
ar
X

iv
:1

81
2.

09
14

7v
2 

 [
cs

.I
T

] 
 1

4 
Ja

n 
20

19

Reed–Solomon–Gabidulin Codes

Xavier Caruso∗ and Amaury Durand†

January 15, 2019

Abstract

We introduce Reed-Solomon-Gabidulin codes which is, at the same

time, an extension to Reed-Solomon codes on the one hand and Gabidulin

codes on the other hand. We prove that our codes have good properties

with respect to the minimal distance and design an efficient decoding

algorithm.

Important disclaimer

After we made this article available on HAL and arXiv, we received an email
from Umberto Martinez-Penas, in which he kindly explained to us that the
results obtained in the present article were already discovered (and partly pub-
lished) recently [5, 6]; our notion of Reed–Solomon–Gabidulin codes is actually
a special case of the notion of Linearized Reed-Solomon codes introduced there.

Nevertheless, our exposition differs a bit from that of loc. cit, so we think
that our article still has some interest. Combined with the results of [3], our
version of the decoding algorithm has sub-quadratic complexity; this was left as
an open question in [6].

Introduction

Reed–Solomon codes form a well-known class of error detection and correction
codes which have very interesting properties (optimal minimal distance, efficient
decoding algorithms). They were introduced in 1960 by Reed and Solomon
and are nowadays widely used in everyday life. About twenty years later, Del-
sarte [4], Gabidulin [7] and Roth [13]—independently—imagined an analogue of
Reed–Solomon codes in the context of the rank distance, which is finer than the
standard Hamming distance and well suited for some applications (e.g. network
coding). These codes are nowadays called Gabidulin codes. Their construction
is based on the concept of linearized polynomials over the finite fields. More
recently several authors generalized and optimized Gabidulin codes. In 2013, in
her thesis [14] and subsequent papers, Wachter-Zeh proposed an efficient imple-
mentation of operations with linearized polynomials, together with an equivalent
of Gao’s decoding algorithm.

In 2009, Boucher, Geiselmann and Ulmer [1] introduced analogues of BCH
codes in the Gabidulin’s context of linearized polynomials (cf also [2]). It worths

∗CNRS, Institut Mathématique de Bordeaux, équipe LFANT
†Université de Franche-Comté

1

http://arxiv.org/abs/1812.09147v2


mentionning that they use Ore polynomials (introduced by Ore in 1933 in [10])
in place of linearized polynomials. Although the two approaches are equivalent
in the case of finite fields, it turns out that Ore polynomials are more general
objects which continue to make sense in a large variety of settings. Taking
advantage of this new point of view, Robert proposed in his thesis [12] an
extension of Gabidulin’s code to the caracteristic zero, in which basically finite
fields are replaced by number fields.

Another advantage of Boucher, Geiselmann and Ulmer’s approach is that it
allows longer codes: while the length of a Gabidulin code is necessarily bounded
from above by the degree of the finite field we are working with, this bound can
be generally overpassed in Boucher, Geiselmann and Ulmer’s construction. On
the other hand, no efficient decoding algorithm is known.

Contribution of the article. In the present paper, we introduce and study
a new generalization of Gabidulin codes, which combines all the benefits of
previous constructions. Precisely, we shall show that:
(1) as for Gabidulin codes, our codes are MDS (Maximal Distance Separable),
(2) as in Boucher, Geiselmann and Ulmer’s work, long codes are permitted,
(3) as in Wachter-Zeh’s work, there exists an efficient decoding algorithm.

Besides, the setting we consider includes the case of finite fields (as in Gabidulin’s
initial definition) and number fields (as in Robert’s generalization) but it is even
more general. For example, our construction allows the base field to be the field
of rational fractions in the variable t over a finite field equipped with its canon-
ical derivation d

dt
.

Moreover it turns out that, for a special choice of parameters, our codes
extend classical Reed–Solomon codes. For this reason, we have decided to call
them Reed–Solomon–Gabidulin (RSG1 for short) codes.

Organization of the article. This paper is divided in two sections. The first
one is devoted to introduce and develop the necessary background on Ore poly-
nomials and related notions. We will study particularly the notion of evaluation
morphisms which is the main ingredient we will need for defining GRS codes.
In the second section, we introduce GRS codes and state their main properties
(cf (1), (2), (3) above). For the sake of brievity, proofs are omitted though
intermediate steps are often isolated.

1 Ore polynomials

Throughout this article, we use the following notation: K is a field, θ : K → K
be a ring homomorphism and ∂ : K → K be a θ-derivation, i.e. an additive
mapping such that ∂(ab) = θ(a)∂(b) + ∂(a)b for all a, b ∈ K.

We shall denote by F the subfield of K consisting of elements a such that
θ(a) = a and ∂(a) = 0. We will always assume that the extension K/F
is finite and will denote by r its degree. Our assumption implies in particular
that θ has finite order and thus is bijective.

1Be careful at not making the confusion with GRS codes, which stands for Generalized

Reed–Solomon codes.

2



Definition 1.1 (Ore polynomial ring). The ring of Ore polynomials K[X ; θ, ∂]
is the ring whose elements are polynomials in X over A endowed with the usual
addition and with the multiplication defined by the rule:

X × a = θ(a)X + ∂(a), ∀a ∈ A.

Example 1.2. Throughout this article, we will illustrate our constructions with
the two following examples:

(1) (This setting is the one in which Gabidulin codes were first defined by
Gabidulin in [7], with a slightly different vocabulary.) Let p be a prime
number, q be a power of p and r be a positive integer. We let Fqr denote
a finite field with cardinality qm. We endow it with the Frobenius Frobq :
x 7→ xq. The first Ore ring we will be interested in is Fqr [X ; Frobq, 0]. In
this setting, the subfield F of K = Fqr we have introduced is Fq. The
degree of the extension K/F is then r.

(1’) More generally, one can pick an arbitrary field K, endow it with a finite
order automorphism θ and consider the Ore ring K[X, θ, 0]. Beyond the
case of finite fields, natural examples are cyclotomic extensions of Q or
Kummer extensions. This case was addressed in Robert’s thesis [12].

(2) Let κ be a field of characteristic p. We consider the field K = κ(t) and
endow it with the natural derivation d

dt
. We can then form the Ore ring

κ(t)[X, id, d
dt
]. Here the subfield F of K is κ(tp) and the degree of the

extension K/F is then p.

The notion of degree extends verbatim to Ore polynomials: if P =
∑

aiX
i is

an Ore polynomial, its degree is the largest integer i for which ai 6= 0. Besides,
one can prove the existence of a right Euclidean division for Ore polynomials:
if A,B ∈ K[X ; θ, ∂] with B 6= 0, there exist unique Q,R ∈ K[X ; θ, ∂] with
A = QB + R and degR < degB. This has the usual consequences: the non-
commutative ring K[X ; θ, ∂] is left-principal, right gcds and left lcms are well
defined and can be computed by Euclidean algorithm. Similarly, left Euclidean
divisions, left gcds and right lcms do exist (since our general assumptions imply
that θ is bijective).

Notation: In what follows, we will denote by A%B the remainder in the right
division of A by B.

The centre.

Recall that the centre of a noncommutative ring A is by definition the subset
of A consisting of elements x such that xy = yx for all y ∈ A. We observe in
particular that the centre of A is a commutative subring of A. In the case of Ore
polynomials, the centre can actually be computed precisely. In what follows, we
will not need a complete description but only the general structure of the centre
as given by the next proposition.

Proposition 1.3. There exists a central Ore polynomial Z(X) ∈ K[X ; θ, ∂] of
degree r such that the centre of K[X ; θ, ∂] is F [Z(X)], i.e. the subset of Ore
polynomials that can be written as a polynomial in Z(X) with coefficient in F .

3



We observe that the equality:

a0 + a1Z(X) + · · ·+ adZ(X)d = b0 + b1Z(X) + · · ·+ aeZ(X)e

implies readily that d = e (compare the degrees) and ai = bi for all i. As a
consequence the centre F [Z(X)] is an actual (commutative) ring of univariate
polynomials with coefficients in F .

On the other hand, we draw the attention of the reader to the fact that the
properties of Proposition 1.3 do not determine Z(X) uniquely but only up to
an additive constant in F .

Example 1.4. We continue Example 1.2. In the settings (1) and (1’), it is easily
seen that the centre of K[X ; θ, 0] is F [Xr]. In the setting (2), the centre of
κ(t)[X ; id, d

dt
] (where κ is a field of characteristic p) is κ(tp)[Xp].

Pseudo-linear morphisms.

Another important notion is that of pseudo-linear morphisms. It is defined as
follows:

Definition 1.5 (Pseudo-linear morphism). Let M and N be two vector spaces
over K. A pseudo-linear morphism u : M → N is a map verifying u(ax) =
θ(a)u(x) + ∂(a)x for all a ∈ K and x ∈ M .

We observe that any pseudo-linear morphism is a fortiori F -linear (where
F is defined at the beginning of this section).

Pseudo-linear morphisms are relevant in the context of Ore polynomials
because the Ore multiplication reflects the composition rule of pseudo-linear
morphisms. More precisely, given a pseudo-linear endomorphism u : M → M
and an Ore polynomial P =

∑

i aiX
i ∈ K[X ; θ, ∂], one defines P (u) =

∑

i aiu
i.

One then easily checks that P (u) ◦ Q(u) = (PQ)(u) where the multiplication
on the right hand size is the Ore multiplication. In other words, denoting by
EndF (M) the ring of F -linear maps from M to itself, the “evaluation” mapping

evu : K[X ; θ, ∂] → EndF (M), P (X) 7→ P (u)

is a ring homomorphism for any pseudo-linear endomorphism u.
The case where M is K itself deserves particular attention. Indeed, we first

observe that evaluation is then closely related to Euclidean division thanks to
the formula:

evu(P )(a) = a · P %
(

X − u(a)
a

)

(1)

which is correct for any pseudo-linear endomorphism u of K, any P ∈ K[X ; θ, ∂]
and any a ∈ K. Second, we have a complete classification of pseudo-linear
endomorphisms of K.

Proposition 1.6. The pseudo-linear endomorphisms of K are exactly the maps
of the form ∂ + cθ with c ∈ K.

In what follows, we will often use the notation evc in place of ev∂+cθ.

4



Main properties of the evc’s. We denote by Kgood the subset of K consist-
ing of elements c for which ∂ + cθ is not of the form a·id with a ∈ F . Except
in the very particular case where θ = id and ∂ = 0 (where Kgood is obviously
empty), one can prove that there is at most one bad value of c, i.e. the difference
between K and Kgood consists at most of one element.

Proposition 1.7. For all c ∈ Kgood, the ring homomorphism evc is surjective
and its kernel is a principal ideal generated by Z(X) − N(c) for some element
N(c) ∈ F .

Remark 1.8. The function N defined by Proposition 1.7 above is not canonical
since it depends on the choice of the constant coefficient of Z(X). Two different
choices lead to functions N and N ′ such that N ′ = N + a for some constant
a ∈ F .

Definition 1.9. Let c1, c2 ∈ Kgood. We say that c1 and c2 are equivalent if
ker evc1 = ker evc2 or, equivalently, N(c1) = N(c2).

Using Noether–Skolem Theorem, one can prove the following characterization:

Lemma 1.10. The elements c1 and c2 are equivalent if and only if there exists
a ∈ K, a 6= 0 such that c1a = c2θ(a) + ∂(a).
In particular, the equivalence class of c ∈ K is exactly the image of x 7→
(∂+cθ)(x)

x
.

Example 1.11. Let us first focus on the settings (1) and (1’) of Example 1.2.
The subset Kgood is then K\{0}. Moreover if we have chosen Z(X) = Xr (see
Example 1.4), it is not difficult to prove that the map N is the norm of K over
F . In this context, the characterization of Lemma 1.10 is a classical consequence
of Hilbert 90 theorem which says that an element has norm 1 if and only if it

can be written θ(a)
a

for some a 6= 0.

When K = Fqm and θ = Frobq, we have N(c) = c1+q+q2+···+qm−1

. In this
case, the image of N is F⋆

q and there is exactly q−1 equivalence classes for the
equivalence relation introduced in Definition 1.9.

In the setting (2), we have Kgood = K. Moreover, with the normalization

Z(X) = Xp, one can prove2 that N(f) = dp−1f
dtp−1 + fp for any f ∈ k(t). Here,

Lemma 1.10 asserts that N(f) = N(g) if and only if the difference f − g is a
logarithmic derivative. It is easily seen that a polynomial cannot be a logarith-
mic derivative. Consequently the elements of κ[t] are pairwise nonequivalent,
implying in particular that there are infinitely many equivalence classes for this
relation.

2 Reed–Solomon–Gabidulin codes

We keep the notations of the previous section. In particular, we recall that
Kgood is the subset of K consisting of elements c for which ∂ + cθ is not of the
form a·id with a ∈ F .

2Through the proof is not obvious.

5



Setting.

Throughout this section, we fix a positive integer s. We consider a family
c = (c1, . . . , cs) of s elements of Kgood which are pairwise non-equivalent in the
sense of Definition 1.9. Moreover, for each i ∈ {1, . . . , s}, we pick a positive
integer ni together with a family gi = (gi,1, . . . , gi,ni

) of F -linearly independant
elements of K. The latter condition obviously implies that ni ≤ [K : F ] for all i.
We set n = n1 + . . .+ns. To all these data, we associate the K-linear mapping:

γc,g : K[X ; θ, ∂] −→ Kn1 ×Kn2 × · · · ×Kns

P (X) 7→
(

evc1(P )(g1,1), evc1(P )(g1,2), . . . , evc1(P )(g1,n1
),

evc2(P )(g2,1), evc2(P )(g2,2), . . . , evc2(P )(g2,n2
),

. . . ,
evcs(P )(gs,1), evcs(P )(gs,2), . . . , evcs(P )(gs,ns

)
)

Thanks to Eq. (1), the mapping γc,g can be rewritten in terms of Euclidean
divisions. More precisely, for 1 ≤ i ≤ s and 1 ≤ j ≤ ni, letting:

ai,j =
(∂ + ciθ)(gi,j)

gi,j
(2)

we have evci(gi,j) = gi,j · P %(X − ai,j).
For any positive k, we let γk,c,g denote the restriction of γc,g to the subspace

K[X ; θ, ∂]<k consisting of Ore polynomials of degree less than k.

Example 2.1. Consider the setting (1) of Example 1.2. Let g be a multiplicative
generator of F⋆

qr . Its norm over Fq is a multiplicative generator of F⋆
q . By

what we did in Example 1.11, the elements ci = gi for 0 ≤ i < s are pairwise
nonequivalent as soon as s ≤ q − 1. (Here, for simplicity, we have shifted our
indices so that they start from 0 instead of 1.) Moreover (1, g, . . . , gr−1) is a basis
of Fqr over Fq. One can then take ni = r for all i and gi,j = gj for 0 ≤ j < r.
With these parameters, we easily compute ai,j = ci ·Frobq(gi,j) ·g

−1
i,j = gi+(q−1)j .

Example 2.2. Consider the setting (2) of Example 1.2. By Example 1.11 again,
we can take any family (c1, . . . , cs) of pairwise distinct polynomials. Moreover
a basis of κ(tp) over κ(t) is obviously (1, t, . . . , tp−1). Therefore, we can take
ni = p and gi,j = tj for 0 ≤ j < p. A direct computation leads to ai,j =

j
t
+ ci.

Taking κ = F3, k = 5, c = (0, 1) and g = ((1, t, t2), (1, t, t2)), we find that the
matrix of γk,c,g is:

(

1 t t2 1 t t2

0 1 2t 1 t+1 t2+2t

)

. (3)

The kernel of γk,c,g is the principal ideal generated by the Ore polynomial:

L = llcm((X − ai,j)1≤i≤m, 1≤j≤ni
). (4)

The next lemma shows that the assumption we made on the ci’s and gi,j’s are
directly related to the degree of L.

Lemma 2.3. With the above notations and assumptions, the Ore polynomial L
has degree n.
In particular, the map γn,c,g is bijective.

6



Example 2.4. Continuing Example 2.1, the Ore polynomial L defined in (4) is
L =

∏s

i=1(X
r − N(ci)) where we recall that N : Fqr → Fq is the norm map.

(Observe that the factors Xr − N(ci) all lie in the centre of Fqr [X ; Frobq, 0]
so that the product we have written in not ambiguous.) In particular, when
s = q − 1, we get L(X) = Xr(q−1) − 1.

Example 2.5. Continuing Example 2.2 and assuming further that the ci’s lie in κ,
we find that the polynomial L defined in (4) is L =

∏s

i=1(X
p−cpi ). In particular,

if κ is a finite field of cardinality q and the ci’s enumerate the elements of κ (so
that s = q), we have L(X) = Xpq −Xp.

Definition and first properties.

We are now ready to define Gabidulin codes in the extended framework discussed
in the introduction of this section.

Definition 2.6. With the previous notations, the Reed–Solomon–Gabidulin
(RSG for short) code RSGk,c,g associated to c and g is the image of γk,c,g.

Remark 2.7. From the definition, it follows that the matrix of γk,c,g (in the
canonical basis) is a generator matrix of RSGk,c,g. The matrix (3) then provide
an example of a generator matrix of a RSG code.

It is well known that the relevant distance for Gabidulin codes is not the
Hamming distance but the rank distance. In the context of Gabidulin codes
introduced above, we shall need another distance which is a mixture between
Hamming and rank distance. It is defined as follows.

Definition 2.8. Let x = (xi,j)1≤i≤m, 1≤j≤ni
∈ Kn1 × Kn2 × · · · × Kns . The

rank-Hamming weight of x is:

wrH(x) =

s
∑

i=1

dimF

〈

xi,1, xi,2, . . . , xi,ni

〉

F
.

Given x, y ∈ Kn1 × Kn2 × · · · × Kns , the rank-Hamming distance between x
and y is drH(x, y) = wrH(x − y).

Remark 2.9. The weight wrH is finer that the usual Hamming weight in the
sense that, for all x ∈ Kn1 × · · · ×Kns , we have wrH(x) ≤ wH(x) if wH denotes
the Hamming weight.

The RSG codes we have defined extend the classical notion of Gabidulin
codes introduced in [7]. More precisely, the latter correspond to the case where
s = 1, ∂ = 0 andK is a finite field. Relaxing the assumption onK, we obtain the
generalized Gabidulin codes defined by Robert in his thesis [12]. In particular,
in this case, the rank-Hamming distance is the usual rank distance.

On the other hand, when θ = id and ∂ = 0 (that is F = K), the notion of
RSG code is nothing but the standard notion of Reed–Solomon code and the
rank-Hamming distance reduces to the usual Hamming distance.

Proposition 2.10. The code RSGk,c,g has length n, dimension k and minimal
distance d = n− k + 1.

Example 2.11. The RSG code corresponding to the generator matrix (3) has
length 6, dimension 2 and minimal distance 6− 2 + 1 = 5. It then corrects any
error of rank-Hamming weight at most 2.

7



Decoding Reed–Solomon–Gabidulin codes.

RSG codes can be decoded by a noncommutative extension of Gao’s algo-
rithm [8]. This fact was already observed in the works of Wachter-Zeh and
al. [14] in the special case of usual Gabidulin codes. After what we have done
previously, the extension to RSG codes is not difficult.

Gao’s algorithm consists in several steps that we will present below. We
suppose that we are given parameters k, c and g as above together with a
codeword c = γk,c,g(P ) for an Ore polynomial P of degree less than k. Let
w denote the ceiling of n−k

2 and let e ∈ Kn1 × · · · × Kns be a vector of rank-
Hamming weight at most w. We set m = c+ e.

Example 2.12 (Thread example). We shall illustrate each step of Gao’s algo-
rithm by the following thread example. As in Example 3, we take K = F3(t)
(equipped with θ = id and ∂ = d

dt
), k = 2, c = (0, 1) and g = ((1, t, t2), (1, t, t2)).

The generator matrix of the corresponding RSG code is the matrix (3). We will
work with the following codeword:

c = γk,c,g
(

t2X + 1
)

=
(

(1, t2+t, 2t3+t2), (t2+1, t3+t2+t, t4+2t3+t2)
)

and the following error e =
(

(1, t3, 2t3), (t+1, 0, t4+t3)
)

which has rank-Hamming
weight 2. The corresponding received message is:

m =
(

(2, t3+t2+t, t3+t2), (t2+t+2, t3+t2+t, 2t4+t2)
)

.

Step 0: Annihilator. We compute the Ore polynomial L defined in (4).
If a fast multiplication algorithm of Ore polynomials is available (which is no-
tably the case when ∂ = 0 [11, 3]), this computation can be done efficiently by
a divide-and-conquer algorithm [3].

We underline that this computation is independant of the received message
m and then has to be done just once when the RSG code is set up.

Example 2.13. In our thread example, we have L(X) = X6 −X3 as shown by
Example 2.5.

Step 1: Interpolation. We compute a Ore polynomial P̃ of degree less than
n such that γc,g(P ) = m.
This can be done for example by inverting the K-linear map γn,c,g, which is

known to be a bijection by Lemma 2.3. Alternatively, P̃ can be computed by
solving a (noncommutative) Chinese remainder problem. This latter approach is
faster when an efficient multiplication algorithm of Ore polynomials is available.

Example 2.14. In our thread example, we find:

P̃ = (2t4+t2)X4 + (2t4+t3+2t)X3 + (2t4+t3+2t2)X2 + (t3+t2+2t)X + 2.

Remark 2.15. In general, it is possible that denominators appear and that the
degrees in t get bigger than the maximal degree in t in c and m. However, this
growing always stays under control.

8



Step 2: Partial rgcd. We compute a relation of the form UP̃ + V L = R for
Ore polynomials U , V and R with degU ≤ w and degR < w + k.
This relation can be computed by applying the extended Euclidean algorithm
with the input (P̃ , L) and stopping it the first time the remainder R has degree
less than w + k.

Remark 2.16. Using the theory of resultants and subresultants [9], one can
carry out this computation by controlling the degrees in t of all intermediate
polynomials.

Example 2.17. In our thread example, after one step in Euclidean algorithm, we
obtain:

(

(2t+1)X2 + tX
)

· P̃ + (2t5+t4+t3+2t2) · L

= (2t3+t2)X3 + (t3+2t2+1)X2 + (2t2+2t+2)X

so that we can take:

U = (2t+1)X2 + tX, V = 2t5+t4+t3+2t2

and R = (2t3+t2)X3 + (t3+2t2+1)X2 + (2t2+2t+2)X.

The next proposition is the key result on which Gao’s algorithm is based.

Proposition 2.18. With the above notations, we have the relation R = UP
where P is the Ore polynomial we used to construct the codeword c.

Step 3: Left Euclidean division. We compute the quotient Q in the left
Euclidean division of R by U .
By Proposition 2.18, c = γk,c,g(Q) and we have decoded the message m.

Example 2.19. In our thread example, the left Euclidean division of R by U
reads R = U · (1 + t2X); we have then reconstructed the Ore polynomial P we
started with.

References

[1] Delphine Boucher, Willi Geiselmann, Felix Ulmer, Skew Cyclic Codes,
AAECC (Applied Algebra in Engineering, Communication and Comput-
ing), 18 (2007), 379–389

[2] Delphine Boucher, Felix Ulmer, Coding with skew polynomial rings, Journal
of Symbolic Computation 44 (2009), 1644–1656

[3] Xavier Caruso, Jérémy Le Borgne, Fast multiplication for skew polynomials,
proceedings ISSAC 2017

[4] Philippe Delsarte, Bilinear Forms over a Finite Field with Applications to
Coding Theory, J. Combin. Theory 25 (1978), 226–241.

[5] Umberto Martinez-Penas, Skew and linearized Reed–Solomon codes and
maximum sum rank distance codes over any division ring, J. Algebra 504

(2018), 587–612

9



[6] Umberto Martinez-Penas, Frank Kschischang, Reliable and Secure Multi-
shot Network Coding using Linearized Reed-Solomon Codes, available at
https://arxiv.org/abs/1805.03789

[7] Ernst Gabidulin, Theory of codes with maximum rank distance, Problemy
Peredachi Informatsii 21 (1985), no. 1, 3–16.

[8] Shuhong Gao, A New Algorithm for Decoding Reed-Solomon Codes, Com-
munications, Information and Network Security, 55–68

[9] Ziming Li, A subresultant theory for Ore polynomials and applications, pro-
ceedings ISSAC 1998

[10] Øystein Ore, Theory of non-commutative polynomials, Ann. of Math. 34
(1933), no. 3, 480–508.

[11] Sven Puchinger, Antonia Wachter-Zeh, Sub-quadratic decoding of Gabidulin
codes, IEEE Int. Symp. Inf. Theory (ISIT) (2016)

[12] Gwezheneg Robert, Codes de Gabidulin en caractéristique nulle : applica-
tion au codage espace-temps, PhD thesis (2015)

[13] Ron Roth, Maximum-Rank Array Codes and their Application to Crisscross
Error Correction, IEEE Trans. Inform. Theory (1991)

[14] Antonia Wachter-Zeh, Decoding of block and convolutional codes in rank
metric, PhD thesis (2013)

10

https://arxiv.org/abs/1805.03789

	1 Ore polynomials
	2 Reed–Solomon–Gabidulin codes

