
ar
X

iv
:1

81
2.

09
09

2v
1 

 [
m

at
h.

FA
] 

 2
1 

D
ec

 2
01

8

DISJOINT DISTRIBUTIONALLY CHAOTIC ABSTRACT PDE’S

MARKO KOSTIĆ

Abstract. In this paper, we analyze disjoint distributionally chaotic abstract
non-degenerate partial differential equations in Fréchet spaces, with integer or
Caputo time-fractional derivatives. We present several illustrative examples
and applications of our results established.

1. Introduction and Preliminaries

Linear topological dynamics of continuous operators in Banach and Fréchet
spaces is an extremely popular field of functional analysis. Basic information about
this subject can be obtained by consulting the monographs [4] by F. Bayart, E.
Matheron and [20] by K.-G. Grosse-Erdmann, A. Peris.

The notion of distributional chaos for interval maps was introduced by B. Schweizer
and J. Smı́tal in [36] (1994). For linear continuous operators in Banach spaces, dis-
tributional chaos was firstly considered by J. Duan et al [18] (1999) and P. Oprocha
[34] (2006). N. C. Bernardes Jr. et al [8] (2013) were the first who systematically
analyzed distributional chaos for linear continuous operators in Fréchet spaces (cf.
also the reserach study of J. A. Conejero et al [15] (2016) for a correspoding study
of linear not necessarily continuous operators). Some specific properties of distri-
butionally chaotic operators in Banach spaces have been recently investigated by
N. C. Bernardes Jr. et al [9] (2018).

Disjoint hypercyclic linear operators were introduced independently by L. Bernal–
González [7] (2007) and J. Bès, A. Peris [10] (2007). Similar concepts, like disjoint
mixing property and disjoint supercyclicity, have been analyzed by a great number
of authors after that (for further information about disjoint hypercyclic operators
and their generalizations, we refer the reader to [11], [30], [32] and references cited
therein.

The main aim of this paper is to continue our recent research study [30] of disjoint
distributional chaos in Fréchet spaces by investigating the abstract partial differen-
tial equations in Fréchet spaces with integer or Caputo time-fractional derivatives
(concerning distributional chaos in metric and Fréchet spaces, one may refer e.g. to
[6], [9], [13], [29], [33]-[34] and references cited therein). We focus our attention to
the analysis of disjoint distributionally chaotic integrated C-semigroups, as a rather
general concept for the investigations of abstract partial differential equations of
first order. We also consider disjoint distributionally chaotic properties of abstract
time-fractional differential equations with Caputo derivatives; strictly speaking, we
analyze disjoint distributional chaos for ζ-times C-regularized resolvent families
(ζ ∈ (0, 2) \ {1}). For the sake of brevity, we consider only non-degenerate abstract
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2 MARKO KOSTIĆ

partial differential equations here (for topological dynamics of abstract degener-
ate partial differential equations, the reader may consult our joint paper with V.
Fedorov [19], the forthcoming monograph [24] and references cited therein).

The organization and main ideas of this paper can be described as follows. After
giving some necessary explanations about the notation and general framework we
are working in, we collect the basic material about integrated C-semigroups and
ζ-times C-regularized resolvent families in two separate subsections, Subsection 1.1
and Subsection 1.2. The second section of paper is devoted to the study of disjoint
distributional chaos for integrated C-semigroups, while the third section of paper
is devoted to the study of disjoint distributional chaos for ζ-times C-regularized
resolvent families (ζ ∈ (0, 2) \ {1}). Although not used explicitly, as for single
operators [30], we also provide definitions of disjoint distributinally near to zero
vectors, disjoint distributionally unbounded vectors and disjoint distributionally
irregular vectors for these solution operator families. Without any doubt, the main
result of paper is Theorem 2.3, which provides an efficient tool for proving several
other structural results of ours. In addition to the above, a great deal of illustrative
examples and applications is presented.

We use the standard notation in the sequel. By X and Y we denote two non-
trivial Fréchet space over the same field of scalars K ∈ {R,C} and assume that
the topologies of X and Y are induced by the fundamental systems (pn)n∈N and
(pYn )n∈N of increasing seminorms, respectively (separability of X and Y will be
assumed a priori in future). The translation invariant metric d : X ×X → [0,∞),
defined by

(1.1) d(x, y) :=

∞
∑

n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ X,

satisfies the following properties: d(x+u, y+v) ≤ d(x, y)+d(u, v), x, y, u, v ∈ X ;

d(cx, cy) ≤ (|c| + 1)d(x, y), c ∈ K, x, y ∈ X, and d(αx, βx) ≥ |α−β|
1+|α−β|d(0, x),

x ∈ X, α, β ∈ K. Define the translation invariant metric dY : Y × Y → [0,∞) by
replacing pn(·) with pYn (·) in (1.1). If (X, ‖ · ‖) or (Y, ‖ · ‖Y ) is a Banach space, then
it will be assumed that the distance of two elements x, y ∈ X (x, y ∈ Y ) is given
by d(x, y) := ‖x − y‖ (dY (x, y) := ‖x − y‖Y ). Keeping in mind this agreement,
our structural results clarified in Fréchet spaces retain in the case that X or Y is a
Banach space.

We assume that N ∈ N and N ≥ 2. Then the fundamental system of increasing

seminorms (pY N

n )n∈N, where pY N

n (x1, · · ·, xN ) :=
∑N

j=1 p
Y
n (xj), n ∈ N (xj ∈ Y

for 1 ≤ j ≤ N), induces the topology on the Fréchet space Y N . The translation
invariant metric

dY N (~x, ~y) :=

∞
∑

n=1

1

2n
pn(~x− ~y)

1 + pn(~x− ~y)
, ~x, ~y ∈ Y N ,

is strongly equivalent with the metric

dY N (~x, ~y) := max
1≤j≤N

dY (xj , yj), ~x = (x1, · · ·, xN ) ∈ Y N , ~y = (y1, · · ·, yN ) ∈ Y N .

In the case that Y is a Banach space, then Y N is likewise a Banach space and,
in this case, it will be assumed that the distance in Y N is given by dY N (~x, ~y) =
max1≤j≤N ‖xj − yj‖Y , ~x ∈ Y N , ~y ∈ Y N .
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Suppose that C ∈ L(X) is injective and A is a closed linear operator with
domain and range contained in X. By D(A), R(A), N(A) and σp(A) we denote
the domain, range, kernel space and the point spectrum of A, respectively. Set
pCn (x) := pn(C

−1x), n ∈ N, x ∈ R(C). Then pCn (·) is a seminorm on R(C) and the
calibration (pCn )n∈N induces a Fréchet locally convex topology on R(C); we denote
this space simply by [R(C)]. Let us recall [R(C)] is separable since X is as well as
that [R(C)] is a Banach space (complex Hilbert space) provided that X is. Recall
that the C-resolvent set of A, denoted by ρC(A), is defined by

ρC(A) :=
{

λ ∈ K : λ−A is injective and (λ−A)−1C ∈ L(X)
}

.

Set, finally, C+ := {z ∈ C : ℜz > 0}, C− := {z ∈ C : ℜz < 0}, R+ := (0,∞),
R− := (−∞, 0), K+ := {C+, R+}, K− := {C−, R−}, Σα := {z ∈ C : z 6=
0, | arg(z)| < α} (α ∈ (0, π]), ⌈s⌉ := inf{k ∈ Z : s ≤ k} and Nn := {1, · · ·, n}
(s ∈ R, n ∈ N), gζ(t) := tζ−1/Γ(ζ) (t > 0, ζ > 0) and recall that the upper density
of a set D ⊆ [0,∞) is defined by

dens(D) := lim sup
t→+∞

m(D ∩ [0, t])

t
,

where m denotes the Lebesgue measure on [0,∞).
We need the following notion from [30]:

Definition 1.1. Suppose that, for every j ∈ NN and k ∈ N, Aj,k : D(Aj,k) ⊆

X → Y is a linear operator and X̃ is a closed linear subspace of X. Then we say
that the sequence ((Aj,k)k∈N)1≤j≤N is disjoint X̃-distributionally chaotic, (d, X̃)-
distributionally chaotic in short, iff there exist an uncountable set

S ⊆
⋂N

j=1

⋂∞
k=1 D(Aj,k) ∩ X̃ and σ > 0 such that for each ǫ > 0 and for each pair

x, y ∈ S of distinct points we have

dens

(

⋂

j∈NN

{

k ∈ N : dY
(

Aj,kx,Aj,ky
)

≥ σ
}

)

= 1, and

dens

(

⋂

j∈NN

{

k ∈ N : dY
(

Aj,kx,Aj,ky
)

< ǫ
}

)

= 1.

The sequence ((Aj,k)k∈N)1≤j≤N is said to be densely (d, X̃)-distributionally chaotic

iff S can be chosen to be dense in X̃. A finite sequence (Aj)1≤j≤N of closed linear

operators on X is said to be (densely) X̃-distributionally chaotic iff the sequence
((Aj,k ≡ Ak

j )k∈N)1≤j≤N is. The set S is said to be (d, σX̃)-scrambled set ((d, σ)-

scrambled set in the case that X̃ = X) of ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ); in the

case that X̃ = X, then we also say that the sequence ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N )
is disjoint distributionally chaotic, d-distributionally chaotic in short.

1.1. Integrated C-semigroups. The following definition is fundamental in the
theory of abstract ill-posed differential equations of first order (cf. [22]-[23] for
more details on the subject):

Definition 1.2. Suppose that α ≥ 0 and A is a closed linear operator. If there
exists a strongly continuous operator family (Sα(t))t≥0 ⊆ L(X) such that:

(i) Sα(t)A ⊆ ASα(t), t ≥ 0,
(ii) Sα(t)C = CSα(t), t ≥ 0,
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(iii) for all x ∈ X and t ≥ 0:
∫ t

0
Sα(s)x ds ∈ D(A) and

A

t
∫

0

Sα(s)x ds = Sα(t)x − gα+1(t)Cx,

then it is said that A is a subgenerator of a (global) α-times integrated C-semigroup
(Sα(t))t≥0.

If α = 0, then (S0(t))t≥0 is also said to be a C-regularized semigroup with subgen-
erator A (we refer the reader to [23] for definition of an entire C-regularized group
and its integral generator (subgenerator)). The integral generator of (Sα(t))t≥0 is
defined by

Â :=

{

(x, y) ∈ X ×X : Sα(t)x− gα+1(t)Cx =

t
∫

0

Sα(s)y ds, t ≥ 0

}

.

Let us recall that the integral generator of (Sα(t))t≥0 is a closed linear operator
which extends any subgenerator of (Sα(t))t≥0. Furthermore, for any subgenerator

A of (Sα(t))t≥0, the following equality holds Â = C−1AC.
Denote by Z1(A) the space consisting of those elements x ∈ X for which there

exists a unique X-valued continuous mapping satisfying
∫ t

0
u(s, x) ds ∈ D(A) and

A
∫ t

0
u(s, x) ds = u(t, x)−x, t ≥ 0, i.e., the unique mild solution of the corresponding

Cauchy problem (ACP1) :

(ACP1) : u
′(t) = Au(t), t ≥ 0, u(0) = x.

If A is a subgenerator (the integral generator) of a global α-times integrated C-
semigroup (Sα(t))t≥0, then there is only one (trivial) mild solution of (ACP1) with
x = 0, so that Z1(A) is a linear subspace of X. Moreover, for every number β >
α, the operator A is a subgenerator (the integral generator) of a global β-times
integrated C-semigroup (Sβ(t) ≡ (gβ−α ∗ Sα·)(t))t≥0. As it is well known, the
space Z1(A) consists exactly of those elements x ∈ X for which the mapping t 7→
C−1S⌈α⌉(t)x, t ≥ 0 is well defined and ⌈α⌉-times continuously differentiable on
[0,∞); see e.g. [23]. As it is usually done in the theory of C-distribution semigroups,
we set

G(ϕ)x := (−1)⌈α⌉
∞
∫

0

ϕ(⌈α⌉)(t)S⌈α⌉(t)x dt, ϕ ∈ DK, x ∈ X

and

G
(

δt
)

x :=
d⌈α⌉

dt⌈α⌉
C−1S⌈α⌉(t)x, t ≥ 0, x ∈ Z1(A);

here DK denotes the space of K-valued smooth test functions with compact support
contained in K. Then the following holds: G(δt)(Z1(A)) ⊆ Z1(A), t ≥ 0, G(δt)C ⊆
CG(δt), t ≥ 0 and

(1.2) G
(

δs
)

G
(

δt
)

x = G
(

δt+s

)

x, t, s ≥ 0, x ∈ Z1(A).

Is is also known that the solution space Z1(A) is independent of the choice of
(Sα(t))t≥0 in the following sense: If C1 ∈ L(X) is another injective operator
with C1A ⊆ AC1, γ ≥ 0, x ∈ X and A is a subgenerator (the integral gener-
ator) of a global γ-times integrated C1-semigroup (Sγ(t))t≥0, then the mapping
t 7→ C−1S⌈α⌉(t)x, t ≥ 0 is well defined and ⌈α⌉-times continuously differentiable
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on [0,∞) iff the mapping t 7→ C−1
1 S⌈γ⌉(t)x, t ≥ 0 is well defined and ⌈γ⌉-times

continuously differentiable on [0,∞). In this case, we have u(t;x) := G(δt)x =
d⌈γ⌉

dt⌈γ⌉C
−1
1 S⌈γ⌉(t)x, t ≥ 0 is a unique mild solution of the corresponding Cauchy

problem (ACP1).
The notions of exponential equicontinuity and analyticity of integratedC-semigroups

are well known; the basic results about integrated C-cosine functions can be found
in [22]-[23], as well.

1.2. ζ-Times C-regularized resolvent families (ζ ∈ (0, 2)\{1}). The following
definition has been introduced by M. Li, Q. Zheng and J. Zhang in [31] (see [22]-[24]
for more details about abstract time-fractional differential equations):

Definition 1.3. Suppose that ζ > 0 and A is a closed linear operator on X . A
strongly continuous operator family (Rζ(t))t≥0 is said to be a ζ-times C-regularized
resolvent family having A as a subgenerator iff the following holds:

(i) Rζ(t)A ⊆ ARζ(t), t ≥ 0, Rζ(0) = C and CA ⊆ AC,
(ii) Rζ(t)C = CRζ(t), t ≥ 0 and

(iii) Rζ(t)x = Cx+
∫ t

0
gζ(t− s)ARζ(s)x ds, t ≥ 0, x ∈ D(A).

In the case C = I, then we also say that (Rζ(t))t≥0 is a ζ-times regularized resolvent
family with subgenerator A.

The integral generator of (Rζ(t))t≥0 is defined by

Â :=

{

(x, y) ∈ X ×X : Rζ(t)x − Cx =

t
∫

0

gζ(t− s)Rζ(s)y ds for all t ≥ 0

}

,

and it is a closed linear operator which extends any subgenerator of (Rζ(t))t≥0.

Let m := ⌈ζ⌉. The Caputo fractional derivative Dζ
tu(t) is defined for those

functions u ∈ Cm−1([0,∞) : X) for which gm−ζ ∗(u−
∑m−1

k=0 ukgk+1) ∈ Cm([0,∞) :
X), by

Dζ
tu(t) :=

dm

dtm

[

gm−ζ ∗

(

u−

m−1
∑

k=0

ukgk+1

)]

.

The abstract evolution equation

Dζ
tu(t) = Au(t), t > 0, u(0) = x, u(k)(0) = 0, k = 1, · · ·,m− 1,(1.3)

is well posed in the sense of [5, Definition 2.2] iff the abstract Volterra equation

(1.4) u(t;x) = x+

t
∫

0

gζ(t− s)Au(s;x) ds, t ≥ 0,

is well posed in the sense of [35, Definition 1.2]. Suppose that A is a subgenerator
of an ζ-times C-regularized resolvent family (Rζ(t))t≥0, and

(1.5) Rζ(t)x = Cx+A

t
∫

0

gζ(t− s)Rζ(s)x ds, t ≥ 0, x ∈ X.

Denote by Zζ(A) the set consisting of those vectors x ∈ X such that Rζ(t)x ∈ R(C),
t ≥ 0 and the mapping t 7→ C−1Rζ(t)x, t ≥ 0 is continuous. Then R(C) ⊆ Zζ(A),
and x ∈ Zζ(A) iff there exists a unique strong solution of (1.4); if this is the case,
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the unique strong solution of (1.4) is given by u(t;x) = C−1Rζ(t)x, t ≥ 0. In the
sequel, we assume the validity of (1.5) a priori.

Denote by Eβ(z) the Mittag-Leffler function Eβ(z) :=
∑∞

n=0
zn

Γ(βn+1) , z ∈ C,

where β > 0. Suppose, further, that ζ ∈ (0, 2) \ {1} and l ∈ N \ {1}. We will use
the following asymptotic formulae for the Mittag-Leffler functions ([5]):

(1.6) Eζ(z) =
1

ζ
ez

1/ζ

+ εζ(z), | arg(z)| < ζπ/2,

and

(1.7) Eζ(z) = εζ(z), | arg(−z)| < π − ζπ/2,

where

(1.8) εζ(z) =

l−1
∑

n=1

z−n

Γ(1− ζn)
+O(|z|−l), |z| → ∞.

2. Disjoint distributionally chaotic properties of abstract PDEs of

first order

In [30], we have introduced and analyzed twelve different types of disjoint dis-
tributional chaos for multivalued linear operators in Fréchet spaces. For the sake
of simplicity, we will consider here only one type of disjoint distributional chaos for
integrated C-semigroups, disjoint distributional chaos of type 1. This is the most
intriguing type of disjoint distributional chaos considered in [30] because it is the
strongest one and implies all others (we will not particularly emphasize further that
this is disjoint distributional chaos of type 1):

Definition 2.1. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN and let
(Sαj (t))t≥0 be a global αj-times integrated Cj -semigroup with the integral gener-

ator Aj (j ∈ NN ). Suppose that X̃ is a closed linear subspace of X. Denote by
t 7→ Gj(δt)x, t ≥ 0 the unique mild solution of the corresponding Cauchy problem
(ACP1), with the operator A replaced by Aj therein (j ∈ NN ). Then we say that

((Sαj (t))t≥0)1≤j≤N are disjoint X̃-distributionally chaotic, (d, X̃)-distributionally

chaotic in short, iff there exist an uncountable set S ⊆
⋂N

j=1 Z1(Aj)∩ X̃ and σ > 0
such that for each ǫ > 0 and for each pair x, y ∈ S of distinct points we have that
for each j ∈ NN and t ≥ 0 we have that

dens

(

⋂

j∈NN

{

t ≥ 0 : dY
(

Gj(δt)x,Gj(δt)y
)

≥ σ
}

)

= 1, and

dens

(

⋂

j∈NN

{

t ≥ 0 : dY
(

Gj(δt)x,Gj(δt)y
)

< ǫ
}

)

= 1.

The sequence (Sαj (t))t≥0 is said to be densely (d, X̃)-distributionally chaotic iff

S can be chosen to be dense in X̃. The set S is said to be (d, σX̃)-scrambled set

((d, σ)-scrambled set in the case that X̃ = X) of ((Sαj (t))t≥0)1≤j≤N ; in the case

that X̃ = X, then we also say that the sequence ((Sαj (t))t≥0)1≤j≤N is (densely)
disjoint distributionally chaotic, (densely) d-distributionally chaotic in short.

Now we introduce the notion of disjoint distributionally irregular vectors for
integrated C-semigroups:
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Definition 2.2. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN and let
(Sαj (t))t≥0 be a global αj-times integrated Cj -semigroup with the integral gener-

ator Aj (j ∈ NN ). Suppose that X̃ is a closed linear subspace of X, m ∈ N and

x ∈
⋂N

j=1 Z1(Aj) ∩ X̃. Denote by t 7→ Gj(δt)x, t ≥ 0 the unique mild solution of

the corresponding Cauchy problem (ACP1), with the operator A replaced by Aj

therein (j ∈ NN ). Then we say that:

(i) x is disjoint distributionally near to 0 for ((Sαj (t))t≥0)1≤j≤N iff there exists

A ⊆ [0,∞) such that Dens(A) = 1 and lims→∞,s∈A Gj(δs)x = 0 for all
j ∈ NN ;

(ii) x is disjoint distributionally m-unbounded for ((Sαj (t))t≥0)1≤j≤N iff there

exists B ⊆ [0,∞) such that Dens(B) = 1 and lims→∞,s∈B pm(Gj(δs)x) = 0
for all j ∈ NN ; x is disjoint distributionally unbounded for the tuple
((Sαj (t))t≥0)1≤j≤N iff there exists q ∈ N such that x is disjoint distri-
butionally q-unbounded for ((Sαj (t))t≥0)1≤j≤N ;

(iii) x is a disjoint X̃-distributionally irregular vector for ((Sαj (t))t≥0)1≤j≤N

(disjoint distributionally irregular vector for ((Sαj (t))t≥0)1≤j≤N simply, in

the case that X̃ = X) iff x is both disjoint distributionally near to 0 and
disjoint distributionally unbounded.

The following important result is a continuous analogue of [30, Theorem 4.3]. It
also provides an extension of [15, Theorem 4.1] for disjoint distributional chaos:

Theorem 2.3. Suppose that X0 is a dense linear subspace of X, (Tj(t))t≥0 ⊆
L(X,Y ) is a strongly continuous operator family for each j ∈ NN , as well as:

(a) limt→∞ Tj(t)x = 0, x ∈ X0, j ∈ NN ,

(b) there exist x ∈ X, m ∈ N and a set B ⊆ [0,∞) such that Dens(B) = 1,
and limt→∞,t∈B pm(Tj(t)x) = ∞ for each j ∈ NN , resp.
limt→∞,t∈B ‖Tj(t)x‖ = ∞ for each j ∈ NN , if X is a Banach space.

Then there exist a dense linear subspace S of X and a number σ > 0 such that for
each ǫ > 0 and for each pair x, y ∈ S of distinct points we have that

Dens

(

⋂

j∈NN

{

s ≥ 0 : dY
(

Tj(s)x, Tj(s)y
)

≥ σ
}

)

= 1

and

Dens

(

⋂

j∈NN

{

s ≥ 0 : dY
(

Tj(s)x, Tj(s)y
)

< ǫ
}

)

= 1.

Proof. The proof is very similar to those of [8, Theorem 15] and [15, Theorem 4.1],
so that we will only outline the main points of the proof. Consider first the case in
which X and Y are Frechét spaces. If so, the family (Tj(t))t≥0 ⊆ L(X,Y ) is locally
equicontinuous for all j ∈ NN . Hence, for every l, n ∈ N, there exist cl,n > 0 and
al,n ∈ N such that pYl (Tj(t)x) ≤ cl,npal,n

(x), x ∈ X, t ∈ [0, n], j ∈ NN . Suppose,
for the time being, that:

(2.1) pYk (Tj(t)x) ≤ pk+⌈t⌉(x), x ∈ X, t ≥ 0, k ∈ N, j ∈ NN .

We may assume that m = 1. Then there exist a sequence (xk)k∈N in X0 such
that pk(xk) ≤ 1, k ∈ N and a strictly increasing sequence of positive real numbers
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(tk)k∈N tending to infinity such that:

Dens
({

1 ≤ s ≤ tk : p1
(

Tj(s)xk

)

> k2k
})

≥ tk

(

1− k−2
)

and

Dens
({

1 ≤ s ≤ tk : pk
(

Tj(s)xl

)

< k−1
})

≥ tk

(

1− k−2
)

, l = 1, · · ·, k − 1,

for any j ∈ NN . Further on, it is clear that there is a strictly increasing sequence
(rs)s∈N of positive integers satisfying that:

rs+1 ≥ 1 + rs + ⌈trs+1⌉, s ∈ N.

Arguing as in [8, Theorem 15], we get that there exists a dense linear subspace S
of X such that, for every x ∈ S, there exist two sets Ax, Bx ⊆ [0,∞) such that
Dens(A) = Dens(B) = 1, limt→∞,t∈Ax Tj(t)x = 0 and limt→∞,t∈Bx p1(Tj(t)x) =
∞. Now the final conlusion of theorem follows as in the discrete case. Finally, a
few words about the process of renorming. Introducing recursively the following
fundamental system of increasing seminorms p′n(·) (n ∈ N) on X :

p′1(x) ≡ p1(x), x ∈ X,

p′2(x) ≡ p′1(x) + c1,1pa1,1(x) + p2(x), x ∈ X,

· ··

p′n+1(x) ≡ p′n(x) + c1,npa1,n(x) + · · ·+ cn,1pan,1(x) + pn+1(x), x ∈ X,

· ··,

we may assume without loss of generality that (2.1) holds; hence, the assertion is
proved in the case that X and Y are Frechét spaces. If X or Y is a Banach space,
say Y , then we can ‘renorm’ it, by endowing Y with the following increasing family
of seminorms pYn (y) := n‖y‖Y (n ∈ N, y ∈ Y ), which turns the space Y into a
linearly and topologically homeomorphic Fréchet space. This completes the proof
of theorem. �

It is clear that Theorem 2.3 can be directly applied to strongly continuous semi-
groups and thus provides a great number of concrete examples of disjoint distri-
butionally chaotic single operators (see [23, Chapter 3] and [14] for more details).
In the remaining part of paper, we will primarily examine possible applications of
Theorem 2.3 to the abstract ill-posed abstract Cauchy problems.

For any injective operator C ∈ L(X), any closed linear operator A commuting
with C and any positive integer n ∈ N, we endow the space C(D(An)) with the
following family of seminorms pm,n(Cx) := pm(x)+pm(Ax)+···+pm(Anx), m ∈ N,
x ∈ D(An) (n ∈ N). Of course, if X is a Banach space, then the space C(D(An))
carries the topology induced by the norm ‖Cx‖n := ‖x‖ + ‖Ax‖ + · · · + ‖Anx‖,
x ∈ D(An). Denote this space by [C(D(An))].

Now we will reconsider the assertion of [15, Theorem 5.4] for disjoint distribu-
tional chaos:

Theorem 2.4. Suppose that αj ≥ 0, tj > 0 and Aj subgenerates a global αj-
times integrated Cj-semigroup (Sαj (t))t≥0 on X (j ∈ NN ). Let nj := ⌈αj⌉ for
any j ∈ NN , let C ∈ L(X) be injective, and let [R(C)] be continuously embedded
in the space [Cj(D(A

nj

j ))] for all j ∈ NN . Furthermore, suppose that the following
conditions hold:
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(i) There exists a dense subset X ′
0 of [R(C)] such that limt→∞ Gj(δt)x = 0,

x ∈ X ′
0, j ∈ NN .

(ii) There exist x ∈ R(C) and m ∈ N such that limt→∞ pm(Gj(δt)x) = ∞,
j ∈ NN (limt→∞ ‖Gj(δt)x‖ = ∞, j ∈ NN in the case that X is a Banach
space).

Then ((Sαj (t))t≥0)1≤j≤N and the operators G1(δt1), G2(δt2), · · ·, GN (δtN ) are dis-
joint distributionally chaotic; if R(C) is dense in X, then ((Sαj (t))t≥0)1≤j≤N and
the operators G1(δt1), G2(δt2), · · ·, GN (δtN ) are densely disjoint distributionally
chaotic.

Proof. It is clear that [R(C)] is separable. Let us recall that Cj(D(A
nj

j )) ⊆ Z1(Aj)

for all j ∈ NN ; furthermore, if x = Cjy ∈ Cj(D(A
nj

j )), then for every t ≥ 0 we
have:

Gj

(

δt
)

x = Sαj (t)A
nj

j y +

nj−1
∑

i=0

tnj−i−1

(nj − i− 1)!
CjA

nj−1−iy, j ∈ NN .

Since [R(C)] is continuously embedded in the space [Cj(D(A
nj

j ))] for all j ∈ NN , we

have that, for every t ≥ 0, the mappingG(δt) : [R(C)] → X is linear and continuous.
Furthermore, the family (G(δt))t≥0 ⊆ L([R(C)], X) is strongly continuous. We
define Tj,k ≡ G(δktj ) : [R(C)] → X (j ∈ NN , k ∈ N). Then ((Tj,k)k∈N)1≤j≤N ⊆

L([R(C)], X) and (1.2) yields that Tj,kx = Gj(δtj )
kx, x ∈ R(C). Now an application

of [30, Theorem 4.4] yields that the operators G1(δt1), G2(δt2), · · ·, GN (δtN ) are
disjoint distributionally chaotic, while an application of Theorem 2.3 yields that
((Sαj (t))t≥0)1≤j≤N are disjoint distributionally chaotic. Finally, if R(C) is dense
in X, then it almost trivially follows from the foregoing that ((Sαj (t))t≥0)1≤j≤N

and the operatorsG1(δt1), G2(δt2), ···, GN (δtN ) are densely disjoint distributionally
chaotic. �

Remark 2.5. (i) If λj ∈ ρCj(Aj) for all j ∈ NN , then the choice C :=
∏N

j=1 Cj((λj−

Aj)
−1Cj)

n can be always made.
(ii) If λj ∈ σp(Aj) and Ajx = λjx for some x ∈ X \ {0} and j ∈ NN , then

x ∈ Z1(Aj) and Gj(δt)x = eλjtx, t ≥ 0. In particular, limt→∞ Gj(δt)x = 0
if λ ∈ K−, and there exists m ∈ N such that limt→∞ pm(Gj(δt)x) = ∞
(limt→∞ ‖Gj(δt)x‖ = ∞ in the case that X is a Banach space), if λ ∈ K+.

(iii) Assume now that all requirements of Theorem 2.4 stated before the formu-
lation of (i)-(iii) hold true, as well as that X0 := {Cx : (∀j ∈ NN ) (∃λj,− ∈
K−)AjCx = λj,−Cx}. Suppose that

(a) X̃ := X0
[R(C)]

is non-trivial subspace of [R(C)], and

(b) there exist a vector Cx ∈ X̃ and the scalars λj,+ ∈ K+ such that
AjCx = λj,+Cx for all j ∈ NN .

Repeating literally the arguments given in the proof of Theorem 2.4, with
the spaces [R(C)] andX ′

0 replaced with the spaces X̃ andX0 therein, we get
that ((Sαj (t))t≥0)1≤j≤N and the operators G1(δt1), G2(δt2), · · ·, GN (δtN )

are disjoint X̃-distributionally chaotic. The question whether we can make
a choice X̃ = R(C) has an affirmative answer in the case that the opera-
tors Aj have nice supplies of eigenfunctions (see e.g. the proof of Desch-
Schappacher-Webb criterion for strongly continuous semigroups [17, Theo-
rem 3.1], as well as Example 2.6 below).
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The interested reader may try to formulate an analogue of [15, Theorem 5.9] for
disjoint distributional chaos of entire C-regularized groups.

We proceed by providing two illustrative examples.

Example 2.6. ([16]) Assume that K = C, ω1, ω2, Vω2,ω1
, Qj(z), Qj(B), hµ and X

possess the same meaning as in [16, Section 5], as well as that the number L ∈ N is
sufficiently large and takes the role of number N from this section. Let tj > 0 and
let the following two conditions hold:

(A) there exists a non-empty subset Ω′ of int(Vω2,ω1
) which do have a cluster

point in int(Vω2,ω1
) and satisfies that, for every z ∈ Ω′ and for every j ∈ NN ,

we have Qj(z) ∈ C−;
(B) there exists z ∈ int(Vω2,ω1

) such that, for every j ∈ NN , we have Qj(z) ∈
C+.

Then ±Qj(B)hµ = ±Qj(µ)hµ, e
−(−B2)Lhµ = e−(−µ2)Lhµ, µ ∈ int(Vω2,ω1

) and

the operator Qj(B) is the integral generator of the C ≡ (e−(−z2)L)(B)-regularized

semigroup (WQj (t) ≡ z 7→ etQj(z)e−(−z2)L)(B))t≥0 on X (j ∈ NN ). Further-
more, the set R(C) is dense in X. The validity of (A)-(B) yields that Theorem
2.4 and Remark 2.5(iii) can be applied, showing that the C-regularized semigroups
((WQj (t))t≥0)1≤j≤N and the operators et1Q(B), et2Q(B), · · ·, etNQ(B) are densely dis-
joint distributionally chaotic.

Example 2.7. (cf. [12, Example 2.13]) Let us assume that ζ ≥ 0, −A /∈ L(X),
−A generates an exponentially equicontinous ζ-times integrated cosine function
(Cζ(t))t≥0, N ∈ N, N ≥ 2 and Pj(z) =

∑nj

i=0 ai,jz
i is a non-zero complex polyno-

mial with anj ,j > 0 (j ∈ NN ). Assume, further, that there are an open connected
subset Ω of C and an analytic mapping f : Ω → X \ {0} such that σp(−A) ⊇ Ω

and f(λ) ∈ N(−A − λ) \ {0}, λ ∈ Ω (e.g., let a > 0, let ρ(x) := e−a|x|, x ∈ R,
X := Lp

ρ(R), D(B) := {f ∈ X | f(·) is loc. abs. continuous, f ′ ∈ E
}

and Af := f ′,
f ∈ D(B); then A generates C0-group on X and the above holds with A = −B2,
Ω = {z2 : |ℜz| < a} and f(z2) = ez· for |ℜz| < a; cf. [17] for the notion).

Set A :=
(

0 I
−A 0

)

, and suppose further that Ω′ is a non-empty open connected

subset of C such that λ2 ∈ Ω for all λ ∈ Ω′. Define F : Ω′ → (X ×X) \ {(0, 0)} by
F (λ) := [f(λ2) λf(λ2)]T , λ ∈ Ω′. Then we know that F (·) is analytic, σp(A) ⊇ Ω′

and F (λ) ∈ N(A − λ) \ {(0, 0)}, λ∈Ω′. Further on, the operator A generates an
exponentially equicontinuous (ζ + 1)-times integrated semigroup (Sζ+1(t))t≥0 in
X ×X, which is given by

Sζ+1(t) :=

(

∫ t

0
Cζ(s) ds

∫ t

0
(t− s)Cζ(s) ds

Cζ(t)− gζ+1(t)C
∫ t

0
Cζ(s) ds

)

, t ≥ 0.

On the other hand, the operator A2 generates an exponentially equicontinuous, an-
alytic (ζ/2)-times integrated semigroup of angle π/2. Set Q1(z) := z and Qj(z) :=
−Pj(−z2) (z ∈ C, 2 ≤ j ≤ N), as well as Aj := Qj(A). Then the operator Aj

generates an exponentially equicontinuous, analytic η-times integrated semigroup
(Sj

η(t))t≥0 of angle π/2, for 2 ≤ j ≤ N . Suppose that the conditions (A) and
(B) hold with the set int(Vω2,ω1

) replaced by the set Ω′. These conditions ensure
that Theorem 2.4 and Remark 2.5(iii) are applicable, so that the integrated semi-
groups (Sζ+1(·), (S

j
η(·))2≤j≤N ) are densely disjoint distributionally chaotic, which

also holds for corresponding tuples of single operators.
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Finally, at the end of this section, we would like to propose an interesting problem
for our readers:

Example 2.8. (cf. also [22, Example 3.1.35(i)], [27, Example 38] and [15, Ex-
ample 5.12, Example 5.13]). Let us assume that n ∈ N, ρ(t) := 1

t2n+1 , t ∈ R,

Af := f ′, D(A) := {f ∈ C0,ρ(R) : f
′ ∈ C0,ρ(R)}, Xn := (C0,ρ(R))

n+1, D(An) :=
D(A)n+1 and An(f1, · · ·, fn+1) := (Af1+Af2, Af2+Af3, · · ·, Afn+Afn+1, Afn+1),
(f1, · · ·, fn+1) ∈ D(An). Then we already know that ±An generate global polynomi-
ally bounded n-times integrated semigroups (Sn,±(t))t≥0, and neither An nor −An

generates a local (n − 1)-times integrated semigroup. By [22, Proposition 2.1.17],
the above implies that A2

n generates a polynomially bounded n-times integrated co-
sine function (Cn(t) ≡ 1/2(Sn,+(t) + Sn,−(t)))t≥0. Due to [22, Corollary 2.4.9], we
have that A2

n generates a polynomially bounded (n/2)-times integrated semigroup
(Sn/2(t))t≥0. We would like to ask whether (Sn/2(t))t≥0 is densely disjoint distri-
butionally chaotic and whether (Sn,±(t))t≥0 and (Sn/2(t))t≥0 are densely disjoint
distributionally chaotic.

3. Disjoint distributionally chaotic properties of abstract

fractional PDEs

Let us recall that ζ ∈ (0, 2) \ {1}. We start this section by providing analogues
of Definition 2.1 and Definition 2.2 for fractional resolvent families:

Definition 3.1. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN and let
(Rj(t))t≥0 be a global ζ-times Cj-regularized resolvent family with the integral

generator Aj (j ∈ NN ). Suppose that X̃ is a closed linear subspace of X. Let
Zj,ζ(Aj) the set consisting of those vectors x ∈ X such that Rj(t)x ∈ R(Cj), t ≥ 0

and the mapping t 7→ C−1
j Rj(t)x, t ≥ 0 is continuous. Denote by t 7→ C−1

j Rj(t)x,

t ≥ 0 the unique mild solution of the corresponding Cauchy problem (1.3), with the
operator A replaced by Aj therein (j ∈ NN ). Then we say that ((Rj(t))t≥0)1≤j≤N

are disjoint X̃-distributionally chaotic, (d, X̃)-distributionally chaotic in short, iff

there exist an uncountable set S ⊆
⋂N

j=1 Zj,ζ(Aj)∩ X̃ and σ > 0 such that for each
ǫ > 0 and for each pair x, y ∈ S of distinct points we have that for each j ∈ NN

and t ≥ 0 we have that

dens

(

⋂

j∈NN

{

t ≥ 0 : dY
(

C−1
j Rj(t)x,C

−1
j Rj(t)y

)

≥ σ
}

)

= 1, and

dens

(

⋂

j∈NN

{

t ≥ 0 : dY
(

C−1
j Rj(t)x,C

−1
j Rj(t)y

)

< ǫ
}

)

= 1.

The sequence ((Rj(t))t≥0)1≤j≤N is said to be densely (d, X̃)-distributionally

chaotic iff S can be chosen to be dense in X̃. The set S is said to be (d, σX̃)-

scrambled set ((d, σ)-scrambled set in the case that X̃ = X) of the tuple ((Rj(t))t≥0)1≤j≤N ;

in the case that X̃ = X, then we also say that the sequence ((Rj(t))t≥0)1≤j≤N is
(densely) disjoint distributionally chaotic, (densely) d-distributionally chaotic in
short.

Definition 3.2. Let αj ≥ 0, let Cj ∈ L(X) be injective for all j ∈ NN and let
(Rj(t))t≥0 be a global ζ-times Cj-regularized resolvent family with the integral

generator Aj (j ∈ NN ). Suppose that X̃ is a closed linear subspace of X. Let
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Zj,ζ(Aj) be defined as above, and let t 7→ C−1
j Rj(t)x, t ≥ 0 be the unique mild

solution of the corresponding Cauchy problem (1.3), with the operator A replaced

by Aj therein (j ∈ NN ). Let m ∈ N and x ∈
⋂N

j=1 Zj,ζ(Aj)∩ X̃. Then we say that:

(i) x is disjoint distributionally near to 0 for ((Rj(t))t≥0)1≤j≤N iff there exists

A ⊆ [0,∞) such that Dens(A) = 1 and lims→∞,s∈A C−1
j Rj(s)x = 0 for all

j ∈ NN ;
(ii) x is disjoint distributionally m-unbounded for ((Rj(t))t≥0)1≤j≤N iff there

exists a set B ⊆ [0,∞) satisfying that Dens(B) = 1 and

lim
s→∞,s∈B

pm
(

C−1
j Rj(s)x

)

= 0

for all j ∈ NN ; x is disjoint distributionally unbounded for the tuple
((Rj(t))t≥0)1≤j≤N iff there exists q ∈ N such that x is disjoint distribu-
tionally q-unbounded for ((Rj(t))t≥0)1≤j≤N ;

(iii) x is a disjoint X̃-distributionally irregular vector for ((Rj(t))t≥0)1≤j≤N

(disjoint distributionally irregular vector for ((Rj(t))t≥0)1≤j≤N simply, in

the case that X̃ = X) iff x is both disjoint distributionally near to 0 and
disjoint distributionally unbounded.

Concerning disjoint distributional chaos of abstract time-fractional differential
equations, the theoretical aspects are basically the same as for the abstract dif-
ferential equations of first order and almost anything reasonable lies on possibal
applications of Theorem 2.3. Here we will formulate only one simple result regard-
ing this theme:

Theorem 3.3. Let αj ≥ 0, tj > 0, let Cj ∈ L(X) be injective for all j ∈ NN , and
let (Rj(t))t≥0 be a global ζ-times Cj-regularized resolvent family with the integral
generator Aj (j ∈ NN). Let for each i, j ∈ NN such that i 6= j, we have CiAj ⊆

AjCi, CiRj(t) = Rj(t)Ci, t ≥ 0 and Rj(t)Ai ⊆ AiRj(t), t ≥ 0. Set C :=
∏N

j=1 Cj .

Then (Rj(t) ≡ Rj(t)
∏

1≤i≤N,i6=j Ci)t≥0 is a global ζ-times C-regularized resolvent

family with the integral generator Aj (j ∈ NN ). Suppose, further, that there exists
a dense linear subspace X0 of X such that the following holds:

(a) limt→∞ Rj(t)x = 0, x ∈ X0, j ∈ NN ,
(b) there exist x ∈ X and m ∈ N such that limt→∞ pm(Rj(t)x) = ∞ for each

j ∈ NN , resp. limt→∞ ‖Rj(t)x‖ = ∞ for each j ∈ NN , if X is a Banach
space.

Then ((Rj(t))t≥0)1≤j≤N and the operators C−1R1(t1), C
−1R2(t), · · ·, C

−1RN (tN )
are disjoint distributionally chaotic; if, moreover, R(C) is dense in X, then
((Rj(t))t≥0)1≤j≤N and the operators C−1R1(t1), C

−1R2(t2), · · ·, C
−1RN (tN ) are

densely disjoint distributionally chaotic.

Proof. Since for each i, j ∈ NN such that i 6= j, we have CiAj ⊆ AjCi, CiRj(t) =
Rj(t)Ci, t ≥ 0 and Rj(t)Ai ⊆ AiRj(t), t ≥ 0, it follows immediately from definition
that (Rj(t))t≥0 is a global ζ-times C-regularized resolvent family with the integral
generator Aj (j ∈ NN ), where C is defined as above. Now the final conclusion
follows from Theorem 2.3, by considering the sequence ((C−1Rj(t))t≥0)1≤j≤N of
strongly continuous families consisting of linear continuous mappings between the
spaces [R(C)] and X. �
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Now we will provide two illustrative applications of Theorem 3.3, in which the
regularizing operator C is the identity operator (for general C, we can modify
Example 2.6; see also [26, Example 2.5(iv)]):

Example 3.4. ([17], [26]) Let a, b, c > 0, ζ ∈ (1, 2), c < b2

2a < 1 and

Λ :=

{

λ ∈ C :

∣

∣

∣

∣

∣

λ− c+
b2

4a

∣

∣

∣

∣

∣

≤
b2

4a
, ℑ(λ) 6= 0 if ℜ(λ) ≤ c−

b2

4a

}

.

Then the operator −A with domain D(−A) = {f ∈ W 2,2([0,∞)) : f(0) = 0},
generates an analytic strongly continuous semigroup of angle π

2 in the space X =

L2([0,∞)); the same holds in the case that the operator −A acts on X = L1([0,∞))
with domain D(−A) = {f ∈ W 2,1([0,∞)) : f(0) = 0}. In both cases, −Λ ⊆ σp(A).

Suppose that θ ∈ (ζ π
2 −π, π− ζ π

2 ) and Pj(z) =
n
∑

l=0

al,jz
l is a non-constant complex

polynomial such that al,n > 0 and the following two conditions hold:

(A)’ there exists a non-empty subset Ω′ of −Λ which do have a cluster point
in −Λ and satisfies that, for every z ∈ Ω′ and for every j ∈ NN , we have
−eiθPj(z) /∈ Σζπ/2;

(B)’ there exists z ∈ −Λ such that, for every j ∈ NN , we have−eiθPj(z) ∈ Σζπ/2.

We know that the operator −eiθPj(A) is the integral generator of an exponen-
tially bounded, analytic ζ-times regularized resolvent family (Rζ,θ,Pj (t))t≥0 of angle
π−|θ|

ζ − π
2 . Here, the requirements needed for applying Theorem 3.3 are satisfied,

which can be verified with the help of asymptotic expansion formuale (1.6)-(1.8)
and the conditions (A)’-(B)’. As a consequence, we have that ((Rζ,θ,Pj(t))t≥0)1≤j≤N

are densely disjoint distributionally chaotic.
(ii) ([21], [26]) Let X be a symmetric space of non-compact type and rank one, let
p > 2, let the parabolic domain Pp and the positive real number cp possess the same

meaning as in [21], and let P j(z) =
n
∑

l=0

al,jz
l, z ∈ C be a non-constant complex

polynomial with al,n > 0 (j ∈ NN ). Suppose that ζ ∈ (1, 2), π − n arctan |p−2|
2
√
p−1

−

ζ π
2 > 0 and θ ∈ (n arctan |p−2|

2
√
p−1

+ ζ π
2 − π, π − n arctan |p−2|

2
√
p−1

− ζ π
2 ). We know

that −eiθP j(∆♮
X,p) is the integral generator of an exponentially bounded, analytic

ζ-times regularized resolvent family (Rζ,θ,P j(t))t≥0 of angle 1
ζ (π−n arctan |p−2|

2
√
p−1

−

ζ π
2 − |θ|), for any j ∈ NN . Using the fact that int(Pp) ⊆ σp(∆

♮
X,p), the validity of

conditions (A)’-(B)’ with the set −Λ and polynomials −eiθPj(z) replaced therein
with the set int(Pp) and polynomials −eiθP j(z) ensures that (Rζ,θ,P j(t))t≥0 are
densely disjoint distributionally chaotic.

We close the paper with the observation that distributionally chaotic properties
of abstract multi-term fractional differential equations have been considered by the
author in [25]. Applying Theorem 2.3, we can simply deduce several extensions
of results established in this section for corresponding fractional resolvent operator
families governing solutions of such equations.

In [19] and [28], we have followed slightly different approaches to the concepts of
disjoint hypercyclicity, disjoint topologically mixing property and the usual distri-
butional chaos for abstract (multi-term) fractional differential equations. Disjoint
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distributionally chaotic solutions of such equations can be analyzed by following
this approach, as well. Related results will appear somewhere else.

References

[1] Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A., Distributional chaos for strongly
continuous semigroups of operators. Commun. Pure Appl. Anal. 12 (2013), 2069–2082.
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[4] Bayart, F., Matheron, E., Dynamics of Linear Operators. Cambridge: Cambridge Tracts in
Mathematics, Cambridge University Press, UK, 179(1) 2009.

[5] Bazhlekova, E., Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven
University of Technology, Eindhoven, 2001.
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of operators on Fréchet spaces. Comm. Pure Appl. Anal. 15 (2016), 1915–1939.

[16] deLaubenfels, R., Emamirad, H., Grosse–Erdmann, K.-G., Chaos for semigroups of un-
bounded operators. Math. Nachr. 261/262 (2003), 47–59.

[17] Desch, W., Schappacher, W., Webb, G.F., Hypercyclic and chaotic semigroups of linear
operators. Ergodic Theory Dynam. Systems 17 (1997), 1–27.

[18] Duan, J., Fu, X.-C., Liu, P.-D., Manning, A., A linear chaotic quantum harmonic oscillator.
Appl. Math. Lett. 12 (1999), 15–19.
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