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RIGIDITY SEQUENCES, KAZHDAN SETS AND

GROUP TOPOLOGIES ON THE INTEGERS

by

Catalin Badea, Sophie Grivaux & Étienne Matheron

Abstract. — We study the relationships between three different classes of sequences (or
sets) of integers, namely rigidity sequences, Kazhdan sequences (or sets) and nullpotent
sequences. We prove that rigidity sequences are non-Kazhdan and nullpotent, and that
all other implications are false. In particular, we show by probabilistic means that there
exist sequences of integers which are both nullpotent and Kazhdan. Moreover, using Baire
category methods, we provide general criteria for a sequence of integers to be a rigidity
sequence. Finally, we give a new proof of the existence of rigidity sequences which are dense
in Z for the Bohr topology, a result originally due to Griesmer.

1. Introduction

This paper is centered around three classes of sequences (or subsets) of Z, the additive
group of the integers. These are rigidity sequences, Kazhdan sequences (or sets) and
nullpotent sequences, i.e. sequences which converge to zero with respect to some Hausdorff
group topology on Z. The motivation for considering these sequences is that they appear
naturally in the study of problems relevant to harmonic analysis, geometric group theory,
dynamical systems, and number theory.

1a. Kazhdan sets. — Kazhdan subsets of Z are defined as follows.

Definition 1.1. — A subset Q of Z is called a Kazhdan set if there exists ε > 0 such
that any unitary operator U on a complex separable Hilbert space H satisfies the following
property: if there exists a vector x ∈ H with ||x|| = 1 such that supn∈Q ||Unx − x|| < ε,
then 1 is an eigenvalue of U , i.e. there exists a non-zero vector y ∈ H such that Uy = y.
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The set Z itself is a Kazhdan set in Z (this can be proved for instance by using von
Neumann’s mean ergodic theorem). On the other hand, by considering rotations on H =
C, it is easy to see that no finite subset of Z can be Kazhdan. This also follows from the fact
that Z is a non-compact amenable group, and so it does not possess Kazhdan’s property
(T). Indeed, the notion of Kazhdan set actually makes sense in any topological group G
– just replace unitary operators U by (strongly continuous) unitary representations π of
G – and one of the equivalent definitions of Kazhdan’s Property (T) is that a topological
group G has Property (T) if and only if it admits a compact Kazhdan set. See the book
[7] for more on Property (T) and its many applications to various fields.

Even though Property (T) involves compact Kazhdan sets, it was suggested in [7, p.
284] that it is also of interest to study Kazhdan sets in groups which do not have Property
(T). This topic is addressed in [3], where a characterization of generating Kazhdan sets in
second-countable locally compact groups is obtained. (A subset of a group G is said to be
generating if it generates G in the group-theoretic sense; in the case G = Z, a subset of Z
is generating if it is not contained in pZ for any p ≥ 2.) This leads to an equidistribution
criterion implying that a set is Kazhdan, as well as to explicit characterizations of Kazhdan
sets in many groups without Property (T), such as locally compact abelian groups or
Heisenberg groups. See also [11] for examples of Kazhdan sets in other Lie groups, and
[5] for dynamical applications.

In the present paper we will be interested in Kazhdan subsets of Z only. One pleasant
thing when working with the group Z is that the property of being or not a Kazhdan
subset of Z can be expressed in terms of Fourier coefficients of probability measures on
the unit circle T = {z ∈ C ; |z| = 1}. We denote by P(T) the set of all Borel probability
measures on T, and we endow it with the Prokhorov topology (i.e. the topology of weak
convergence of measures), which turns it into a compact metrizable space. A measure
µ ∈ P(T) is said to be continuous, or atomless, if µ({z}) = 0 for any z ∈ T. The set of all
continuous measures µ ∈ P(T) will be denoted by Pc(T). Particularizing some results of
[3], we have the following characterizations (see also [4] for direct proofs using tools from
harmonic analysis).

Theorem 1.2. — A subset Q of Z is a Kazhdan set if and only if there exists ε > 0 such
that the following property holds true:

(1)ε if µ ∈ P(T) is such that supn∈Q |µ̂(n)− 1| < ε, then µ({1}) > 0.

Moreover, if Q is a generating subset of Z, it is equivalent to say that the following holds
true for some ε > 0:

(1′)ε if µ ∈ P(T) is such that supn∈Q |µ̂(n)− 1| < ε, then µ has an atom.

In other words, Q is not a Kazhdan set if and only if

(2) for every ε > 0, there exists µ ∈ P(T) with µ({1}) = 0 such that supn∈Q |µ̂(n)−1| < ε;

and if Q is generating this is equivalent to

(2’) for every ε > 0, there exists µ ∈ Pc(T) such that supn∈Q |µ̂(n)− 1| < ε.

Note that the necessity of condition (1)ε for some ε > 0 is clear: indeed, (1)ε for a
given measure µ ∈ P(T) is just the condition appearing in the definition of a Kazhdan
set for the unitary operator U defined on L2(µ) by Uf(z) = zf(z), f ∈ L2(µ). Note
also that (1)ε is easily seen to imply that Q is a generating subset of Z (if Q ⊆ pZ for
some p ≥ 2, consider the measure µ := δe2iπ/p); so any Kazhdan subset of Z is generating.
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More generally, Kazhdan subsets with non-empty interior in a locally compact group are
generating.

It will be more convenient for us to speak of Kazhdan sequences rather than Kazhdan
sets. Of course, a sequence (nk)k≥0 of elements of Z is said to be Kazhdan if the set
Q = {nk; k ≥ 0} is Kazhdan. Here are examples of Kazhdan sequences: nk := k,
nk := k2, or nk := p(k) where p ∈ Z[X] is a non-constant polynomial such that the
integers p(k), k ≥ 0, have no non-trivial common divisor. More generally, any generating
sequence (nk)k≥0 such that (nkθ)k≥0 is uniformly distributed mod 1 for any θ ∈ R \Q is
a Kazhdan sequence (a classical reference for uniform distribution is [35]). This result,
which gives an answer to a question of Shalom ([7, Question 7.12]), follows from Theorem
1.2. On the other hand, if nk > 0 and nk+1/nk → ∞ as k → ∞, then (nk)k≥0 is non-

Kazhdan; and likewise if nk divides nk+1 for every k ≥ 0. Thus, for instance, (2k)k≥0

is not a Kazhdan sequence; but the rather “close” sequence (2k + k)k≥0 turns out to be
Kazhdan. We refer to [3, 4, 11, 5] for more on Kazhdan sequences.

1b. Rigidity sequences. — According to Furstenberg and Weiss [25], a sequence of
positive integers (nk)k≥0 is said to be rigid for a measure-preserving (dynamical) sys-
tem (X,B,m;T ) on a probability space (X,B,m), if m(T−nkA∆A) → 0 as k → ∞
for every A ∈ B. If we denote by UT the associated Koopman operator f 7→ f ◦ T on
L2(X,B,m), this is equivalent to requiring that ||Unk

T f − f || → 0 as k → ∞ for ev-
ery f ∈ L2(X,B,m). A rigidity sequence is a sequence (nk)k≥0 which happens to be
rigid for some weakly mixing dynamical system (X,B,m ; T ). Recall that the weakly
mixing systems are those for which the spectral measure of the operator UT acting on
L2
0(X,B,m) := {f ∈ L2(X,B,m) ;

∫
X f dm = 0} is continuous. See for instance [49] for

more on this definition and on measurable dynamics in general.

Rigidity sequences were characterized in [8] and [14] in terms of Fourier coefficients of
continuous measures on T:

Theorem 1.3. — A sequence of positive integers (nk)k≥0 is a rigidity sequence if and
only if there exists a measure µ ∈ Pc(T) such that µ̂(nk) → 1 as k → ∞.

Rigidity sequences are studied in detail in several papers, among which we mention
[8, 14, 2, 20, 19, 29]. All examples of non-Kazhdan sequences given above can be seen
to be rigidity sequences. Adams proved in [2] that if there exists an irrational z ∈ T (i.e.
z is not a root of 1) such that znk → 1 as k → ∞, then (nk)k≥0 is a rigidity sequence; and
a simpler proof of this result was found by Fayad and Thouvenot in [20]. The result was
further generalized in [5], and this was applied to the resolution of a conjecture of Lyons
[38] related to Furstenberg’s ×2 -×3 conjecture. On the other hand, examples of rigidity
sequences (nk) with the property that the set {znk ; k ≥ 0} is dense in T for every irrational
z ∈ T were constructed in [19]. Furthermore, Griesmer [29] proved that there exist rigidity
sequences (nk) with the property that every translate R of the set {nk ; k ≥ 0} is a set of
recurrence (in the terminology of [23], a Poincaré set), which means that for any measure-
preserving system (X,B,m;T ) and every A ∈ B with m(A) > 0, there exists r ∈ R \ {0}
such that m(A∩T−rA) > 0. In particular, these rigidity sequences (nk) are dense in Z for
the Bohr topology. However we note, paraphrasing [31], that a rigidity sequence cannot
be uniformly distributed “in any reasonable sense”. For example, it follows from Theorem
1.3 that a sequence (nk)k≥0 such that (nkθ) is equidistributed modulo 1 for every θ ∈ R\Q
cannot be a rigidity sequence.
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In view of the characterizations of Theorems 1.2 and 1.3, it comes as a natural problem
to investigate the links between (non-)Kazhdan sequences and rigidity sequences: are
rigidity sequences non-Kazhdan? And what about the converse? It was one of the initial
motivations of this paper to answer these questions (“Yes” for the first one, “No” for the
second one).

1c. Nullpotent sequences. — The notion of nullpotent sequence (the term was coined
by Rusza [46]), is defined as follows.

Definition 1.4. — Let (nk)k≥0 be a sequence of integers. We say that (nk) is nullpotent
if there exists a Hausdorff group topology τ on Z (i.e. a Hausdorff topology which turns
Z into a topological group) such that nk → 0 for τ as k → ∞.

Nullpotent sequences (in Z or in general abelian groups) have been studied, under
different names, by several authors; see for instance [27, 43, 44, 46, 50] as well as the
recent survey [13] and the references therein. Protasov and Zelenyuk [50] and many
subsequent authors (see [13]) use the name T -sequences instead of nullpotent sequences.
As we apply several results from [46], we prefer to use Ruzsa’s terminology. The notion
of nullpotent sequence is directly related to that of rigidity sequence: indeed, it is easy to
show that rigidity sequences are nullpotent (see Proposition 3.5 below).

The following characterization of nullpotent sequences was obtained in [46] and [50]: a
sequence (nk)k≥0 ⊆ Z is nullpotent if and only if, for any fixed r ≥ 1, it is not possible
to write any integer n 6= 0 as n =

∑r
i=1 εi nki with εi = ±1 and arbitrarily large indices

k1, . . . , kr.

Recall that a subset D of Z is an additive basis of Z if there exists some r ∈ N such that
any integer n ∈ Z can be written as n =

∑r
i=1 εidi, where di ∈ D and εi = ±1; and that

D is an asymptotic basis of Z if this holds true for all but finitely many n ∈ Z. In view
of the above characterization of nullpotent sequences, it is not hard to convince oneself
that if (nk)k≥0 is a nullpotent sequence, then the associated set {nk ; k ≥ 0} cannot be an
asymptotic basis of Z. In fact, it is shown in [46, Theorem 2] that if (nk) is nullpotent
then, for each fixed r ∈ N, the set of all integers n which can be written as n =

∑r
i=1 εi nki

with εi = ±1 is of density zero in Z. On the other hand, it is not hard to check (for
example by using Theorem 1.2 and the estimates in Fact 2.1 below) that asymptotic bases
of Z are Kazhdan sets. This applies in particular to the set of all squares, by Lagrange’s
four-square theorem, or to the set of all primes, by Vinogradov’s theorem. Therefore, it
comes as a natural question to wonder whether there exist Kazhdan sequences of integers
which do not form (asymptotic) bases of Z. This was asked by Martin Kassabov to the
first-named author in private communication. We answer this question affirmatively in
Section 3 of the paper (Corollary 3.21), by considering random sequences of integers. More
precisely, we show that there exist Kazhdan sets which are even nullpotent.

1d. Structure of the paper. — The remaining of the paper is organized as follows.
Section 2 contains a few preliminary facts. In Section 3, we study the mutual implications
and non-implications between the properties we are considering. We show that rigidity
sequences are both non-Kazhdan and nullpotent (Corollary 3.2 and Corollary 3.6). We
also show that a sequence which converges to zero for some precompact group topology
on Z is a rigidity sequence (Theorem 3.8); the converse is false. On the other hand, we
observe that there there exist non-Kazhdan sequences which are not nullpotent, and hence
non-rigid (Proposition 3.11); and we show that in a suitable probabilistic setting, almost
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all sequences are both Kazhdan and nullpotent (Theorem 3.16). In Section 4, we use
Baire category methods to obtain a useful characterization of rigidity sequences (Theorem
4.1), which allows us to retrieve all examples from [8, 14, 2, 20, 5]; and we strengthen
this further in Theorem 4.3. These results shed in particular an interesting light on the
constructions of [5] and [19]. In Section 5, we exhibit an explicit example of a rigidity
sequence which is dense in Z for the Bohr topology; and we also make some comments on
Griesmer’s original proof. We end by stating a few open problems.

2. Preliminary facts

2a. Easy estimates. — The following estimates on quantities of the form |µ̂(n) − 1|
will be used repeatedly in the sequel, sometimes without explicit mention.

Fact 2.1. — Let µ ∈ P(T). For any m,n ∈ Z, we have

(1) |µ̂(n)− 1| ≤
∫

T
|zn − 1| dµ(z) ≤

√
2 |µ̂(n)− 1|1/2;

(2) |µ̂(m+ n)− 1| ≤
√
2
(
|µ̂(m)− 1|1/2 + |µ̂(n)− 1|1/2

)
.

Proof. — The proof of (1) runs as follows:

|µ̂(n)− 1| ≤
∫

T
|zn − 1| dµ(z) ≤

(∫

T
|zn − 1|2dµ(z)

)1/2

=
(
2ℜe

∫

T
(1− zn) dµ(z)

)1/2
≤

√
2
∣∣∣
∫

T
(1− zn) dµ(z)

∣∣∣
1/2

=
√
2 |µ̂(n)− 1|1/2.

Part (2) follows from (1) since |zm+n − 1| ≤ |zm+n − zn| + |zn − 1| = |zm − 1| + |zn − 1|
for every z ∈ T.

As a direct consequence of Fact 2.1, we get

Fact 2.2. — Let (mk)k≥0 and (nk)k≥0 be two sequences of integers, and let ε > 0.

(1a) µ̂(nk) → 1 as k → ∞ if and only if

∫

T
|znk − 1| dµ(z) → 1;

(1b) if sup
k≥0

|µ̂(n)− 1| < ε then sup
k≥0

∫

T
|znk − 1| dµ(z) <

√
2ε.

(2a) If µ̂(mk) → 1 and µ̂(nk) → 1, then µ̂(mk ± nk) → 1;

(2b) if sup
k≥0

|µ̂(nk)− 1| < ε and sup
l≥0

|µ̂(ml)− 1| < ε, then sup
k,l≥0

|µ̂(nk ±ml)− 1| < 2
√
2ε.

2b. The set of rigid measures. — Let (nk)k≥0 be a sequence of integers. A measure

µ ∈ P(T) is said to be rigid for (nk) if µ̂(nk) → 1 as k → ∞. We denote by R(nk) the set
of all such measures:

R(nk) :=
{
µ ∈ P(T) ; µ̂(nk) → 1 as k → ∞

}
.

This set has several interesting stability properties, which we summarize in the next lemma.
These properties are well known, and can be found for example in [41, Chapter 7]; but
we include the proofs for convenience of the reader.
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The following notations will be used in this section and elsewhere in the paper. If
µ ∈ P(T), we denote by L1(µ) the set of all measures absolutely continuous with respect
to µ. Also, denote by G(µ) the subgroup of T generated by the support of µ. For any
µ ∈ P(T) and any p ∈ Z, denote by µ#p the image measure of µ under the map z 7→ zp

from T into itself. (In particular, µ#0 = δ1.) Lastly, write en(z) := zn for every n ∈ Z and
every z ∈ T.

Lemma 2.3. — Let (nk)k≥0 be a sequence of integers.

(1) The set R(nk) is convex, contains the Dirac mass δ1, and is closed under convolution.

(2) For any p ∈ Z, the set R(nk) is closed under the map µ 7→ µ#p.

(3) The set R(nk) is hereditary for absolute continuity: if µ ∈ R(nk) and if ν ∈ P(T) is

absolutely continuous with respect to µ, then ν ∈ R(nk).

Proof. — (1) This is obvious.
(2) Observe that µ̂#p(n) = µ̂(pn) for every n ∈ Z. This gives

| µ̂#p(n)− 1| ≤
∫

T
|zpn − 1| dµ ≤ |p|

∫

T
|zn − 1| dµ,

so the result follows from Fact 2.2.
(3) By Fact 2.2, enk

→ 1 in the L1(µ) norm, and hence in µ-measure. Since ν is
absolutely continuous with respect to µ, it follows that enk

→ 1 in ν-measure, and hence
in the L1(ν) norm because the sequence (enk

) is uniformly bounded. So ν̂(nk) → 1, by
Fact 2.2 again.

Remark 2.4. — If ν is a complex measure with ‖ν‖ = 1 which is absolutely continuous

with respect to µ ∈ R(nk), then property (3) of Lemma 2.3 applied to |ν| yields that
ν̂(nk) → ν̂(0), which is equal to 1 only if ν is a probability measure. If we take for example
dν = z̄q dµ for some q ∈ N, this will hold if and only if z̄q = 1 µ-a.e., i.e. µ is supported
on the q-roots of 1. In particular, if µ is a continuous measure then µ̂(nk) and µ̂(nk + q)
cannot tend to 1 simultaneously. In the same spirit, the following simple fact may be worth
mentioning. Let (nk)k≥0 be a sequence of integers, and let µ ∈ R(nk). Let also (pk) and (qk)
be two arbitrary subsequences of (nk). Then µ

(
{z ∈ T; zqk−pk has a limit φ(z) 6= 1}

)
= 0.

This is indeed clear since |zqk−pk − 1| = |zqk − zpk | → 0 in L1(µ).

In the next two corollaries, we point out some useful consequences of Lemma 2.3.

Corollary 2.5. — For any µ ∈ R(nk), the closure of R(nk)∩L1(µ) in P(T) contains every

measure supported on G(µ). In particular, if (nk) is a rigidity sequence, then R(nk)∩Pc(T)
is dense in P(T).

Proof. — Fix µ ∈ R(nk), and set H := R(nk) ∩ L1(µ). By Lemma 2.3, H is a convex subset
of P(T) closed under convolution and hereditary for absolute continuity. If z ∈ supp(µ),
then the Dirac mass δz can be approximated by measures absolutely continuous with
respect to µ. Hence, H contains δz for every z ∈ supp(µ). Now, H is closed under convo-
lution, because H is closed under convolution and the convolution product is separately
continuous. So H contains δz for every z ∈ G(µ). Since H is also convex, it contains every
measure ν ∈ P(T) whose support is finite and contained in G(µ); and since H is closed, it

contains in fact every measure supported on G(µ).

If now (nk) is a rigidity sequence, let µ be a continuous measure belonging to R(nk).

The support of µ is uncountable, so it contains an irrational z, and hence G(µ) = T.
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Since R(nk) ∩ L1(µ) is contained in R(nk) ∩ Pc(T), this shows that the latter set is dense
in P(T).

Corollary 2.6. — Set E(nk) :=
⋃{

G(µ); µ ∈ R(nk)
}
, and let us denote by G(nk) the

subgroup of T generated by E(nk). If G(nk) is dense in T, then R(nk) is dense in P(T).

Proof. — By Corollary 2.5, the closure R(nk) of R(nk) in P(T) contains every measure

ν whose support is contained in G(µ) for some µ ∈ R(nk). In particular, δz ∈ R(nk) for

every z ∈ E(nk). By convolution-invariance and convexity, it follows that R(nk) contains
every measure ν whose support is finite and contained in G(nk), and this concludes the
proof.

Remark 2.7. — The converse statement is obviously true: if R(nk) is dense in P(T),
then E(nk) is infinite and hence the group G(nk) is dense in T.

3. Implications and non-implications

In this section, we show that rigidity sequences are both non-Kazhdan and nullpotent,
but that as far as only these classes of sequences are considered, the converse implications
fail in the strongest possible senses, i.e. there exist non-Kazhdan sequences which are
not nullpotent, and nullpotent sequences which are Kazhdan. In particular, there exist
Kazhdan sequences which are not asymptotic bases of Z.

3a. Rigid implies non-Kazhdan and nullpotent. — Our first aim is to prove that
rigidity sequences are non-Kazhdan. We will in fact prove the following slightly stronger
result.

Theorem 3.1. — Let (nk)k≥0 be a rigidity sequence. Then, for any measure ν ∈ R(nk)

and any ε > 0, one can find a measure µ ∈ R(nk) ∩ Pc(T) such that

sup
k≥0

|µ̂(nk)− ν̂(nk)| < ε.

Proof. — Recall first the classical Mazur’s theorem (see e.g. [39, page 216]): in a normed
space, the weak closure of any convex set is equal to its norm closure. Recall also that
ℓ∞(Z+) is the dual space of ℓ1(Z+), which is itself the dual space of c0(Z+); so we can
consider the w∗ topology on ℓ∞(Z+), and the topology induced on c0(Z+) is the weak
topology of c0(Z+).

Consider the map T : P(T) → ℓ∞(Z+) defined by

Tµ :=
(
µ̂(nk)− 1

)
k≥0

.

Since Tµ− Tν = (µ̂(nk)− ν̂(nk))k≥0, what we have to show is the following: if ν ∈ R(nk),
then

Tν ∈ T
(
R(nk) ∩ Pc(T)

)‖ · ‖∞
.

Now, the map T is affine, and continuous from P(T) into ℓ∞(Z+) endowed with its w∗

topology. By Corollary 2.5, it follows that the set C := T
(
R(nk) ∩ Pc(T)

)
is convex and

w∗-dense in T (P(T)). But T (R(nk)) is contained in c0(Z+) by the definition of T . So

T
(
R(nk) ∩ Pc(T)

)
is convex and weakly dense in T (R(nk)) ⊆ c0(Z+), and hence norm-

dense in T (R(nk)) by Mazur’s theorem. This concludes the proof of Theorem 3.1.

From Theorem 3.1, we immediately deduce
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Corollary 3.2. — Rigidity sequences are non-Kazhdan.

Proof. — By Theorem 1.2, it is enough to show that if (nk)k≥0 is a rigidity sequence then,
for any ε > 0, one can find a measure µ ∈ Pc(T) such that supk≥0 |µ̂(nk) − 1| < ε. This
follows from Theorem 3.1 by taking ν := δ1.

Remark 3.3. — From the proof of Theorem 3.2, one can obtain a more precise statement.
Let (nk)k≥0 be a rigidity sequence, and choose a continuous measure ν ∈ P(T) such that
ν̂(nk) → 1. Recall that for any p ∈ Z, we denote by ν#p the image of ν under the

map z 7→ zp (so that ν0 = δ1 and ν#p ∈ R(nk) ∩ Pc(T) for all p 6= 0 by Lemma 2.3).
Then ν#nk

→ δ1 as k → ∞, because ν̂#nk
(n) = ν̂(nkn) = ν̂#n(nk) → 1 for every

n ∈ Z. Applying Mazur’s theorem as above, we conclude that for any ε, one can find
a continuous measure µ which is a convex combination of the measures ν#nk

such that
supk≥0 |µ̂(nk)− 1| < ε.

Remark 3.4. — From Theorem 3.2 and results from [14, 8], it becomes clear that if
nk+1/nk → ∞, or if nk divides nk+1 for all k then (nk)k≥0 is a non-Kazhdan sequence.
Indeed, it is shown for example in [14, Example 3.4 and Proposition 3.9] that these
assumptions imply rigidity. This can also be deduced from [5, Theorem 2.3], using a
classical result of Eggleston [15] in the case where nk+1/nk → ∞.

Now we show that rigidity sequences are also nullpotent. This will follow at once from
the next result.

Proposition 3.5. — Let (nk)k≥0 be a sequence of integers. Assume that for every integer

q ≥ 1, there exists a measure µq ∈ R(nk) such that µq

(
{z ∈ T; zq = 1}

)
< 1. Then (nk)

is a nullpotent sequence.

Proof. — Define a distance on Z by setting

d(m,n) :=
∞∑

q=1

2−q

∫

T
|zm − zn| dµq(z) for every m,n ∈ Z.

This is indeed a distance on Z: if d(m,n) = 0, then zm−n = 1 σq-almost everywhere for
every q ≥ 1, hence m = n by the choice of the measures µq. This distance d is translation-

invariant, so it defines a group topology on Z; and d(nk, 0) =
∞∑
q=1

2−q

∫

T
|znk−1| dµq(z) → 0

as k → ∞ because µq ∈ R(nk) for all q ≥ 1.

Corollary 3.6. — Rigidity sequences are nullpotent.

The converse implication is false: there exist sequences (nk) which tend to zero in a
suitable Hausdorff group topology τ of Z but which are not rigidity sequences. This will
be proved in Theorem 3.16. One may ask what additional properties the topology τ
should satisfy in order to force the rigidity of the sequence. The following definition has
been introduced in [6]. Recall that a Hausdorff topological group (G,+) is said to be
precompact if, for every non-empty open set U of G, there exists a finite set F ⊆ G such
that G = U + F .

Definition 3.7. — Let (nk)k≥0 be a sequence of integers. We say that (nk) is a totally
bounded sequence, or a TB-sequence for short, if there exists a precompact group topology
τ on Z such that nk → 0 for τ as k → ∞.
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Theorem 3.8. — TB-sequences are rigidity sequences.

Proof. — Let (nk)k≥0 be a sequence of integers. It is proved in [6, Proposition 2.4] that
(nk) is a TB-sequence if and only if the subgroup

Γ(nk) := {z ∈ T ; znk → 1}
is infinite. Moreover, it is proved in [5, Theorem 2.3] that if Γ(nk) is dense in T, then (nk)
is a rigidity sequence. Since a subgroup of T is dense if and only if it is infinite, the result
follows immediately.

The converse of Theorem 3.8 is false: as mentioned in the introduction Fayad and Kanigow-
ski constructed in [19] examples of rigidity sequences (nk)k≥0 for which Γ(nk) = {1}. This
will be discussed again in Subsection 4a, after Corollary 4.2.

Remark 3.9. — It follows from Remark 3.4 that sequences (nk)k≥0 with nk+1/nk → ∞
are TB-sequences; see also [6, Theorem 3.1].

Remark 3.10. — According to a well established terminology, the subgroup Γ(nk) con-
sidered in the proof of Theorem 3.8 is called the subgroup of T characterized by the sequence
(nk). There is a considerable literature on characterized subgroups; see [13].

3b. Non-Kazhdan does not imply nullpotent. — The following example shows that
non-Kazhdan sequences may fail to be nullpotent.

Proposition 3.11. — Let (mk)k≥0 be a sequence of integers with m0 = 1, and assume
that (mk) is non-Kazhdan. Write the set {mk,mk + 1 ; k ≥ 0} as a strictly increasing
sequence (nk)k≥0. Then, (nk) is a non-Kazhdan sequence which is not nullpotent (and
hence not a rigidity sequence).

Proof. — This will follow at once from the next two facts.

Fact 3.12. — Let (nk)k≥0 be a sequence of integers. If (nk) is nullpotent then, for any
c0, . . . , cp ∈ Z, the only accumulation points of |c0nk + c1nk+1+ · · ·+ cpnk+p| in Z+∪{∞}
are 0 and ∞; in other words, if the set K := {k ≥ 0; c0nk + c1nk+1 + · · ·+ cpnk+p 6= 0} is
infinite, then |c0nk + c1nk+1 + · · ·+ cpnk+p| → ∞ as k → ∞, k ∈ K. In particular, if (nk)
is nullpotent and if the nk are all distinct, then |nk+1 − nk| → ∞.

Proof of Fact 3.12. — Assume that the conclusion fails. Then there exists an integer q 6= 0
such that c0nk + c1nk+1 + · · · + cpnk+p = q for infinitely many k; and this immediately
implies that (nk) cannot be nullpotent.

Fact 3.13. — Let Q ⊆ Z, and assume that Q is not a Kazhdan set. Then the set
Q ∪ (Q+Q) is non-Kazhdan. In particular, Q ∪ (Q+ a) is non-Kazhdan for any a ∈ Q.

Proof of Fact 3.13. — Let ε > 0 be arbitrary. Since Q is non-Kazhdan, one can find a
measure µ ∈ P(T) such that µ({1}) = 0 and supq∈Q |µ̂(q) − 1| < ε. Then, by (2) of Fact

2.2, we have supr∈Q+Q |µ̂(r)− 1| < 2
√
2ε. This being true for every ε > 0, it follows that

Q ∪ (Q+Q) is non-Kazhdan.

Since m0 = 1, if we set Q := {mk; k ≥ 0}, then Q ∪ (Q + 1) is non-Kazhdan by Fact
3.13; so the sequence (nk) is non-Kazhdan. That (nk) cannot be a rigidity sequence follows
immediately from Fact 3.12.
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Remark 3.14. — Fact 3.12 shows in particular that if (nk)k≥0 is a strictly increasing
rigidity sequence, then nk+1−nk → ∞. A more general result was proved in [8, Proposition
2.12]. Moreover, the proof given in [5, Example 6.9] shows that if (mk)k≥0 is a strictly
increasing sequence of positive integers with mk+1 −mk → ∞, then there exists a strictly
increasing sequence (nk)k≥0 which is a TB-sequence (hence a rigidity sequence by Theorem
3.8) and satisfies mk ≤ nk < mk+1 for every k ≥ 0.

Remark 3.15. — In the situation described in Proposition 3.11, it is not hard to see
that the set

R(nk)
ε :=

{
µ ∈ P(T) : lim

k→∞
|µ̂(nk)− 1| < ε

}

is not dense in P(T) for ε > 0 sufficiently small. Indeed, any measure µ ∈ R(nk)
ε satisfies

|µ̂(1)− 1| ≤ lim
k→∞

√
2
(
|µ̂(mk + 1)− 1|1/2 + |µ̂(mk)− 1|1/2

)
< 2

√
2ε,

which makes density impossible for all ε < 1/(2
√
2) (the Lebesgue measure on T cannot be

approximated by measures from R(nk)
ε ). We will see in Section 4 that this is not accidental.

3c. A Kazhdan sequence is almost surely nullpotent. — We now show that the
converse of Corollary 3.6 is not true: there exist nullpotent sequences which are not rigidity
sequences. In fact, we are going to prove that there exist nullpotent sequences which are
even Kazhdan. In order to do this, we need, as in [46], to consider random sequences of
integers.

Let p = (pn)n≥1 be a sequence of real numbers with 0 < pn < 1 for every n ≥ 1. The
random set A = Ap associated with p is defined by putting a given integer n into A with
probability pn in such a way that the events {n ∈ A} are independent. More formally, let
(ξn)n≥1 be a sequence of independent random variables on a probability space (Ω,F ,P)
with

P(ξn = 1) = pn and P(ξn = 0) = 1− pn for every n ≥ 1.

Then, for any ω ∈ Ω,

n ∈ A(ω) ⇐⇒ ξn(ω) = 1.

If the sequence p satisfies
∑∞

n=1 pn = ∞, then A(ω) is almost surely infinite by the Borel-
Cantelli Lemma. So we may enumerate A(ω) as a strictly increasing sequence (nk(ω))k≥0.
Equivalently, nk(ω) is the smallest r ∈ N such that ξ1(ω) + · · · + ξr(ω) = k. We say that
(nk)k≥0 is the random sequence associated with p.

Theorem 3.16. — Assume that the sequence p = (pn)n≥1 satisfies the following three
conditions:

(1)
1

logN

N∑

n=1

pn → ∞ as N → ∞;

(2)
N∑

n=1

|pn+1 − pn| = o
( N∑

n=1

pn

)
as N → ∞;

(3) pn = O
( 1

n1−ε

)
as n → ∞ for every ε ∈ (0, 1).

Then, almost surely, the random sequence (nk) is nullpotent, Kazhdan (so not rigid), and
such that every translate of the set {nk; k ≥ 0} is a set of recurrence.
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Remark 3.17. — Condition (2) holds true as soon as the sequence (pn)n≥1 is decreasing
and

∑∞
n=1 pn = ∞ (which follows from (1)). To give a concrete example, the three

assumptions on p are satisfied if we take pn := log(n)
n for n ≥ 2.

The proof of Theorems 3.16 will be merely a combination of known results. The first
one was proved by Ruzsa in [46, Theorem 4].

Theorem 3.18. — If p satisfies (3) and
∑∞

n=1 pn = ∞, then the random set A is almost
surely nullpotent.

The second result we need goes back to Bourgain [10]. Recall that a sequence (nk)k≥0

of elements of Z is said to be Hartman equidistributed (see [35, page 295]) if

1

K + 1

K∑

k=0

znk → 0 for every z ∈ T \ {1}.

Theorem 3.19. — If p satisfies (1) and (2) then the random sequence (nk) is almost
surely Hartman equidistributed.

This was proved by Bourgain in [10, Proposition 8.2] under slightly stronger assump-
tions. A more general result is obtained in [42, Theorem 5.4], with a quite different proof
from that in [10]. As stated, the result can be found in [18, Theorem 6.1]. We mention
also the references [9, 37, 21, 22] for more results in this vein.

The last result we need reads as follows.

Theorem 3.20. — Let (nk)k≥0 be a sequence of integers. Assume that (nk) is Hartman
equidistributed. Then the set {nk ; k ≥ 0} is Kazhdan, and every translate of {nk; k ≥ 0}
is a set of recurrence.

Proof. — The equidistribution assumption implies that

(3.1)
1

K + 1

K∑

k=0

µ̂(nk) → µ({1})

for every finite positive measure µ on T. So the first statement is a simple consequence
of Theorem 1.2. The second statement is well known (see e.g. [9, Proposition 3.4] and
the proof of [24, Theorem 3.5]), and can be proved by considering the spectral measures
of the Koopman operator f 7→ f ◦ T associated to a measure-preserving transformation
T : (X,B,m) → (X,B,m). More precisely, given a set A ⊆ X with m(A) > 0, suppose
that m

(
T−nk(A) ∩ A

)
= 0 for every k ≥ 0. Let µ be the positive measure such that

µ̂(n) = 〈1A ◦ T n,1A〉L2(m), n ≥ 0. An application of (3.1) to µ yields that µ({1}) = 0.

By von Neumann’s mean ergodic theorem and since µ({1}) = limN→∞
1

N+1

∑N
n=0 µ̂(n),

it follows that 1A is orthogonal to its projection onto the subspace of all T -invariant
functions in L2(m). So 1A is in fact orthogonal to all T -invariant functions; and hence
m(A) = 〈1A,1〉 = 0, a contradiction. Thus, we see that {nk; k ≥ 0} is a set of recurrence;
and the same is true for any translate of {nk; k ≥ 0} because the sequence (nk + m) is
Hartman equidistributed for any m ∈ Z.

Proof of Theorem 3.16. — The result follows immediately from Theorems 3.18, 3.19 and
3.20 above.
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3d. Kazhdan sequences which are not asymptotic bases of Z. — Although the
most explicit and natural examples of nullpotent sequences enjoy the stronger property
of being rigidity sequences (this is typically the case for sequences (nk)k≥0 such that
nk+1/nk → ∞), Theorem 3.16 shows that from a probabilistic point of view, a sequence
of integers is rather inclined to be nullpotent but not rigid. In the same way, most known
examples of Kazhdan sets in Z (such as the set of squares, or the set of all primes...) are
additive bases of Z, but a set of integers taken at random will rather be Kazhdan and not
an asymptotic basis. As mentioned in the introduction, this answers a question of Martin
Kassabov. However, we must also add that presently we do not know any explicit example
of a Kazhdan set which is not an additive basis.

Corollary 3.21. — Under the assumptions of Theorem 3.16 above, the random sequence
(nk) almost surely satisfies the following property: (nk) is a Kazhdan sequence and, for
each fixed integer r ≥ 1, the set Br of all integers m which can be written as

m =

r∑

i=1

εi nki , εi = ±1

is of density zero in Z. In particular, (nk) is almost surely a Kazhdan sequence and not
an asymptotic basis of Z.

Proof. — It follows from Theorem 3.16 that the sequence (nk(ω))k≥0 is almost surely
Kazhdan and nullpotent; and it is proved in [46, Theorem 2] that all the sets Br associated
to a nullpotent sequence are of density zero in Z.

Remark 3.22. — The choice pn = log(n)
n for n ≥ 2 in Theorem 3.16 gives rise to ran-

dom sequences (nk) which are almost surely nullpotent. On the other hand, it has been
remarked by Ruzsa [46] that if we choose pn = n−d for some 0 < d < 1, then the random
sequence (nk) is almost surely an asymptotic basis of Z and hence not nullpotent. Additive
properties of random sequence of (positive) integers have been studied by many authors,
beginning with Erdös and Renyi [17].

Remark 3.23. — One can also wonder what happens from a topological point of view.
As it turns out, the situation is quite different: identifying a subset of N with a point
of the Cantor space {0, 1}N, it is very easy to show that the set of all additive bases of
order 2 of N is a dense Gδ subset in {0, 1}N. For Baire category results concerning the
equidistribution mod 1 of subsequences, the reader may consult [26] and the references
therein.

4. Characterizations of rigidity sequences

4a. Two criteria for rigidity. — In this section, we present two criteria for rigidity,
namely Theorems 4.1 and 4.3, which provide a rather tractable way to check the rigidity
of a sequence (nk)k≥0. The meaning of these results is that if we are able to construct suf-
ficiently many probability measures µ with µ̂(nk) → 1, or just sufficiently many measures
such that limk→∞ |µ̂(nk)−1| is small, then we get “for free” that there exists a continuous
probability measure µ with µ̂(nk) → 1. And of course, it is presumably much easier to
find possibly discrete measures µ such that limk→∞ |µ̂(nk)− 1| is small than to construct
directly a continuous rigid measure. For more examples of the usefulness of this line of
thought, see e.g. [12], [41] or [36].
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Recall the notation for the set of all rigid measures for a given sequence of integers
(nk)k≥0:

R(nk) =
{
µ ∈ P(T) : µ̂(nk) → 1 as k → ∞

}
.

Theorem 4.1. — Let (nk)k≥0 be a sequence of integers. Then, (nk) is a rigidity sequence

if and only if R(nk) is dense in P(T). Moreover, if this holds, then in fact R(nk) ∩ Pc(T)
is dense in P(T).

We point out two consequences of this theorem (see also Corollary 4.4 below). Recall
that for any µ ∈ P(T), we denote by G(µ) the subgroup of T generated by the support of
µ, and that if (nk)k≥0 is a sequence of integers, then

E(nk) =
⋃{

G(µ); µ ∈ R(nk)
}
.

Corollary 4.2. — Let (nk)k≥0 be a sequence of integers. Each of the following assertions
is equivalent to the rigidity of (nk).

(a) The group G(nk) generated by E(nk) is dense in T.
(b) For any neighborhood V of 1 in T, there exists a measure µ ∈ R(nk) such that µ 6= δ1

and µ(V ) > 0.

Proof. — By Corollary 2.6, (a) is equivalent to the density of R(nk). As for (b), it is rather

clear that it is implied by the density of R(nk); and conversely, if (b) holds true, then it is

equally clear that E(nk) is dense in T.

This result allows us to retrieve very easily all known examples of rigidity sequences
from [8, 14, 20, 5]. Indeed, the main result of [20] states that if there exists an irrational
z ∈ T such that znk → 1, then (nk) is a rigidity sequence; and this follows at once from
Corollary 4.2 (a), since G(δz) alone is already dense in T. Likewise, as already mentioned in
Subsection 3a, the following generalization of the result from [20] is proved in [5, Theorem
2.3]: if the subgroup

Γ(nk) = {z ∈ T ; znk → 1}
is dense in T, then (nk) is a rigidity sequence; and again, this follows immediately from
Corollary 4.2 (a).

However, recall that Fayad and Kanigowski constructed in [19] examples of rigidity

sequences (nk)k≥0 for which Γ(nk) = {1} (and that a much stronger result was proved by

Griesmer in [29]). Note that if Γ(nk) = {1}, then R(nk) contains only continuous measures
except δ1; so Theorem 4.1 seems useless in this case, i.e. the existence of a rigidity sequence
(nk)k≥0 such that Γ(nk) = {1} cannot follow directly from it. Yet, we will see below that
a suitable strengthening of Theorem 4.1 can be used to simplify the proof of one of the
main results of [19].

For any sequence of integers (nk)k≥0 and any ε > 0, let us define

R(nk)
ε :=

{
µ ∈ P(T) : lim

k→∞
|µ̂(nk)− 1| < ε

}

and
Γ(nk)
ε :=

{
z ∈ T; limk→∞ |znk − 1| < ε

}
.

Theorem 4.3. — Let (nk)k≥0 be a sequence of integers. Then (nk) is a rigidity sequence

if and only if all the sets R(nk)
ε , ε > 0 are dense in P(T).

From this, we get a stronger version of [5, Theorem 2.3].
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Corollary 4.4. — If all the sets Γ
(nk)
ε , ε > 0 are dense in T, then (nk) is a rigidity

sequence.

Proof. — This is clear since R(nk)
ε , being convex, contains every measure µ ∈ P(T) whose

support is finite and contained in Γ
(nk)
ε .

4b. Proof of Theorem 4.1. — We have already observed in Corollary 2.5 that if
(nk)k≥0 is a rigidity sequence, then R(nk) ∩ Pc(T) is dense in P(T); so we just have to

show that if R(nk) is dense in P(T), then (nk) is a rigidity sequence.

One possible way to do this is to argue by contradiction and to use [5, Theorem 2.3].

Indeed, assume that (nk) is not a rigidity sequence, i.e. that R(nk) contains no continuous

measure. Since R(nk) is hereditary for absolute continuity, it follows that R(nk) contains
only discrete measures. Since R(nk) is dense in P(T) and (again) hereditary for absolute

continuity, this implies that Γ(nk) = {z ∈ T; znk → 1} = {z ∈ T; δz ∈ R(nk)} is dense in
T. So, by [5, Theorem 2.3], (nk) is a rigidity sequence after all!

However, since Theorem 4.1 is formally more general than [5, Theorem 2.3], it seems
desirable to provide a proof which does not rely on the latter. This is what we are going to
do now. As a by-product, we will therefore get a new proof of [5, Theorem 2.3], which will

also be completely different. Indeed, in [5] a continuous measure µ ∈ R(nk) was explicitly
constructed, while our proof relies on a Baire category argument which can be stated
abstractly as follows:

Lemma 4.5. — Let X be a Banach space, P a closed convex subset of its bidual X∗∗,
and C a closed convex subset of P ∩X. Let also (On)n≥1 be a sequence of convex subsets
of P which are open in P for the w∗∗- topology. Suppose that C as well as all sets On,
n ≥ 1 are w∗∗- dense in P . Then the set C ∩⋂n≥1On is norm-dense in C.

Proof. — Since C is w∗∗- dense in P and all the sets On are w∗∗- open in P , we see that
C∩On is w∗∗- dense in On, and hence in P . Therefore, C∩On is weakly dense in C. Since
C and On are convex, it follows that C ∩ On is norm-dense in C by Mazur’s theorem.
Moreover, C ∩ On is weakly open in C, hence norm-open. As C is a closed subset of X,
the Baire category theorem implies that

⋂
n≥1(C ∩On) is norm-dense in C, which had to

be proved.

Proof of Theorem 4.1. — Going back to the proof of Theorem 4.1, we assume that R(nk)

is dense in P(T), and we wish to show that R(nk) ∩ Pc(T) 6= ∅. We will in fact prove

directly that R(nk) ∩ Pc(T) is dense in P(T).

Observe first that Pc(T) can be written as Pc(T) =
⋂

n≥1 On, where each set On ⊆ P(T)
is open, convex, and dense in P(T). (This is a more precise version of the well known fact
that Pc(T) is a dense Gδ subset of P(T).) Indeed, fix for every k ≥ 1 a finite covering
(Vi,k)i∈Ik of T by open arcs of length less than 2−k, in such a way that for every k ≥ 2
and every i ∈ Ik, there exists i′ ∈ Ik−1 such that Vi,k ⊆ Vi′,k−1. For every n ≥ 1, define

On :=
{
µ ∈ P(T) ; ∃ k ∀ i ∈ Ik : µ(V i,k) < 2−n

}
.

Since the map µ 7→ µ(F ) is upper semi-continuous on P(T) for every closed subset F
of T, the set On is open in P(T). Moreover, On is convex. Indeed, if µ, µ′ ∈ On, one
can choose k and k′ such that µ′(V i,k) < 2−n for every i ∈ Ik and µ′(V i′,k′) < 2−n for
every i′ ∈ Ik′ . Suppose for instance that k ≥ k′. For every i ∈ Ik, there exists an index
i′ ∈ Ik′ such that V i,k ⊆ V i′,k′ ; hence µ′(V i,k) < 2−n. So, for any s ∈ [0, 1] we have
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(sµ+(1− s)µ′)(V i,k) < 2−n for every i ∈ Ik, and hence sµ+(1− s)µ′ belongs to On. It is
not difficult to check that On is dense in P(T) for every n ≥ 1, and that

⋂
n≥1On = Pc(T).

Define a map J : P(T) 7−→ ℓ∞(N) by setting

(Jµ)(n) :=

{
µ̂(nk)− 1 if n = nk for some k,

2−nµ̂(n) if n 6∈ {nk ; k ≥ 0}.
This map J is continuous from P(T) into ℓ∞(N) = c0(N)

∗∗ endowed with its w∗∗- topology;
and J is also injective. Since P(T) is compact, J is an homeomorphism from P(T) onto
P := J(P(T)). In particular, P is w∗∗- closed, hence norm-closed in ℓ∞(N). Since J is

an affine map, P is convex. Set now C := J(R(nk)). By the definition of the map J ,
we have C = P ∩ c0(N), so that C is a closed convex subset of c0(N). Moreover, C is

w∗∗- dense in P since R(nk) is dense in P(T). If we set On := J(On) for each n ≥ 1,
the fact that J is an affine homeomorphism implies that On is convex, w∗∗- open, and
w∗∗- dense in P . So the hypotheses of Lemma 4.5 are fulfilled, and hence

⋂
n≥1On ∩ C is

norm-dense in C. In other words,
⋂

n≥1 J(On) ∩ J(R(nk)) is norm-dense in J(R(nk)), and

in particular w∗∗- dense. Since J is a homeomorphism from P(T) onto (P,w∗∗), it follows

that Pc(T) ∩R(nk) =
(⋂

nOn

)
∩R(nk) is dense in R(nk), and hence in P(T).

Remark 4.6. — What the proof of Theorem 4.1 actually shows is the following. Let
(nk)k≥0 be an arbitrary sequence of integers, and let G be a Gδ subset of P(T). Let also
P be a closed convex subset of P(T). Assume that G can be written as G =

⋂
n∈NOn,

where the sets On are open, convex and such that On ∩ R(nk) ∩ P is dense in R(nk) ∩ P .

Then G ∩ R(nk) ∩ P is dense in R(nk) ∩ P. In particular, if (nk) is a rigidity sequence,

then R(nk) ∩ G 6= ∅ for any dense Gδ set G ⊆ P(T) which is the intersection of a sequence

of convex open sets. Nevertheless, it may be worth pointing out that R(nk) is always
meager in P(T), for any sequence of pairwise distinct integers (nk)k≥0. Indeed, if we set
FK :=

{
µ ∈ P(T) ; ∀k ≥ K : |µ̂(nk)− 1| ≤ 1/2

}
for each K ∈ N, then FK is a closed set

with empty interior in P(T), and R(nk) is contained in
⋃

K∈NFK .

4c. Proof of Theorem 4.3. — The essential ingredient of the proof is contained in the
following claim.

Claim 4.7. — Let ε, ǫ′ > 0. Given any measure µ ∈ R(nk)
ε and N ∈ N, η > 0, there

exists µ′ ∈ R(nk)
ε′ such that

(a) |µ̂′(n)− µ̂(n)| < η for every |n| ≤ N ;

(b) supk≥0 |µ̂′(nk)− µ̂(nk)| ≤ 4ε.

Proof. — Without any loss of generality, we can assume that η, ε′ ≤ ε. Let k0 > N be
such that |µ̂(nk) − 1| < ε for all k > k0. Next, let M be a large integer (how large

will be specified at the end of the proof). Since R(nk)
ε′ is dense in P(T), one can find

µ1, . . . , µM ∈ R(nk)
ε′ and k0 < k1 < · · · < kM such that

r |µ̂i(n)− µ̂(n)| < η for every |n| ≤ nki−1
;

r |µ̂i(nk)− 1| < ε′ for every k > ki.

Now, set

µ′ :=
1

M

M∑

i=1

µi.
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Since R(nk)
ε′ is convex, µ′ belongs to R(nk)

ε′ , and |µ̂′(n)− µ̂(n)| < η for every |n| ≤ N . For
any k ≥ 0, we have

|µ̂′(nk)− µ̂(nk)| ≤
1

M

M∑

i=1

∣∣µ̂i(nk)− µ̂(nk)|.

If k ≤ k0, this gives immediately |µ̂′(nk) − µ̂(nk)| ≤ η ≤ ε; and if k > kM , we may write

|µ̂i(nk)− µ̂(nk)| = |(µ̂i(nk)− 1)− (µ̂(nk)− 1)| to get that |µ̂′(nk)− µ̂(nk)| ≤ ε+ ε′ ≤ 2ε.
Otherwise, there exists 1 ≤ s ≤ M such that ks−1 < k ≤ ks for some 1 ≤ s ≤ M . We have
in this case

|µ̂′(nk)− µ̂(nk)| ≤ 1

M

(
s−1∑

i=1

|(µ̂i(nk)− 1)− (µ̂(nk)− 1)|+ |µ̂s(nk)− µ̂(nk)|

+

M∑

i=s+1

|µ̂i(nk)− µ̂(nk)|
)

≤ 1

M

(
(s− 1)(ε + ε′) + 2 + (M − s) η

)

≤ 3ε +
2

M
·

So µ′ satisfies the required properties (a) and (b) if M is large enough.

Proof of Theorem 4.3. — By Theorem 4.1, it is enough to show that R(nk) is dense in

P(T) under the assumption that all sets R(nk)
ε are dense. It is therefore enough to show

that given ν ∈ P(T), N ∈ N and η > 0, one can find µ ∈ R(nk) such that |µ̂(n)− ν̂(n)| < η
for all |n| ≤ N .

Set εj := 2−j−1 for every j ≥ 1. By Claim 4.7, one can find a sequence (µj)j≥1 of
elements of P(T) with the following properties:

(i) µj ∈ R(nk)
εj for every j ≥ 1;

(ii) |µ̂1(n)− ν̂(n)| < η/2 for every |n| ≤ N ;
(iii) |µ̂j+1(n)− µ̂j(n)| < εjη for every j ≥ 1 and every |n| ≤ N + j;
(iv) supk≥0 |µ̂j+1(nk)− µ̂j(nk)| ≤ 4εj for every j ≥ 1.

By (iii), the sequence (µj)j≥1 converges in P(T) to a certain measure µ; and by (ii) and
(iii), we have |µ̂(n)− ν̂(n)| < η for all |n| ≤ N . Moreover, it follows from (i) and (iv) that

µ belongs to R(nk). Indeed we have supk≥0 |µ̂(nk)− µ̂r(nk)| ≤ 4
∑

j≥r εj for any r ≥ 1; so
we get

lim
k→∞

|µ̂(nk)− 1| ≤ lim
k→∞

|µ̂r(nk)− 1|+ 4
∑

j≥r

εj ≤ εr + 4
∑

j≥r

εj for any r ≥ 1.

The proof is now complete.

Remark 4.8. — In order to show that all sets R(nk)
ε are dense in P(T), it is enough to

show that δz belongs to R(nk)
ε for any ε > 0 and every z ∈ T. Indeed, the set

⋂

ε>0

R(nk)
ε

is closed and convex; so it is equal to P(T) as soon as it contains every Dirac mass δz.
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4d. An example. — To illustrate Theorem 4.3, we show how it can be used to give a
streamlined proof of [19, Theorem 2].

Example 4.9. — Let (nk)k≥0 be a sequence of integers. Assume that there exists a se-
quence (zm)m≥1 ⊆ T such that the following properties hold true:

(a) for any z ∈ T, M ∈ N and α > 0, one can find an integer p such that |zpm − z| < α
for m = 1, . . . ,M (this happens for example if the zm are rationally independent);

(b) for any M ∈ N and η > 0, one can find K ≥ 0 such that

∀k ≥ K : |znk
m − 1| < η for at least M − 1 choices of m ∈ {1, . . . ,M}.

Then, (nk) is a rigidity sequence.

Proof. — Let us show that R(nk)
ε is dense in P(T) for any ε > 0. By Remark 4.8, it is

enough to show that R(nk)
ε contains the Dirac mass δz for any ε > 0 and every z ∈ T; so

let us fix ε > 0 and z ∈ T, and look for a measure µ ∈ R(nk)
ε which is close to δz.

Chose M (depending only on ε) such that 1/M < ε/4. Let also α > 0; choose p
(depending on M and α) according to property (a) and define

µ :=
1

M

M∑

m=1

δzpm .

If K ≥ 0 satisfies property (b) for M and η := ε/2p, we have

|µ̂(nk)− 1| ≤ 1

M

M∑

m=1

|zpnk
m − 1| ≤ 1

M

(
(M − 1)pη + 2

)
≤ 3ε/4 for any k ≥ K.

So µ belongs to R(nk)
ε . Moreover, since |zpm − z| < α for every 1 ≤ m ≤ M , the measure

µ is as close to δz as we wish, provided that α is sufficiently small.

4e. The complexity of rigidity. — Theorem 4.3 also has a rather unexpected de-
scriptive set-theoretic consequence. Let us denote by Rig the set of all rigidity sequences
(nk)k≥0. This is a subset of the Polish space ZN0 , so it makes sense to ask for the descrip-
tive complexity of Rig. By its very definition, Rig is obviously an analytic set, and it is
quite natural to bet that it should be non-Borel. This is however not the case:

Proposition 4.10. — The set Rig is Borel in ZN0; more precisely, it is an Fσδ set.
Moreover, Rig is a true Fσδ set, i.e. it is not Gδσ.

Proof. — Let (Uq)q∈N be a countable basis of (nonempty) open sets for P(T). By Theorem
4.3, for any increasing sequence of integers (nk)k≥0, we may write

(nk) ∈ Rig ⇐⇒ ∀q ∈ N ∀m ∈ N ∃µ ∈ P(T)
(
µ ∈ Uq and ∃K ∈ N ∀k ≥ K : |µ̂(nk)− 1| ≤ 2−m

)
.

For each (q,m) ∈ N × N, the relation R((nk), µ) under brackets is Fσ in ZN0 × P(T); so
its projection along the compact factor P(T) is Fσ in ZN0 . This shows that Rig is an Fσδ

subset of ZN0 .

To show that Rig is not Gδσ , we use the auxiliary set

W :=
{
α ∈ NN; αi → ∞ as i → ∞

}
.
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It is well known that W is a true Fσδ set in NN (see [33, Section 23]). So it is enough to
find a continuous map Φ : NN → ZN0 such that Φ−1(Rig) = W. In other words, we are
looking for a continuous map α 7→ (nk)k≥0 such that

r if αi → ∞ as i → ∞, then (nk) is a rigidity sequence;
r if αi 6→ ∞, then (nk) is not a rigidity sequence.

Let us fix an increasing sequence of integers (ki)i∈N with

k1 = 0 and
ki+1

ki
→ ∞ as i → ∞.

Given α ∈ NN, we define the sequence (nk)k≥0 as follows:

n0 := 1 and nk+1 = αink + k for ki ≤ k < ki+1, i ∈ N.

The map α 7→ (nk) is clearly continuous from NN into ZN0 .
If αi → ∞ as i → ∞, then

nk+1

nk
→ ∞ as k → ∞, and hence (nk) is a rigidity sequence.

Conversely, assume that αi 6→ ∞ as i → ∞. Then, one can find q ∈ N and an increasing
sequence (in)n≥0 ⊆ N such that

nk+1 = qnk + k for each n and all kin ≤ k < kin+1.

By the same arguments as in the proof of [3, Example 6.4], we see that (nk) is a Kazhdan
sequence, and hence not a rigidity sequence.

For the convenience of the reader, we give a few more details. It is enough to show that
if ε > 0 is small enough, then condition (1)ε in Theorem 1.2 holds true. Let µ ∈ P(T)
satisfy |µ̂(nk)− 1| < ε for all k ≥ 0. Then, for each n and all kin ≤ k < kin+1, we have

|µ̂(k)− 1| = |µ̂(nk+1 − qnk)− 1| ≤
∫

T
|znk+1 − 1| dµ + q

∫

T
|znk − 1| dµ ≤ (1 + q)

√
2ε.

So, if we take ε such that (1 + q)
√
2ε ≤ 1/2, we get

|µ̂(k)− 1| ≤ 1

2
for all kin ≤ k < kin+1, n ≥ 0.

Since
ki+1

ki
→ ∞ (which implies that

ki+1−ki
ki+1

→ 1), it follows that

µ({1}) = lim
K→∞

1

K + 1

K∑

k=0

µ̂(k) ≥ 1

2
·

This shows that (nk) is indeed a Kazhdan sequence if αi 6→ ∞; which concludes the proof
of Proposition 4.10.

Remark 4.11. — We find the Borelness of Rig rather surprising, especially when com-
pared with the following result due to Kaufman [32]. Call a subset Q of Z a w-set if there
exists a continuous complex measure µ on T such that infn∈Q |µ̂(n)| > 0. Then, the class

of w-sets is an analytic non-Borel subset of {0, 1}Z.
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4f. A question. — Recall the notation

Γ(nk)
ε =

{
z ∈ C : lim

k→∞
|znk − 1| < ε

}

for a given sequence of integers (nk)k≥0. By Corollary 4.4, we know that (nk) is a rigidity

sequence as soon as all sets R(nk)
ε , ε > 0 are dense in T. Now, the set

Γ :=
⋂

ε>0

Γ
(nk)
ε

is easily seen to be a closed subgroup of T. So, in order to show that all sets Γ
(nk)
ε are

dense in T, it is enough to check that Γ is infinite.

One can also observe that if all the sets Γ
(nk)
ε are infinite, then none of them has isolated

points, and hence all the sets Γ
(nk)
ε are uncountable. Indeed, let z ∈ Γ

(nk)
ε . Choose ε′ < ε

such that z ∈ Γ
′(nk)
ε , and let η > 0 be such that 2η+ ε′ < ε. Since Γ

(nk)
η is infinite, one can

find a sequence of pairwise distinct points (ai) in Γ
(nk)
η converging to some point a ∈ T. If

we put bi := ai+1ai, then bi belongs to Γ
(nk)
2η , bi 6= 1 and bi → 1. So zi := biz lies in Γ

(nk)
ε ,

zi 6= g and zi → z. Hence z is not an isolated point of Γ
(nk)
ε . This leads to the following

question.

Question 4.12. — Let (nk)k≥0 be a sequence of integers. Assume that all the sets Γ
(nk)
ε

are infinite or, equivalently, that all the sets Γ
(nk)
ε are uncountable. Does it follow that

(nk) is a rigidity sequence?

5. Rigidity sequences which are dense in the Bohr group

5a. Density with respect to some group topology. — Let (nk)n≥0 be a sequence
of integers. By Corollary 3.6, if (nk) is a rigidity sequence, then it is convergent to 0 with
respect to some Hausdorff group topology on Z. Looking for a different behavior of the
same sequence, one may ask if there is another group topology on Z such that (nk) is
dense with respect to this new topology. The question of characterizing sequences which
are dense with respect to some Hausdorff group topology on Z has been raised by Ruzsa
[46, p. 478]. The deceptively simple answer is given by the following result.

Proposition 5.1. — For any sequence of distinct integers (nk)n≥0, there exists a Haus-
dorff (even metrizable) group topology τ of Z such that (nk) is dense in (Z, τ).

Proof. — According to a classical result of Weyl, the sequence of real numbers (nkθ)k≥0

is uniformly distributed mod 1 for almost all real numbers θ (with respect to Lebesgue
measure). So one can pick an irrational z ∈ T such that the sequence (znk)k≥0 is dense in
T. Since z is not a root of 1, one defines a distance d on Z by setting

d(n,m) := |zn − zm|.

The distance d is translation-invariant, so the associated topology τ is a group topology
on Z; and it is clear that (nk) is dense in (Z, τ).
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5b. Density with respect to bZ. — The refined question we consider now is the
existence of rigidity sequences which are dense for the so-called Bohr topology of Z.

Let us denote by Td the group T equipped with the discrete topology. The Bohr com-
pactification of Z, denoted by bZ, is the dual group of Td, i.e. the set of all homomorphisms
χ : T → T endowed with the topology of pointwise convergence. By definition, bZ is a
compact group, and Z can be viewed as a subgroup of bZ if we identify an integer n ∈ Z
with the homomorphism χn : T → T defined by χn(z) = zn. Moreover, it follows from
Pontryagin’s duality theorem that Z is dense in bZ (which explains the terminology). The
Bohr topology on Z is the topology induced by bZ. We refer the reader to [45] for more
on the Bohr compactification of a locally compact abelian group.

As already mentioned in the introduction, Griesmer proved in [29] among other things
the following striking result ([29, Theorem 2.1]):

Theorem 5.2. — There exists a rigidity sequence (nk)k≥0 which has the property that
every translate of {nk ; k ≥ 0} is a set of recurrence.

It is well known that if R ⊆ Z is a set of recurrence, then R intersects every Bohr
neighborhood of 0. Hence, if all translates of a set D ⊆ Z are sets of recurrence, then D
is dense in bZ. So Theorem 5.2 has the following consequence ([29, Theorem 8.4]):

Corollary 5.3. — There exists a rigidity sequence (nk)k≥0 which is dense in bZ.

In this section, we are going to give a new proof of Corollary 5.3, based on ideas from
[31] and [30]. This proof has the advantage of providing an explicit example of a rigidity
sequence (nk) which is dense in bZ. We will also make some comments on Griesmer’s
proof of Theorem 5.2.

5b.1. A new proof of Corollary 5.3. — As explained above, we will explicitly construct a
rigidity sequence (nk)k≥0 which is dense in bZ. The density of our sequence will be proved
by using the following lemma.

Lemma 5.4. — Let (pj)j≥1 be an increasing sequence of positive integers with the follow-
ing property: for some sequence (Iq)q≥0 of pairwise disjoint finite subsets of N and some
constant c > 0, it holds that

∀z ∈ T \ {1} : inf
q≥0

∑

j∈Iq

|zpj − 1| > 0.

Let also D ⊆ Z. Assume that for every K ∈ N, one can find q1, . . . , qK ≥ 0 (pairwise
distinct) such that D contains the set

{∑
j∈F pj ; F ⊆ Iq1 ∪ · · · ∪ IqK

}
. Then D is dense

in bZ.

The proof of this lemma rests upon a classical density criterion due to Katznelson ([31,
Theorem 1.3]). Recall that T is the dual group of Z, so one can consider the Fourier
transform ν̂ : T → C of a probability measure ν on Z. Explicitly, if ν =

∑
n∈Z anδn, then

ν̂(z) =
∑

n∈Z

anz
n for every z ∈ T.

Proposition 5.5. — Let D ⊆ Z. If, for every ε > 0, every r ≥ 1 and every points
z1, · · · , zr in T \ {1}, there is a probability measure ν on Z whose support is contained in
D and such that |ν̂(zi)| < ε for 1 ≤ i ≤ r, then D in dense in bZ.
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We also need the following elementary fact.

Fact 5.6. — For any finite sequence (aj)j∈I ⊆ T, the following implication holds: if

(5.1)

∣∣∣∣∣∣
∏

j∈F

aj − 1

∣∣∣∣∣∣
<

4

3
for all F ⊆ I,

then

∑

j∈I

|aj − 1| ≤ π

2

∣∣∣∣∣∣
∏

j∈I

aj − 1

∣∣∣∣∣∣
.

Proof. — First, we note that for every t ∈ R, we have

4 dist(t,Z) ≤ |e2iπt − 1| ≤ 2π dist(t,Z).

The explicit constants 4 and 2π can be obtained using elementary trigonometry and the
observation that the sinc function sin(x)/x varies between 1 and 2/π when |x| ≤ π/2.

Now, suppose that (aj)j∈I satisfies (5.1), and write aj = e2iπtj with −1
3 ≤ tj <

2
3 · Then

dist


∑

j∈F

tj,Z


 <

1

3
for all F ⊆ I.

In particular, −1
3 < tj < 1

3 for all j ∈ I. From this, it is easy to deduce that for any
F ⊆ J , the integer closest to

∑
j∈F tj is 0. (For example, one can prove it by induction

on the cardinality of F .) So we have
∑

j∈I dist(tj ,Z) = dist
(∑

j∈I tj,Z
)
; and hence

∑

j∈I

|aj − 1| ≤ 2π
∑

j∈I

dist(tj ,Z) = 2π dist


∑

j∈I

tj,Z


 ≤ π

2

∣∣∣∣∣∣
∏

j∈I

aj − 1

∣∣∣∣∣∣
.

Proof of Lemma 5.4. — We apply Proposition 5.5. Let ε > 0 and consider r ≥ 1 points
z1, · · · , zr in T \ {1}. By assumption, there exists some constant γ > 0 such that

∑

j∈Iq

|zpji − 1| ≥ γ for any q ≥ 0 and 1 ≤ i ≤ r.

Moreover, we may also assume that γ < 4/3. By Lemma 5.6 applied with aj := z
pj
i , j ∈ Iq

(and since 2γ
π ≤ γ < 4

3), it follows that for any q ≥ 0 and 1 ≤ i ≤ r, one can find a set
Fi,q ⊆ Iq such that

|zni,q

i − 1| ≥ 2γ

π
, where ni,q :=

∑

j∈Fi,q

pj .

Now, let s be a large integer which will be chosen later on, and let K := rs. By
assumption, one can find a set Q ⊆ Z+ with #Q = K such that D contains the set
SQ :=

{∑
j∈F pj ; F ⊆ ⋃q∈Q Iq

}
. We enumerate the set Q by J1, sK× J1, rK, i.e. we write

the integers q ∈ Q as q(t, i) with 1 ≤ t ≤ s and 1 ≤ i ≤ r. To each pair (t, i) ∈ J1, sK×J1, rK,
we associate the probability measure νt,i on Z defined as follows:

νt,i :=
1

2

(
δ0 + δni,q(t,i)

)
.
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Then

ν̂t,i(zi) =
1 + z

ni,q(t,i)

i

2
·

Since |zni,q(t,i)

i − 1| ≥ 2γ
π , it follows (by the parallelogram identity in C; or, to be pedantic,

by the formula for the modulus of uniform convexity of the euclidean space C) that

| ν̂t,i(zi)| ≤
(
1−

(γ
π

)2)1/2

.

Therefore, the convolution measure

ν = ∗
1≤i≤r

∗
1≤t≤s

νt,i

satisfies

|ν̂(zi)| ≤
s∏

t=1

| ν̂t,i(zi)| ≤
(
1−

(γ
π

)2)s/2

for all 1 ≤ i ≤ r.

Thus, we have |ν̂(zi)| < ε for 1 ≤ i ≤ r if s is sufficiently large.
To conclude the proof, it remains to observe that the support of ν is included in SQ,

and hence in D. This shows that D satisfies the criterion stated in Proposition 5.5.

Example 5.7. — Consider the so-called Erdös-Taylor sequence (pj)j≥1 (see [16]) defined
by

p1 = 1 and pj+1 = jpj + 1, j ≥ 1.

For every q ≥ 0, set Iq := (2q, 2q+1]. Fix also an increasing sequence 0 = q0 < q1 < . . .
such that Nl := q+1 − ql → ∞, and set Jℓ :=

⋃
ql≤q<ql+1

Iq. Finally, let (nk)k≥0 be the

increasing enumeration of the set D =
⋃

l≥0 Sℓ, where Sℓ =
{∑

j∈F pj ; F ⊆ Jℓ

}
. Then,

(nk) is a rigidity sequence which is dense in bZ.

Proof. — The rigidity of (nk) follows from the fact that the Erdös-Taylor sequence (pj)
satisfies

∑

j≥1

(
pj
pj+1

)2

< ∞.

By [30, Theorem 2.3], this implies that (pj) is IP-rigid, which means that there exists a
continuous measure µ ∈ P(T) such that

µ̂


∑

j∈F

pj


→ 1 as min(F ) → ∞ , F ⊆ N finite.

The rigidity of the sequence (nk) follows immediately from this property. We refer to [1]
and [30] for more on IP-rigidity.

To prove that (nk) is dense in bZ, we apply Lemma 5.4. By the definition of the set D,
we just need to show that for any z ∈ T \ {1}, there exists some constant cz > 0 such that

∑

j∈Iq

|zpj − 1| ≥ cz for every q ≥ 0.

Set ε = εz := 1
2 |z − 1|. By the recurrence relation of the Erdös-Taylor sequence, the

following implication holds for any i ≥ 1:

|zpi − 1| < ε

i
=⇒ |zpi+1 − 1| > ε.
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(Indeed, we have |zpi+1−1| = |z1+ipi−zipi+zipi−1| ≥ |z−1|−|zipi−1| ≥ |z−1|−i |zpi−1|.)
In particular, we have |zpi − 1| ≥ ε

i or |zpi+1 − 1| ≥ ε
i+1 for any i ≥ 1. Therefore, if we

define

Eq :=
{
j ∈ Iq : |zpj − 1| ≥ ε

j

}
,

we see that the cardinality of Eq is at least 1
2#Iq. So we get

∑

j∈Iq

|zpj − 1| ≥
∑

j∈Eq

|zpj − 1| ≥
∑

j∈Eq

ε

j
≥ ε

max(Iq)
× #Iq

2
=

ε

2q+1
× 2q

2
=

ε

4
;

and hence we may take cz :=
εz
4 ·

5b.2. Comments on Griesmer’s proof. — In what follows, we denote by R the family of
all sets D ⊆ Z such that every translate of D is a set of recurrence.

There are two main steps in Griesmer’s proof of Theorem 5.2. The first one is to show
that for a large class of measures µ ∈ P(T), some sets of integers canonically associated
with µ belong to R. Recall the definition of a Kronecker set : a compact set K ⊆ T is a
Kronecker set if every continuous function f : K → T can be uniformly approximated by
functions of the form zn, n ∈ N. It is well known that there exist perfect Kronecker sets
(see e.g. [34]).

Proposition 5.8. — Let K ⊆ T be an uncountable Kronecker set, and let µ ∈ P(T) be a
continuous measure supported on K. For any ε > 0, the set

D(ε, µ) :=
{
n ∈ N : |µ̂(n)− 1| < ε

}

belongs to R.

This is the most technical part of Griesmer’s proof ([29, Proposition 3.2]). The corre-
sponding (weaker) result for Bohr density is due to Saeki [47], who proved it in the more
general context of discrete abelian groups (see also [28, Section 7.6] for a variant of Saeki’s
proof).

What we would like to point out here that the density of D(ε, µ) for the Bohr topology
can also be deduced from a remarkable result of Shkarin [48], a special case of which reads
as follows.

Theorem 5.9. — Let X be a path-connected, locally path-connected and simply connected
topological space, and let T : X → X be a continuous map which is minimal, i.e. every
T -orbit is dense in X. Let also G be a compact group which is topologically generated by
a single element g. Then, for any x ∈ X, the set {(gn, T n(x)); n ∈ N} is dense in G×X.

We apply this result with G = bZ, which is topologically generated by g = 1 ∈ Z, and
X := L0(K,µ,T), the space of all (equivalence classes of) µ-measurable maps φ : K → T
endowed with the topology of convergence in µ-measure. The space X is in fact a Polish
group, and its topology is the same as that induced by L1(K,µ).

Consider the map T : L0(K,µ,T) → L0(K,µ,T) defined by

Tφ(z) = zφ(z) for every φ ∈ L0(K,µ,T).

The map T is continuous, and since K is a Kronecker set, it is easily checked that T
is minimal. Moreover, the space L0(K,µ,T) is contractible, and hence path-connected,
locally path-connected and simply connected. Indeed, since µ is a continuous measure,
the measure space (K,µ) is isomorphic to ([0, 1[,m), where m is Lebesgue measure; so it
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is enough to show that L0([0, 1[,m,T) is contractible. Consider the map H : (t, φ) 7→ φt

from [0, 1] × L0([0, 1[,m,T) into L0([0, 1[,m,T) defined as follows:

φt(x) :=

{
φ(x) if t ≤ x,
1 if t > x.

The map H is continuous, with H(0, φ) = φ and H(1, φ) = 1; which proves the con-
tractibility of L0([0, 1[,m,T).

By Shkarin’s Theorem, the set {(n, zn); n ∈ N} is dense in bZ × L0(K,µ,T), where z

is the function z 7→ z. Since V :=
{
φ ∈ L0(K,µ,T) :

∣∣∫ (φ− 1) dµ
∣∣∣ < ε

}
is an open set

in L0(K,µ,T) and since n belongs to D(ε, µ) if and only if zn belongs to V , it follows
immediately that D(ε, µ) is dense in bZ.

The second main step in Griesmer’s proof is to show that one can “diagonalize” in the
family R ([29, Lemma 3.4]):

Lemma 5.10. — Let (Ds)s≥1 be a sequence of subsets of Z which is decreasing with
respect to inclusion, and assume that each set Ds belongs to R. Then, there exists a set
D which is almost contained in every Ds (i.e. D \Ds is finite for every s ≥ 1) and still
belongs to R.

Applying this to the sets

Ds :=
{
n ∈ N : |µ̂(n)− 1| < 2−s

}
,

where µ is a continuous measure supported on a Kronecker sets as in Proposition 5.8,
one gets immediately the conclusion of Theorem 5.2: the required sequence (nk)k≥0 is the
increasing enumeration of the diagonalizing set D.

As it turns out, the analogue of Lemma 5.10 for Bohr density is also true: one can
diagonalize in the family of Bohr dense sets. We have not found this result in the literature,
so it may after all be new (even though this looks rather surprising). Since this adds no
complication, we state it in the general framework of discrete abelian groups.

Lemma 5.11. — Let Z be a discrete abelian group, and let (Ds)s≥1 be a decreasing se-
quence of subsets of Z. Assume that each set Ds is dense in bZ. Then, there exists a set
D which is almost contained in every Ds and still dense in bZ.

Proof. — We denote by T the (compact) dual group of Z. For any n ∈ Z, we denote
by χn ∈ bZ the character on T defined by n. Also, we set T∞ := TN (endowed with the
product topology), and we choose a compatible metric d on T∞. Finally, for any n ∈ Z

and g = (g1, g2, . . . ) ∈ TN, set χn(g) := (χn(g1), χn(g2), . . . ) ∈ T∞.

Claim 5.12. — Let D ⊆ Z. Then D is dense in bZ if and only if the following holds
true:
(5.2)

∀p ∈ Z ∀ε > 0 ∃F ⊆ D finite such that ∀g ∈ TN ∃n ∈ F : d(χn(g), χp(g)) < ε.

Proof. — Since Z is dense in bZ, the set D is dense in bZ if and only if it is dense in Z for
the Bohr topology. Now, if p ∈ Z, a typical neighborhood of p in Z for the Bohr topology
has the form

U(p; g1, . . . , gr, η) :=
{
n ∈ Z : |χn(gi)− χp(gi)| < η for i = 1, . . . , r

}
,
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where g1, . . . , gr ∈ T and η > 0. By definition of the product topology on T∞, this means
that p has a neighborhood basis made of sets of the form

V(p; g, ε) :=
{
n ∈ Z : d(χn(g), χp(g)) < ε

}
,

where g ∈ TN and ε > 0. Therefore, D is dense in Z for the Bohr topology if and only if

∀p ∈ Z ∀ε > 0 ∀g ∈ TN ∃n ∈ D : d(χn(g), χp(g)) < ε.

By compactness of TN and since the maps g 7→ χn(g) are continuous from TN into T∞,
this is equivalent to (5.2).

By the above claim, one can choose for each s ∈ N a finite set Fs ⊆ Ds such that

∀p ∈ J−s, sK ∀g ∈ TN ∃n ∈ Fs : d(χn(g), χp(g)) < 2−s.

Then, the set D :=
⋃

s∈N Fs clearly satisfies (5.2), so it is dense in bZ; and D is almost
contained in every Ds because the sequence (Ds) is decreasing.

6. Some open questions

Some interesting open problems related to rigidity and Kazhdan sequences concern
the so-called Furstenberg sequence (nk)k≥0 obtained by ordering in a strictly increasing
fashion the elements of the non-lacunary multiplicative semigroup {2i3j ; i, j ≥ 0}. A first
question from [8] concerns rigidity.

Question 6.1. — Is the Furstenberg sequence a rigidity sequence?

It is proved in [46, Theorem2] (see also [40]) that the Furstenberg sequence is nullpo-
tent. In particular, the Furstenberg set is not an asymptotic basis of Z.

The next question appeared in [5].

Question 6.2. — Is the Furstenberg sequence a Kazhdan sequence?

In order to show that the Furstenberg set is not Kazhdan, it would suffice to prove
that there exists for every δ ∈ (0, 1) a measure µ ∈ Pc(T) with inf i,j≥0 |µ̂(2i3j)| ≥ δ. The
existence of such a measure is proved in [5] for every δ ∈ (0, 1/2). Of course, one cannot
have positive answers to both Questions 6.1 and 6.2.

The following question from [8] is also open.

Question 6.3. — Is the sequence nk = 2k + 3k rigid ?

In a completely different direction, we propose the following question. Let K be the
family of Kazhdan subsets of Z, seen as a subset of {0, 1}Z (endowed with its natural
product topology), and let ¬K0 be the family of generating non-Kazhdan subsets of Z.

Question 6.4. — Are the classes K and ¬K0 Borel in {0, 1}Z?

A negative answer to this question would in particular imply something much stronger
than the existence of Kazhdan subsets of Z which are not asymptotic bases. Indeed, the
set of all asymptotic bases of Z is easily seen to be Borel in {0, 1}Z (more precisely, Gδσ);
so the non-Borelness of K would say that the properties of being a Kazhdan set and that
of being an asymptotic basis are in fact extremely different.
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Recall that the corresponding question for the set of rigid sequences has a positive
answer by Corollary 4.10. However, we have been unable to solve the following related
question.

Question 6.5. — Consider the set of all sequences of integers (nk)k≥0 for which there
exists an irrational z ∈ T such that znk → 1. Is this set Borel in ZN0?

References
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