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8 Generalized fractional integral operators and their

commutators with functions in generalized

Campanato spaces on Orlicz spaces

Minglei Shi, Ryutaro Arai and Eiichi Nakai∗

Department of Mathematics, Ibaraki University, Mito, Ibaraki 310-8512, Japan

Abstract

We investigate the commutators [b, Iρ] of generalized fractional integral
operators Iρ with functions b in generalized Campanato spaces and give a
necessary and sufficient condition for the boundedness of the commutators
on Orlicz spaces. To do this we define Orlicz spaces with generalized Young
functions and prove the boundedness of generalized fractional maximal oper-
ators on the Orlicz spaces.

1 Introduction

Let Rn be the n-dimensional Euclidean space, and let Iα be the fractional integral
operator of order α ∈ (0, n), that is,

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dy, x ∈ R

n.

Then it is known as the Hardy-Littlewood-Sobolev theorem that Iα is bounded
from Lp(Rn) to Lq(Rn), if α ∈ (0, n), p, q ∈ (1,∞) and −n/p + α = −n/q. This
boundedness was extended to Orlicz spaces by several authors, see [3, 5, 15, 27, 32,
33, 34], etc. Chanillo [2] considerd the commutator

[b, Iα]f = bIαf − Iα(bf),
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with b ∈ BMO and proved that [b, Iα] has the same boundedness as Iα. The result
was also extended to Orlicz spaces by Fu, Yang and Yuan [6] and Guliyev, Deringoz
and Hasanov [8].

In this paper we consider generalized fractional integral operators Iρ on Orlicz
spaces. For a function ρ : (0,∞) → (0,∞), the operator Iρ is defined by

(1.1) Iρf(x) =

∫

Rn

ρ(|x− y|)

|x− y|n
f(y) dy, x ∈ R

n,

where we always assume that

(1.2)

∫ 1

0

ρ(t)

t
dt <∞.

If ρ(r) = rα, 0 < α < n, then Iρ is the usual fractional integral operator Iα. The
condition (1.2) is needed for the integral in (1.1) to converge for bounded functions
f with compact support. In this paper we also assume that there exist positive
constants C, K1 and K2 with K1 < K2 such that, for all r > 0,

(1.3) sup
r≤t≤2r

ρ(t) ≤ C

∫ K2r

K1r

ρ(t)

t
dt.

The operator Iρ was introduced in [20] to extend the Hardy-Littlewood-Sobolev
theorem to Orlicz spaces whose partial results were announced in [19]. For example,
the generalized fractional integral Iρ is bounded from expLp(Rn) to expLq(Rn),
where

(1.4) ρ(r) =

{
1/(log(1/r))α+1 for small r,

(log r)α−1 for large r,
α > 0,

p, q ∈ (0,∞), −1/p+ α = −1/q and expLp(Rn) is the Orlicz space LΦ(Rn) with

(1.5) Φ(r) =

{
1/ exp(1/rp) for small r,

exp(rp) for large r.

See also [21, 22, 23, 24, 26]. Recently, in [4] some necessary and sufficient conditions
for the boundedness of Iρ on Orlicz spaces have been given.

In this paper we consider the commutator [b, Iρ] with a function b in generalized
Campanato spaces. To prove the boundedness of [b, Iρ] on Orlicz spaces we need
the sharp maximal operator M ♯ and generalized fractional maximal operators Mρ,
see (1.6) and (1.7) below for their definitions. Moreover, we need a generalization
of the Young function.

First we recall the definition of the generalized Campanato space and the sharp
maximal and generalized fractional maximal operators. We denote by B(x, r) the
open ball centered at x ∈ R

n and of radius r, that is,

B(x, r) = {y ∈ R
n : |y − x| < r}.



Generalized fractional integral operators 3

For a measurable set G ⊂ R
n, we denote by |G| and χG the Lebesgue measure of G

and the characteristic function of G, respectively. For a function f ∈ L1
loc(R

n) and
a ball B, let

fB = −

∫

B

f = −

∫

B

f(y) dy =
1

|B|

∫

B

f(y) dy.

Definition 1.1. For p ∈ [1,∞) and ψ : (0,∞) → (0,∞), let Lp,ψ(R
n) be the set of

all functions f such that the following functional is finite:

‖f‖Lp,ψ(Rn) = sup
B=B(x,r)

1

ψ(r)

(
−

∫

B

|f(y)− fB|
p dy

)1/p

,

where the supremum is taken over all balls B(x, r) in R
n.

Then ‖f‖Lp,ψ(Rn) is a norm modulo constant functions and thereby Lp,ψ(R
n) is

a Banach space. If p = 1 and ψ ≡ 1, then Lp,ψ(R
n) = BMO(Rn). If p = 1 and

ψ(r) = rα (0 < α ≤ 1), then Lp,ψ(R
n) coincides with Lipα(R

n).
The sharp maximal operator M ♯ is defined by

(1.6) M ♯f(x) = sup
B∋x

−

∫

B

|f(y)− fB| dy, x ∈ R
n,

where the supremum is taken over all balls B containing x. For a function ρ :
(0,∞) → (0,∞), let

(1.7) Mρf(x) = sup
B(z,r)∋x

ρ(r)−

∫

B(z,r)

|f(y)| dy, x ∈ R
n,

where the supremum is taken over all balls B(z, r) containing x. We don’t assume
the condition (1.2) or (1.3) on the definition ofMρ. The operatorMρ was studied in
[31] on generalized Morrey spaces. If ρ(r) = |B(0, r)|α/n, then Mρ is the usual frac-
tional maximal operator Mα. If ρ ≡ 1, then Mρ is the Hardy-Littlewood maximal
operator M , that is,

Mf(x) = sup
B∋x

−

∫

B

|f(y)| dy, x ∈ R
n.

It is known that the usual fractional maximal operator Mα is dominated point-
wise by the fractional integral operator Iα, that is, Mαf(x) ≤ CIα|f |(x) for all
x ∈ R

n. Then the boundedness of Mα follows from one of Iα. However, we need a
better estimate on Mρ than Iρ to prove the boundedness of the commutator [b, Iρ].
In this paper we give a necessary and sufficient condition of the boundedness of Mρ

which sharpens the result in [4].
The organization of this paper is as follows. In Section 2 we recall the definition

of the Young function and give its generalization. Then we define Orlicz spaces
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with generalized Young functions. We state main results in Section 3. We give
some lemmas in Section 4 to prove the main results. The boundedness of Iρ has
been proved in [4]. We prove the boundedness of Mρ in Section 5. Moreover, we
investigate pointwise estimate by using the sharp maximal operator and the norm
estimate by the sharp maximal operator in Section 6. Finally, using the generalized
Young function and the results in Sections 4–6, we prove the boundedness of [b, Iρ]
in Section 7.

At the end of this section, we make some conventions. Throughout this paper,
we always use C to denote a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. Constants with
subscripts, such as Cp, is dependent on the subscripts. If f ≤ Cg, we then write
f . g or g & f ; and if f . g . f , we then write f ∼ g.

2 Generalization of the Young function and Or-

licz spaces

First we define a set Φ̄ of increasing functions Φ : [0,∞] → [0,∞] and give some
properties of functions in Φ̄.

For an increasing function Φ : [0,∞] → [0,∞], let

a(Φ) = sup{t ≥ 0 : Φ(t) = 0}, b(Φ) = inf{t ≥ 0 : Φ(t) = ∞},

with convention sup ∅ = 0 and inf ∅ = ∞. Then 0 ≤ a(Φ) ≤ b(Φ) ≤ ∞. Let Φ̄ be
the set of all increasing functions Φ : [0,∞] → [0,∞] such that

0 ≤ a(Φ) <∞, 0 < b(Φ) ≤ ∞,(2.1)

lim
t→+0

Φ(t) = Φ(0) = 0,(2.2)

Φ is left continuous on [0, b(Φ)),(2.3)

if b(Φ) = ∞, then lim
t→∞

Φ(t) = Φ(∞) = ∞,(2.4)

if b(Φ) <∞, then lim
t→b(Φ)−0

Φ(t) = Φ(b(Φ)) (≤ ∞).(2.5)

In what follows, if an increasing and left continuous function Φ : [0,∞) → [0,∞)
satisfies (2.2) and lim

t→∞
Φ(t) = ∞, then we always regard that Φ(∞) = ∞ and that

Φ ∈ Φ̄.
For Φ ∈ Φ̄, we recall the generalized inverse of Φ in the sense of O’Neil [27,

Definition 1.2].

Definition 2.1. For Φ ∈ Φ̄ and u ∈ [0,∞], let

(2.6) Φ−1(u) =

{
inf{t ≥ 0 : Φ(t) > u}, u ∈ [0,∞),

∞, u = ∞.
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Let Φ ∈ Φ̄. Then Φ−1 is finite, increasing and right continuous on [0,∞) and
positive on (0,∞). If Φ is bijective from [0,∞] to itself, then Φ−1 is the usual
inverse function of Φ. Moreover, we have the following proposition, which is a
generalization of Property 1.3 in [27].

Proposition 2.1. Let Φ ∈ Φ̄. Then

(2.7) Φ(Φ−1(u)) ≤ u ≤ Φ−1(Φ(u)) for all u ∈ [0,∞].

Proof. First we show that, for all t, u ∈ [0,∞],

(2.8) Φ(t) ≤ u ⇒ t ≤ Φ−1(u).

If Φ(t) ≤ u, then Φ(s) > u⇒ Φ(s) > Φ(t) ⇒ s > t and

{s ≥ 0 : Φ(s) > u} ⊂ {s ≥ 0 : s > t}.

Hence,
Φ−1(u) = inf{s ≥ 0 : Φ(s) > u} ≥ inf{s ≥ 0 : s > t} = t.

This shows (2.8). Now, letting Φ(t) = u and using (2.8), we have that t ≤ Φ−1(u) =
Φ−1(Φ(t)), which is the second inequality in (2.7).

Next we show that, for all t ∈ (0,∞] and u ∈ [0,∞],

Φ(t) > u ⇒ t > Φ−1(u),(2.9)

t ≤ Φ−1(u) ⇒ Φ(t) ≤ u.(2.10)

We only show (2.9), since (2.10) is equivalent to (2.9). If Φ(t) > u, then Φ(s) > u
for some s < t by the properties (2.3)–(2.5). By the definition of Φ−1 we have that
s ≥ Φ−1(u). That is, t > Φ−1(u), which shows (2.9). Now, if Φ−1(u) = 0, then the
first inequality in (2.7) is true by (2.2). If t = Φ−1(u) > 0, then, using (2.10), we
have that Φ(Φ−1(u)) = Φ(t) ≤ u, which is the first inequality in (2.7).

For Φ,Ψ ∈ Φ̄, we write Φ ≈ Ψ if there exists a positive constant C such that

Φ(C−1t) ≤ Ψ(t) ≤ Φ(Ct) for all t ∈ [0,∞].

For functions P,Q : [0,∞] → [0,∞], we write P ∼ Q if there exists a positive
constant C such that

C−1P (t) ≤ Q(t) ≤ CP (t) for all t ∈ [0,∞].

Then, for Φ,Ψ ∈ Φ̄,

(2.11) Φ ≈ Ψ ⇔ Φ−1 ∼ Ψ−1.

Actually we have the following lemma.
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Lemma 2.2. Let Φ,Ψ ∈ Φ̄, and let C be a positive constant. Then

Φ(t) ≤ Ψ(Ct) for all t ∈ [0,∞]

if and only if
Ψ−1(u) ≤ CΦ−1(u) for all u ∈ [0,∞].

Proof. Let Φ(t) ≤ Ψ(Ct) for all t ∈ [0,∞]. If t = Ψ−1(u), then by Proposition 2.1
we have that Ψ(t) = Ψ(Ψ−1(u)) ≤ u and that

Ψ−1(u)/C = t/C ≤ Φ−1(Φ(t/C)) ≤ Φ−1(Ψ(t)) ≤ Φ−1(u).

Conversely, let Ψ−1(u) ≤ CΦ−1(u) for all u ∈ [0,∞]. If u = Ψ(t), then by
Proposition 2.1 we have t ≤ Ψ−1(Ψ(t)) = Ψ−1(u) and

Φ(t/C) ≤ Φ(Ψ−1(u)/C) ≤ Φ(Φ−1(u)) ≤ u = Ψ(t).

Next we recall the definition of the Young function and give its generalization.

Definition 2.2. A function Φ ∈ Φ̄ is called a Young function (or sometimes also
called an Orlicz function) if Φ is convex on [0, b(Φ)).

By the convexity, any Young function Φ is continuous on [0, b(Φ)) and strictly
increasing on [a(Φ), b(Φ)]. Hence Φ is bijective from [a(Φ), b(Φ)] to [0,Φ(b(Φ))].
Moreover, Φ is absolutely continuous on any closed subinterval in [0, b(Φ)). That
is, its derivative Φ′ exists a.e. and

(2.12) Φ(t) =

∫ t

0

Φ′(s) ds, t ∈ [0, b(Φ)).

Definition 2.3. (i) Let ΦY be the set of all Young functions.

(ii) Let Φ̄Y be the set of all Φ ∈ Φ̄ such that Φ ≈ Ψ for some Ψ ∈ ΦY .

(iii) Let Y be the set of all Young functions such that a(Φ) = 0 and b(Φ) = ∞.

For Φ ∈ Φ̄Y , we define the Orlicz space LΦ(Rn) and the weak Orlicz space
wLΦ(Rn). Let L0(Rn) be the set of all complex valued measurable functions on R

n.

Definition 2.4. For a function Φ ∈ Φ̄Y , let

LΦ(Rn) =

{
f ∈ L0(Rn) :

∫

Rn

Φ(ǫ|f(x)|) dx <∞ for some ǫ > 0

}
,

‖f‖LΦ = inf

{
λ > 0 :

∫

Rn

Φ

(
|f(x)|

λ

)
dx ≤ 1

}
,

wLΦ(Ω) =

{
f ∈ L0(Rn) : sup

t∈(0,∞)

Φ(t)m(ǫf, t) <∞ for some ǫ > 0

}
,

‖f‖wLΦ = inf

{
λ > 0 : sup

t∈(0,∞)

Φ(t)m

(
f

λ
, t

)
≤ 1

}
,

where m(f, t) = |{x ∈ R
n : |f(x)| > t}|.
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Then ‖ · ‖LΦ and ‖ · ‖wLΦ are quasi-norms and LΦ(Rn) ⊂ L1
loc(R

n). If Φ ∈ ΦY ,
then ‖ · ‖LΦ is a norm and thereby LΦ(Rn) is a Banach space. For Φ,Ψ ∈ Φ̄Y , if
Φ ≈ Ψ, then LΦ(Rn) = LΨ(Rn) and wLΦ(Rn) = wLΨ(Rn) with equivalent quasi-
norms, respectively. Orlicz spaces are introduced by [28, 29]. For the theory of
Orlicz spaces, see [14, 15, 16, 17, 30] for example.

We note that, for any Young function Φ, we have that

sup
t∈(0,∞)

Φ(t)m(f, t) = sup
t∈(0,∞)

tm(Φ(|f |), t),

and then

‖f‖wLΦ = inf

{
λ > 0 : sup

t∈(0,∞)

Φ(t)m

(
f

λ
, t

)
≤ 1

}

= inf

{
λ > 0 : sup

t∈(0,∞)

t m

(
Φ

(
|f |

λ

)
, t

)
≤ 1

}
.

For the above equality, see [11, Proposition 4.2] for example.

Definition 2.5. (i) A function Φ ∈ Φ̄ is said to satisfy the ∆2-condition, denote
Φ ∈ ∆̄2, if there exists a constant C > 0 such that

(2.13) Φ(2t) ≤ CΦ(t) for all t > 0.

(ii) A function Φ ∈ Φ̄ is said to satisfy the ∇2-condition, denote Φ ∈ ∇̄2, if there
exists a constant k > 1 such that

(2.14) Φ(t) ≤
1

2k
Φ(kt) for all t > 0.

(iii) Let ∆2 = ΦY ∩ ∆̄2 and ∇2 = ΦY ∩ ∇̄2.

Remark 2.1. (i) ∆2 ⊂ Y and ∇̄2 ⊂ Φ̄Y ([15, Lemma 1.2.3]).

(ii) Let Φ ∈ Φ̄Y . Then Φ ∈ ∆̄2 if and only if Φ ≈ Ψ for some Ψ ∈ ∆2, and,
Φ ∈ ∇̄2 if and only if Φ ≈ Ψ for some Ψ ∈ ∇2.

(iii) Let Φ ∈ ΦY . Then Φ ∈ ∆2 if and only if C∞
comp(R

n) is dense in LΦ(Rn), and,
Φ ∈ ∇2 if and only if the Hardy-Littlewood maximal operator M is bounded
on LΦ(Rn).

(iv) Let Φ ∈ ΦY . Then Φ−1 satisfies the doubling condition by its concavity, that
is,

(2.15) Φ−1(u) ≤ Φ−1(2u) ≤ 2Φ−1(u) for all u ∈ [0,∞].
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The following theorem is known, see [15, Theorem 1.2.1] for example.

Theorem 2.3. Let Φ ∈ Φ̄Y . Then M is bounded from LΦ(Rn) to wLΦ(Rn), that
is, there exists a positive constant C0 such that, for all f ∈ LΦ(Rn),

(2.16) ‖Mf‖wLΦ ≤ C0‖f‖LΦ.

Moreover, if Φ ∈ ∇̄2, then M is bounded on LΦ(Rn), that is, there exists a positive
constant C0 such that, for all f ∈ LΦ(Rn),

(2.17) ‖Mf‖LΦ ≤ C0‖f‖LΦ.

See also [3, 12, 13] for the Hardy-Littlewood maximal operator on Orlicz spaces.

3 Main results

The following theorem is an extension of the result in [20] and has been proved in
[4] essentially, by using Hedberg’s method in [9].

Theorem 3.1 ([4]). Let ρ : (0,∞) → (0,∞) satisfy (1.2) and (1.3), and let Φ,Ψ ∈
Φ̄Y . Assume that there exists a positive constant A such that, for all r ∈ (0,∞),

(3.1)

∫ r

0

ρ(t)

t
dt Φ−1(1/rn) +

∫ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ≤ AΨ−1(1/rn).

Then, for any positive constant C0, there exists a positive constant C1 such that,
for all f ∈ LΦ(Rn) with f 6≡ 0,

(3.2) Ψ

(
|Iρf(x)|

C1‖f‖LΦ

)
≤ Φ

(
Mf(x)

C0‖f‖LΦ

)
.

Consequently, Iρ is bounded from LΦ(Rn) to wLΨ(Rn). Moreover, if Φ ∈ ∇̄2, then
Iρ is bounded from LΦ(Rn) to LΨ(Rn).

Remark 3.1. In [4] the condition that Φ,Ψ ∈ ΦY was assumed. We can extend it
to Φ,Ψ ∈ Φ̄Y as Theorem 3.1. Actually, if (3.1) holds for some Φ,Ψ ∈ Φ̄Y , then
take Φ1,Ψ1 ∈ ΦY with Φ ≈ Φ1 and Ψ ≈ Ψ1. Then, instead of Φ and Ψ, Φ1 and Ψ1

satisfy (3.1) for some positive constant A′ by (2.11).

Here, we give some examples of the pair of (ρ,Φ,Ψ) which satisfies the assump-
tion in Theorem 3.1. For other examples, see [21]. See also [18] for the boundedness
of Iρ on Orlicz space LΦ(Ω) with bounded domain Ω ⊂ R

n.

Example 3.1. If ρ(r) = rα, Φ(t) = tp and Ψ(t) = tq with p, q ∈ [1,∞) and
0 < α < n/p, then
∫ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

∫ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ∼ rα−n/p and Ψ−1(1/rn) = r−n/q.
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In this case,

“(3.1)” ⇔ rα−n/p . r−n/q, r ∈ (0,∞) ⇔ α− n/p = −n/q.

Therefore, the Hardy-Littlewood-Sobolev theorem is a corollary of Theorem 3.1.

Example 3.2. Let ρ and Φ be as in (1.4) and in (1.5), respectively, and let Ψ be
as in (1.5) with q instead of p. Assume that α, p, q ∈ (0,∞) and −1/p+α = −1/q.
Then ∫ r

0

ρ(t)

t
dt ∼

{
(log(1/r))−α for small r > 0,

(log r)α for large r > 0,

and
(3.3)

Φ−1(1/rn) ∼

{
(log(1/r))1/p,

(log r)−1/p,
Ψ−1(1/rn) ∼

{
(log(1/r))1/q for small r > 0,

(log r)−1/q for large r > 0.

In this case we have

∫ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

∫ ∞

r

ρ(t) Φ−1(1/tn)

t
dt

∼

{
(log(1/r))−α+1/p for small r > 0,

(log r)α−1/p for large r > 0.

Then the pair (ρ,Φ,Ψ) satisfies (3.1), that is, Iρ is bounded from expLp(Rn) to
expLq(Rn).

Example 3.3. Let α ∈ (0, n), p, q ∈ [1,∞) and −n/p+ α = −n/q. Let

ρ(r) =

{
rα for small r > 0,

e−r for large r > 0.

Then ∫ r

0

ρ(t)

t
dt ∼

{
rα for small r > 0,

1 for large r > 0.

(i) If Φ(r) = rp and Ψ(r) = max(rp, rq), then (3.1) holds. In this case LΦ(Rn) =
Lp(Rn) and LΨ(Rn) = Lp(Rn) ∩ Lq(Rn).

(ii) If Φ(r) = max(0, rp − 1) and Ψ(r) = max(0, rq − 1), then (3.1) holds, since

Φ−1(u) ∼

{
1 for small u > 0,

u1/p for large u > 0,
Φ−1(1/rn) ∼

{
r−n/p for small r > 0,

1 for large r > 0.

In this case LΦ(Rn) = Lp(Rn) + L∞(Rn) and LΨ(Rn) = Lq(Rn) + L∞(Rn).



10 M. Shi, R. Arai and E. Nakai

A function Φ ∈ Y is called an N-function if

lim
t→+0

Φ(t)

t
= 0, lim

t→∞

Φ(t)

t
= ∞.

We say that a function θ : (0,∞) → (0,∞) is almost increasing (resp. almost
decreasing) if there exists a positive constant C such that, for all r, s ∈ (0,∞),

(3.4) θ(r) ≤ Cθ(s) (resp. θ(s) ≤ Cθ(r)), if r < s.

Then we have the following corollary.

Corollary 3.2. Let 1 < s < ∞ and ρ : (0,∞) → (0,∞). Assume that ρ satisfies
(1.2) and that r 7→ ρ(r)/rn/s−ǫ is almost decreasing for some positive constant ǫ.
Then there exist an N-function Ψ and a positive constant C such that, for all r > 0,

(3.5) C−1Ψ−1

(
1

rn

)
≤

1

rn/s

∫ r

0

ρ(t)

t
dt ≤ CΨ−1

(
1

rn

)
.

Moreover, Iρ is bounded from Ls(Rn) to LΨ(Rn).

In the above, (3.5) can be shown by the same way as the proof of [1, Theo-
rem 3.5]. The boundedness of Iρ from Ls(Rn) to LΨ(Rn) is proven by the following
way. First note that ρ satisfies (1.3) by Remark 3.2 below. Let Φ(t) = ts. Then we
have

∫ ∞

r

ρ(t)Φ−1(1/tn)

t
dt =

∫ ∞

r

ρ(t)/tn/s

t
dt .

ρ(r)

rn/s−ǫ

∫ ∞

r

1

t1+ǫ
dt

∼
ρ(r)

rn/s
.

1

rn/s

∫ r

0

ρ(t)

t
dt = Φ−1

(
1

rn

)∫ r

0

ρ(t)

t
dt,

where we used (3.6) below for the last inequality. Combining this and (3.5), we
have (3.1). Then we have the conclusion by Theorem 3.1.

Remark 3.2. If r 7→ ρ(r)/rk is almost decreasing for some positive constant k, then
ρ satisfies (1.3). Actually,

(3.6) sup
r≤t≤2r

ρ(t) ∼ rk sup
r≤t≤2r

ρ(t)

tk
. rk

∫ r

r/2

ρ(t)

tk+1
dt ∼

∫ r

r/2

ρ(t)

t
dt.

Next we state the result on the operator Mρ defined by (1.7) in which we don’t
assume (1.2) or (1.3).

Theorem 3.3. Let ρ : (0,∞) → (0,∞), and let Φ,Ψ ∈ Φ̄Y .
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(i) Assume that there exists a positive constant A such that, for all r ∈ (0,∞),

(3.7)

(
sup
0<t≤r

ρ(t)

)
Φ−1(1/rn) ≤ AΨ−1(1/rn).

Then, for any positive constant C0, there exists a positive constant C1 such
that, for all f ∈ LΦ(Rn) with f 6≡ 0,

(3.8) Ψ

(
Mρf(x)

C1‖f‖LΦ

)
≤ Φ

(
Mf(x)

C0‖f‖LΦ

)
.

Consequently, Mρ is bounded from LΦ(Rn) to wLΨ(Rn). Moreover, if Φ ∈ ∇̄2,
then Mρ is bounded from LΦ(Rn) to LΨ(Rn).

(ii) Conversely, if Mρ is bounded from LΦ(Rn) to wLΨ(Rn), then (3.7) holds for
some A and all r ∈ (0,∞).

Remark 3.3. Let ρ : (0,∞) → (0,∞), and let Φ,Ψ ∈ Φ̄Y .

(i) Let ρ1(r) = sup0<t≤r ρ(t). Then we conclude from the theorem above that
Iρ and Iρ1 have the same boundedness, that is, we may assume that ρ is
increasing.

(ii) Since Φ−1 is pseudo-concave, u 7→ Φ−1(u)/u is almost decreasing, and then
r 7→ Φ−1(1/rn)rn is almost increasing. Therefore, from (3.7) it follows that

r 7→ ρ(r)/rn is dominated by the almost decreasing function r 7→ Ψ−1(1/rn)
Φ−1(1/rn)rn

.

(iii) In [4], under the conditions that Φ,Ψ ∈ ΦY , that ρ is increasing and that r 7→
ρ(r)/rn is decreasing, a necessary and sufficient condition for the boundedness
of Mρ has been given.

Example 3.4. If ρ(r) = rα, Φ(t) = tp and Ψ(t) = tq with p, q ∈ [1,∞) and
0 ≤ α ≤ n/p, then

ρ(r)Φ−1(1/rn) ∼ rα−n/p and Ψ−1(1/rn) = r−n/q.

In this case,

“(3.7)” ⇔ rα−n/p . r−n/q, r ∈ (0,∞) ⇔ α− n/p = −n/q.

In this example, if α = 0, then Mρ is the Hardy-Littlewood maximal operator M
and “(3.7)” ⇔ p = q. If α − n/p = 0, then Mρ is the fractional maximal operator
Mα and it is bounded from Lp(Rn) to L∞(Rn), since we can take

(3.9) Ψ(r) =

{
0 for r ∈ [0, 1],

∞ for r ∈ (1,∞],
and Ψ−1(r) =

{
1 for r ∈ [0,∞),

∞ for r = ∞.
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Example 3.5. Let Φ be as in (1.5), and let Ψ be as in (1.5) with q instead of p.
Assume that α ∈ [0,∞) and p, q ∈ (0,∞). Let

(3.10) ρ(r) =

{
(log(1/r))−α for small r > 0,

(log r)α for large r > 0,

instead of (1.4). Here, we note that, if 0 ≤ α ≤ 1, then
∫ 1

0
ρ(t)
t
dt = ∞, that is,

Iρ is not well defined, while Mρ is well defined. Actually, Mρ is bounded from
expLp(Rn) to expLq(Rn), if −1/p+ α = −1/q for any α ∈ [0,∞), see (3.3) for the
inverse functions of Φ and Ψ. Moreover, if −1/p+α = 0, then Mρ is bounded from
expLp(Rn) to L∞(Rn), since we can take Ψ as in (3.9).

Example 3.6. Assume that α, q ∈ [0,∞) and p ∈ (1,∞). Let ρ be as in (3.10).
ThenMρ is bounded from Lp(Rn) to Lp(logL)p1(Rn), if p1/p = α, where Lp(logL)p1(Rn)
is the Orlicz space LΦ(Rn) with

Φ(r) =

{
rp(log(1/r))−p1 for small r > 0,

rp(log r)p1 for large r > 0.

In this case we have

(3.11) Φ−1(1/rn) ∼

{
r−n/p(log(1/r))−p1/p for small r > 0,

r−n/p(log r)p1/p for large r > 0.

In this example, if we take p = 1, thenMρ is bounded from L1(Rn) to wL1(logL)α(Rn)
which is weak type of L1(logL)α(Rn).

Finally, we state the result on the commutator [b, Iρ]. Let

(3.12) ρ∗(r) =

∫ r

0

ρ(t)

t
dt.

Theorem 3.4. Let ρ, ψ : (0,∞) → (0,∞), and let Φ,Ψ ∈ Φ̄Y . Assume that ρ
satisfies (1.2). Let b ∈ L1

loc(R
n).

(i) Let Φ,Ψ ∈ ∆̄2 ∩ ∇̄2. Assume that ψ be almost increasing and that r 7→
ρ(r)/rn−ǫ is almost decreasing for some ǫ ∈ (0, n). Assume also that there
exists a positive constant A and Θ ∈ ∇̄2 such that, for all r ∈ (0,∞),

∫ r

0

ρ(t)

t
dt Φ−1(1/rn) +

∫ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ≤ AΘ−1(1/rn),(3.13)

ψ(r)Θ−1(1/rn) ≤ AΨ−1(1/rn),(3.14)

and that there exist a positive constant Cρ such that, for all r, s ∈ (0,∞),

(3.15)

∣∣∣∣
ρ(r)

rn
−
ρ(s)

sn

∣∣∣∣ ≤ Cρ |r − s|
ρ∗(r)

rn+1
, if

1

2
≤
r

s
≤ 2.
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If b ∈ L1,ψ(R
n), then [b, Iρ] is bounded from LΦ(Rn) to LΨ(Rn) and there

exists a positive constant C such that, for all f ∈ LΦ(Rn),

(3.16) ‖[b, Iρ]f‖LΨ ≤ C‖b‖L1,ψ
‖f‖LΦ.

(ii) Conversely, assume that there exists a positive constant A such that, for all
r ∈ (0,∞),

Ψ−1(1/rn) ≤ Arαψ(r)Φ−1(1/rn).

If [b, Iα] is well defined and bounded from LΦ(Rn) to LΨ(Rn), then b is in
L1,ψ(R

n) and there exists a positive constant C, independent of b, such that

(3.17) ‖b‖L1,ψ
≤ C‖[b, Iα]‖LΦ→LΨ ,

where ‖[b, Iα]‖LΦ→LΨ is the operator norm of [b, Iα] from LΦ(Rn) to LΨ(Rn).

Example 3.7. Let α ∈ (0, n), β ∈ [0, 1] and p, q ∈ (1,∞), and, let

ρ(r) = rα, ψ(r) = rβ, Φ(r) = rp, Ψ(r) = rq.

Assume that −n/p+α+β = −n/q. Take Θ(r) = rq̃ with −n/q̃ = −n/p+α. Then
(3.13), (3.14) and (3.15) hold, that is, [b, Iα] is bounded from Lp(Rn) to Lq(Rn),
where b ∈ Lipβ(R

n) if β ∈ (0, 1], and b ∈ BMO(Rn) if β = 0 which is Chanillo’s
result in [2].

Example 3.8. Let α ∈ (0, n) and α1 ∈ (−∞,∞). Let β ∈ (0, n) and β1 ∈
(−∞,∞), or, let β = 0 and β1 ∈ [0,∞). Let

ρ(r) =





rα(log(1/r))−α1,

rα,

rα(log r)α1 ,

ψ(r) =





rβ(log(1/r))−β1 for r ∈ (0, 1/e),

rβ for r ∈ [1/e, e],

rβ(log r)β1 for r ∈ (e,∞).

Then ρ∗ ∼ ρ and ρ′(t) ∼ ρ(t)/t. In this case ρ satisfies (3.15), since ρ is Lipschitz
continuous on [1/(2e), 2e], and, for r, s ∈ (0, 1/e] ∪ [e,∞), there exists θ ∈ (0, 1)
such that

∣∣∣∣
ρ(r)

rn
−
ρ(s)

sn

∣∣∣∣ = |r − s|

∣∣∣∣∣
d

dt

(
ρ(t)

tn

)∣∣∣∣
t=(1−θ)r+θs

∣∣∣∣∣ . |r − s|
ρ(r)

rn+1
, if

1

2
≤
r

s
≤ 2.

Let p, q ∈ (1,∞) and p1, q1 ∈ (−∞,∞), and let

Φ(r) =

{
rp(log(1/r))−p1,

rp(log r)p1,
Ψ(r) =

{
rq(log(1/r))−q1 for small r > 0,

rq(log r)q1 for large r > 0.

For the inverse functions of Φ and Ψ, see (3.11). If

−n/p+ α + β = −n/p̃+ β = −n/q, p1/p+ α1 + β1 = p̃1/p̃+ β1 = q1/q,
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and

Θ(r) =

{
rp̃(log(1/r))−p̃1 for small r > 0,

rp̃(log r)p̃1 for large r > 0,

then ∫ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

∫ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ∼ Θ−1(r−n),

and

ψ(r)Θ−1(r−n) ∼ Ψ−1(r−n) ∼

{
r−n/p+α+β(log(1/r))−(p1/p+α1+β1) for small r > 0,

r−n/p+α+β(log r)p1/p+α1+β1 for large r > 0.

In this case [b, Iρ] is bounded from Lp(logL)p1(Rn) to Lq(logL)q1(Rn).

4 Lemmas

In this section we prepare some lemmas to prove our main results.
For a Young function Φ, its complementary function is defined by

Φ̃(t) =

{
sup{tu− Φ(u) : u ∈ [0,∞)}, t ∈ [0,∞),

∞, t = ∞.

Then Φ̃ is also a Young function and Young’s inequality

tu ≤ Φ(t) + Φ̃(u), t, u ∈ [0,∞)

holds. It is also known that

(4.1) t ≤ Φ−1(t)Φ̃−1(t) ≤ 2t, t ≥ 0.

From Young’s inequality we have a generalized Hölder’s inequality:

(4.2)

∫

Rn

|f(x)g(x)| dx ≤ 2‖f‖LΦ‖g‖LΦ̃

(see [35, Theorem 6] and [27, Theorem 2.3]).

Lemma 4.1. Let Φ ∈ ΦY . For a measurable set G ⊂ R
n with finite measure,

‖χG‖LΦ = ‖χG‖wLΦ =
1

Φ−1(1/|G|)
.

From (4.1) it follows that, for the characteristic function χB of the ball B,

(4.3) ‖χB‖LΦ̃ =
1

Φ̃−1(1/|B|)
≤ |B|Φ−1(1/|B|).
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Lemma 4.2 ([1]). Let k > 0 and ρ : (0,∞) → (0,∞). Assume that ρ satisfies (1.2).
Let ρ∗ be as in (3.12). If r 7→ ρ(r)/rk is almost decreasing, then r 7→ ρ∗(r)/rk is
also almost decreasing.

Remark 4.1. Since ρ∗ is increasing with respect to r, if r 7→ ρ(r)/rk is almost
decreasing for some k > 0, then we see that ρ∗ satisfies the doubling condition, that
is, there exists a positive constant C such that, for all r ∈ (0,∞),

ρ∗(r) ≤ ρ∗(2r) ≤ Cρ∗(r).

Lemma 4.3. If Φ ∈ ∆2, then its derivative Φ′ satisfies

Φ′(2t) ≤ CΦΦ
′(t), a.e. t ∈ [0,∞),

where the constant CΦ is independent of t.

Proof. From the convexity of Φ and Φ(0) = 0 it follows that its right derivative
Φ′

+(t) exists for all t ∈ [0,∞) and it is increasing. By (2.12) we have

Φ(t) =

∫ t

0

Φ′(s) ds =

∫ t

0

Φ′
+(s) ds,

since Φ′ = Φ′
+ a.e. Then, for all t ∈ (0,∞),

Φ′
+(2t) ≤

1

t

∫ 3t

2t

Φ′
+(s) ds ≤

1

t
Φ(3t) ≤

CΦ

t
Φ(t) ≤ CΦΦ

′
+(t).

This shows the conclusion.

Lemma 4.4. If Φ ∈ ∇̄2, then Φ((·)θ) ∈ ∇̄2 for some θ ∈ (0, 1).

Proof. If Φ ∈ ∇̄2, then there exists a constant k > 1 such that

Φ(t) ≤
1

2k
Φ(kt).

Take θ ∈ (0, 1) such that k2(1/θ−1) ≤ 2. Then k2 ≤ (2k2)θ and

Φ(tθ) ≤
1

2k
Φ(ktθ) ≤

1

(2k)2
Φ(k2tθ) ≤

1

2(2k2)
Φ((2k2t)θ).

That is, Φ((·)θ) ∈ ∇̄2.

Remark 4.2. There exists Φ ∈ ∇2 such that Φ((·)θ) /∈ ΦY for any θ ∈ (0, 1).
Actually, let

Φ(r) = max(r2, 3r − 2) =






r2, 0 ≤ r ≤ 1,

3r − 2, 1 < r < 2,

r2, 2 ≤ r.

Then Φ is convex and satisfies (2.14) with k = 8. However, 3rθ − 2 is not convex
for any θ ∈ (0, 1).
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5 Proof of Theorem 3.3

In this section we prove Theorem 3.3.

Proof of Theorem 3.3 (i). We may assume that Φ,Ψ ∈ ΦY by (2.11). Let f ∈
LΦ(Rn). We may also assume that ‖f‖LΦ = 1 and Mf(x) > 0 for all x ∈ R

n. For
any x ∈ R

n and any ball B = B(z, r) ∋ x, if

Φ

(
Mf(x)

C0

)
≥

1

rn
,

then, by (4.2), ‖f‖LΦ = 1, (4.3), the doubling condition of Φ−1 and (3.7), we have

ρ(r)−

∫

B

|f | ≤ 2
ρ(r)

|B|
‖χB‖LΦ̃ ≤ 2

ρ(r)

|B|
|B|Φ−1

(
1

|B|

)

. ρ(r)Φ−1

(
1

rn

)
≤ AΨ−1

(
1

rn

)
≤ AΨ−1

(
Φ

(
Mf(x)

C0

))
.

Conversely, if

Φ

(
Mf(x)

C0

)
≤

1

rn
,

then, choosing t0 ≥ r such that

Φ

(
Mf(x)

C0

)
=

1

t0
n ,

and using (3.7) and (2.7), we have

ρ(r) ≤ sup
0<t≤t0

ρ(t) ≤ A
Ψ−1

(
Φ
(
Mf(x)
C0

))

Φ−1
(
Φ
(
Mf(x)
C0

)) ≤ A
Ψ−1

(
Φ
(
Mf(x)
C0

))

Mf(x)
C0

,

which implies

ρ(r)−

∫

B

|f | ≤ AC0

Ψ−1
(
Φ
(
Mf(x)
C0

))

Mf(x)
−

∫

B

|f | ≤ AC0Ψ
−1

(
Φ

(
Mf(x)

C0

))
.

Hence, we have

Mρf(x) ≤ C1Ψ
−1

(
Φ

(
Mf(x)

C0

))
,

which shows (3.8) by (2.7).

To prove Theorem 3.3 (ii) we need the following lemma.
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Lemma 5.1. Let ρ : (0,∞) → (0,∞). Then, for all x ∈ R
n and r ∈ (0,∞),

(5.1)

(
sup
0<t≤r

ρ(t)

)
χB(0,r)(x) ≤ (MρχB(0,r))(x).

Proof. Let x ∈ B(0, r). If t ≤ r, then we can choose a ball B(z, t) such that
x ∈ B(z, t) ⊂ B(0, r). Hence,

ρ(t) = ρ(t)−

∫

B(z,t)

χB(0,r)(y) dy ≤ (MρχB(0,r))(x).

Therefore, we have (5.1).

Proof of Theorem 3.3 (ii). By Lemma 5.1 and the boundedness ofMρ from LΦ(Rn)
to wLΨ(Rn) we have

(
sup
0<t≤r

ρ(t)

)
‖χB(0,r)‖wLΨ ≤ ‖MρχB(0,r)‖wLΨ . ‖χB(0,r)‖LΦ .

Then, by Lemma 4.1 and the doubling condition of Φ−1 and Ψ−1 we have the
conclusion.

6 Sharp maximal operators

In this section, to prove Theorem 3.4, we prove two propositions involving the sharp
maximal operator M ♯ defined by (1.6).

First we state the John-Nirenberg type theorem for the Campanato space, which
is known by [25, Theorem 3.1] for spaces of homogeneous type. See also [1] for its
proof in the case of Rn.

Theorem 6.1. Let p ∈ (1,∞) and ψ : (0,∞) → (0,∞). Assume that ψ is almost
increasing. Then Lp,ψ(R

n) = L1,ψ(R
n) with equivalent norms.

Proposition 6.2. Assume that ρ : (0,∞) → (0,∞) satisfies (1.2). Let ρ∗(r) be
as in (3.12). Assume that ψ is almost increasing, that r 7→ ρ(r)/rn−ǫ is almost
decreasing for some ǫ > 0 and that the condition (3.15) holds. Then, for any
η ∈ (1,∞), there exists a positive constant C such that, for all b ∈ L1,ψ(R

n),
f ∈ C∞

comp(R
n) and x ∈ R

n,

(6.1) M ♯([b, Iρ]f)(x) ≤ C‖b‖L1,ψ

((
Mψη(|Iρf |

η)(x)
)1/η

+
(
M(ρ∗ψ)η(|f |

η)(x)
)1/η

)
.

To prove the proposition we need the following known lemma, for its proof, see
Lemma 4.7 and Remark 4.1 in [1] for example.
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Lemma 6.3. Let p ∈ [1,∞). Assume that ψ is almost increasing. Then there
exists a positive constant C such that, for all f ∈ L1,ψ, x ∈ R

n and r, s ∈ (0,∞),

(
−

∫

B(x,s)

|f(y)− fB(x,r)|
p dy

)1/p

≤ C
(
1 + log2

s

r

)
ψ(s) ‖f‖L1,ψ

, if r ≤ s.

Proof of Proposition 6.2. For any ball B = B(x, t), let f = f1+ f2 with f1 = fχ2B,
and let

F1(y) = (b(y)− b2B)Iρf(y),

F2(y) = Iρ((b− b2B)f1)(y),

F3(y) = Iρ((b− b2B)f2)(y)− CB,

for y ∈ B, where CB = Iρ((b− b2B)f2)(x) and

Iρ((b− b2B)f2)(y) =

∫

Rn

ρ(|y − z|)

|y − z|n
(b(z)− b2B)f2(z) dz, y ∈ B.

Then we have

[b, Iρ]f + CB = [b− b2B, Iρ]f + CB = F1 − F2 − F3.

We show that

(6.2) −

∫

B

|Fi(y)| dy

≤ C‖b‖L1,ψ

((
Mψη(|Iρf |

η)(x)
)1/η

+
(
M(ρ∗ψ)η(|f |

η)(x)
)1/η

)
, i = 1, 2, 3.

Then we have the conclusion.

Now, by Hölder’s inequality with 1/η + 1/η′ = 1 and Theorem 6.1 we have

−

∫

B

|F1(y)| dy ≤

(
−

∫

B

|b(y)− b2B|
η′ dy

)1/η′ (
−

∫

B

|Iρf(y)|
η dy

)1/η

=
1

ψ(t)

(
−

∫

B

|b(y)− b2B|
η′ dy

)1/η′ (
ψ(t)η −

∫

B

|Iρf(y)|
η dy

)1/η

. ‖b‖L1,ψ

(
Mψη(|Iρf |

η)(x)
)1/η

.

Choose v ∈ (1, η) such that n/v−ǫ/2 ≥ n−ǫ. Then by the almost decreasingness of
r 7→ ρ(r)/rn−ǫ we have the almost decreasingness of r 7→ ρ(r)/rn/v−ǫ/2. Hence, from
Corollary 3.2 it follows that there exists an N-function Ψ such that Iρ is bounded
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from Lv(Rn) to LΨ(Rn). Let Ψ̃ be the complementary function of Ψ. Then by the
generalized Hölder’s inequality (4.2), (4.3), (3.5) and the boundedness of Iρ we have

−

∫

B

|F2(y)| dy ≤
2

|B|
‖χB‖LΨ̃(Rn)‖F2‖LΨ(Rn)

. Ψ−1(1/|B|)‖(b− b2B)f1‖Lv(Rn)

.
ρ∗(t)

|B|1/v
‖(b− b2B)f‖Lv(2B).

Let 1/v = 1/u+ 1/η. Then by Hölder’s inequality and Theorem 6.1 we have

−

∫

B

|F2(y)| dy

. ρ∗(t)

(
−

∫

2B

|b(y)− b2B|
u dy

)1/u(
−

∫

2B

|f(y)|η dy

)1/η

.
1

ψ(2t)

(
−

∫

2B

|b(y)− b2B|
u dy

)1/u(
(ρ∗(2t)ψ(2t))η −

∫

2B

|f(y)|η dy

)1/η

. ‖b‖L1,ψ

(
M(ρ∗ψ)η (|f |

η)(x)
)1/η

.

Finally, using the relation

1

2
≤

|y − z|

|x− z|
≤ 2 for y ∈ B and z /∈ 2B

and (3.15), we have

|F3(y)| = |Iρ((b− b2B)f2)(y)− Iρ((b− b2B)f2)(x)|

=

∣∣∣∣
∫

Rn

(
ρ(|y − z|)

|y − z|n
−
ρ(|x− z|)

|x− z|n

)
(b(z)− b2B)f2(z) dz

∣∣∣∣

.

∫

Rn\2B

|x− y|ρ∗(|x− z|)

|x− z|n+1
|b(z)− b2B||f(z)| dz

=
∞∑

j=0

∫

2j+2B\2j+1B

|x− y|ρ∗(|x− z|)

|x− z|n+1
|b(z)− b2B ||f(z)| dz.

By the doubling condition of ρ∗ (see Remark 4.1), Hölder’s inequality and Lemma 6.3
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we have
∫

2j+2B\2j+1B

|x− y|ρ∗(|x− z|)

|x− z|n+1
|b(z)− b2B||f(z)| dz

.
tρ∗(2j+2t)

(2j+2t)n+1

∫

2j+2B\2j+1B

|b(z)− b2B||f(z)| dz

.
ρ∗(2j+2t)

2j+2

(
−

∫

2j+2B

|b(z)− b2B |
η′ dz

)1/η′ (
−

∫

2j+2B

|f(z)|η dz

)1/η

≤
j + 2

2j+2
‖b‖L1,ψ

(
(ρ∗(2j+2t)ψ(2j+2t))η −

∫

2j+2B

|f(z)|η dz

)1/η

.

Then

|F3(y)| . ‖b‖L1,ψ

∞∑

j=0

j + 2

2j+2

(
(ρ∗(2j+2t)ψ(2j+2t))η −

∫

2j+2B

|f(z)|η dz

)1/η

. ‖b‖L1,ψ

(
M(ρ∗ψ)η(|f |

η)(x)
)1/η

,

which shows

−

∫

B

|F3(y)| dy . ‖b‖L1,ψ

(
M(ρ∗ψ)η(|f |

η)(x)
)1/η

.

Therefore, we have (6.2) and the conclusion.

Next we define the dyadic maximal operator Mdy. We denote by Qdy the set of
all dyadic cubes, that is,

Qdy =

{
Qj,k =

n∏

i=1

[2−jki, 2
−j(ki + 1)) : j ∈ Z, k = (k1, . . . , kn) ∈ Z

n

}
.

Then we define

Mdyf(x) = sup
R∈Qdy, R∋x

−

∫

R

|f(y)| dy, x ∈ R
n,

where the supremum is taken over all R ∈ Qdy containing x.
Next we prove the following proposition.

Proposition 6.4. Let Φ ∈ ∆2. If Mdyf ∈ LΦ(Rn), then

(6.3) ‖Mdyf‖LΦ ≤ C‖M ♯f‖LΦ.

where C is a positive constant which is dependent only on n and Φ.

The following lemma is well known as the good lambda inequality, see [7, The-
orem 3.4.4.] for example.
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Lemma 6.5. For all γ > 0, all λ > 0, and all locally integrable functions f on R
n,

the following estimate holds.

|{x ∈ R
n :Mdyf(x) > 2λ,M ♯f(x) ≤ γλ}| ≤ 2nγ|{x ∈ R

n :Mdyf(x) > λ}|.

Proof of Proposition 6.4. For a positive real number N we set

IN =

∫ N

0

Φ′(λ)|{x ∈ R
n :Mdyf(x) > λ}| dλ.

We note that IN ≤
∫
Rn

Φ(Mdyf(x)) dx <∞. By Lemma 4.3 we have

IN = 2

∫ N/2

0

Φ′(2λ)|{x ∈ R
n :Mdyf(x) > 2λ}| dλ

≤ 2CΦ

∫ N/2

0

Φ′(λ)|{x ∈ R
n :Mdyf(x) > 2λ}| dλ.

Then, using the good lambda inequality, we obtain the following sequence of in-
equalities:

IN ≤ 2CΦ

∫ N/2

0

Φ′(λ)|{x ∈ R
n :Mdyf(x) > 2λ ,M ♯f(x) ≤ γλ }| dλ

+ 2CΦ

∫ N/2

0

Φ′(λ)|{x ∈ R
n :M ♯f(x) > γλ}| dλ

≤ 2n+1CΦγ

∫ N/2

0

Φ′(λ)|{x ∈ R
n :Mdyf(x) > λ}| dλ

+ 2CΦ

∫ N/2

0

Φ′(λ)|{x ∈ R
n :M ♯f(x) > γλ}| dλ

≤ 2n+1CΦγIN + 2CΦ
1

γ

∫ Nγ/2

0

Φ′(λ/γ)|{x ∈ R
n :M ♯f(x) > λ}| dλ.

At this point we let 2n+1CΦγ = 1/2. Since IN is finite, we can substract from both
sides of the inequality the quantity IN/2 to obtain

IN ≤ 2n+4C2
Φ

∫ N/(2n+3CΦ)

0

Φ′(2n+2CΦλ)|{x ∈ R
n :M ♯f(x) > λ}| dλ

≤ Cn,Φ

∫ ∞

0

Φ′(λ)|{x ∈ R
n :M ♯f(x) > λ}| dλ,

where Cn,Φ is a constant dependent only on n and Φ, from which we obtain
∫

Rn

Φ(Mdyf(x)) dx ≤ Cn,Φ

∫

Rn

Φ(M ♯f(x)) dx.

This shows (6.3).
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7 Proof of Theorem 3.4

We first note that, for θ ∈ (0,∞),

(7.1) ‖|g|θ‖LΦ =
(
‖g‖

LΦ((·)θ)

)θ
.

Lemma 7.1. Under the assumption in Theorem 3.4 (i), if f ∈ L∞
comp(R

n), then
Iρf ∈ LΨ(Rn).

Proof. If f ∈ L∞
comp(R

n), then f ∈ LΦ(Rn), since L∞
comp(R

n) ⊂ LΦ(Rn). By (3.13)
and Theorem 3.1 Iρ is bounded from LΦ(Rn) to LΘ(Rn). Then Iρf is in LΘ(Rn).
On the other hand, since r 7→ ρ(r)/rn−ǫ is almost decreasing, if the support of f is
in B(0, R), then

|Iρf(x)| ≤ ‖f‖L∞

∫

B(0,R)

ρ(|x− y|)

|x− y|n−ǫ
dy . ‖f‖L∞

∫ R

0

ρ(t)

t1−ǫ
dt <∞.

Then Iρf is in LΘ(Rn) ∩ L∞(Rn).
Next, by (3.14) and the almost increasingness of ψ we have

Θ−1(1/rn) .
Ψ−1(1/rn)

ψ(r)
.

Ψ−1(1/rn)

ψ(1)
for r ≥ 1,

and then
Θ−1(u) . Ψ−1(u) for u ≤ 1.

Hence, we conclude that

Ψ(t) ≤

{
Θ(Ct), t ≤ 1,

∞, t > 1,

which shows that LΘ(Rn) ∩ L∞(Rn) ⊂ LΨ(Rn).

Proof of Theorem 3.4 (i). We may assume that Φ,Ψ ∈ ∆2 ∩ ∇2 and Θ ∈ ∇2. We
may also assume that b is real valued, since the commutator [b, Iρ]f is linear with
respect to b and ‖ℜ(b)‖L1,ψ

, ‖ℑ(b)‖L1,ψ
≤ ‖b‖L1,ψ

. Let

bk(x) =





k, if b(x) > k,

b(x), if − k ≤ b(x) ≤ k,

−k, if b(x) < −k.

Then bk ∈ L∞(Rn) and ‖bk‖L1,ψ
≤ (9/4)‖b‖L1,ψ

. For f ∈ C∞
comp(R

n), bkf lies in
L∞
comp(R

n), thus Iρ(bkf) lies in LΨ(Rn) by Lemma 7.1. Likewise, bkIρf also lies
in LΨ(Rn). Since Ψ ∈ ∇2, M

dy[b, Iρ]f is also in LΨ(Rn). From this fact and
Propositions 6.2 and 6.4 it follows that

‖[bk, Iρ]f‖LΨ ≤ ‖Mdy([bk, Iρ]f)‖LΨ . ‖M ♯([bk, Iρ]f)‖LΨ

. ‖b‖L1,ψ

(∥∥∥
(
Mψη(|Iρf |

η)
)1/η∥∥∥

LΨ
+
∥∥∥
(
M(ρ∗ψ)η(|f |

η)
)1/η∥∥∥

LΨ

)
,
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here, we can choose η ∈ (1,∞) such that Φ((·)1/η), Ψ((·)1/η) and Θ((·)1/η) are in
∇̄2 by Lemma 4.4. We show that

∥∥∥
(
Mψη(|Iρf |

η)
)1/η∥∥∥

LΨ
+
∥∥∥
(
M(ρ∗ψ)η (|f |

η)
)1/η∥∥∥

LΨ
. ‖f‖LΦ,

where we note that ψη and (ρ∗ψ)η are almost increasing.
By Theorems 3.1 and 3.3 we see that Iρ is bounded from LΦ(Rn) to LΘ(Rn)

and Mψη is bounded from LΘ((·)1/η)(Rn) to LΨ((·)1/η)(Rn), respectively. Then, using
(7.1), we have

∥∥∥
(
Mψη(|Iρf |

η)
)1/η∥∥∥

LΨ
=

(
‖Mψη(|Iρf |

η)‖
LΨ((·)1/η)

)1/η

.
(
‖|Iρf |

η‖
LΘ((·)1/η)

)1/η
= ‖Iρf‖LΘ . ‖f‖LΦ.

From (3.13) and (3.14) it follows that

(ρ∗(r)ψ(r))η
(
Φ−1(1/rn)

)η
≤ A2η

(
Ψ−1(1/rn)

)η
.

By using Theorem 3.3, we have the boundedness of M(ρ∗ψ)η from LΦ((·)1/η) to

LΨ((·)1/η). That is,
∥∥∥
(
M(ρ∗ψ)η(|f |

η)
)1/η∥∥∥

LΨ
=

(∥∥M(ρ∗ψ)η (|f |
η)
∥∥
LΨ((·)1/η)

)1/η

.
(
‖|f |η‖

LΦ((·)1/η)

)1/η
= ‖f‖LΦ.

Therefore, we obtain

‖[bk, Iρ]f‖LΨ . ‖b‖L1,ψ
‖f‖LΦ for all f ∈ C∞

comp(R
n).

By the standard argument (see [7, p. 240] for example) we deduce that, for some
subsequence of integers kj , [bkj , Iρ]f → [b, Iρ]f a.e. Letting j → ∞ and using
Fatou’s lemma, we have

‖[b, Iρ]f‖LΨ . ‖b‖L1,ψ
‖f‖LΦ for all f ∈ C∞

comp(R
n).

Since C∞
comp(R

n) is dense in LΦ(Rn) (see Remark 2.1 (ii)), it follows that the com-
mutator admits a bounded extension on LΦ(Rn) that satisfies (3.16).

Proof of Theorem 3.4 (ii). We use the method by Janson [10]. Since |z|n−α is in-
finitely differentiable in an open set, we may choose z0 6= 0 and δ > 0 such that
|z|n−α can be expressed in the neighborhood |z − z0| < 2δ as an absolutely con-
vergent Fourier series, |z|n−α =

∑
aje

ivj ·z. (The exact form of the vectors vj is
irrelevant.)

Set z1 = z0/δ. If |z − z1| < 2, we have the expansion

|z|n−α = δ−n+α|δz|n−α = δ−n+α
∑

aje
ivj ·δz.
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Choose now any ball B = B(x0, r). Set y0 = x0 − rz1 and B′ = B(y0, r). Then, if
x ∈ B and y ∈ B′,

∣∣∣∣
x− y

r
− z1

∣∣∣∣ ≤
∣∣∣∣
x− x0
r

∣∣∣∣+
∣∣∣∣
y − y0
r

∣∣∣∣ < 2.

Denote sgn(f(x)− fB′) by s(x). Then
∫

B

|b(x)− bB′ | dx =

∫

B

(b(x)− bB′)s(x) dx =
1

|B′|

∫

B

∫

B′

(b(x)− b(y))s(x) dy dx

=
1

|B′|

∫

Rn

∫

Rn

(b(x)− b(y))
rn−α

∣∣x−y
r

∣∣n−α

|x− y|n−α
s(x)χB(x)χB′(y) dy dx

=
rn−αδ−n+α

|B′|

∫

Rn

∫

Rn

b(x)− b(y)

|x− y|n−α

∑
aje

ivj ·δ
x−y
r s(x)χB(x)χB′(y) dy dx.

Here, we set C = δ−n+α|B(0, 1)|−1 and

gj(y) = e−ivj ·δ
y
rχB′(y), hj(x) = eivj ·δ

x
r s(x)χB(x).

Then
∫

B

|b(x)− bB′ | dx = Cr−α
∑

aj

∫

Rn

∫

Rn

b(x)− b(y)

|x− y|n−α
gj(y)hj(x) dy dx

= Cr−α
∑

aj

∫

Rn

([b, Iα]gj)(x)hj(x) dx

≤ Cr−α
∑

|aj |

∫

Rn

|([b, Iα]gj)(x)||hj(x)| dx

= Cr−α
∑

|aj|

∫

B

|([b, Iα]gj)(x)| dx

≤ 2Cr−α
∑

|aj |‖χB‖LΨ̃‖[b, Iα]gj‖LΨ

≤ 2Cr−α‖[b, Iα]‖LΦ→LΨ |B|Ψ−1(|B|−1)
∑

|aj|‖gj‖LΦ .

Since ‖gj‖LΦ = ‖χB′‖LΦ = 1/Φ−1(|B′|−1) ∼ 1/Φ−1(r−n), we have

1

ψ(B)
−

∫

B

|b(x)− bB′ | dx . ‖[b, Iα]‖LΦ→LΨ

Ψ−1(r−n)

rαψ(B)Φ−1(r−n)
. ‖[b, Iα]‖LΦ→LΨ.

That is, ‖b‖L(1,ψ) . ‖[b, Iα]‖LΦ→LΨ and we have the conclusion.
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