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Abstract

Let F (n, k) (f(n, k)) denote the maximum possible size of the smallest color class in a
(partial) k-coloring of the Boolean lattice Bn that does not admit a rainbow antichain of
size k. The value of F (n, 3) and f(n, 2) has been recently determined exactly. We prove
that for any fixed k if n is large enough, then F (n, k), f(n, k) = 2(1/2+o(1))n holds.

We also introduce the general functions for any poset P and integer c ≥ |P |: let
F (n, c, P ) (f(n, c, P )) denote the the maximum possible size of the smallest color class
in a (partial) c-coloring of the Boolean lattice Bn that does not admit a rainbow copy of
P . We consider the first instances of this general problem.

Keywords: Set families, Rainbow Ramsey problems, forbidden subposet problems

1 Introduction

In the area of extremal combinatorics, one addresses the problem of finding the largest or smallest
structure that possesses a prescribed property. Ramsey-type problems deal with colorings and
usually ask for the maximum size of a structure that can be 2-colored (3-colored, 4-colored,
k-colored) such that a fixed forbidden substructure does not appear in any of the colors (or the
forbidden substructure might change from color to color). In some other coloring problems a
rainbow copy of a substructure (a copy all elements of which receive distinct colors) is to be
avoided. As rainbow copies can be avoided by simply not using enough many colors, in these
kind of problems, one has to pose additional conditions on the coloring.

In this note, we address problems of this last type with respect to set families and inclusion
patterns. Let [n] denote the set of the first n positive integers and let Bn be the Boolean lattice
of dimension n, i.e. the set of elements of Bn is the power set 2[n] of [n] ordered by inclusion. For
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any finite poset P we say a set family G ⊆ Bn is a (strong/induced) copy of P if the subposet
Bn[G] of Bn induced by G is isomorphic to P , i.e. there exists a bijection i : P → G such that
for any p, q ∈ P we have p ≤P q if and only if i(p) ( i(q). If the bijection i satisfies the weaker
condition that p ≤P q implies i(p) ( i(q), then we say that G is a weak / not necessarily induced
copy of P . A family F of sets is induced P -free, if it does not contain any induced copy of P
and F is weak P -free if it does not contain a copy of P . Forbidden subposet problems ask for
the quantity La∗(n, P ) (La(n, P )) the maximum size of an induced P -free (weak P -free) family
F ⊆ Bn. This area of extremal combinatorics has been very active since the early 1980’s, a
recent survey on the topic is [7], and the interested reader might also consult the appropriate
chapter of the book [6]. The corresponding Ramsey-type problems can be formulated as follows:
determine the maximum value N for which BN can be k-colored such that the family Fi of sets
of color i is induced Pi-free (weak Pi-free) for all 1 ≤ i ≤ k. The maximum values are denoted by
R∗(P1, P2, . . . , Pk) and R(P1, P2, . . . , Pk). They were studied recently by Axenovich and Walzer
[2] and Cox and Stolee [4]. In [3], Chang et al. considered mixed problems: for two posets P and
Q what is the maximum dimension N such that BN can be colored (with as many colors as the
painter wants) avoiding a monochromatic induced/weak copy of P in all colors and a rainbow
induced/weak copy of Q. As an auxiliary problem they introduced the following two functions
F (n, k) and f(n, k) as

• F (n, k) is the maximum value m such that there exists a k-coloring c : Bn → [k] that does
not admit a rainbow antichain of size k (the poset of k pairwise incomparable elements will
be denoted by Ak) and all color classes Fi = c−1({i}) are of size at least m,

• f(n, k) is the maximum value m such that there exists a partial k-coloring c : Bn → [k]
that does not admit a rainbow antichain of size k and all color classes Fi = c−1({i}) are of
size at least m.

By definition, we have F (n, k) ≤ f(n, k) and the following theorem was proved.

Theorem 1.1 (Chang et al [3]). For any even n ≥ 2 we have f(n, 2) = 2n/2 − 1, for any odd

n ≥ 3 we have f(n, 2) = 2⌊n/2⌋ + 1. Furthermore, if n is large enough, then F (n, 3) = f(n, 2)
holds.

In [3], a construction was given to show (log2 k − o(1))2⌊n/2⌋ ≤ f(n, k) ≤ F (n, k + 1) thus

limk→∞ lim infn→∞
F (n,k)

2n/2 = ∞, but no general upper bound was established. The main result of
the present paper determines for every fixed k the asymptotics of the exponent of the functions
f(n, k) and F (n, k).

Theorem 1.2. For any k ≥ 2 there exists n0 = n0(k) such that if n ≥ n0, then we have

F (n, k) ≤ f(n, k) ≤ k · 2n/2+2 logn
√
n.

One can color Bn with more than k colors. Then avoiding a rainbow antichain of size k is
even harder. Also, one could be interested in avoiding rainbow strong copies of other posets. So

2



for any positive integer l and finite poset P we define F (n, l, P ) to be the maximal value of m
such that there exists an l-coloring c : Bn → [l] that does not admit a strong rainbow copy of
P and all color classes of c have size at least m. If in the definition we allow partial colorings c,
then we obtain f(n, l, P ) and thus F (n, l, P ) ≤ f(n, l, P ) holds for any l and P . So the functions
F (n, k) and f(n, k) are by definition equal to F (n, k, Ak) and f(n, k, Ak).

It would be natural to introduce the corresponding functions for weak copies of P , but instead
let us consider forbidding rainbow strong copies of a family P of posets. In this way, we obtain
the functions F (n, l,P) and f(n, l,P). Observe that for any poset P we can define PP = {P ′ :
P ′ is a weak copy of P} and then F (n, l,PP ) and f(n, l,PP ) are just the not necessarily induced
versions of F (n, l, P ) and f(n, l, P ).

Let us remark that by definition for l < l′ we have f(n, l, P ) ≥ f(n, l′, P ) and F (n, l, P ) ≥
F (n, l′, P ) and for any integer l and poset P the inequality f(n, l, P ) ≤ ⌊2n

l
⌋ holds trivially.

Problem 1.3. Characterize those posets P for which f(n, |P |, P ) = ⌊ 2n

|P |⌋ holds provided n is

large enough.

By a simple coloring we will show that the diamond poset D2 on four elements a, b, c, d with
a ≤ b, c ≤ d possesses this property. This might be somewhat surprising to forbidden subposet
experts as D2 is the smallest poset P for which the asymptotics of La(n, P ) and La∗(n, P ) are
both unknown.

Let us continue with the order of magnitude of F (n, l, P ) and f(n, l, P ). It turns out that
antichains are exceptions. We say that a subset C of a poset P is a component of P if C is maximal
with respect to the property that for any p, q ∈ C there exists a sequence p1, p2, . . . , pk of elements
in C such that p = p1, q = pk and pi and pi+1 are comparable for every i = 1, 2, . . . , k−1. A poset
is connected if it has one component. The posets ∨k,∧k both have k+1 elements a, b1, b2, . . . , bk
with a ≤∨k

bi and bi ≤∧k
a for all 1 ≤ i ≤ k.

Proposition 1.4. (i) For any positive integer l and set P of posets that does not contain

antichains we have f(n, l,P) ≥ 2n−m(l), where m(l) is the smallest integer m such that l ≤
(

m
⌊m/2⌋

)

holds.

(ii) Let l be a positive integer and P be a family of posets such that if P ∈ P has a single

component C of size at least 2, then C is not ∨k nor ∧s. Then we have F (n, l,P) ≥ 2n−m(l−1).

Proof. To prove (i) let us fix l sets S1, S2, . . . , Sl ∈
(

[m(l)]
⌊m(l)/2⌋

)

and consider the families Fi ⊆ 2[n]

defined by Fi = {F ⊆ [n] : F ∩ [m] = Si}. As the families Fi i = 1, 2, . . . , l are pairwise
incomparable, if sets in Fi receive color i, then any rainbow system of sets must form an antichain,
and therefore there does not exist any rainbow copy of any P ∈ P.

Similarly, to prove (ii) let us fix sets S1, S2, . . . , Sl−1 ∈
(

[m(l−1)]
⌊m(l−1)/2⌋

)

and consider the families

Fi ⊆ 2[n] defined by Fi = {F ⊆ [n] : F ∩ [m] = Si} for i = 1, 2, . . . , l − 1 and Fl = 2[n] \ ∪l−1
i=1Fi.

As the families Fi i = 1, 2, . . . , l are pairwise incomparable, a rainbow set of sets must be the
disjoint union of an antichain and a ∨k or of an antichain and a ∧s.
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Observe that if we want to avoid a rainbow copy of ∧s, then as [n] contain all other sets,
the other color classes cannot create a rainbow antichain of size s. Therefore, by Theorem 1.2,
F (n, l,∧s) ≤ f(n, l − 1, As) ≤ 2n/2+o(n) holds.

Proposition 1.5. If P = ∨1 + Ak the disjoint union of a comparable pair and an antichain of

size k, then for l ≥ k + 2 we have F (n, l,∨1 + Ak) ≤ F (n, k + 2,∨1 + Ak) ≤ 2h(c0)n+o(n), where

h(x) = −x log2 x − (1− x) log2(1− x) is the binary entropy function and 1/3 ≤ c0 ≤ 1/2 is the

root of the equation h(x) = (1− x)h(1−2x
1−x

).

Proof. If all color classes of a (k + 2)-coloring of Bn has size at least 2(h(c0)+ε)n, then all color
classes contain at least 1

2
2(h(c0)+ε)n sets from M := {F ⊆ [n] : c0n ≤ |F | ≤ (1 − c0)n}. So we

can find a comparable pair of sets F1, F2 of different colors (as otherwise all sets in M would
belong to the same color class). Then we can greedily add the antichain of size k: if M1 ⊂ M2

and M ′
1,M

′
2, . . .M

′
j form a rainbow copy of ∨1 + Aj , then as any set M ∈ M is comparable

to at most
∑(1−2c0)n

h=0

(

(1−c0)n
h

)

= 2
(1−c0)h(

1−2c0
1−c0

)n+o(n)
= 2h(c0)n+o(n) other sets of M, so an unused

color class contains at least 1
2
2(h(c0)+ε)n − j2h(c0)n+o(n) sets from M that are incomparable to all

M1,M2,M
′
1,M

′
2, . . . ,M

′
j .

We conjecture that for any poset P to which Proposition 1.4 (ii) does not apply, the order of
magnitude of F (n, l, P ) is less than 2n.

Conjecture 1.6. For any k, s and l ≥ k+s+1 we have F (n, l,∨s+Ak) = F (n, l,∧s+Ak) = o(2n).

The most natural non-antichain posets are chains (totally ordered sets). The chain on k
elements is denoted by Pk. Ahlswede and Zhang [1] proved (in a different context) f(n, 2, P2) =
2n−2. It is not very hard to see that f(n, l, Pl) = ⌊2n

l
⌋ holds for l ≥ 4. We conjecture

f(n, 3, P3) = 2n−2 for all n ≥ 3. Moreover, we will present a single coloring that shows
2n−2 ≤ f(n,∨2, 3), f(n, 3,∧3), f(n, 3, P3) and prove the following theorem.

Theorem 1.7. For any n ≥ 3, we have f(n, 3, {∧,∨, P3}) = 2n−2.

The structure of the paper is as follows: in Section 2 we prove Theorem 1.2, determine
f(n, l, A2) for any l and present a construction for a lower bound on f(n, l, Ak) for general k.
Section 3 contains the proof of Theorem 1.7 and all comments and remarks on F -functions of
non-antichain posets.

Notation. For two sets F,G we denote by [F,G] the interval {H : F ⊆ H ⊆ G}. Similarly,
(F,G] = {H : F ( H ⊆ G}, [F,G) = {H : F ⊆ H ( G} and (F,G) = {H : F ( H ( G}. For
any set F ⊆ [n] we write DF = [∅, F ], UF = [F, [n]] and IF = DF ∪ UF .
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2 Antichains

Proof of Theorem 1.2. We proceed by induction on k with the base case k = 2 being covered by
Theorem 1.1. Let c : Bn → {1, 2, . . . , k + 1} be a partial (k + 1)-coloring of Bn that does not
admit a rainbow antichain of size k + 1 and let Fi = {F : c(F ) = i} denote the color classes
i = 1, 2, . . . , k + 1. Let us define a maximal sequence of k-tuples

(F 1
1 , F

1
2 , . . . , F

1
k ), (F

2
1 , F

2
2 , . . . , F

2
k ), . . . , (F

t
1, F

t
2, . . . , F

t
k)

such that

• F j
i ∈ Fi \ {F h

i : h < j}, for all i = 1, 2, . . . , k and 1 ≤ j ≤ t,

• for any j the sets F j
1 , F

j
2 , . . . , F

j
k form an antichain of size k,

• ∪k
i=1Fi \ {F j

i : 1 ≤ j ≤ t, 1 ≤ i ≤ k} does not contain a rainbow Ak.

By the last property and induction we have

min
1≤i≤k

|Fi| ≤ f(n, k) + t ≤ k · 2n/2+logn
√
n + t. (1)

On the other hand, as c does not admit a rainbow Ak+1, we must have Fk+1 ⊆ ∩t
j=1 ∪k

i=1 IF j
i
.

(1) implies that if t ≤ 2n/2+logn
√
n, then we are done. So suppose t ≥ 2n/2+logn

√
n. Then for any

string x = x1x2 . . . xa of length at most
√
n with xb ∈ [k] for all 1 ≤ b ≤ a we define recursively

an index j
x
, a pair (S

x
, B

x
) of sets and a downset or an upset M

x
as follows:

• for the empty string ε we have Sε = ∅, Bε = [n] and Mε = ∅,

• if S
x
⊆ B

x
and |B

x
\ S

x
| ≥ n/2 + 1

2
log n

√
n, then let j

x
≤ t be an index such that for any

i ∈ [k] either |F jx
i | ≤ n/2 and |F jx

i \ S
x
| ≥ √

n or |F jx
i | ≥ n/2 and |B

x
\ F jx

i | ≥ √
n.

• In the former case, we let S
xy := S

x
∪ F jx

y , B
xy := B

x
, M

xy := DF jx
y

while in the former

case we let S
xy := S

x
, B

xy := B
x
∩ F jx

y , M
xy := UF jx

y
.

• if S
x
, B

x
are defined and |B

x
\ S

x
| ≤ n/2 + 1

2
logn

√
n or S

x
6⊆ B

x
, then for any y ∈ [k] we

define S
xy := S

x
and B

xy := B
x
,

Claim 2.1. Whenever S
x
⊆ B

x
and |B

x
\ S

x
| ≥ n/2 + 1

2
log n

√
n hold, one can pick an index

j
x
≤ t with the above properties.

Proof of Claim. The condition |B
x
\ S

x
| ≥ n/2 + 1

2
log n

√
n implies that |S

x
| ≤ n/2− 1

2
log n

√
n

and |B
x
| ≥ n/2 + 1

2
logn

√
n hold. Therefore the number of subsets G with |G \ S

x
| ≤ √

n or

|B
x
\G| ≤ √

n is at most 2
(

n√
n

)

2n/2−
1
2
logn

√
n ≤ 2n/2+

3
4
logn

√
n. So the number of indices for which

the desired properties do not hold is at most k · 2n/2+ 3
4
logn

√
n < t, so there exists an index j

x
as

required.
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Claim 2.2. For any a ≤ √
n we have

Fk+1 ⊆
⋃

|x|=a

[S
x
, B

x
] ∪

⋃

|x′|≤a

M
x
′.

Proof of Claim. Induction on a with base case a = 0 being clear as [Sε, Bε] = 2[n]. So suppose
the statement of the claim is proved for a and let us consider a set F ∈ Fk+1. If F belongs to
⋃

|x′|≤aMx
′, then so it does to

⋃

|x′|≤a+1Mx
′. Otherwise F ∈ ⋃|x|=a[Sx

, B
x
] holds, so let x0 be a

string with F ∈ [S
x0 , Bx0] (in particular, we have S

x0 ⊆ B
x0). If |Bx0 \ Sx0 | ≤ n/2 + 1

2
logn

√
n,

then F ∈ [S
x0, Bx0 ] = [S

x0y, Bx0y] for any y ∈ [k]. Finally, if |B
x0 \ S

x0 | ≥ n/2 + 1
2
logn

√
n,

then by Claim 2.1 the index j
x0 is well defined. Therefore, as c does not admit a rainbow Ak+1,

we have F ∈ I
F

jx0
1

∪ I
F

jx0
2

∪ · · · ∪ I
F

jx0
k

, and thus for some y ∈ [k] we must have F ∈ I
F

jx0
y

. If

either |F jx0
y | ≤ n/2 and F ⊆ F

jx0
y or |F jx0

y | ≥ n/2 and F ⊇ F
jx0
y , then F ∈ M

x0y holds. If either

|F jx0
y | ≤ n/2 and F ⊇ F

jx0
y or |F jx0

y | ≥ n/2 and F ⊆ F
jx0
y , then F ∈ [S

x0y, Bx0y] holds. This
proves the inductive step.

To bound the size of Fk+1 we use Claim 2.2. The number of strings x of length at most√
n is not more than k

√
n+1 and each M

x
is of size at most 2n/2−

1
2
logn

√
n, therefore we have

|⋃|x|≤√
n Mx

| ≤ 2n/2−
1
4
logn

√
n if n is large enough. Observe that as long as S

x
⊆ B

x
and

the interval does not stabilize, we have |B
xy \ S

xy| ≤ |B
x
\ S

x
| − √

n for any string x and
y ∈ [k]. Therefore, by the time our strings reach the length of

√
n, the intervals stabilize with

|B
x
\ S

x
| ≤ n/2+ 1

2
logn

√
n. Thus |⋃|x|=√

n[Sx
, B

x
]| ≤ k

√
n+12n/2+

1
2
logn

√
n ≤ 2n/2+

3
4
logn

√
n holds.

According to Claim 2.2 we have

|Fk+1| ≤ |
⋃

|x|=√
n

[S
x
, B

x
]|+ |

⋃

|x|≤√
n

M
x
| ≤ 2n/2+

3
4
logn

√
n + 2n/2−

1
4
logn

√
n ≤ 2n/2+logn

√
n.

Conjecture 2.3. For any integer k ≥ 2 there exists a constant Ck such that f(n, k, Ak) ≤ Ck·2n/2
holds.

Construction 2.4. We define a partial l(k − 1)-coloring c of Bn in the following way such that
all color classes have size 2n/l+o(n): let us fix k − 1 chains Cj = {Cj

1 ⊂ Cj
2 ⊂ · · · ⊂ Cj

l−1} such

that |Cj
i \ Cj

i−1| = n
l
+ o(n) for all 1 ≤ j ≤ k − 1 and 1 ≤ i ≤ l − 1 with Cj

0 = ∅ for any j. We

let Cj
l = [n] for all j and for a color m = (j − 1)l + i with 1 ≤ j ≤ k − 1, 1 ≤ i ≤ l we define its

color class by

Fm = c−1({m}) = (Cj
i−1, C

j
i ] \

⋃

j′<j

l
⋃

h=1

(Cj′

h−1, C
j′

h ].

6



Observe that if F1, F2, . . . , Fk are colored, then two of them Fi1, Fi2 are defined using the same
chain Cj and if they are colored differently, then Fi1 , Fi2 are comparable. Therefore c does not
admit a rainbow copy of Ak. As for any j and i we have |(Cj

i−1, C
j
i ]| = 2n/l+o(n), all we need to

show is that we can choose the chains Cj in such a way that other intervals meet (Cj
i−1, C

j
i ] in

o(2n/l) sets. First note that it is enough to ensure that |Cj
i ∩ Cj′

i | ≤ (i − 1)n
l
+ 2

3
n
l
holds for all

1 ≤ i ≤ l−1 and 1 ≤ j 6= j′ ≤ k−1. Indeed, if this is satisfied, then |Cj
i−1∪Cj′

i−1| ≥ (i−1)n
l
+ 1

3
n
l

and |Cj
i ∪ Cj′

i | ≤ (i− 1)n
l
+ 2

3
n
l
imply

|(Cj
i−1, C

j
i ] ∩ (Cj′

i−1, C
j′

i ]| = 2|C
j
i ∩C

j′

i |−|Cj
i−1∪C

j′

i−1| ≤ 2(i−1)n
l
+ 2

3
−((i−1)n

l
+ 1

3
) = 2

1
3

n
l .

Also, if i′ 6= i, then |Cj′

i′ | = i′

l
n + o(n) implies |(Cj

i−1, C
j
i ∩ (Cj′

i′−1, C
j′

i′ ]| = 2o(n). Therefore

|Fm| = |(Cj
i−1, C

j
i ] \

⋃

j′<j(C
j′

i−1, C
j′

i ]| ≥ 2n/l−o(n) − (k − 2)2
1
3

n
l − kl2o(n).

Finally, we claim that if the chains Cj are generated in the following simple random way, then

the condition |Cj
i ∩ Cj′

i | ≤ (i− 1)n
l
+ 2

3
n
l
holds for all 1 ≤ i ≤ l − 1 and 1 ≤ j 6= j′ ≤ k − 1 with

probability tending to 1:

We let Cj
0 = ∅ for all 1 ≤ j ≤ k − 1 and set pi :=

1
l−i+1

for all 1 ≤ i ≤ l − 1. Once Cj
i−1 is

defined, then we include every x ∈ [n] \Cj
i−1 to Dj

i with probability pi independently of all other

y ∈ [n] \ Cj
i−1 and let Cj

i := Dj
i ∪ Cj

i−1.

Observe that

• |Dj
i | is a binomially distributed random variable Bi(n− |Cj

i−1|, pi),

• |[n] \ (Cj
i ∪ Cj′

i )| is a binomially distributed random variable Bi(n,
∏i

h=1(1− ph)
2).

So by any correlation inequality (Chernoff, Chebyshev) we obtain that with probability tending

to 1, for all
(

k−1
2

)

(l−1) triples j, j′, i we have |Cj
i ∪Cj′

i | = (1−∏i
h=1(1−ph)

2)n+ o(n). Similarly,
as pi(1 − i−1

l
) = 1

l
, we obtain that with probability tending to 1, for any pair j, i we have

|Cj
i | =

∑i
h=1 |Dj

h| = i
l
n + o(n). So the condition on the sizes of Cj

i ’s is satisfied and with
probability tending to 1 we have

|Cj
i ∩ Cj′

i | =
2i

l
n−

(

1−
i
∏

h=1

(1− ph)
2

)

n+ o(n) =

[

2i

l
+

i
∏

h=1

(

l − h

l − h + 1

)2

− 1

]

n+ o(n).

So we need to show that 2i
l
+
∏i

h=1

(

l−h
l−h+1

)2 − 1 ≤ i
l
− 1

3l
or equivalently

f(l, i) :=
i

l
+

i
∏

h=1

(

l − h

l − h+ 1

)2

≤ 1− 1

3l
(2)
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holds for any i and l. Observe that f(l, i+1)−f(l, i) = 1
l
+[( l−i−1

l−i
)2−1]

∏i
h=1(

l−h
l−h+1

)2. Introducing

∆l(i+ 1) := [1− ( l−i−1
l−i

)2]
∏i

h=1(
l−h

l−h+1
)2, we can see that

∆l(i+ 1)

∆l(i)
=

1− ( l−i−1
l−i

)2

1− ( l−i−2
l−i−1

)2

(

l − i

l − i+ 1

)2

< 1.

This shows that ∆l(i) is decreasing in i and therefore f(l, i) is convex in i so it takes its maximum
either at i = 1 or at i = l−1. The right hand side of (2) is constant in i, so it is enough to check
if f(l, 1) and f(l, l − 1) are both at most 1− 1

3l
. We have

f(l, 1) =
1

l
+

(

l − 1

l

)2

=
l2 − l + 1

l2
<

l2 − l/3

l2
= 1− 1

3l
.

For f(l, l−1) = l−1
l
+
∏l−1

h=1(
l−h

l−h+1
)2 ≤ 1− 1

3l
we need g(l) :=

∏l−1
h=1(

l−h
l−h+1

)2 ≤ 2
3l
. This holds true

for l = 2. As g(l + 1) = l2

(l+1)2
g(l), we see that g(l+1)

g(l)
= l2

(l+1)2
< l

l+1
=

2
3(l+1)

2
3l

, we obtain that g(l)

decreases quicker in l than 2
3l
, so our required inequality holds for all l ≥ 2.

The conjecture below states that for any fixed k and l Construction 2.4 is not far from being
optimal.

Conjecture 2.5. For any integers (l−1)(k−1) < c ≤ l(k−1) we have f(n, c, Ak) = 2(1/l+o(1))n.

We end this section by determining the value of f(n, c, A2) for all n and c. We will use the
following lemma first proved by Ahlswede and Zhang [1] that appeared in this form in [3].

Lemma 2.6. Let F1,F2, . . . ,Fm ⊆ 2[n] be families such that for any 1 ≤ i 6= j ≤ m and

Fi ∈ Fi, Fj ∈ Fj the sets Fi and Fj are comparable. Then there exists a chain C = {∅ =
C0 ( C1 ( · · · ( Ct = [n]} such that the set [t] = {1, 2, . . . , t} can be partitioned into m sets

T1, T2, . . . , Tm with Fi ⊆ C ∪⋃h∈Ti
(Ch−1, Ch).

Theorem 2.7. Let l log2 l ≤ n be positive integers and let a be the integer with 1 ≤ a ≤ l and
l − a ≡ n ( mod l). Then f(n, l, A2) = 2⌊n/l⌋ − 2 + ⌊ l+1

a
⌋ holds.

Proof. First observe that a is the number of parts of size ⌊n
l
⌋ in an equipartition of [n] into l

parts. Let us consider the coloring showing f(n, l, A2) ≥ 2⌊n/l⌋ − 2 + ⌊ l+1
a
⌋. Let ∅ = C0 ⊂ C1 ⊂

. . . Cl−1 ⊂ Cl = [n] such that |Ci \ Ci−1| = ⌊n+i−1
l

⌋ holds for all i = 1, 2, . . . , l. According to
the previous observation the first a of these sets have size ⌊n

l
⌋, the others ⌊n

l
⌋ + 1. So if we let

c(H) = i if H ∈ (Ci−1, Ci) and distribute the l + 1 Cj’s among the a small color classes evenly,
then the smallest color classes will have size 2⌊n/l⌋ − 2 + ⌊ l+1

a
⌋ as required.

To see the upper bound let c be a partial l-coloring of Bn that does not admit a rainbow pair
of incomparable sets. Then the color classes Fi = c−1({i}) (i = 1, 2, . . . , l) satisfy the conditions
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of Lemma 2.6, so let the chain C = {∅ = C0 ( C1 ( · · · ( Ct = [n]} and the sets T1, T2, . . . , Tl of
the partition of [t] as in the lemma. Observe that |Fi| =

∑

h∈Ti
(2|Ch\Ch−1|−2)+ ci where ci is the

number of sets in C with color i, so
∑l

i=1 ci = t+ 1. Our aim is to apply some trasformations to
C such that the correspnding new colorings’ smallest color class size does not decrease and finally
we obtain the coloring of the first paragraph. First, C can be changed such that the Ti’s consist
of consecutive elements of [t]. Indeed, we can create C′ = {∅ = C ′

0 ( C ′
1 ( · · · ( C ′

t = [n]} such
that if T1 = {h1, h2, . . . , hs1}, then T ′

1 = {1, 2, . . . , s1} and |C ′
j \ C ′

j−1| = |Chj
\ Chj−1| and the

color of Ch equals the color of C ′
h.

Next we can assume that if ci > 0, then T ′
i is a singleton. Indeed, if not, then T ′

i contains
h, h + 1 for some h and we can assume that the color of C ′

h is i (maybe after exchanging the
colors of C ′

h and that set of C′ that was colored i). Then removing C ′
h from the chain strictly

increases the color class i as 2a−2+2b+1 < 2a+b−2 holds for all positive integers a, b. Similarly,
if ci = 0, then with the exception of at most one h ∈ Ti, we have |C ′

h \C ′
h−1| = 1 (if h, h+1 ∈ Ti

with |C ′
h \C ′

h−1|, |C ′
h+1 \C ′

h| ≥ 2, then we can change C ′
h to have size |C ′

h−1|+1 without changing
the color C ′

h and strictly increasing the size of the color class Fi).
So far we have obtained that color classes containing some Ch’s have one interval (Ch−1, Ch),

while those not containing any elements of C can have one large interval and possibly some others
of dimension 1. But observe that in this latter case, if h, h + 1 ∈ Ti with |Ch \ Ch−1| = 1 and
c(Ch) = j, c(Ch−1) = j′, then (Ch−1, Ch) is empty, so Ch−1 can be removed from C and an extra
1 can be added to the dimension of the interval belonging to color j′. This increases the color
class of j′ and does not change the size of any other color classes. With these changes one make
sure that all Ti’s are singletons, i.e. t = l. Suppose we have a color class, say color 1, the interval
of which has dimension strictly smaller than ⌊n/l⌋. Then there is another color class, say color
2, the interval of which has dimension at least ⌊n/l⌋ + 1. Then to have |F1| ≥ 2⌊n/l⌋ + ⌊l/a⌋,
the color class F1 must contain at least 2⌊n/l⌋−1 + ⌊l/a⌋ sets of C. The assumption l log2 l ≥ n
implies 2⌊n/l⌋−1 ≥ ⌊l/a⌋, so decreasing the dimension of the interval of F2 and increasing the
interval of F1 and possibly recoloring ⌊l/a⌋ sets of C from color 1 to color 2 will yield an even
better coloring. So we can assume that all intervals have dimension at least ⌊l/a⌋. The minimum
number of these colors is a, so if we distribute the l + 1 sets of C among them evenly, the best
we can get is 2⌊n/l⌋ − 2 + ⌊ l+1

a
⌋ as claimed.

3 Other posets

Among non-antichain posets let us consider first chains. First observe that if c is a total l-
coloring of Bn that does not admit a rainbow copy of Pk and c(∅) = i, then the partial coloring
c′ obtained from c by omitting the color class Fi does not admit a rainbow copy of Pk−1, so
we have F (n, l, Pk) ≤ f(n, l − 1, Pk−1). F (n, 2, P2) = 0 as if c does not admit a rainbow P2,
then all sets must share the color of ∅. By the above observation F (n, 3, P3) ≤ f(n, 2, P2).
Ahlswede and Zhang proved [1] that the latter equals 2n−2 and the following construction shows
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F (n, 3, P3) = 2n−2: c(F ) = 1 if 1 ∈ F, 2 /∈ F , c(F ) = 2 if 1 /∈ F, 2 ∈ F , c(F ) = 3 otherwise.
As mentioned above Ahlswede and Zhang proved f(n, 2, P2) = 2n−2. They considered families
F1,F2, . . . ,Fl with the property that for any Fi ∈ Fi and Fj ∈ Fj with i 6= j the sets Fi and
Fj are incomparable. They called these families cloud antichains, later Gerbner et al [5] studied
them under the name of cross-Sperner families. The upper bound on f(n, 2, P2) follows from the
following theorem.

Theorem 3.1 (Ahlswede, Zhang [1], Gerbner et al [5]). If F1,F2 ⊆ 2[n] are families such that any

pair F1 ∈ F1, F2 ∈ F2 is incomparable, then |F1||F2| ≤ 22n−4. In paricular, min{|F1|, |F2|} ≤
2n−2.

If k ≥ 4, then by definition we have f(n, k, Pk) ≤ ⌊2n

k
⌋ and considering two families F1 ⊆

{F : 1 ∈ F, 2 /∈ F}, F2 ⊆ {F : 1 /∈ F, 2 ∈ F} with |F1| = |F2| = ⌊2n

k
⌋ and an arbitrary coloring

of the remaining sets with equal color classes shows f(n, k, Pk) = ⌊2n

k
⌋. So the only value for

which f(n, k, Pk) is unknown is k = 3. By the above we have 2n−2 ≤ f(n, 3, P3) ≤ ⌊2n

3
⌋ and

we conjecture the lower bound to be tight. Furthermore, we also conjecture that f(n, 3,∨2) =
f(n, 3,∧2) = 2n−2 holds. The following proposition gives colorings showing the lower bound of
this conjecture.

Proposition 3.2. For any n ≥ 3 we have

(i) f(n, 3, {P3,∨2,∧2}) ≥ 2n−2,

(ii) F (n, 4, D2) = f(n, 4, D2) = 2n−2.

Proof. Let us define first a 4-coloring c′ of 2[3] by letting c′({1}) = c′({1, 2}) = 1, c′({2}) =
c′({2, 3}) = 2, c′({3}) = c′({1, 3}) = 3, c′(∅) = c′([3]) = 4. Let us then write Fi = {F ∈ 2[n] :
c′(F ∩ [3]) = i}. The 3-coloring with color classes F1,F2,F3 does not admit rainbow copies of
P3,∧2 and ∨2 as c′({i}) = c′({i, i + 1}) where addition is modulo 3. This also implies that the
4-coloring with color classes F1,F2,F3,F4 does not admit a rainbow copy of D2.

Now we prove Theorem 1.7 that states if we forbid rainbow copies of P3,∨2,∧2 simultaneously,
then the above construction gives the value of f(n, 3, {P3,∧2,∨2}).

Proof of Theorem 1.7. Let c : Bn → [3] be a 3-coloring that avoids rainbow copies of ∧2,∨2 and
P3. For 1 ≤ i 6= j ≤ 3 we define F j

i := {F : c(F ) = i, ∃G c(G) = j, F is comparable to G}. Let
us observe that

1. for any distinct i, j, k we have F j
i ∩Fk

i = ∅ as if c(F ) = i is comparable to G1 and G2 with
c(G1) = j, c(G2) = k, then F,G1, G2 form a rainbow copy of either ∧2 or ∨2 or P3,

2. for any distinct i, j, k the families (Fi\Fk
i )∪(Fj\Fk

j ) and Fk are cross-Sperner by definition.
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The latter observation and Theorem 3.1 imply

(|Fi \ Fk
i |+ |Fj \ Fk

j |) · |Fk| ≤ 22n−4

for any distinct i, j and k. If |Fk| ≤ 2n−2 for some k = 1, 2, 3, then we are done. Otherwise for
any pair 1 ≤ i 6= j ≤ 3 we have

|Fi \ Fk
i |+ |Fj \ Fk

j | ≤ 2n−2.

Summing this for all three pairs i, j and applying the first observation above we obtain

∑

i=1,2,3

|Fi| ≤
∑

k=1,2,3

(|Fi \ Fk
i |+ |Fj \ Fk

j |) ≤ 3 · 2n−2.

This implies that at least one of the Fi’s have size at most 2n−2.
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