ n−1/2 if sq = d + 1) possibly
up to a logarithmic factor Λ(match) ≤ log(n), provided that the minimax rate is no faster than
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σqn−1
(∏d

j=1 log+(nj)
)δ2 due to the edge effect. The match is always exact when 2/(q − 1) 6=

sq ≤ d, i.e., 2/(q− 1) is not an integer or an integer greater than d. When 2/(q− 1) = sq ≤ d− 1
and nsq � nsq+1, Λ(match) = O(1) and the match is also exact. However, in the interesting setting
where q = d = 2 and n1 � n2, we have sq = 2 so that Λ(match) � log(n) when ∆∗n � n2.

The one-dimensional risk bound for all q ≥ 1 can be obtained from (43) as

Tq([1, n])

.q σqnmin

{
1,
(∆∗n
n

)min{q/3,1}[
log+(n ∧

( n
∆∗n

)2/3
)]I{q=3}

+
(log+(n))I{q=2}

n(q/2)∧1

}
,

which reproduces (4) for 1 ≤ q < 3. We note that if we view one-dimensional isotonic regression
as multi-dimensional on an n1× 1× · · · × 1 lattice, the general bound yields this one-dimensional
n
−1/3
1 -rate. Interestingly, for general n, we still have the one-dimensional rate as long as the

effective dimension s is 0 or 1, i.e. ∆∗n ≥ n2/t
1/2
2 = n

3/2
2 /n

1/2
1 . For q = 2 and d ≥ 2, it follows

from Theorem 2 that when ∆∗n ≥ n2/t
1/2
2 = n

3/2
2 /n

1/2
1 , we have s < sq = 2 and only the first two

cases of (37) are effective. This implies

T2([1,n]) .d σ
2nmin

{
1, (∆∗n/n1)2/3 +

d∏
j=1

(
log+(nj)/nj

)}
,

exactly the same as the bound of T2([1, n1]) in univariate case when (∆∗n/n1)2/3 is dominant
in both rates. In this case, our theory does not guarantee an advantage of the multiple isotonic
regression on the entire lattice in terms of the `2 risk, compared with the row-by-row univariate
isotonic regression of length n1. This observation agrees with Chatterjee et al. (2018) where the `2
minimax rate of two-dimensional isotonic regression, σ2∆∗nn

−1/2, requires n3/2
2 /n

1/2
1 ≥ ∆∗n.

To conclude this subsection, we compare the `2 risk bound for the block estimator in Theorem 3
with those for the LSE in the existing literature. For d = 2, Chatterjee et al. (2018) gives an upper
bound for the LSE as

R2(f̂
(lse)

n ,fn) . σ2
(∆∗n√

n
(log n)4 +

1

n
(log n)8

)
,

for any n1 × n2 lattice and f satisfying ∆(fn/σ) ≤ n3/2
2 /n

1/2
1 , in contrast to

R2(f̂
(block)

n ,fn) . σ2
(∆∗n√

n
log(n) +

1

n
(log n)2

)
in (43) of Theorem 3 or in the third case of (37) of Theorem 2 with [a, b] = [1,n]. However, for
n1 = · · · = nd = n1/d and ∆∗n = 1 as in Han et al. (2017) for d ≥ 3, (43) is reduced to

R2(f̂
(block)

n ,fn) .d n
−1/d,

which should be compared with the the rate

R2(f̂
(lse)

n ,fn) .d n
−1/d log4(n)

for the LSE (Han et al., 2017).
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3.4. Adaptation rate of the block estimator with lattice designs in the piecewise constant case.
We consider here the adaptation behavior of the block estimator in the setting where f(·) is
piecewise constant on a union of rectangles, as a direct consequence of Theorem 2.

THEOREM 4. Let f̂ (block)
n (x) be the block estimator in (16). Assume εi are independent

variables with E εi = 0 and E|εi|q∨2 ≤ σq∨2 and f is non-decreasing and piecewise constant
on V in the sense of V = ∪Kk=1[ak, bk] with K ≤ n and f(ak) = f(bk) for all k ≤ K. Then,

Rq(f̂
(block)

n ,fn) .q,d σ
q min

{
1, n−1

K∑
k=1

n
(1−q/2)+
ak,bk

(
logsk+

(
nak,bk

))I{q=2}
}

with sk = #{j : bk,j > ak,j}. Moreover, if in addition {[ak, bk], k = 1, . . . ,K
}

are disjoint, then

Rq(f̂
(block)

n ,fn) .q,d σ
q min

{
1,
(K
n

)min{1,q/2}(
logdK+ (n/K)

)I{q=2}}
,(44)

where dK = max1≤k≤K sk is the largest dimension of [ak, bk] in the partition.

The rate in (44) is consistent with existing results for d = 1 under which the block estimator is
the LSE and the mean squared risk bound is

R2(f̂
(block)

n ,fn) . σ2K

n
log+(n/K).

In general, the risk bound in (44) under q = 2 is reduced to at most

σ2K

n
logd+(n/K),

which should be compared with

σ2
(K
n

)2/d
log8

+(n/K)

for the LSE as in Chatterjee et al. (2018) for d = 2 and in Han et al. (2017) for d ≥ 3.

REMARK 4. Han et al. (2017) proved that even when f(·) is a constant function, i.e., K = 1,

R2(f̂
(lse)

n ,fn) &d σ
2n−2/d

so the adaptation rate of the LSE, (K/n)2/d, cannot be further improved, which means the LSE is
unable to adapt to parametric rate for d ≥ 3.
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The adaptation rate in (44) also implies that when [ak, bk] are two-dimensional sheets (i.e. |{j :
bk,j 6= ak,j}| ≤ 2), the upper bound turns out to be

K

n
log2

+(n/K),

which again should be compared with

K

n
log8

+(n/K)

in Han et al. (2017).

3.5. Adaptive estimation to variable selection with lattice designs. In this subsection, we
consider the case where the true function of interest, f(·), depends only on a subset S of s variables,
i.e., f(x) = fS(xS). We study the adaptive estimation when maxj≤d nj .d n1/d, i.e., nj � n1/d

for all 1 ≤ j ≤ d.

THEOREM 5. Assume f(·) is non-decreasing and dependent only on an unknown set S of s <
d variables. Let f̂ (block)

n (x) be the block estimator in (16) on the lattice design V = [1,n]. Assume
max1≤j≤d nj .d n1/d and εi’s are independent and satisfies E εi = 0 and E|εi|q∨2 ≤ σq∨2. Let
∆(fn/σ) = {f(n)− f(1)}/σ. Then,

sup
{
Rq(f̂

(block)

n ,fn) : fn ∈ Fn, f(x) = fS(xS),∆(fn/σS) ≤ ∆∗n,S

}
(45)

.d σqS min

{
Λ

(select)
s,1 ,Λ

(select)
s,2

(
∆∗n,S/n

1/d
)min{1, qs

s+2
}

+ Λ
(select)
s,1

(
ns/d

)−min{1,q/2}
(log n)sI{q=2}

}
,

for all 1 ≤ s ≤ d, where σS = σ/
(∏

j 6∈S nj
)1/2 ≤ Cdσ/n(1−s/d)/2 and

Λ
(select)
s,1 =

( n1/d∑
j=1

j−q/2
/(
n1/d

)1−q/2)d−s
,

Λ
(select)
s,2 =

( n1/d∑
j=1

jmin{ 1−q
2
,− q

s+2
}
/(
n1/d

)min{ 1−q
2
,− q

s+2
}+1
)d−s

(log n)I{
qs
s+2

=1}.

In particular,

R2(f̂
(block)

n ,fn)(46)

.d

σ
2ns/d−1 min

{
(log n)d−s,∆∗n,Sn

−1/d(log n)I{s=2} + n−s/d(log n)d
}
, s ≥ 2,

σ2ns/d−1 min
{

(log n)d−1, (∆∗n,S/n
1/d)2/3 + n−1/d(log n)d

}
, s = 1.
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In the proof of Theorem 5, the key observation is that in the sheet of x with fixed xSc , the risk
bound is identical to that of model S with σq reduced by a factor of n−q/2xSc ,nSc . The above rate would
then become clear after the summation of risk bounds over xSc .

Let nj = n1/d for all j. Consider an oracle expert with the extra knowledge of the subset
S. Suppose the oracle expert first computes the average of the n1−s/d values of yi holding xS
fixed and then solves the s-dimensional isotonic regression problem at the noise level σS =
σn(s/d−1)/2. For this oracle expert, the sample size becomes ns/d and the condition on the range-
to-noise ratio becomes (f(n) − f(1))/σS ≤ ∆∗n,S , equivalent to (f(n) − f(1))/σ ≤ ∆∗n
with ∆∗n,S = ∆∗nn

(1−s/d)/2. It follows from (30) in Proposition 1 that for εi ∼ N(0, σ2) and
∆∗n,S ≥ (n−(s/d)/2) ∨ (I{q > 1 + 2/s}), the `q minimax lower bound for the oracle expert is

inf
f̂

sup
{
Rq(f̂ ,fn) : fn ∈ Fn, f(x) = fS(xS),∆(fn/σS) ≤ ∆∗n,S

}
& σqS min

{
1,
(
∆∗n,S/n

1/d
)min{1,qs/(s+2)}

}
.

Hence the variable-selection adaptation rate in (45) matches the oracle minimax lower bound up to
some constant or logarithmic factors Λ

(select)
s,1 , Λ

(select)
s,2 and Λ

(select)
s,1 (log n)sI{q=2}, provided that

∆∗n,S ≥ max
(
n−s/(2d), I{q > 1 + 2/s}

)
,

or equivalently ∆(fn/σ) ≤ ∆∗n with ∆∗n ≥ max
(
n−1/2, n−(1−s/d)/2I{q > 1+2/s}

)
. The match

to the oracle minimax rate is always exact for q = 1 and any s as both Λ
(select)
s,1 and Λ

(select)
s,2 are

bounded by a constant. When q = 2, the match is also exact but up to some logarithmic factors as
Λ

(select)
s,1 .d (log n)d−s and Λ

(select)
s,2 .d (log n)I{s=2}.

3.6. Multiple isotonic regression with random designs. In this subsection we consider V =
[0,1] in continuum and, same as before, a � b iff a ≤ b. Different from fixed designs, here
x1, . . . ,xn are i.i.d. random vectors from a distribution P supported on [0,1]. For simplicity we
assume the distribution of the design points has a Lebesgue density bounded both from above and
below; for µu,v = P{u ≤ xi ≤ v} and the Lebesgue µLu,v = µL([u,v]) =

∫
[u,v] dx,

ρ1µ
L
u,v ≤ µu,v ≤ ρ2µ

L
u,v.(47)

with certain fixed constants 0 < ρ1 ≤ ρ2 <∞. We consider the integrated Lq risk in (3), i.e.,

R∗q(f̂
(block)
n , f) =

∫
x∈[0,1]

E
∣∣f̂ (block)
n (x)− f(x)

∣∣qdx,
and partial integrated Lq risk on block [a, b] as

R∗q([a, b]) =

∫
[a,b]

E
∣∣f̂ (block)
n (x)− f(x)

∣∣qdx.
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THEOREM 6. Let f̂ (block)
n (x) be the block estimator in (16) with V = [0,1]. Assume

x1, . . . ,xn ∈ [0,1] are i.i.d. random vectors drawn from a distribution satisfying (47). Assume
f is non-decreasing and εi are independent random variables with E εi = 0 and E|εi|q∨2 ≤ σq∨2.
Let {a, b} ⊂ V with a ≤ b. Then, for q ≥ 1,

R∗q([a, b]) =

∫
[a,b]

E
∣∣f̂ (block)
n (x)− f(x)

∣∣qdx(48)

≤ C∗q,d,ρ1,ρ2σ
q

[ ∫ nµa,b

0

(
(t ∨ 1)−q/2 + ∆q

a,be
−t
)
H∗(dt)

+

∫
x∈[a,b]

({
(nµx,b) ∨ 1

}−q/2
+ ∆q

0,1e
−nµx,b

)
dx

]
,

where ∆u,v =
(
f(v) − f(u)

)/
σ and µu,v = P

{
xi ∈ [u,v]

}
for all u ≤ v and H∗(t) =

min
{

1,∆a,b(nµa,b)
−1/dt1/2+1/d

}
. Specifically, (48) is no greater than

σq min

{
(∆q

0,1 + 1)µa,b,
( ∆a,b

(nµa,b)1/d

)min{1, qd
d+2
}
Λ

(random)
1(49)

+
∆q+1
a,b

(nµa,b)1/d
+
(
∆q

0,1 + 1
)
µa,b

Λ
(random)
2

(nµa,b)(q/2)∧1

}
up to a constant depending on q, d, ρ1, ρ2 only, where

Λ
(random)
1 =

[
log+

(
nµa,b ∧

(
(nµa,b)

2
d+2

/
∆

2d/(d+2)
a,b

))]I{ qd
d+2

=1}

and Λ
(random)
2 =

(
log+(nµa,b)

)dI{q=2}+(d−1)I{q>2}.

The H∗(t) here is identical to the H̃(t) in Theorem 2 in t ∈ [td, n], effectively taking
td = 1. This reveals an intrinsic difference between lattice design and random design: the effective
dimension of the random design over [a, b] ⊆ [0,1] is always d — any hyper-rectangle [a, b] with
positive measure behaves similarly to a hyper-cube. The above rate in (49) is therefore comparable
to the rate in (43) for the lattice design with nj = n1/d for all j. In fact, the rate in (49) can be
derived from a scale change of the upper bound for R∗q([0,1]).

The study of the integrated Lq risk in isotonic regression is relatively new. Fokianos et al. (2017)
gives an asymptotic bound, O(n−1/(d+2)), for the L1 risk with [a, b] = [0,1]. The L1 error bound
in Theorem 6 is consistent with their result.

To fit in with random design, we now define rq,+(m) as a non-increasing function of m ∈ [0, n]
in continuum satisfying

rq,+(m) ≥ max

{
E
(

max
u�x

∑
xi∈[u,v]

εi
nu,v ∨ 1

)q
+

: E[nx,v] = m,x � v and v ∈ V0

}
,(50)
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and modify the definition of mx = mx,+ in (23) to

mx = nµx,vx , where vx = arg sup
x≤v≤b

{
nµx,v : f(v) ≤ f(x) + r

1/q
q,+(nµx,v)

}
.(51)

Note nx,v, the number of design points in [x,v], becomes a Binomial(n, µx,v) random variable.
Here we omit mx,− as it can be analyzed by symmetry. Nevertheless, Theorem 6 is still proved in
a similar way to Theorem 2. However, different from (25) in Theorem 1, the point risk bound is
given by the following proposition.

PROPOSITION 3. Assume the conditions of Theorem 6. Then, (50) holds for

rq,+(nµx,v) = Cq,d,ρ1,ρ2σ
q(nµx,v ∨ 1)−q/2(52)

with Cq,d,ρ1,ρ2 continuous in q ∈ [1,∞) and for all x ∈ [a, b]

E
(
f̂ (block)
n (x)− f(x)

)q
+

(53)

≤ 2qrq,+(mx) + 2q−1σqCq,d,ρ1,ρ2

((
∆q
a,b + 1

)
e−mx +

(
∆q

0,1 + 1
)
e−nµx,b

)
.

As we discussed below (23), the positive part of the bias of f̂ (block)
n (x) is of no greater order

than the variability of the noise as measured by r1/q
q,+(nx,vx) � r1/q

q,+(mx) provided the presence of
at least one design point in [x,vx]. The first term on the right-hand side of (53) thus comes from
the case of nx,vx > 0. However, [x,vx] might be an empty cell with no design points. We then
have to consider points in [x, b] when nx,vx = 0 and in [x,1] when nx,b = 0, leading to terms
with ∆a,b and ∆0,1 respectively.

Corresponding to Theorem 3 and 4, the following two theorems give the risk bounds for random
designs under the general case and the piecewise constant case for the entire [0,1]. Due to space
limitations, the minimax rate and the adaptation rate to variable selection in random design are not
discussed.

THEOREM 7. Let f̂ (block)
n (x), f and {xi, εi, i ≤ n} be as in Theorem 6. Suppose ∆0,1 =(

f(1)− f(0)
)/
σ is bounded by a constant. Then

R∗q(f̂
(block)
n , f) .q,d,ρ1,ρ2 σq

(∆0,1

n1/d

)min{1, qd
d+2
}(

log n
)I{ qd

d+2
=1}

+

(
log n

)dI{q=2}+(d−1)I{q>2}

n(q/2)∧1
.

In particular when q = 2 and d ≥ 2,

R∗2(f̂ (block)
n , f) .d,ρ1,ρ2 σ

2 min

{
1,

∆0,1

n1/d

(
log n

)I{d=2}
+

(
log n

)d
n

}
.(54)
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REMARK 5. For simplicity, we here consider the case of bounded ∆0,1. Theorem 6 also
directly yields error bounds for general ∆0,1 by setting [a, b] = [0,1] in (48) and (49).

THEOREM 8. Let f̂ (block)
n (x), f and {xi, εi, i ≤ n} be as in Theorem 6. Suppose V has disjoint

partition V = ∪Kk=1[ak, bk] with K ≤ n and f(ak) = f(bk) for all k ≤ K. Then

R∗q(f̂
(block)
n , f)(55)

.q,d,ρ1,ρ2 σq(∆q
0,1 + 1)

(K
n

)min{1,q/2}(
log+(n/K)

)dI{q=2}+(d−1)I{q>2}
,

where ∆0,1 =
(
f(1)− f(0)

)/
σ. In particular, when q = 2,

R∗2(f̂ (block)
n , f) .d,ρ1,ρ2 σ

2(∆2
0,1 + 1)

K

n
logd+(n/K).

We can also derive risk bounds for the empirical `q risk. As [xi,vxi ] always has the design
point xi, there is no “empty cell” problem as in Proposition 3 when bounding the empirical risk. It
follows that

E
[(
f̂ (block)
n (xi)− f(xi)

)q
+

∣∣xi = x
]
.q,d,ρ1,ρ2 rq,+(mx),

so that

Rq(f̂
(block)

n ,f)

.q,d,ρ1,ρ2 σq min

{
µa,b,

( ∆a,b

(nµa,b)1/d

)min{1, qd
d+2
}
Λ

(random)
1 + µa,b

Λ
(random)
1

(nµa,b)(q/2)∧1

}
by an almost identical proof. It follows that under the conditions of Theorem 6 and ∆0,1 = 1, the
worst case upper bound of the mean squared risk is

R2(f̂
(block)

n ,f) .d,ρ1,ρ2 σ
2n−1/d(log n)I{d=2},

and under the conditions of Theorem 8, the mean squared risk bound in piecewise constant case is

R2(f̂
(block)

n ,f) .d,ρ1,ρ2 σ
2K

n
logd(n/K).

We shall compare the above two rates with the results for the LSE in Han et al. (2017)
respectively, i.e.,

σ2n−1/d logγd(n)

and

σ2
(K
n

)2/d
log2γd(en/K),

where γ2 = 9/2 and γd = (d2 +d+1)/2 when d ≥ 3. It is worth mentioning that Han et al. (2017)
also proved the piecewise constant rate for the LSE, (K/n)2/d, is not improvable as when K = 1,

R2(f̂
(lse)

n (x),f) &d,ρ1,ρ2 σ
2n−2/d.
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3.7. Model misspecification. We consider in this subsection properties of the block estimator
in the nonparametric regression model

yi = f(xi) + εi, i = 1, . . . , n,(56)

for general f . When the true regression function f fails to be non-decreasing, the isotonic
regression model (1) is misspecified, so that the block estimators actually estimate their noiseless
versions, say f

∗
n(x), instead of the true f . For the block max-min and min-max estimator in (10),

f
∗
n(x) = f

(max−min)
n (x) = max

u�x,nu,∗>0
min

x�v,nu,v>0
f [u,v], ∀ x ∈ V,(57)

f
∗
n(x) = f

(min−max)
n (x) = min

x�v,n∗,v>0
max

u�x,nu,v>0
f [u,v], ∀ x ∈ V,

are their noiseless versions, where fA denotes the average of {f(xi) : 1 ≤ i ≤ n,xi ∈ A}. For
the average (17) of the two estimators, the noiseless version is

f
∗
n(x) =

1

2

{
f

(max−min)
n (x) + f

(min−max)
n (x)

}
, ∀ x ∈ V.(58)

The functions in (57) and (58) can be viewed as estimation targets.
Our results can be summarized as follows. If we treat f̂ (block)

n (x)−f∗n(x) as the estimation error
and use f

∗
n/σ to measure the range-to-noise ratio, all the theoretical results we have presented so

far hold in the nonparametric regression model (56) for general f with the following adjustments
of the error bounds rq,±(m) in (21) and (22),

rq,+(m) ≥ max

{
E
[

max
v′�v

(
max
u�x

∑
xi∈[u,v′]

εi
nu,v′

)q
+

]
: nx,v = m,x � v and v ∈ V0

}
,(59)

rq,−(m) ≥ max

{
E
[

max
u′�u

(
min
v�x

∑
xi∈[u′,v]

εi
nu′,v

)q
−

]
: nu,x = m,u � x and u ∈ V0

}
,

without changing the notation. Both rq,±(m) are still required to be non-increasing functions of
m ∈ N+. Accordingly, this leads to the following adjustment of the functions in (23),

mx,− = max
{
nu,x : f

∗
n(u) ≥ f∗n(x)− r1/q

q,−(nu,x),u � x and u ∈ V0

}
,

ux = arg max
u∈V0:u�x

{
nu,x : f

∗
n(u) ≥ f∗n(x)− r1/q

q,−(nu,x)
}
,(60)

mx = mx,+ = max
{
nx,v : f

∗
n(v) ≤ f∗n(x) + r

1/q
q,+(nx,v),x � v and v ∈ V0

}
,

vx = arg max
v∈V0:x�v

{
nx,v : f

∗
n(v) ≤ f∗n(x) + r

1/q
q,+(nx,v)

}
,

with the error bounds rq,±(m) in (59) and the estimation target f
∗
n(x) in (57) or (58).
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THEOREM 9. Let f̂ (block)
n be as in (17), f

∗
n as in (58), rq,±(m) as in (59), and `±(m) as

in (24) with the mxi,± in (60). Then, the error bounds (25) and (26) of Theorem 1 hold with f
replaced by f

∗
n. Consequently, for the lattice design and under the q ∨ 2 moment assumption on

the noise {εi}, the error bounds in Theorems 2, 3, 4 and 5 hold with the same substitution. In
particular, with f replaced by f

∗
n and fn by f

∗
n = (f

∗
n(x1), . . . , f

∗
n(xn))T , (36) holds with the

same function H̃(t) when {f∗n(b) − f∗n(a)}/σ ≤ ∆∗n, (41) and (43) hold when ∆(f
∗
n/n) ≤ ∆∗n,

(44) holds when f
∗
n(ak) = f

∗
n(bk) with V = ∪Kk=1[ak, bk], and (45) and (46) hold when f

∗
n(x)

depends on only s of the d variables and nj � n1/d for all j. The above results also hold when

{f̂ (block)
n , f

∗
n} = {f̂ (max−min)

n , f
(max−min)
n } or {f̂ (block)

n , f
∗
n} = {f̂ (min−max)

n , f
(min−max)
n }.

Theorem 9 asserts that f̂n is close to f
∗
n in many ways when the isotonic condition on the

unknown f is misspecified. However, the interpretation of this result is not as clear as the existing
oracle inequality for the LSE as f

∗
n is not based on an optimality criterion.

4. Simulation results. In this section, we report the results of several experiments in d = 2
and d = 3 to demonstrate the feasibility of the block estimators and to compare its estimation
performance with the LSE. Among potentially many choices of the block estimator, we simply use
the block max-min estimator as in (10). In six simulation settings, the block max-min estimator
yields smaller average `2 losses than the LSE, with very small p-values in piecewise constant and
variable selection settings. In a seventh setting, the LSE slightly outperforms the block max-min
estimator but the difference is insignificant.

To compare the LSE and the block estimator, we carry out our experiments as follows. In each
experiment, we generate one unknown f , 5000 replications of y with standard Gaussian noise,
find the LSE and the block max-min estimator for each y, and compute the mean squared losses
‖f̂n − fn‖22/n for both estimators. We therefore obtain 5000 simulated losses for each estimator
and take the averages to approximate their mean squared risks.

We use quadratic programming to compute the LSE in our experiments. We’d like to mention
that fast algorithms for the LSE have been developed in the literature: Dykstra (1983), Kyng et al.
(2015), Stout (2015), to name a few. We stick to quadratic programming as it provides somewhat
more accurate results, although the difference seems small. The purpose of our experiment is to
compare the risk of estimators, not the computational complexity of different algorithms. For the
block max-min estimator, we use brute force which exhaustively calculates means over all blocks
and finds the max-min value for each lattice point x. We note again that the computation cost via
brute force is of order n3.

In d = 2, we consider isotonic regression with the n1 × n2 lattice design [1,n] with n1 = 50
and n2 = 20, so that the number of design points in total is n = 1000. In Experiment I, we
consider the function f(x) = c(x1 + x2)2/3 (here and in the sequel, c is a constant such that
f(n) = 10 so that the range of f is about 10 on the lattice). As the region between two contours
of this f cannot be efficiently represented by rectangular bocks, this example is not expected to
favor the block estimator. In Experiment II, we split the lattice into 5 × 5 small blocks of size
10× 4, randomly assign 1, . . . , 10 to each small block, conditionally on the realizations satisfying
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(a) true f (unknown) (b) y (observed)

(c) the LSE (d) the block max-min estimator

FIG 4. Heatmaps for the true f , an observed y, and its LSE and max-min estimate in Experiment I.

the isotonic constraint. The adaptation of the LSE and the block max-min estimator to piecewise
constant f is compared in this experiment. Lastly, we compare the adaptation of the two estimators
to variable selection in Experiment III by setting f(x) = f1(x1) = c log(x1). See Figure 4, 5
and 6 for heat maps in Experiment I, II and III respectively; each figure contains heat maps for
the unknown f , one example of observed y, the LSE and the block max-min estimator for this y.
Figure 7 provides boxplots of mean squared losses of both estimators in Experiment I, II and III.

In d = 3, we consider isotonic regression with n1 × n2 × n3 lattice designs where n1 = n2 =
n3 = 10, so that the number of design points in total is also n = 1000. We choose the true
mean functions in a similar manner to d = 2. In Experiment IV, we consider f(x) = c(x1 +
x2 + x3)2/3. In Experiment V, we randomly assign 1, . . . , 10 to 2 × 2 × 5 small blocks of size
5×5×2 conditionally on the isotonic constraint. Lastly, the true mean function is f(x) = f1(x1) =
c log(x1) in Experiment VI. See Figure 8 for boxplots of mean squared losses of both estimators
in Experiment IV, V and VI.

Two basic statistics, mean and standard deviation of the losses of the LSE and the block max-
min estimator and the loss difference of the two estimators are listed in Table 1, along with the
two-sided p-value for the difference. In Experiment I and IV which are less favorable to the
block estimator, the block estimator still yields slightly smaller risk, although the risk difference is
insignificant (with p-values 0.6190 and 0.1600 respectively) In all other four experiments the block
max-min estimator significantly outperforms the LSE with p-values 0.0062 or smaller, supporting
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(a) true f (unknown) (b) y (observed)

(c) the LSE (d) the block max-min estimator

FIG 5. Heatmaps for the true piecewise-constant f , an observed y, and its LSE and max-min estimate in Experiment II.

(a) true f (unknown) (b) y (observed)

(c) the LSE (d) the block max-min estimator

FIG 6. Heatmaps for the true f , an observed y, and its LSE and max-min estimate in Experiment III.
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(a) Experiment I (b) Experiment II (c) Experiment III

FIG 7. Boxplots for the losses of LSE and block estimator in d = 2.

(a) Experiment IV (b) Experiment V (c) Experiment VI

FIG 8. Boxplots for the losses of LSE and block estimator in d = 3.
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(d = 2) Experiment I Experiment II Experiment III
LSE block diff LSE block diff LSE block diff

mean 0.0822 0.0807 0.0016 0.1029 0.0918 0.0111 0.0713 0.0603 0.0110
s.d. 0.0096 0.0095 0.0031 0.0156 0.0149 0.0041 0.0115 0.0109 0.0033

p-value 0.6190 0.0062 0.0007
(d = 3) Experiment IV Experiment V Experiment VI

LSE block diff LSE block diff LSE block diff
mean 0.1412 0.1353 0.0059 0.1316 0.1096 0.0220 0.0917 0.0746 0.0170
s.d. 0.0119 0.0117 0.0042 0.0178 0.0169 0.0059 0.0160 0.0147 0.0045

p-value 0.1600 0.0002 0.0002

TABLE 1
The mean and standard deviation (s.d.) of the mean squared losses for the LSE and the block max-min estimator

(block), and the mean, s.d. and two-sided p-value for the loss differences (diff = loss of LSE - loss of block estimator).

our theoretical analysis. It is worthwhile to mention that, although the risk values are incomparable
due to different dimension d, we observe more significant difference in the mean squared losses
between the LSE and the block max-min estimator in d = 3 than in d = 2, in view of the p-values
and box plots. This observation coincide with Theorem 4 and its comparison to the existing risk
bounds for the LSE.

We end this section with an example in which the LSE actually yields slightly smaller mean
squared risk than the block max-min estimator. In Experiment VII, we consider the two-piece
function f(x1, x2) = I{x1/n1 + x2/n2 ≥ 1} on an n1 × n2 lattice. Same as in Experiment I, II
and III, we take (n1, n2) = (50, 20) and add standard gaussian noises to f(x1, x2). See the heat
maps in Figure 9.

We shall recall f̂ (lse)
n (x) = yU∩L for some upper set U and lower set L. Suppose x1/n1 +

x2/n2 ≥ 1 so that f(x) = 1, then the best level set U ∩ L for this design point is the upper red
triangle in Figure 9(a). In contrast, as f̂ (block)

n (x) = y[u,v] for some u and v, the best possible
block contains at most half design points of the upper triangle (when u = (n1/2, n2/2) and v =
(n1, n2)). Therefore, the variability of the block estimator at each design point may be larger than
the LSE, resulting in a greater risk. Indeed, when we compare them on 5000 replications of y as
in Experiments I-VI, the mean squared losses for the LSE has mean 0.0420 and standard deviation
0.0090, while for the block max-min estimator the mean is 0.0440 and the standard deviation is
0.0087. However, the difference is not significant as the mean and standard deviation for the loss
difference are −0.0020 and 0.0040, and the two-sided p-value is 0.6163.

It would be difficult to characterize settings or general examples in which the LSE outperforms
the block estimator. When we set f(x) = 0.5I{x1/n1 + x2/n2 ≥ 1}, the average normalized `2
loss for the LSE is 0.0298, slightly greater than 0.0280 for the block max-min estimator, but the
difference is insignificant as the two-sided p-value is 0.5568.
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(a) true f (unknown) (b) y (observed)

(c) the LSE (d) the block max-min estimator

FIG 9. Heatmaps for the true two-piece function f , an observed y, and its LSE and max-min estimate.

SUPPLEMENTARY MATERIAL

Supplement to “Isotonic Regression in Multi-Dimensional Spaces and Graphs”
This supplement contains proofs of all the theoretical results stated in the main body of the paper.
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SUPPLEMENTARY MATERIAL

Supplement to “Isotonic Regression in Multi-Dimensional Spaces and Graphs”

The supplement contains proofs of all the theoretical results stated in the main body of the paper.

A1. Proofs of the results in Subsection 3.1

A1.1. Proof of Theorem 1.
By the definition of vx in (23),

f̂ (block)
n (x) ≤ max

u�x

∑
xi∈[u,vx]

yi
nu,vx

≤ f(x) + r
1/q
q,+(mx) + max

u�x

∑
xi∈[u,vx]

εi
nu,vx

,

where x = x1, . . . ,xn. Thus, by the definition of rq,+(m) in (21),

E
{
f̂ (block)
n (x)− f(x)

}q
+
≤ E

(
r

1/q
q,+(mx) + max

u�x

∑
xi∈[u,vx]

εi
nu,vx

)q
+

≤ 2q−1rq,+(mx) + 2q−1E
(

max
u�x

∑
xi∈[u,vx]

εi
nu,vx

)q
+

≤ 2qrq,+(mx).

Similarly, we can have the second inequality in (25). It follows that with the `+(m) in (24),

Tq,+(V0) ≤
∞∑
m=1

2qrq,+(m)
{
`+(m)− `+(m− 1)

}
+

∞∑
m=1

2qrq,−(m)
{
`−(m)− `−(m− 1)

}
.

Hence (26) follows as rq,±(m) is non-increasing. �

A2. Proofs of the results in Subsection 3.2

A2.1. Proof of Lemma 1. Form = (m1, . . . ,md)
T ∈ Nd+, define m∗ =

∏d
j=1mj and

Km =
{
k ∈ Nd+ : kj ≤ nj/mj ∀ j ≤ d, 1 ≤ k1 + · · ·+ kd − k∗ + 1 ≤

√
m∗∆∗n

}
,

For a certain integer k∗ ≥ d to be determined later and Nm = |Km|, we shall first prove that

inf
f̂

sup
{
E
∥∥f̂ − fn∥∥qq : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
≥ cqσq max

m∈M

(
(m∗)1−q/2Nm

)
.(61)

LetKj = bnj/mjc andn′ = (K1m1, . . . ,Kdmd)
T . The lattice [1,n′], contained in V = [1,n], is

a lattice ofK1×· · ·×Kd blocks of sizem1×· · ·×md, indexed by k = (k1, . . . , kd)
T , 1 ≤ kj ≤ Kj .
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Suppose f(x) is known to be piecewise constant and non-decreasing in this partition of blocks. Let
g(k) be the value of f on block k and Gn be the class of g(·) satisfying

g(k) = σmin
{

∆∗n, (m
∗)−1/2

[
θ(k) + (k1 + · · ·+ kd − k∗)+

]}
, θ(k) ∈ {0, 1}.

As k1 + · · · + kd − k∗ is strictly increasing in kj for each j with increment 1, g(k) is non-
decreasing in kj for each j and 0 ≤ g(k) ≤ σ∆∗n. Set f(x) = σ∆∗n for x ∈ [1,n] \ [1,n′].
As f(1) = 0, f(x) is non-decreasing in the entire V and {f(n) − f(1)}/σ = ∆∗n. Note that
g(k) = σ(m∗)−1/2

[
θ(k) + (k1 + · · · + kd − k∗)+

]
on Km for all g ∈ Gn. Let yk be the sample

mean in the block indexed by k. As yk ∼ N(g(k), σ2/m∗) are sufficient for the estimation of g,

inf
f̂

sup
fn∈Fn

E
∥∥f̂ − fn∥∥qq ≥ inf

ĝ
sup
g∈Gn

m∗ E
∥∥ĝ − g∥∥q

q

≥ inf
θ̂

sup
θ∈{0,1}Nm

m∗(σ/
√
m∗)qE

∥∥θ̂ − θ∥∥q
q

≥ m∗(σ/
√
m∗)qEπ

∥∥θ̂ − θ∥∥q
q

= m∗(σ/
√
m∗)qNmEπ

∣∣µ̂− µ∣∣q
q
,

where the infimum is taken over θ̂(k) based on yk, Eπ is the joint expectation under which θ has
iid Bernoulli(1/2) (prior) distribution, and µ̂ is the Bayes rule based on a single observation X
with X|µ ∼ N(µ, 1) and µ ∼Bernoulli(1/2). This gives (61).

Consider fixed m1, . . . ,md with
√
m∗∆∗n ≥ 1. Assume without loss of generality K1 ≥ · · · ≥

Kd. For K1 < 2d, we take k∗ = d so that Nm ≥ 1. For K1 ≥ 2d, we take k∗ = bK1/2c ≥ d, so
that for all k∗ ≤ k ≤ min(k∗ − 1 +

√
m∗∆∗n,K1 + d − 1) and k2 + · · · + kd < k∗, a solution k

exists satisfying k1 + · · ·+ kd = k, 0 ≤ k − k∗ < k1 ≤ k − (d− 1) ≤ K1 and

k1 + · · ·+ kd − k∗ + 1 = k − k∗ + 1 ≤
√
m∗∆∗n.

Such k belongs to Λ iff kj ≤ Kj for all 2 ≤ j ≤ d. As 2(k∗ + 1) ≥ K1 and k∗ ≥ d,
#{(k2, . . . , kd) : 1 ≤ kj ≤ Kj ∀ j ≥ 2, k2 + · · · + kd < k∗} ≥ cd

∏d
j=2Kj . As the number

of allowed k is min(b
√
m∗∆∗nc,K1 + d− k∗) ≥ min(b

√
m∗∆∗nc,K1/2 + d), we find that

Nm ≥ min(
√
m∗∆∗n,K1/2 + d)cdK

−1
1

d∏
j=1

Kj ≥
cd n

2d+1m∗
min

(√
m∗∆∗n
K1

, 1

)
.

This gives (32). As (32) is decreasing in m∗ given K1 = max1≤j≤dbnj/mjc, its optimal
configuration is attained when either Kj = K1 or mj = 1 for each j. �

A2.2. Proof of Proposition 1. For the optimal configuration of m in (32), there exist integers
s ∈ [1, d] and K1 = bns/msc ∈ [ns+1, ns] such that the lower bound in (32) is maximized with
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bnj/mjc = K1 for j ≤ s and mj = 1 for s < j ≤ d. Thus, 2−sn∗s/m
∗ < Ks

1 ≤ n∗s/m∗ and

max
m∈M

{
1

(m∗)q/2
min

( √
m∗∆∗n

maxjbnj/mjc
, 1

)}
(62)

≥ cd max
1≤s≤d

max
ns+1≤(n∗s/m

∗)1/s≤ns

{
1

(m∗)q/2
min

(
1,

√
m∗∆∗n

(n∗s/m
∗)1/s

)
:
√
m∗∆∗n ≥ 1

}
= cd max

1≤t≤n

{
t−q/2H(t) : h0(t) ≥ 1

}
= cd max

1≤t≤n

{
min

(
h1(t), h2(t)

)
: h0(t) ≥ 1

}
,

where h0(t) = ∆∗nt
1/2 and H(t) = min

{
1, h0(t)/(n∗s/t)

1/s
}
, t ∈ [ts, ts+1] with ts = n∗s/n

s
s are

as stated, h1(t) = t−q/2, and

h2(t) =
h1(t)h0(t)

(n∗s/t)
1/s

=
∆∗nt

1/s−(q−1)/2

(n∗s)
1/s

, t ∈ [ts, ts+1], s = 1, . . . , d.

We note that ts ↑ s, t1 = 1 and td+1 = n. As (n∗s/ts)
1/s = ns and (n∗s/ts+1)1/s = ns+1, H(t)

and h2(t) are continuos in t. As sq = d2/(q − 1)e ∧ (d + 1), 1/s − (q − 1)/2 ≤ 0 iff s ≥ sq for
1 ≤ s ≤ d. It follows that h2(t) is increasing in t for t ≤ tsq and non-increasing in t for t ≥ tsq .

Thus, the optimal solution is given by

max
h0(t)≥1

min{h1(t), h2(t)}

=


h1(1), n1 ≤ h0(1),

h1(t∗), h0(t∗) = (n∗s/t∗)
1/s with ts ≤ t∗ ≤ ts+1 ≤ tsq ,

h2(tsq), 1 ≤ h0(tsq) ≤ (n∗sq/tsq)
1/sq = nsq ,

h2(t∗), h0(t∗) = 1, tsq ≤ t∗ ≤ n.

(63)

We note that h2(t) ≥ h1(t) for all 1 ≤ t ≤ n in the first case above, h1(t∗) = h2(t∗) and
h0(t∗) ≥ 1 in the second case, h2(tsq) ≤ h1(tsq) in the third case, and the maximizer t = t∗ is
determined by the constraint h0(t) ≥ 1 in the fourth case. Moreover, for 1 ≤ t∗ ≤ tsq we have

t∗ = {(n∗s)1/s/∆∗n}2s/(2+s) ∈ [ts, ts+1] and ns+1/t
1/2
s+1 ≤ ∆∗n ≤ ns/t1/2s , s < sq,

and for tsq ≤ t∗ ≤ n we have

t∗ = (∆∗n)−2 and t
−1/2
s+1 ≤ ∆∗n ≤ t−1/2

s , sq ≤ s ≤ d.

Thus, the right-hand side of (63) is
1, n1 ≤ ∆∗n, (s = 0),(
∆∗n/(n

∗
s)

1/s
)qs/(2+s)

ns+1/t
1/2
s+1 ≤ ∆∗n ≤ ns/t1/2s , (1 ≤ s < sq),

∆∗n/
(
nst

(q−1)/2
s

)
, t−1/2

s ≤ ∆∗n ≤ ns/t1/2s , (s = sq ≤ d),

(∆∗n)q−2/s/(n∗s)
1/s, t

−1/2
s+1 ≤ ∆∗n ≤ t−1/2

s , (sq ≤ s ≤ d).
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This gives (29) for ∆∗n ≥ n−1/2 through (32), (62) and (63). As n∗d = n and nd+1 = 1, the rate
is n−q/2 for ∆∗n = n−1/2. As the minimax rate for ∆∗n = 0 is the same n−q/2 due to the unknown
average of fn, (29) also holds for 0 ≤ ∆∗n ≤ n−1/2. Finally, for (30), we note that sq ≥ d iff
q ≤ 1 + 2/d. �

A3. Proofs of the results in Subsection 3.3

A3.1. Proof of Lemma 2. As F(j)
t does not depend on (s1, . . . , sj−1, tj+1, . . . , td),

E
[

max
s1≤t1,...,sj−1≤tj−1

∣∣fs1,...,sj−1,t,tj+1,...,td

∣∣∣∣∣F(j)
s

]
≥ max

s1≤t1,...,sj−1≤tj−1

∣∣fs1,...,sj−1,s,tj+1,...,td

∣∣
for all t > s. Thus, repeated application of the Doob inequality gives

E max
s1≤t1,...,sj≤tj

∣∣fs1,...,sj ,tj+1,...,td

∣∣q ≤ ( q

q − 1

)q
E max
s1≤t1,...,sj−1≤tj−1

∣∣fs1,...,sj−1,tj ,tj+1,...,td

∣∣q.
The conclusion for the general ft follows.

For independent εi, define ft =
∑
xi≤t εi and F

(j)
t = σ{εi : xi,j ≤ t} where xi,j is the j-th

component of xi. As Eεi = 0, {fs1,...,sj−1,t,tj+1,...,td , t ∈ R} is a sub-martingale with respect to the

filtration {F(j)
t , t ∈ R}. We apply Hölder’s inequality to avoid the singularity at q = 1+. �

A3.2. Proof of Proposition 2. As (35) is a consequence of (33) and (34), we only need to prove
(33) by symmetry. Moreover, by Theorem 1 it suffices to prove that for any v0 ∈ [xi,n]

rq,+(mxi) .q,d E
(
y[xi,v0] − f(xi)

)q
+

Let v1 be a design point in [xi,v0] satisfying min(nxi,v1 , nv1,v0)/nxi,v0 ≥ 1/2d. Such v1 always
exists as the minimum is attained when v0 = xi + 1. As y[xi,v0] − f(xi) is Gaussian,

E
(
y[xi,v0] − f(xi)

)q
+
≥ 1

2

{(
f [xi,v0] − f(xi)

)q
+
σqE(N(0, 1)q+)

n
q/2
xi,v0

}
≥ 2−12−qd min

{
1,E(N(0, 1)q+)

}{(
f(v1)− f(xi)

)q
+ σqn

−q/2
xi,v1

}
.

If (21) holds with rq,+(m) = Cq,dσ
qm−q/2 ≥ σqm−q/2, by the definition of mxi

rq,+(mxi) ≤ min
x≤v≤v1

{
Cq,dσ

qn
−q/2
x,v : C

1/q
q,d σn

−1/2
x,v ≥ f(v)− f(xi)

}
≤

{
Cq,dσ

qn
−q/2
x,v1 , f(v1)− f(xi) ≤ C1/q

q,d σn
−1/2
xi,v1 ,

f(v1)− f(xi), f(v1)− f(xi) > C
1/q
q,d σn

−1/2
xi,v1

≤
(

2Cq,d2
qd
/

min
{

1,E(N(0, 1)q+)
})

E
(
y[xi,v0] − f(xi)

)q
+
.
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Thus, the proof is complete if we verify (21) with the rq,+(m) in (27). The rest of the proof is
devoted to this task. In fact, we prove

E
(

max
u≤x

∑
xi∈[u,v]

εi
nu,v

)q
+
≤ Cq,dσqm−q/2 = rq,+(m)(64)

under the moment condition Eεi = 0 and E|εi|q∨2 ≤ σq∨2, without assuming the normality of εi.
To control the maximization over u ∈ [1,x] in (21), we cover the set by a collection Ux,v of

blocks
{

[ui,ui]
}

indexed by vector i ∈ Nd+ as follows. Define

U ′x,v =
{

[u′i,u
′
i] :

vj − (ui)j
vj − xj

= 2ij ,
(ui)j − (ui)j
vj − xj

= 2ij−1, i = (i1, . . . , id), ij ∈ N+
}
,

which covers {u : u ≤ x}. The covering collection for [1,x] is defined as

Ux,v =
{

[ui,ui] 6= ∅ : [ui,ui] = [u′i,u
′
i] ∩ [1,x], [u′i,u

′
i] ∈ U ′x,v

}
.(65)

Here the edge of the blocks are allowed to overlap to simplify the discussion. Observe

E
(

max
u≤x

∑
xi∈[u,v]

εi
nu,v

)q
+

≤
(
Emax
u≤x

∣∣∣∣ ∑
xi∈[u,v]

εi
nu,v

∣∣∣∣q∨2)q/(q∨2)

≤
( ∑

[ui,ui]∈Ux,v

E max
u∈[ui,ui]

∣∣∣∣ ∑
xi∈[u,v]

εi
nui,v

∣∣∣∣q∨2)q/(q∨2)

due to nu,v ≥ nui,v for u ∈ [ui,ui]. It follows from the definition of Ux,v that nui,v = 2|i|−dm

and nui,v ≤ 2|i|m, where m = nx,v and |i| =
∑d

j=1 ij . Therefore, by Lemma 2,∑
[ui,ui]∈Ux,v

E max
u∈[ui,ui]

( 1

2|i|−dm

∣∣∣ ∑
xi∈[u,v]

εi

∣∣∣)q∨2

≤ 2(q∨2)d
∑

[ui,ui]∈Ux,v

1

(2|i|m)q∨2

( q ∨ 2

q ∨ 2− 1

)(q∨2)d
E
∣∣∣ ∑
xi∈[ui,v]

εi

∣∣∣q∨2

≤ Cdqσ
q∨2m−(q∨2)/2

∑
[ui,ui]∈Ux,v

1

2(q∨2)|i|/2E
∣∣∣ 1
√
nui,v

∑
xi∈[ui,v]

εi
σ

∣∣∣q∨2
,

where Cq = {2(q ∨ 2)/(q ∨ 2− 1)}q∨2. The Rosenthal inequality gives

E
∣∣∣ 1
√
nui,v

∑
xi∈[ui,v]

εi
σ

∣∣∣q∨2
≤ C ′q∨2 max

{ ∑
xi∈[ui,v]

E
∣∣∣ εi√
nui,vσ

∣∣∣q∨2
, 1
}
≤ C ′q∨2,
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where constant C ′q∨2 is continuous in q ≥ 1. It follows that

E
(

max
u≤x

∑
xi∈[u,v]

εi
nu,v

)q
+

≤
(
CdqC

′
q∨2

)q/(q∨2)
σqm−q/2

∑
[ui,ui]∈Ux,v

1

2q|i|/2

≤
(
CdqC

′
q∨2

)q/(q∨2)
σqm−q/2

∞∑
i1=1

· · ·
∞∑
id=1

1

2q(i1+···+id)/2

≤ Cq,dσ
qm−q/2,

where Cq,d =
(
CdqC

′
q∨2

)q/(q∨2)
(2q/2 − 1)d remains continuous in q ≥ 1. This gives (64). �

REMARK 6. If εi’s are i.i.d., Lemma 2 gives specifically Cq,d = {(q ∨ 2)/((q ∨ 2)− 1)}qd in
(64) as the process below is a multi-indexed reverse martingale,

W (u) =
∑

xi∈[u,v]

εi
nu,v

, u ≤ x.

A3.3. Proof of Theorem 2. Let V0 = [a, b]. It follows from Theorem 1 that

Tq(V0) =
∑

xi∈[a,b]

E
∣∣f̂n(xi)− f(xi)

∣∣q ≤ 2q
∑

xi∈[a,b]

rq,+(mxi) + 2q
∑

xi∈[a,b]

rq,−(mxi,−).(66)

As the analysis of rq,−(mxi,−) is symmetric to that of rq,+(mxi), it suffices to consider the first
term on the right-hand side above. To this end, we divide V0 into two parts: V0,+ and V0 \ V0,+,
where V0,+ is composed of design points xi in V0 for which the positive-side Lq risk measure
rq,+(mxi) can be controlled by the variation of f within V0. More precisely,

V0,+ =
{
xi ∈ [a, b] : f(b) > f(xi) + r

1/q
q,+(nxi,b)

}
.

According to the definition ofmxi in (23),mxi ≥ nxi,b for design points xi in V0\V0,+, so that by
the monotonicity of the variability measure rq,+(mxi) ≤ rq,+(nxi,b), representing the edge effect
when f is flat within V0 but the data for the design points beyond V0 are not used. In our analysis,

Tq,+(V0,+) = 2q
∑

xi∈V0,+

rq,+(mxi)(67)

is controlled by the range-to-noise ratio ∆∗n and the dimensions ñj of the block V0 = [a, b], and

Tq,+(V0 \ V0,+) = 2q
∑

xi /∈V0,+

rq,+(mxi) ≤ 2q
∑

xi∈[a,b]

rq,+(nxi,b)(68)
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is relatively easy to bound as rq,+(m) is explicitly given in (64).
Let `∗0,+(m) be any upper bound for `0,+(m) = #{x ∈ V0,+ : mx ≤ m}. We have

Tq,+(V0,+) =

na,b∑
m=1

2qCq,dσ
qm−q/2

{
`0,+(m)− `0,+(m− 1)

}
≤ 2qCq,dσ

q

ñ∗d∑
m=1

m−q/2
{
`∗0,+(m)− `∗0,+(m− 1)

}
.

In the following four steps, we respectively bound `0,+(m) when d is the effective dimension,
bound Tq,+(V0,+), bound Tq,+(V0 \ V0,+), and draw the final conclusion on the sum Tq,+(V0) =
Tq,+(V0,+) + Tq,+(V0 \ V0,+).

Step 1: Bound `0,+(m) for m ≥ td = ñ/ñdd. We first partition V0 = [a, b] into a lattice of ñdd
hyper-rectangular blocks, which we call unit blocks and write as

Bk =
{
xi : aj + (kj − 1)ñj/ñd ≤ xi,j < aj + kjñj/ñd, 1 ≤ j ≤ d

}
,

indexed by k = (k1, . . . , kd)
T ∈ {1, . . . , ñd}d, where xi,j is the j-th element of xi. We note that

while a and b are integer-valued vectors, aj + kjñj/ñd are not necessarily integers unless ñj are
all multipliers of ñd, and in this special case the dimensions of Bk are exactly proportional to that
of [a, b]. In general td is the average number of data points in Bk. In the simplest case where
ñ1 = · · · = ñd, td = 1 and Bk contains just a single design point a+ k − 1.

We then partition [a, b] into diagonal sequences of unit blocks and denote by Lk the sequence
starting from the unit block Bk on the lower half boundary of [a, b]. Formally, we define Lk as

Lk =

minj(ñd−kj)⋃
i=0

Bk+i1, where k ∈ {k : ∃ j ≤ d s.t. kj = 1}.

Note that #{k : ∃ j ≤ d s.t. kj = 1} ≤ dñd−1
d , so that there are at most dñd−1

d such Lk’s. In the
case of d = 2 and ñ1 = ñ2, each Lk is the intersection of V0 = [a, b] and a 45 degree line in R2.

Finally we partition V0,+ according to the value of the function f into

Dj =
{
x ∈ V0,+ : f(a) + (j − 1)r

1/q
q,+

(
(3k)dtd

)
≤ f(x) < f(a) + jr

1/q
q,+

(
(3k)dtd

)}
,

j = 1, . . . , J , where rq,+(m) is as in (64), J =
⌈
{f(b)−f(a)}/r1/q

q,+

(
(3k)dtd

)⌉
and k is a positive

integer satisfying (k − 1)dtd < m ≤ kdtd. Figure 3 depicts a segment of Lk passing through Dj

with a diagonal line of unit blocks in red color, in the case of d = 2.
On Dj ∩ Lk consider design points x ∈ Dj ∩ Bk+c1 and v ∈ Dj ∩ Bk+(c+1+k)1 for some

integers c ≥ 0 and k ≥ 1. The lower and upper bounds for the individual coordinates of the design
points in the two unit blocks provide

kdtd < nx,v ≤
(
k + 2

)d
td ≤ (3k)dtd.
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Asx and v are both inDj , f(v)−f(x) ≤ r1/q
q,+

(
(3k)dtd

)
≤ r1/q

q,+

(
nx,v

)
, so thatmx ≥ nx,v > kdtd

by the definition of mx in (23). Thus, for x ∈ Dj ∩ Lk, mx ≤ kdtd implies that x is within k
blocks away from the upper contour of Dj ,

#
{
x ∈ V0,+ ∩ Lk ∩Dj : mx ≤ kdtd

}
≤ (k + 1)td.

The above bound holds for all Dj , but actually we can replace the upper bound by 0 for j = J .
Let x ∈ V0,+ ∩DJ . We have f(b) ≤ f(x) + r

1/q
q,+

(
(3k)dtd

)
by the definition of DJ and f(b) >

f(x)+r
1/q
q,+

(
nx,b

)
by the definition of V0,+, so that (3k)dtd < nx,b. Consequently, there must exist

two adjacent design points v1 and v2 = v1 + ej in [x, b] for some canonic unit vector ej such that
nx,v1 ≤ (3k)dtd < nx,v2 ≤ 2nx,v1 . It follows that f(v1) ≤ f(b) ≤ f(x) + r

1/q
q,+

(
(3k)dtd

)
≤

f(x) + r
1/q
q,+(nx,v1), so that mx ≥ nx,v1 ≥ nx,v2/2 > kdtd. Thus,

#{x ∈ V0,+ ∩DJ : mx ≤ kdtd} = 0.

As rq,+(m) = Cq,dσ
qm−q/2 and k = d(m/td)1/de, we have

`0,+(m) ≤ #{x ∈ V0,+ : mx ≤ kdtd}

=
∑
k

J−1∑
j=1

#
{
x ∈ V0,+ ∩ Lk ∩Dj : mx ≤ kdtd}

≤ dñd−1
d (k + 1)td(J − 1)

≤ dñd−1
d 2ktd

f(b)− f(a)

r
1/q
q,+

(
(3k)dtd

)
≤ dñd−1

d 4m1/dt
1−1/d
d C

−1/q
q,d

√
(3k)dtd{f(b)− f(a)}/σ

≤ dñd−1
d 4m1/dt

1−1/d
d C

−1/q
q,d 3d/2

√
2
√
m∆∗n

= C ′q,dñ
d−1
d t

1−1/d
d m1/d+1/2∆∗n

= C ′q,d∆
∗
nm

1/d+1/2ñ1−1/d

due to ñddtd = ñ. As the above inequality holds for all integers k ≥ 1,

`0,+(m) ≤ C ′q,d∆∗nm1/d+1/2ñ1−1/d ∀m ≥ td.

Step 2: Bound Tq,+(V0,+). If [a, b] is a hyper-cube, i.e., ñ1 = · · · = ñd, then td = 1; otherwise,
we still need to bound `0,+(m) for 1 ≤ m < td = ñ/ñd. Recall that ñ∗s =

∏s
j=1 ñj and ts =

ñ∗s/ñ
s
s. As 1 ≤ t1 ≤ · · · ≤ td, we just consider ts ≤ m ≤ ts+1 for some 1 ≤ s < d. We partition

V0 = [a, b] into ñs+1 · · · ñd = ñ/ñ∗s lattice slices of dimension ñ1 × · · · × ñs as follows,

V0,ks+1,...,kd =
{
xi ∈ [a, b] : xi,j = aj + (kj − 1), s < j ≤ d

}
, kj = 1, . . . , ñj , s < j ≤ d.
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We apply Step 1 to each V0,ks+1,...,kd so that for all ts ≤ m ≤ ts+1

#
{
xi ∈ V0,+ ∩ V0,ks+1,...,kd : mxi ≤ m

}
≤ C ′q,s∆∗nm1/s+1/2|V0,ks+1,...,kd |

1−1/s

As V0,ks+1,...,kd is of s-dimensional and contains ñ∗s data points, Step 1 yields

`0,+(m) ≤ min
{
ñ, (ñ/ñ∗s)× C ′q,s∆∗nm1/s+1/2(ñ∗s)

1−1/s
}
.

As H̃(t) = min
{

1,∆∗nt
1/2(t/ñ∗s)

1/s
}

for ts ≤ t ≤ ts+1, it follows that

`0,+(m) ≤ `∗0,+(m) = C ′q,d ñH̃(m), ts ≤ m ≤ ts+1, 1 ≤ s ≤ d.

Hence, as ñ = na,b,

Tq,+(V0,+) ≤ Cq,d2
qσq

na,b∑
m=1

m−q/2
{
`∗0,+(m)− `∗0,+(m− 1)

}
(69)

≤ Cq,d2
qC ′q,dσ

qna,b

(
H̃(1) +

d∑
s=1

∫ ts+1

ts

t−q/2H̃(dt)

)
.

Step 3: We bound Tq,+(V0 \ V0,+) by

Tq,+(V0 \ V0,+) ≤ 2q
∑

xi∈[a,b]

rq,+(nxi,b)

≤ 2qCq,dσ
q
∑

xi∈[a,b]

d∏
j=1

1

(bj − xi,j + 1)q/2

≤ 2qCq,d

d∏
j=1

bj−aj+1∑
m=1

m−q/2.

Step 4: In view of (66), (67) and (68), the main conclusion (36) directly follows from Steps
2 and 3 by summing (69) and the above inequality. Note that we may take in (36) C∗q,d =

max{2Cq,d2qC ′q,d, 21+qCq,d}, which remains continuous in q ∈ [1,∞) and decreasing in d. Note

that t1 = 1, ts = ñ∗s/ñ
s
s ↑ in s, td+1 = ñ, and H̃(t) = min

{
1,∆∗nt

1/2(t/ñ∗s)
1/s
}

for t ∈ [ts, ts+1]
is defined in the same way as in Proposition 1.

To obtain more explicit bounds, we write

Π = H̃(1) +

∫ na,b

1
t−q/2H̃(dt) = H̃(1) +

∫ t∗

1
t−q/2H̃(dt),(70)
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where t∗ = min{t ≥ 1 : H̃(t) = 1 or t = na,b}. Note that na,b = ñ and t∗ ∈ [1, ñ] exists as H(t)
is strictly increasing and continuous in t ∈ [1, ñ].

For ∆∗n ≥ ñ1 = ñ∗1, we have t∗ = Π = 1, which gives the first case of (37).
For ∆∗n ≤ ñ1, t∗ = ((ñ∗s)

1/s/∆∗n)2s/(2+s)∧ ñ for some s satisfying t∗ ∈ [ts, ts+1]. For t∗ < tsq ,
this matches the t∗ in (63) where the lattice is of size n1 × · · · × nd. Inside the interval [ts, ts+1],
t−q/2H̃(dt) = (1/2 + 1/s)

(
∆∗n/(ñ

∗
s)

1/s
)
t1/s−1/2−q/2dt. If 1/s − 1/2 − q/2 6= −1 for all s =

1, . . . , d,
∫ t∗

1 t−q/2H̃(dt) = max1≤t≤t∗
{
t−q/2H̃(t)

}
as we analyzed in the proof of Proposition 1;

otherwise, the integration may have an extra logarithmic factor when the maximum is attained with
s = sq = d2/(q − 1)e ∧ (d + 1). In the simplest case where ñj are all equal, 1 = t1 = · · · = td,
s = d is the effective dimension of the lattice [a, b] and

Π =
(
∆∗n/ñ

1/d
)(

1 + (1/2 + 1/d)

∫ t∗

1
t1/d−1/2−q/2dt

)
with t∗ = (ñ1/d/∆∗n)2d/(2+d) ∧ ñ. Here are the details for the general case.

For 1 ≤ t∗ ≤ tsq , or equivalently t∗ ∈ [ts, ts+1] for some 1 ≤ s < sq,

Π .q,d H̃(t∗)/(t∗)q/2 = max
1≤t≤n

t−q/2H̃(t)

as in the second case of (63), or the second case of (37), or the second case of (29).
Similarly, for tsq ≤ t∗ ≤ ñ and 2/(q − 1) 6∈ {1, . . . , d},

Π ≤
∫ tsq

0
t−q/2H̃(dt) +

∫ t∗

tsq

t−q/2H̃(dt) .q,d t
−q/2
sq H̃(tsq) = ∆∗nt

−q/2+1/2
sq /ñsq

as in the third case of (63), or the third case of (37) with Λsq = 1, or the third case of (29).
Finally, for tsq ≤ t∗ ≤ ñ and 2/(q − 1) = sq ∈ {1, . . . , d}, the integration of t−1 in the critical

interval [tsq , tsq+1 ∧ t∗] may result in an extra logarithmic term. With s = sq∫ t∗∧ts+1

ts

t−q/2H̃(dt) ≤ (1/2 + 1/s)∆∗n
(1/s)(ñ∗s)

1/s
log+

((
t∗ ∧ ts+1

ts

)1/s)
=

(s+ 2)∆∗nΛs

2(ñ∗s)
(q−1)/2

in view of (38), as (ts+1/ts)
1/s = ñs/ñs+1 and (t∗/ts)

1/s = ((ñ∗s)
1/s/∆∗n)2/(2+s)ñs/(ñ

∗
s)

1/s. For
t∗ > tsq+1,

∫ t∗
tsq+1

t−q/2H̃(dt) .q H̃(tsq+1)/t
q/2
sq+1 = H̃(tsq)/t

q/2
sq as H̃(t)/tq/2 = ∆∗n/(ñ

∗
sq)

1/sq

is a constant in [tsq , tsq+1] for q/2 = 1/s+ 1/2. Therefore,

Π .q
∆∗nΛs

(ñ∗s)
(q−1)/2

=
∆∗nΛs

t
(q−1)/2
s ñs

, s = sq = 2/(q − 1) ≤ d,

which gives the third case of (37) when the integration of t−1 is involved.
�
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A3.4. Proof of Theorem 3. It follows from (29) of Proposition 1 that

σq max
{

(t ∧ n)−q/2H(t) : t ∧ h0(t) ≥ 1
}

.q,d inf
f̂

sup
{
Rq(f̂ ,fn) : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
.

Thus, the main claim (41) holds when

sup
{
Rq(f̂

(block)

n ,fn) : fn ∈ Fn,∆(fn/σ) ≤ ∆∗n

}
.q,d σq

(
H(1) +

∫ n

1

H(dt)

tq/2

)
+
σq

n

d∏
j=1

∫ nj

0

dt

(t ∨ 1)q/2

.q,d Λsqσ
q max

{
(t ∧ n)−q/2H(t) : t ∧ h0(t) ≥ 1

}
+
(σq
n

d∏
j=1

log+(nj)
)I{q=2}

.

The first inequality above is (36) in Theorem 2 with [a, b] = [0,1]. The second follows from a
comparison between the upper bound (37) in Theorem 2 with [a, b] = [1,n] and the lower bound

(29) in the respective scenarios, covering ∆∗n ≥ t
−1/2
sq =

(∏sq
j=1(nj/nsq)

)−1/2
.

The rate in (43) follows directly from (37) with [a, b] = [1,n]. Note when 2/(q − 1) = sq ≤
d− 1, nsq+1/nsq � 1 but nd/nd+1 � n1/d. �

A4. Proofs of the results in Subsection 3.4

A4.1. Proof of Theorem 4. As ∆ak,bk = 0 for all k, it follows from Theorem 3 and (39) that

Tq([ak, bk]) .q,d σ
q

[
n

1−q/2
ak,bk

+
( d∏
j=1

log+(bk,j − ak,j + 1)
)I{q=2}

]
,

where ak,j and bk,j are the jth element of ak and bk respectively. The first conclusion follows.
When 1 ≤ q < 2, we have

Tq(V ) .q,d σ
q
K∑
k=1

n
1−q/2
ak,bk

.q,d σ
qK(n/K)1−q/2

and when q = 2,

T2(V ) .d σ2
K∑
k=1

logdK+

(
max
j

(bk,j − ak,j) + 1
)

.d σ2
K∑
k=1

logdK+ (nak,bk
)
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.d σ2K logdK+ (
1

K

K∑
k=1

nak,bk
)
,

where the last inequality follows as logdK+ (x) is a concave function when x is greater than a certain
constant Cd. The second conclusion follows as q > 2 simply gives rate K/n. �

A5. Proofs of the results in Subsection 3.5

A5.1. Proof of Theorem 5. As f(x) = fS(xS), we can always take v with the largest vSc , so
that

rq,+(mx) = rq,+(mS,xS )(Cq,d/Cq,s)n
−q/2
xSc ,nSc

where rq,+(mS,xS ) is the risk bound at xS in model S, nxSc ,nSc is the size of [xSc ,nSc ] in model
Sc, and Cq,d is from the definition of rq,+(m) as in (27). We note Cq,s ≤ Cq,d for all s ≤ d. Thus,
in the sheet of x with fixed xSc , the risk bound is identical to that of model S with σq reduced by
a factor n−q/2xSc ,nSc . Let σqxSc = (Cq,d/Cq,s)σ

q/n
q/2
xSc ,nSc .

Tq(V )

.q,d
∑
xSc

ns/dσqxSc min

{
1,
(

∆(fn/σxSc )n
−1/d

)min{1,qs/(s+2)}
(log n)I{qs=s+2}

+
(
ns/d

)−min{1,q/2}
(log n)sI{q=2}

}
.q,d

∑
j∈[1,n1/d]d−s

ns/dσq(j1 · · · jd−s)−q/2

×min

{
1,
(

∆(fn/σ)(j1 · · · jd−s)1/2n−1/d
)min{1,qs/(s+2)}

(log n)I{qs=s+2}

+
(
ns/d

)−min{1,q/2}
(log n)sI{q=2}

}
,

where the first inequality follows from (43) in Theorem 3. Hence we obtain (45) and (46). �

A6. Proofs of the results in Subsection 3.6

A6.1. Proof of Proposition 3. We first prove that (50) holds with the variability bound in (52).
As the V = [0, 1]d for the random design, we modify the proof of (64) in the proof of Proposition 2
as follows.

Consider fixed 0 ≤ a ≤ b ≤ 1 and x ∈ [a, b]. The modification involves vectors v and w
in Rd with x ≤ w ≤ v ≤ b, and a probability measure P∗ which endows the same conditional
distribution of {εi, i ≤ n} given {xi, i ≤ n} as P does and iid xi ∈ [0, 1]d distributed according to
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the conditional distribution under P given nx,w = 0. This covers three cases, v = vx and w = x
for P∗ = P, v = b and w = vx for the conditional probability given nx,vx = 0, and v = 1 and
w = b for the conditional probability given nx,b = 0.

Consider the case of P
{
xi ∈ [x,v] \ [x,w]

}
> 0. Let µ∗ be the measure in Rd given by

µ∗([u,v]) = µL([u,v] \ [x,w])/µL([0,1] \ [x,w]).

For t ≥ 0, let h(t) be the function satisfying

h(t)µL([x,v])− µL([x,w]) = etµL
(
[x,v] \ [x,w]

)
.

As P
{
xi ∈ [x,v] \ [x,w]

}
> 0, µL([x,v] \ [x,w] > 0 by (47). We have h(0) = 1 and

(d/dt) log h(t) =
µL
(
[x,v] \ [x,w]

)
µL
(
[x,v] \ [x,w]

)
+ e−tµL([x,w)

.

Thus, log h(t) is convex in t. To modify the construction of Ux,v in (65), we define ui by(
ui
)

(j)
= v(j) − h(j)(i)

(
v(j) − x(j)

)
.

where (j) is determined by i(1) ≤ . . . ≤ i(d) and h(j)(i) are given by

h(j)(i) =

(
h(i(1) + · · ·+ i(j) + (d− j)i(j))

h(1)(i)× · · · × h(j−1)(i)

)1/(d+1−j)
(71)

with h(0)(i) = 1. More explicitly, with g(j)(i) = log h(i(1) + · · ·+ i(j) + (d− j)i(j)),

log h(j)(i) =
g(j)(i)

d+ 1− j
−

j−1∑
`=1

g(`)(i)

(d+ 1− `)(d− `)
(72)

Furthermore, we define ui = ui−1, and

Ux,v =
{

[ui,ui] : ui ∈ [0,x], ij > 0 ∀j
}
.

Next, we verify the following properties of Ux,v,

µ∗([ui,v])

µ∗([x,v])
= e|i|, ∪

{
[ui,ui] : [ui,ui] ∈ Ux,v

}
⊇ [0,x].(73)

As
∏d
j=1 h(j)(i) = h(|i|), the first part above follows from

µ∗([ui,v])

µ∗([x,v])
=
µL([ui,v])− µL([x,w])

µL
(
[x,v] \ [x,w]

) =
h(|i|)µL([x,v])− µL([x,w])

µL
(
[x,v] \ [x,w]

) = e|i|.
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For the second part of (73), it suffices to consider 1 ≤ i1 ≤ · · · ≤ ij−1 < ij = · · · = id by
symmetry and prove that the block [ui,ui] overlaps with blocks [ui′ ,ui′ ] with i 6= i′ ≤ i on
sides j, . . . , d. This holds iff ui′ ≤ ui−1 = ui with i′ = (i1, . . . , ij−1, ij − 1, . . . , id − 1)T , iff
h(j)(i− 1) ≤ h(j)(i

′), and by (72) iff

g(j)(i− 1)

d+ 1− j
−

j−1∑
`=1

g(`)(i− 1)

(d+ 1− `)(d− `)
≤

g(j)(i
′)

d+ 1− j
−

j−1∑
`=1

g(`)(i
′)

(d+ 1− `)(d− `)
,

which can be written as∫ i1+...+ij−1+(d+1−j)ij−1

d(i1−1)
g0(t)d log h(t) ≤

∫ i1+...+ij−1+(d−j+1)(ij−1)

i1+...+ij+(d−j)ij−d

d log h(t)

d+ 1− j

with g0(t) =
∑j−1

`=1 I{i1 + . . .+i`+(d−`)i`−d ≤ t ≤ i1 + . . .+i`+(d−`)i`}/(d+1−`)(d−`).
This inequality holds as g0(t) is decreasing in t in the domain of the integration, log h(t) is convex
in t and the two sides are equal when d log h(t) is replaced by the Lebesgue measure dt. For
example, for j = d = 2 and i1 < i2, ui1,i2−1 ≤ ui1−1,i2−1 follows from

2

∫ i1+i2−1

i1+i2−2
d log h(t) ≥

∫ 2i1

2i1−2
d log h(t)

by direct computation from (71). This completes the proof of (73).
Similar to the calculation below (65), it holds that, when P

{
xi ∈ [x,v] \ [x,w]

}
> 0, or

equivalently µx,v > µx,w,

E∗
(

max
u≤x

∑
xi∈[u,v]

εi
nu,v ∨ 1

)q
+

≤
∑

[ui,ui]∈Ux,v

E∗
(

max
u∈[ui,ui]

( 1

nui,v ∨ 1

∣∣∣ ∑
xi∈[u,v]

εi

∣∣∣)q)

≤
∑

[ui,ui]∈Ux,v

(C ′q)
d

[
E∗
(

1

nui,v ∨ 1

∣∣∣ ∑
xi∈[ui,v]

εi

∣∣∣)q∨2
]q/(q∨2)

≤
∑

[ui,ui]∈Ux,v

(C ′q)
d

[
E∗
[
(nui,v ∨ 1)−2(q∨2)

]
E∗
∣∣∣∣ ∑
xi∈[ui,v]

εi

∣∣∣∣2(q∨2)
](q/2)/(q∨2)

≤
∑

[ui,ui]∈Ux,v

(C ′q)
dC ′′q σ

q

[
E∗
[
(nui,v ∨ 1)−2(q∨2)

]
E∗
[
n

(q∨2)
ui,v

]](q/2)/(q∨2)

,

where the first inequality follows from the second part of (73), the second from Lemma 2, the third
from Cauchy-Schwarz inequality, and the fourth from Rosenthal’s inequality. As nu,v is a binomial
random variable,

E∗[(1 ∨ nu,v)±q] .q [1 ∨
(
E∗[nu,v]

)±q
], ∀q > 0,
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E∗[nqu,v] .q E∗[nu,v], when q > 0 and E∗[nu,v] ≤ 1.

Moreover, by (47) and the first part of (73),

E∗
[
nui,v

]
E∗
[
nui,v

] .ρ1,ρ2 µ∗([ui,v])

µ∗([ui,v])
= ed, E

[
nui,v

]
�ρ1,ρ2 µ∗([ui,v]) = e|i|−dµ∗([x,v]).

Thus, when µx,v > µx,w,

E∗
(

max
u≤x

∑
xi∈[u,v]

εi
nu,v ∨ 1

)q
+

≤ Cq,d,ρ1,ρ2σq
(
1 ∨ E∗[nx,v]

)−q/2
.(74)

By arguments similar to what we have in the proof of Theorem 2, we can maintain Cq,d,ρ1,ρ2
continuous in q. This gives (52) with P∗ = P and w = x when µx,v > µx,w = 0. It also holds for
µx,v = 0 as the bound rq,+(nµx,v) can be right-continuous due to

E∗
(

max
u≤x

∑
xi∈[u,v]

εi
nu,v ∨ 1

)q
+

≤ E∗
(

max
u≤(1−ε)x

∑
xi∈[u,v]

εi
nu,v ∨ 1

)q
+

+ E∗
(

max
u∈[0,x]\[0,(1−ε)x]

∑
xi∈[u,v]

εi
nu,v ∨ 1

)q
+

,

where the second term goes to zero when ε→ 0+.
We then prove (53) by considering three cases that can happen when estimating f(x): (1) the

block [x,vx] is non-empty; (2) the block [x,vx] is empty but not [x, b]; and (3) the block [x, b] is
empty.

Consider the first case where nx,vx > 0. By the definition of mx, there exists vx ≤ b such that
in the event nx,vx > 0,

f̂ (block)
n (x) ≤ max

u≤x

∑
xi∈[u,vx]

yi
nu,vx

≤ f(x) + r
1/q
q,+(mx) + max

u≤x

∑
xi∈[u,vx]

εi
nu,vx

with the rq,+(m) in (50). Thus, by (74) with P∗ = P, v = vx, w = x and µx,vx > 0 (otherwise
P{nx,vx > 0} = 0),

E
(
f̂ (block)
n (x)− f(x)

)q
+
I{nx,vx > 0} ≤ 2qrq,+(mx).(75)

Consider the second case where nx,vx = 0 but nx,b > 0. It follows that

f̂ (block)
n (x) ≤ f(b) + max

u≤x

∑
xi∈[u,b]

εi
nu,b

,
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so that by (74) with P∗ being the conditional probability under nx,vx = 0, w = vx, v = b and
µx,b > µx,vx (otherwise P{nx,vx = 0, nx,b > 0} = 0),

E
(
f̂ (block)
n (x)− f(x)

)q
+
I{nx,vx = 0, nx,b > 0}(76)

≤ 2q−1

((
f(b)− f(x)

)q
+ E

[(
max
a≤u≤x

∑
xi∈[u,b]

εi
nu,b ∨ 1

)q
+

∣∣∣∣nx,vx = 0

])
P{nx,vx = 0}

≤ 2q−1Cq,d,ρ1,ρ2σ
q
(
∆q
a,b + 1

)
e−mx .

Finally, we consider the third case where nx,b = 0. By the definition of f̂ (block)
n , f̂ (block)

n (x) ≤
f(1) + maxu≤x

∑
xi∈[u,1] εi/nu,1. Similar to the first two cases,

E
(
f̂ (block)
n (x)− f(x)

)q
+
I{nx,b = 0} ≤ 2q−1Cq,d,ρ1,ρ2σ

q
(
∆q

0,1 + 1
)
e−nµx,b(77)

for µx,1 > µx,b. It remains true for µx,1 = µx,b by a similar right-continuity argument to the one
below (74); we omit the details. Therefore (53) follows from (75), (76) and (77). �

A6.2. Proof of Theorem 6. In this proof, we may re-define some notation to fit in with the
random design scenario. Such new notation supersedes definitions elsewhere, but is applicable
only in this proof. Throughout the proof rq,+(m) is defined as in (52).

As the risk over block [a, b] is

R∗q([a, b]) =

∫
[a,b]

E
∣∣f̂ (block)
n (x)− f(x)

∣∣qdx,
it suffices by symmetry to only bound R∗q,+([a, b]), where

R∗q,+(A) =

∫
A
E
(
f̂ (block)
n (x)− f(x)

)q
+
dx, A ⊆ [0,1].

This will be done through Proposition 3. A direct consequence of Proposition 3 is

R∗q([a, b]) .q,d,ρ1,ρ2 σ
q
(
∆q

0,1 + 1)µa,b,

which serves as the trivial upper bound in (49).
Parallel to the proof of Theorem 2, we partition V0 = [a, b] into V0,+ and V0 \ V0,+, where

V0,+ = {x ∈ [a, b] : f(b) > f(x) + r
1/q
q,+(nµx,b)}. By (51), mx ≤ nµx,b for x ∈ V0,+ (equality

may hold only if f(x) is not continuous at x = b), andmx = nµx,b for x /∈ V0,+. In what follows,
we first bound R∗q,+(V0,+) and then R∗q,+(V0 \ V0,+). The conclusions follow from summing the
two bounds up.

To derive bound for R∗q,+(V0,+), which is an integral over V0,+, we first integrate over lines
parallel to b − a and starting from points in the lower-half boundary of [a, b], and integrate them
over the lower-half boundary. Formally, let ∂Lower = {x ∈ [a, b] : xj = aj for some j} denote
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the lower-half boundary of [a, b]. We define for each c ∈ ∂Lower, the anti-diagonal line segment
starting from c as Lc =

{
c+ k(b− a) : k ∈ [0, kc]

}
, where kc = sup

{
k : c+ k(b− a) ∈ V0,+}

is the length of the segment. It follows from the above definitions that kc ≤ 1, Lc ⊂ V+ and

V0,+ =
⋃

c∈∂Lower

Lc.

For simplicity, let mc,k = mc+k(b−a) and g(k) = f(c+ k(b− a)). Observe

R∗q,+(Lc)

≤ C ′q,d,ρ1,ρ2σ
q

∫
Lc

(
(mx ∨ 1)−q/2 + ∆q

a,be
−mx

)
dx+ C ′qσ

q∆q
0,1

∫
Lc

e−nµx,bdx

≤ C ′q,d,ρ1,ρ2σ
q

∫ kc

0

(
(mc,k ∨ 1)−q/2 + ∆q

a,be
−mc,k

)
dk + C ′qσ

q∆q
0,1

∫
Lc

e−nµx,bdx

≤ C ′q,d,ρ1,ρ2σ
q

∫ nµa,b

0

(
(m ∨ 1)−q/2 + ∆q

a,be
−m
)
d`c,+(m) + C ′qσ

q∆q
0,1

∫
Lc

e−nµx,bdx,

where `c,+(m) =
∫ kc

0 I{mc,k < m}dk.
It then suffices to bound `c,+(m). To this end, we shall divide divide V0,+ into

Dj =
{
x ∈ V0,+ : f(a) + (j − 1)r

1/q
q,+(m) ≤ f(x) < f(a) + jr

1/q
q,+(m)

}
,

j = 1, . . . , J , where J =
⌈
{f(b)− f(a)}/r1/q

q,+(m)
⌉
. Consider Dj ∩ Lc and let v be the right end

point of this segment, i.e., x ≤ v for all x ∈ Dj ∩ Lc. If we can find xv ∈ Dj ∩ Lc such that
nµxv ,v = m, then any point x ≤ xv in Dj ∩ Lc has mx ≥ m. Let v = xv + t(b− a). It follows
that ∫

c+k1∈Dj∩Lc

I{mc,k < m}dk ≤ t ≤
[
(ρ2/ρ1)

m

nµa,b

]1/d
.

The above bound is trivial if there is no such xv. For x ∈ DJ∩Lc, we have f(b) ≤ f(x)+r
1/q
q,+(m)

by the definition of DJ and f(b) > f(x) + r
1/q
q,+(nµx,b) by the definition of V0,+, which implies

m < nµx,b. However, mx ≥ nµx,b due to x ∈ V0,+ so that mx > m and∫
c+k1∈DJ∩Lc

I{mc,k < m}dk = 0.

Overall, we have

`c,+(m) =
J∑
j=1

∫
c+k1∈Dj∩Lc

I{mc,k < m}dk
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≤
[
(ρ2/ρ1)

m

nµa,b

]1/d f(b)− f(a)

r
1/q
q,+(m)

≤ (ρ2/ρ1)1/dC
−1/q
q,d,ρ1,ρ2

∆∗n(nµa,b)
−1/dm1/2+1/d

≤ (ρ2/ρ1)1/dC
−1/q
q,d,ρ1,ρ2

H∗(m),

where H∗(m) = min
{

1,∆a,b(nµa,b)
−1/dm1/2+1/d

}
.

Consequently,

R∗q,+(V0,+) =

∫
c∈∂Lower

Rq,+(Lc)dc(78)

≤ C ′′q,d,ρ1,ρ2σ
q

∫ nµa,b

0

(
(m ∨ 1)−q/2 + ∆q

a,be
−m
)
H∗(dm)

+C ′qσ
q∆q

0,1

∫
V0,+

e−nµx,bdx
}
.

We then bound R∗q,+([a, b] \ V0,+). As f(b) − f(x) ≤ r
1/q
q,+(mx) and mx = nµx,b for x ∈

[a, b] \ V0,+, it follows from Proposition 3 that

E
(
f̂n(x)− f(x)

)q
+
≤ 2qrq,+(nµx,b) + 2qσq(∆q

0,1 + 1)e−nµx,b .

Therefore

R∗q,+([a, b] \ V0,+)(79)

≤ C ′′′q,d,ρ1,ρ2σ
q

∫
x∈[a,b]\V0,+

((
(nµx,b) ∨ 1

)−q/2
+ ∆q

0,1e
−nµx,b

)
dx

≤ C ′′′q,d,ρ1,ρ2σ
q

∫
x∈[a,b]

((
(nµx,b) ∨ 1

)−q/2
+ ∆q

0,1e
−nµx,b

)
dx.

The main conclusion (48) directly follows from (78) and (79), with appropriately chosen C∗q,d,ρ1,ρ2
so that it remains continuous in q ≥ 1 and non-decreasing in d.

We then specifically derive its rate in (49). As H∗(m) = 1 implies m =
(
nµa,b/∆

d
a,b

)2/(d+2),

we calculate the first integral in (48) from m = 0 to m = min{nµa,b,
(
nµa,b/∆

d
a,b

)2/(d+2)}. The
first term in (49) hence follows. The last term follows from a straightforward calculation of (79)
using∫

x∈[0,b−a]

(
n
∏
j

xj ∨ 1
)−q/2

dx .q,d,ρ1,ρ2

{(
log+(nµa,b)

)d−I{q>2}/
n q ≥ 2,

(nµa,b)
−q/2+1

/
n 1 ≤ q < 2.

This completes the proof. �

A6.3. Proof of Theorem 7. We omit the proof as it’s a direct result of Theorem 6.
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A6.4. Proof of Theorem 8. We omit the proof as it’s similar to the proof of Theorem 4.

A7. Proofs of the results in Subsection 3.7

A7.1. Proof of Theorem 9. We provide the proof only for the {f̂ (block)
n , f

∗
n} pair given by (17)

and (58) as the proofs for the {f̂ (max−min)
n , f

(max−min)
n } and {f̂ (min−max)

n , f
(min−max)
n } pairs are

nearly identical and slightly simpler. By the definitions of mx and vx in (60),

f̂ (block)
n (x) ≤ 1

2

{
max
u�x

min
vx�v,

Y [u,v] + min
vx�v

max
u�x

Y [u,v]

}
≤ f

∗
n(x) + r

1/q
q,+(mx) + max

v�vx

(
max
u�x

∑
xi∈[u,v]

εi
nu,v

)
+

,

for data points x = xi. Thus, by the definition of rq,+(m) in (59),

E
{
f̂ (block)
n (x)− f∗n(x)

}q
+
≤ 2qrq,+(mx)

as in the proof of Theorem 1. Similarly, we can have the inequality on the negative side. This gives
the f

∗
n version of (25) and (26).

It remains to prove (59) holds with rq,±(m) = Cq,dσ
qm−q/2, as the counterparts to the rest

of the proof in the proofs of Theorems 2, 3, 4 and 5 are all based on (25) and (26) with rq,±(m)
of this form. To this end, we notice that for fixed x and vx in the lattice design, the partial sum∑
u≤xi≤vx≤v εi indexed by u and v is a martingale in each index uj or vk while holding other

2d− 1 indices fixed. Thus, similar to the proof of (64) in the proof of Proposition 2 we can group
u and v in blocks of sizes 2|i|m and 2|j|m and bound Emaxv�vx

(
maxu�x

∑
xi∈[u,v] εi/nu,v

)q
+

by

∑
i≥0,j≥0

Cq,dσ
q

((2|i| ∨ 2|j|)m)q/2
.q,d

∑
j≥0

σq|j|d

(2|j|m)q/2
.q,d

σq

mq/2
,

with m = nx,vx . This completes the proof. �
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