
ar
X

iv
:1

81
2.

08
99

3v
1 

 [
cs

.I
T

] 
 2

1 
D

ec
 2

01
8

A Construction of Optimal Frequency Hopping Sequence Set

via Combination of Multiplicative and Additive Groups of

Finite Fields

Xianhua Niu ∗ Chaoping Xing†

Abstract

In literatures, there are various constructions of frequency hopping sequence (FHS for
short) sets with good Hamming correlations. Some papers employed only multiplicative
groups of finite fields to construct FHS sets, while other papers implicitly used only
additive groups of finite fields for construction of FHS sets. In this paper, we make use
of both multiplicative and additive groups of finite fields simultaneously to present a
construction of optimal FHS sets. The construction provides a new family of optimal
(

qm − 1, q
m−t

−1

r
, rqt; q

m−t
−1

r
+ 1

)

frequency hopping sequence sets archiving the Peng-

Fan bound. Thus, the FHS sets constructed in literatures using either multiplicative
groups or additive groups of finite fields are all included in our family. In addition,
some other FHS sets can be obtained via the well-known recursive constructions through
one-coincidence sequence set.

1 Introduction

In frequency-hopping multiple access (FHMA) communication systems, each user’s wideband
signal is generated by hopping over a large number of frequency slots. User’s frequency
slots used are chosen pseudo-randomly via a code called frequency hopping sequences. The
degree of the mutual interference between users is clearly related to the Hamming correlation
properties of the frequency hopping sequences, and the number of users allowed by the system
for synchronous communication is determined by the number of frequency hopping sequences
[6, 13]. In order to improve the system performance, it is desirable to employ frequency
hopping sequences having low Hamming correlation to reduce the multiple-access interference
(also called hits) of frequencies [7]. Moreover, the required sequence length and alphabet size
of FHS set are variable according to the specification of a given system or environment. Thus,
the design of FHS set with good Hamming correlation property and flexible parameters is an
important problem.
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In practical applications, the required length and alphabet size of an FHS or an FHS
set vary depending on the specification of a given system or environment. Thus, it is very
important to select FHS sets with optimal Hamming correlation under the given condition.
In general, optimality of an FHS set is measured by the Peng-Fan bound [9], whereas that of
a single FHS is by the Lempel-Greenberger bound [7]. It is of particular interest to construct
FHS sets which meet Peng-Fan bound. There are several algebraic method, combinatorial
and recursive constructions in the literature [7, 14, 3, 5, 20, 18, 19, 2, 10, 16, 1, 8, 17].

1.1 Known results

In literatures, there are various constructions of FHS sets with good Hamming correlations.
Let us only recall the constructions relevant to our construction, namely those via either
multiplicative or additive groups of finite fields.

(1) Lempel et al. [7, 14, 20] showed that there is an optimal (qm−1, qm−t, qt; qm−t) FHS set
for a prime power q and integers 1 ≤ t ≤ m− 1. This construction implicitly employed
the additive group structure of a finite field.

(2) Ding et al. [5] constructed optimal
(

q − 1, q−1

f
, f ; q−1

f
+ 1

)

FHS set for a prime power

q and integer f satisfying f |(q − 1), and 2 ≤ f ≤ q−1

f
− 1. This construction used the

multiplicative group structure of a finite field.

1.2 Our result

The optimal FHS sets given in Subsection 1.1 were constructed via either multiplicative or
additive group structure of finite fields. By mixing both multiplicative and additive group
structures of finite fields, we obtain the following result.

Theorem 1. Let q be a prime power and let r be a divisor of q−1. Then for any 0 ≤ t ≤ m−1,
there is an FHS set S with parameters







(

qm − 1, q
m−t−1

r
, rqt; q

m−t−1

r
+ 1

)

if r > 2
(

qm − 1, 1 + qm−t−1

r
, rqt; q

m−t−1

r
+ 1

)

= (qm − 1, qm−t, qt; qm−t) if r = 1

In addition, if qm−1 < e2+(e+1)qt−3e with e = qm−t−1

r
, then S is optimal, i.e., it achieves

the Peng-Fan bound.

It is easy to see that by taking t = 0, we get the FHS set given in Ding et al. [5].
By taking r = 1, we get the FHS set given in Lempel et al.[7, 14, 20]. Compared with the
constructions in [5, 7, 14, 20], the FHS set in Theorem 1 allows more flexible parameters due
to the free choice of t.

By applying the FHS sets in Theorem 1 to the standard recursive concatenation of FHS
sets with one-coincidence (OC for short) sequence sets, we obtain the following new FHS
sets.

Theorem 2. Let q be a prime power and let r ≥ 2 be a divisor of q − 1. Then for any

0 ≤ t ≤ m− 1, we have FHS sets given in the following table.
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Table 1: Parameters of some new recursive constructions of optimal FHS Sets

Length N M Hm Alphabet Size ℓ Constraints

k(qm − 1) e rqt k(e+ 1)
er + 1 = qm−t, 1 ≤ t ≤ m− 1,
qm − qt − 1 < lpf(k),
qm − 1 < e2 + (e+ 1)pt − 3e

(p− 1)(qm − 1) e rqt p(e+ 1)
er + 1 = qm−t, 1 ≤ t ≤ m− 1,
qm − qt − 1 ≤ p ,
qm − 1 < e2 + (e+ 1)pt − 3e

k(p− 1)(qm − 1) e rqt kp(e+ 1)
er + 1 = qm−t, 1 ≤ t ≤ m− 1,
qm − qt − 1 ≤ min{lpf(k)− 1, p},
qm − 1 < e2 + (e+ 1)pt − 3e

In the above table, p denotes a prime power and lpf(k) denotes the least prime factor of an integer k > 1.

1.3 Our techniques

Our approach is divided into four steps:

(i) partition a finite field Fqm into ℓ disjoint subsets Vi for i = 1, 2, . . . , ℓ;

(ii) construct a polynomial φ(x) that is a constant polynomial in each Vi;

(iii) for every b ∈ Fqm , define an FHS sb :=
(

φ(θ0 + b), φ(θ + b), φ(θ2 + b), . . . , φ(θq
m−2 + b)

)

,
where θ is a primitive element of Fqm ;

(iv) choose a suitable subset S of Fqm to form an FHS set {sb : b ∈ S}.

The key part of the above approach is partition of Fqm into ℓ disjoint subsets Vi for i =
1, 2, . . . , ℓ. Although different languages were adopted to construct FHS sets in [5, 7, 14,
20], they implicitly used the above approach. More precisely speaking, Ding et al. [5]
partitioned Fqm into disjoint cosets of a multiplicative group of Fqm, while Lempel et al.[7,
14, 20] partitioned Fqm into disjoint cosets of an Fq-subspace of Fqm.

In this paper, we choose a multiplicative group G of Fqm and an Fq-subspace V of Fqm,
then partition Fqm into disjoint cosets of by mixing the structures of G and V . Thus, for the
trivial group G = {1}, it degenerates to an Fq-subspace V of Fqm, while for the trivial vector
space V = {0} and m = 1, it degenerates to a multiplication subgroup of Fqm.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we give some preliminaries to
frequency hopping sequences. In Section 3, we present a construction of optimal FHS sets
with new parameters by mixing both multiplicative and additive group structures of finite
fields. In Section 4, we obtain some optimal FHS sets via the recursive construction through
one-coincidence sequence sets. Finally, we conclude the paper in Section 5.

2 Preliminaries

Let F= {f1, f2,. . . , fℓ} be a frequency slot set with size |F|=ℓ, and let S be a set of M
frequency hopping sequences of length N . For any two frequency hopping sequences x=(x0,
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x1,. . . , xN−1) and y=(y0, y1,. . . , yN−1)∈ S, and any positive integer τ , 0≤ τ ≤N − 1, the
Hamming correlation function Hxy(τ) of x and y at time delay τ is defined as follows:

Hxy(τ) =

N−1
∑

i=0

h(xi, yi+τ ), (1)

where h(a, b) = 1 if a = b, and h(a, b) = 0 otherwise.
For a given FHS set S, the maximum Hamming autocorrelation Ha(S), the maximum

Hamming crosscorrelation Hc(S) and the maximum Hamming correlation Hm(S) are defined
as follows, respectively:

Ha(S) = max
1≤τ≤N−1

{Hxx(τ) : x∈S},

Hc(S) = max
0≤τ≤N−1

{Hxy(τ) : x,y ∈S,x 6=y},

Hm(S) = max{Ha(S),Hc(S)}.

In 2004, Peng and Fan [9] showed that the maximum Hamming correlation Hm(S) of an FHS
set S of M sequences of length N over a frequency slot set of size ℓ must obey

Hm(S) ≥

⌈

(NM − ℓ)N

(NM − 1)ℓ

⌉

. (2)

In this paper, an FHS set S is said optimal if it achieves the Peng-Fan bound with equality.
The one-coincidence sequence set is a special FHS set which was proposed firstly by Shaar

and Davies [12] in 1984.

Definition 1. A one-coincidence sequence set is a set of nonrepeating sequences, for which
the peak of the Hamming crosscorrelation function equals one for any pair of sequences
belonging to the set.

Equivalently speaking, an OC sequence set is an FHS set with the maximum Hamming
autocorrelation equal to 0 and maximum Hamming crosscorrelation at most 1.

The following notations will be used throughout this paper:

• (N,M,λ; ℓ) denotes an FHS set of M sequences of length N over a frequency slot set
of size ℓ, with the maximum Hamming correlation equals to λ;

• (n, s; v) denotes an OC sequence set of s sequences of length n over a frequency slot set
of size v, with the maximum Hamming autocorrelation equal to 0 and the maximum
Hamming corsscorrelation at most 1;

• r is a divisor of q − 1;

• 0 6 t 6 m− 1 are integers;

• ⌈z⌉ is the smallest integer larger than or equal to a real number z.

4



3 New construction of FHS Sets

Let G be a multiplicative subgroup F
∗
q with |G| = r. We label all elements of G =

{g1, g2, · · · , gr}. Let V be an Fq-subspace of dimension t. Then |V | = qt.

Lemma 1. There exist α1 = 0, α2, · · · , αℓ ∈ Fqm with ℓ = 1 + qm−t−1

r
such that V and

{αig + V : 2 ≤ i ≤ ℓ, g ∈ G} are 1 + (ℓ− 1)r = qm−t pairwise distinct cosets of V .

Proof. Choose α2 ∈ Fqm\V . We claim that α2g1+V, · · · , α2gr+V are pairwise distinct cosets
of V . Suppose α2gi + V = α2gj + V for some 1 ≤ i 6 j ≤ r. Then, we have α2(gi − gj) ∈ V .
Thus, gi− gj = 0, otherwise, one would have α2 ∈ (gi− gj)

−1V = V . This implies that i = j.
Next we choose α3 ∈ Fqm \V

⋃

(
⋃

g∈G
(α2g+V )). Then, in the same way, we can show that

α3g1 + V, · · · , α3gr + V are pairwise distinct cosets. Furthermore, we claim that α2gi + V 6=
α3gj + V for all 1 ≤ i ≤ j ≤ r. Suppose α2gi + V = α3gj + V for a pair (i, j) with
1 ≤ i ≤ j ≤ r, then we would have α2gi − α3gj ∈ V , i.e., α2gig

−1

j − α3 ∈ g−1

j V = V . Thus,

we have α3 ∈ α2gig
−1

j + V ⊆
⋃

g∈G
α2g + V . This is a contradiction.

Continue this fashion to choose αi ∈ Fqm \ V
⋃

(
⋃

26j6i−1

⋃

g∈G
(αjg + V )) for i > 4. Thus,

we obtain all the desired cosets V and {αig + V : 2 ≤ i ≤ ℓ, g ∈ G}.

Lemma 2. Define φ(x) =
∏

g∈G

∏

β∈V

(x + g + β). Then φ(x) is a constant function on the set

r
⋃

i=1

(γgi + V ) for any fixed γ ∈ Fqm.

Proof. Let γα+ v ∈
r
⋃

i=1

(γgi + V ) for some α ∈ G and v ∈ V .

Then we have

φ(γα+ v) =
∏

g∈G

∏

β∈V

(γα+ v + g + β) = α|G||V |
∏

g∈G

∏

β∈V

(γ + gα−1 + βα−1)

= αrqt
∏

g∈G

∏

β∈V

(γ + g + βα−1) =
∏

g∈G

∏

β∈V

(γ + g + β) = φ(γ).

Thus, φ(x) is a constant function on the set
r
⋃

i=1

(γgi + V ) for any fixed γ ∈ Fqm . This

completes the proof.

Lemma 3. If 1 ≤ i 6= j ≤ ℓ with ℓ = 1+ qm−t−1

r
, then φ(α) 6= φ(β) for all α ∈

⋃

g∈G
(αig+V ),

β ∈
⋃

g∈G
(αjg + V ).

Proof. Suppose φ(α) = φ(β). Let c = φ(α). Consider the polynomial φ(x) − c. Then all

elements of
(

⋃

g∈G
(αig + V )

)

⋃

(

⋃

g∈G
(αjg + V )

)

are roots of φ(x) − c. Thus, φ(x) − c has

at least

∣

∣

∣

∣

∣

(

⋃

g∈G

(αig + V )
)

⋃

(

⋃

g∈G

(αjg + V )
)

∣

∣

∣

∣

∣

> |V |+ |G||V | = qt + rqt roots. On the other

hand, the degree of φ(x)− c is rqt. This forces that φ(x)− c is identical 0, i.e, φ(x) = c. This
contradiction completes the proof.
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Construction of optimal FHS sets.

Step 1: Let r be a divisor of q−1. Let θ be a generator of F∗
qm . Let G = F

∗
q be a multiplicative

subgroup of Fq with |G| = r. Let V be an Fq-subspace of Fqm of dimension t with

0 ≤ t ≤ m−1. Choose α1 = 0, α2, · · · , αℓ ∈ Fqm with ℓ = 1+ qm−t−1

r
satisfying that V ,

{αig+V : 2 ≤ i ≤ ℓ, g ∈ G} are qm−t pairwise distinct cosets of V as defined in Lemma
1.

Step 2: Choose φ(x) as defined in Lemma 2. For every αi ∈ {α1, α2, · · · , αℓ}, we define a
sequence

si := (φ(1 + αi), φ(θ + αi), φ(θ
2 + αi), · · · , φ(θ

qm−2 + αi)).

Step 3: The desired FHS set S is a collection of si, i.e.,

S =

{

{si}
ℓ
i=1 if r = 1,

{si}
ℓ
i=2 if r > 2.

Theorem 3. The FHS set S constructed above is a
(

qm − 1,M, rqt; q
m−t−1

r
+ 1

)

FHS set

with

M =

{

ℓ = 1 + qm−t−1

r
= qm−t if r = 1,

ℓ− 1 = qm−t−1

r
if r > 2.

Proof. The sequence length of S is clearly qm−1. The family size of S is also clear. Further-

more, it follows from Lemmas 2 and 3 that the size of frequency slot set of S is ℓ = 1+ qm−t−1

r
.

Thus, it is sufficient to show that the maximum Hamming correlation of S is rqt. Given
the facts: (i) the Hamming correlation Hsisj

(τ) at time delay τ is the number of the roots of
φ(θτx+ αi) − φ(x + αj); and (ii) the degree of φ(θτx+ αi)− φ(x + αj) is at most rqt, it is
equivalent to showing the following two inequalities.

(a) φ(θτx+αi) 6= φ(x+αi), ∀1 ≤ τ ≤ qm − 2 and 2 6 i 6 ℓ if r > 2 (and 1 6 i 6 ℓ if r = 1).

(b) φ(θτx+ αi) 6= φ(x+ αj), ∀0 ≤ τ ≤ qm − 2 and 1 6 i < j 6 ℓ.

Let us prove (a) by contradiction. Suppose φ(θτx+αi) = φ(x+αi) for some 1 ≤ τ ≤ qm− 2.
Then, by comparing the leading coefficients of φ(θτx+αi) and φ(x+αi), we have (θτ )r = 1,
i.e., θτ ∈ G. If r = 1, i.e, G = {1}, then θτ = 1. This is a contradiction since θτ 6= 1 for all
1 ≤ τ ≤ qm − 2.

Now we assume that r > 2. Then 2 6 i 6 ℓ and we have

φ(x+ αi) = φ(θτx+ αi) = (θτ )rφ(x+ αiθ
−τ ) = φ(x+ αiθ

−τ ).

Choose γ ∈ Fqm such that γ + αi ∈ V . By Lemma 3, we must have γ + αiθ
−τ ∈ V . This

gives (γ + αiθ
−τ ) − (γ + αi) ∈ V , i.e. αi(θ

−τ − 1) ∈ V . As θ−τ 6= 1, i.e., θ−τ − 1 ∈ F
∗
q, we

have αi ∈ (θ−τ − 1)−1V = V . This is a contradiction by Lemma 1.
Again, we prove (b) by contradiction. Suppose φ(θτx+αi) = φ(x+αj) for some 0 ≤ τ ≤

qm − 2 and 1 6 i < j 6 ℓ. By comparing the leading coefficients with the same arguments
given in the above proof of (a), we have θτ ∈ G and φ(x+ αiθ

−τ ) = φ(x+ αj).
Choose γ ∈ Fqm such that γ + αj ∈ V . By Lemma 3, we have γ + αiθ

−τ ∈ V . This gives
(γ + αiθ

−τ )− (γ + αj) ∈ V , i.e., αj ∈ αiθ
−τ + V ⊆

⋃

g∈G(αig + V ). This is a contradiction
by Lemma 1. The proof is completed.
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Proof of Theorem 1:

Proof. The first part of Theorem 1 was already proved in Theorem 3. Let us prove the second
part only.

By the Peng-Fan bound, the FHS set S is optimal if and only if the following inequality
is satisfied.

e(qm − 1)− (e+ 1)

e(qm − 1)− 1
·
qm − 1

e+ 1
> rqt − 1. (3)

The inequality (3) is equivalent to the following inequality.

e(qm − 1)2 − (e3 + (e2 + e)(qt − 1) + 1)(qm − 1) + (e+ 1)(qt − 1 + e) > 0. (4)

The inequality (4) is always true if qm−1 < e2+(e+1)qt−3e. This completes the proof.

We now illustrate our construction by the following examples.

Example 1. Let q = 3, r = 2, m = 4, and t = 1.
Let θ be a generator of F∗

34
. Let G = F

∗
3 be the multiplicative subgroup of F3 with |G| = 2.

Let V be an F3-subspace of F34 of dimension t = 1.
Choose α ={αi ∈ F34 : 2 ≤ i ≤ 14} satisfying that V , {αig + V : 2 ≤ i ≤ 14, g ∈ G} are

27 pairwise distinct cosets of V as defined in Lemma 1.
Choose φ(x) as defined in Lemma 2. For every αi ∈ {α2, · · · , α14}, we can obtain an FHS

set S1 = {si, 2 ≤ i ≤ 14} with

si =
(

φ(1 + αi), φ(θ + αi), φ(θ
2 + αi), · · · , φ(θ

79 + αi)
)

.

It is easy to check that FHS set S1 is an optimal (80, 13, 6; 14) FHS set with new parameters.

Example 2. Let q = 3, r = 2, m = 6, and t = 2.
Let θ be a generator of F∗

36
. Let G = F

∗
3 be the multiplicative subgroup of F3 with |G| = 2.

Let V be an F3-subspace of F36 of dimension t = 2.
Choose α ={αi ∈ F36 : 2 ≤ i ≤ 41} satisfying that V , {αig + V : 2 ≤ i ≤ 41, g ∈ G} are

81 pairwise distinct cosets of V as defined in Lemma 1.
Choose φ(x) as defined in Lemma 2. For every αi ∈ {α2, · · · , α41}, we can obtain an FHS

set S2 = {si, 2 ≤ i ≤ 41} with

si =
(

φ(1 + αi), φ(θ + αi), φ(θ
2 + αi), · · · , φ(θ

727 + αi)
)

.

It is easy to check that FHS set S2 is an optimal (728, 40, 18; 41) FHS set with new parameters.

Example 3. Let q = 7, r = 3, m = 3, and t = 1.
Let θ be a generator of F∗

73
. Let G = F

∗
7 be the multiplicative subgroup of F7 with |G| = 3.

Let V be an F7-subspace of F73 of dimension t = 1.
Choose α ={αi ∈ F73 : 2 ≤ i ≤ 17} satisfying that V , {αig + V : 2 ≤ i ≤ 17, g ∈ G} are

49 pairwise distinct cosets of V as defined in Lemma 1.
Choose φ(x) as defined in Lemma 2. For every αi ∈ {α2, · · · , α17}, we can obtain an FHS

set S3 = {si : 2 ≤ i ≤ 17} with

si =
(

φ(1 + αi), φ(θ + αi), φ(θ
2 + αi), · · · , φ(θ

341 + αi)
)

.

It is easy to check that FHS set S3 is an optimal (342, 16, 21; 17) FHS set with new parameters.
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4 Recursive Constructions of FHS sets with new parameters

Recursive constructions have been proposed in [2, 10, 16, 1, 8] to generate new families of
optimal FHS sets under certain conditions. The framework of recursive constructions in [8]
can be used to get FHS set with new parameters, which increase the length and alphabet size
of the original FHS set, but preserve its family size and maximum Hamming correlation. In
this section, by applying the FHS set S in Theorem 3 to a recursive construction, we obtain
some new classes of FHS sets.

Let us recall a recursive construction first. Denote by m(S) the maximum appearance
number of frequency slots of an FHS set S.

Lemma 4. Whenever there exist an (N,M,Hm; l) FHS set S and an (n, s; v) OC sequence

set C with s ≥ m(S), there is an (nN,M,Hm; vl) FHS set X .

To apply Lemma 4, we have to give an upper bound on m(S).

Lemma 5. For r ≥ 2, the maximum appearance number m(S) of frequency slots of the FHS

set S in Theorem 3 is upper bounded by qm − qt − 1.

Proof. For 1 6 i 6 ℓ, denote by Ai the set {θk + αi : 0 6 k 6 qm − 2}. By Lemma 3, to
count appearance of an element, we have to count the appearance number nij of elements of
⋃

g∈G(αig+V ) in Aj for all 1 6 i 6 ℓ and 2 6 j 6 ℓ. Then we have m(S) = max
16i6ℓ

{
∑ℓ

j=2
nij}.

For i = 1 and 2 6 j 6 ℓ, every element in V appears in Aj once. Thus, the total

appearance number of elements of
⋃

g∈G(α1g + V ) in
⋃ℓ

j=2
Aj is |V |(ℓ − 1) = qt q

m−t−1

r
<

qm − qt − 1 for r ≥ 2.
For 2 6 i 6 ℓ, every element in

⋃

g∈G(αig + V ) appears in Aj once for j 6= i. For
j = i, every element in

⋃

g∈G(αig + V ) except for αi appears in Ai once and αi does not

appear in Ai. Thus, the total appearance number of elements of
⋃

g∈G(αig + V ) in
⋃ℓ

j=2
Aj

is r|V |(ℓ− 1)− 1 = rqt
(

qm−t−1

r

)

− 1 = qm − qt − 1. The proof is completed.

The recursive constructions extend the FHS set S in the above section by choosing dif-
ferent one-coincide sequence sets. There are some known constructions of OC sequence
sets [12, 4, 15, 11, 8]. Based on the framework of the recursive construction in [8], we can ob-
tain FHS sets with new parameters by combing the FHS set in Theorem 3 with OC sequence
sets.

Let e = qm−t−1

r
, then we have the following theorem and corollaries.

Theorem 4. Put e = qm−t−1

r
. Then whenever there is an (n, s; v) OC sequence set with

s > qm − qt − 1, there exists a
(

n(qm − 1), e, rqt; v(e + 1)
)

FHS set X . Furthermore, X is

optimal if

⌈

n(qm − 1)e− v(e + 1)

n(qm − 1)e− 1

n(qm − 1)

v(e+ 1)

⌉

=

⌈

(qm − 1)e− (e+ 1)

(qm − 1)e− 1

(qm − 1)

e+ 1

⌉

.

Proof. The desired result follows from Theorem 1 and Lemma 4.

Proof of Theorem 2:
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Proof. By applying the (k, lpf(k) − 1; k) OC sequence set given in [2, 1, 8], the (p − 1, p; p)
OC sequence set given in [2, 1, 8] and the (k(p − 1),min{lpf(k)− 1, p}; kp) OC sequence set
given in [2, 8], respectively to Theorem 4, we obtain the desired FHS sets in Table 1.

We illustrate Theorem 2 by the following examples.

Example 4. Choose the optimal (80, 13, 6; 14) FHS set S1 in Example 1. We can obtain
the maximum appearance number of frequency slots in S1 is 77. Thus, the desired recursive
result of FHS sets with new parameters are as follows.
1) There is an optimal (79×80, 13, 6; 79×14) FHS set by applying the (79, 78; 79) OC sequence
set.
2) There is an optimal (80×80, 13, 6; 81×14) FHS set by applying the (80, 81; 81) OC sequence
set.
3) There is an optimal (79 × 80 × 80, 13, 6; 79 × 81 × 14) FHS set by applying the (79 ×
80, 78; 79 × 81) OC sequence set.

Example 5. Choose the optimal (728, 40, 18; 41) FHS set S2 in Example 2. We can obtain
the maximum appearance number of frequency slots in S2 is 719. Thus, the desired recursive
result of FHS sets with new parameters are as follows.
1) There is an optimal (727 × 728, 40, 18; 727 × 41) FHS set by applying the (727, 726; 727)
OC sequence set.
2) There is an optimal (728 × 728, 40, 18; 729 × 41) FHS set by applying the (728, 729; 729)
OC sequence set.
3) There is an optimal (727 × 728 × 728, 40, 18; 727 × 729 × 41) FHS set by applying the
(727 × 728, 726; 727 × 729) OC sequence set.

5 Conclusion

In this paper, we present new construction of optimal FHS sets by mixing both multiplicative
and additive groups structures of finite fields simultaneously. The construction provides

a new family of optimal
(

qm − 1, q
m−t−1

r
, rqt; q

m−t−1

r
+ 1

)

frequency hopping sequence sets

archiving the Peng-Fan bound. Thus, the FHS sets constructed in literatures using either
multiplicative groups or additive groups of finite fields are all included in our family. It
should be noted that our construction not only includes some constructions in literatures
as special cases, but also gives new and flexible parameters due to the free choice of t. In
addition, some other FHS sets can be obtained via the well-known recursive constructions
through one-coincidence sequence set. As a result, our constructions allow a great flexibility
of choosing FHS sets for a given frequency-hopping spread spectrum system.
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