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STRUCTURALLY STABLE PROPERTIES OF CONTROL SYSTEMS

Shiva Shankar1

Abstract of talk dedicated to the 110th anniversary of L.S.Pontryagin,
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow.

We study properties of control systems that are stable with respect to perturbations. These ideas go
back to the notion of structural stability of autonomous systems due to Andronov and Pontryagin.
In contrast, control systems usually admit inputs, and are therefore non-autonomous.

We study linear systems defined by partial differential or difference equations. These are sys-
tems defined over the ring A = C[∂1, . . . , ∂n] of partial differential operators, or the ring B =

C[σ1, σ−11 , . . . , σn, σ
−1
n ] of Laurent polynomials, respectively. More precisely:

(i) Let P ⊂ Ak be an A-submodule, and suppose it is generated by p1, . . . , pℓ. Let pi = (pi1(∂), . . . , pik(∂)),
and let P (∂) be the ℓ × k matrix whose rows are the pi. Let C∞ be the space of smooth functions
on R

n. Then

(1)
P (∂) ∶ (C∞)k Ð→ (C∞)ℓ

f ↦ P (∂)f

is an A-module map. The distributed system B(P ) defined by P is the kernel {f ∣P (∂)f = 0} of the
above map (it does not depend on the choice of generators for P which defined the matrix P (∂),
indeed B(P ) ≃ HomA(Ak/P, C∞)).

Remark: More generally, we can replace C∞ by any A-submodule F of the space D′ of distribu-
tions on R

n, and study the system HomA(Ak/P, F). Examples include the spaces S ′ of tempered

distributions, S of rapidly decreasing functions, the inverse limit
←Ð

H of the Sobolev spaces, etc.
The answers to the questions we address depend on the choice of F (for instance [5]). We confine
ourselves here to the space C∞, and the classical result of Malgrange and Palamodov that it is an
injective, cogenerating, A-module is of crucial importance [3].

(ii) Let Z
n be the integer lattice, and let (C)Z

n

be the set of all functions w ∶ Zn
→ C. The term

σi ∈ B acts on w by shift: σi(w)(m1, . . . mn) = w(m1, . . . ,mi+1, . . . ,mn). Composition then defines
the action of a monomial, and by linearity extends to an action of B on (C)Z

n

. The n-D system
B(P ) defined by a submodule P ⊂ Bk is the kernel of

(2) P (σ,σ−1) ∶ (Ck)Z
n

Ð→ (Cℓ)Z
n

where the ℓ rows of the matrix P (σ,σ−1) generate P . Again, B(P ) ≃ HomB(Bk/P, (C)Z
n

). Here
it is elementary that (C)Z

n

is an injective cogenerating B-module.

We interpret the above formulation: let R denote either the ring A or B, and F denote C∞ or
C
Z
n

. A system is described by some k (C-valued) attributes at various points of Rn or Z
n, each

such description is an evolution of the system. A priori, perhaps the system could evolve according
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to any f ∈ Fk, but the laws governing the system restrict the possible evolutions f to a subset of
Fk. Here the set of laws governing the system is a submodule P of Rk, and to say that f must
satisfy these laws is to say that it lies in the kernel of equation (1) or (2) above.

Example: State space systems: the state x ∶ R → R
ℓ of the system evolves according to d

dt
x =

Xx + Uu, where u ∶ R → R
m is the input, X and U are ℓ × ℓ and ℓ ×m matrices with entries in R.

The possible evolutions f = (x,u) ∶ R→ R
ℓ+m that can occur is the kernel of

(
d

dt
Iℓ×ℓ −X, −U) ∶ (C∞(R))ℓ+m Ð→ (C∞(R))ℓ

◻

We wish to study perturbations of such systems, hence we need to topologise the set of all
systems. In the context of (i), we need to topologize the set of all submodules P ⊂ Ak, and towards
this, we need to first topologize the set Mk of all matrices with k columns and entries from the
ring A. We consider structured perturbations - here it means that we consider matrices with a fixed
number ℓ of rows. Denote this subset byMℓ,k.

LetMℓ,k(d) be the subset of those matrices inMℓ,k whose entries are all bounded in degree by d.

There are (n+d
n
) monomials of degree at most d in n indeterminates, hence we identifyMℓ,k(d) with

the C-affine space of dimension ℓk(n+d
n
) with the Zariski topology. For d1 < d2,Mℓ,k(d1)↪Mℓ,k(d2)

as a Zariski closed subspace, and as d tends to infinity, the direct limitMℓ,k is equipped with the
direct limit topology. A similar construction equips the set of all ℓ × k matrices with entries from
the Laurent polynomial ring B with the Zariski topology. These topologies descend to submodules
of Ak and Bk, and hence to distributed and n-D systems respectively (details appear in [6, 7]).

We can now ask if a certain property of a distributed or n-D system is generic with respect to
the above topology. In other words, we ask if the property holds for an open dense set of systems.

In this talk, I ask whether the property of being controllable is generic for distributed systems
[6]. The question whether the degree of autonomy of an n-D system is generic is answered in [7].

Definition[8]: The distributed system B(P ) defined by a submodule P ⊂ Ak is controllable if for
any two subsets U1 and U2 of Rn whose closures do not intersect, and any two elements f1 and f2
of B(P ), there is an element f in B(P ) such that f = f1 on some neighbourhood of U1 and f = f2
on some neighbourhood of U2.

This definition generalizes the definition of a controllable state space system (of Example 1)
introduced by Kalman [1] in 1960, here in Moscow!

Theorem 1.1. [4] The distributed system B(P ) is controllable if and only if Ak/P is torsion free.

Definition The distributed system B(P ) is strictly underdetermined if the submodule P ⊂ Ak can be
generated by fewer than k elements (i.e. ℓ < k in the notation of (i)). Otherwise, it is overdetermined.

Theorem 1.2. [6] A generic strictly underdetermined system is controllable, for this set of systems
contains a Zariski open set. Conversely, a generic overdetermined system is uncontrollable.

This follows from the following characterisation of controllability:

Theorem 1.3. [6] Let P be a submodule of Ak, and let P (∂) be any ℓ × k matrix whose ℓ rows
generate P . Suppose the ideal iℓ of ℓ×ℓ minors of P (∂) is nonzero (so that ℓ ⩽ k). Then the system
B(P ) is controllable if and only if the codimension of the variety of iℓ is greater than or equal to 2.
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The paper [7] considers the important notion of the degree of autonomy of an n-D system, and
shows that this degree is a generic property with respect to the Zariski topology. To prove this, it
is first shown that while it is difficult to calculate the dimension of the variety of a specific ideal of
the ring A, generically a variety is a complete intersection.
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