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Abstract. We investigate the topologies of random geometric complexes built over random points
sampled on Riemannian manifolds in the so-called “thermodynamic” regime. We prove the existence
of universal limit laws for the topologies; namely, the random normalized counting measure of
connected components (counted according to homotopy type) is shown to converge in probability
to a deterministic probability measure. Moreover, we show that the support of the deterministic
limiting measure equals the set of all homotopy types for Euclidean connected geometric complexes
of the same dimension as the manifold.

1. Introduction

Sarnak and Wigman [19] recently established, utilizing methods developed by Nazarov and Sodin
[15], the existence of universal limit laws for the topologies of nodal sets of random band-limited
functions on Riemannian manifolds. In the current paper, we adapt these methods to the setting
of random geometric complexes, that is, simplicial complexes with vertices arising from a random
point process and faces determined by distances between vertices.

Kahle [13] made the first extensive investigation into the topology of random geometric complexes
generated by a point process in Euclidean space (zero-dimensional homology of random geometric
graphs were also investigated earlier in [17]). The expectation of each Betti number is studied
within three main phases or regimes based on the relation between density of points and radius of
the neighborhoods determining the complex: the subcritical regime (or “dust phase”) where there are
many connected components with little topology, the critical regime (or “thermodynamic regime”)
where topology is the richest (and where the percolation threshold appears), and the supercritical
regime where the connectivity threshold appears. The thermodynamic regime is seen to have the
most intricate topology. Many cycles of various dimensions begin to form as we enter this regime
and many cycles become boundaries as we leave this regime.

Random geometric complexes on Riemannian manifolds were studied earlier in the influential
work [16] of Niyogi, Smale, and Weinberger, where the manifold is embedded in Euclidean space
and the distance between vertices is given by the ambient Euclidean distance.1 The main question
in [16] is motivated by applications in “manifold learning” and concerns the recovery of the topology
of a manifold via a random sample of points on the manifold. Consequently, the authors only
consider a certain window within the supercritical regime. The subsequent study [5] includes the
thermodynamic regime where they provide upper and lower bounds of the same order of growth for
each Betti number.

Yogeshwaran, Subag, and Adler [20] established limit laws (including a central limit theorem)
in the thermodynamic regime for Betti numbers of random geometric complexes built over Poisson
point processes in Euclidean space. More recently, Goel, Trinh, and Tsunoda [11] established a
limit law in the thermodynamic regime for Betti numbers of random geometric complexes built over

1In the current paper, where our manifold is not necessarily embedded, we use geodesic distance to build the
complexes. If the manifold happens to be embedded, it can be seen, using Lemma 2.1, that the same limit law stated
in Theorem 1.1 holds when using the ambient Euclidean distance.
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(possibly inhomogeneous) Poisson point processes in Euclidean space, where they also addressed the
case when the point process is supported on a submanifold.

Hiraoka, Shirai, and Trinh [12] proved a limit law for so-called “persistent” Betti numbers. Al-
though this goes in a rather separate direction motivated by topological data analysis, the formalism
they use for describing the convergence of the persistence diagram has a loose resemblance to the
setup of the current paper in that they introduce a sequence of random measures and show that it
converges in an appropriate sense to a deterministic measure.

A survey of other results on random geometric complexes is provided in [4]. Most progress in this
area has been made only recently, but the problem of studying the topology of a random geometric
complex (or equivalently the ε-neighborhood of a random point cloud) can be traced back to one of
Arnold’s problems (see the historical note at the end of the introduction).

A novelty of the current paper is that, whereas previous studies of random geometric complexes
have focused on Betti numbers, we consider enumeration of connected components according to
homotopy type, a count that provides more refined topological information.

1.1. The Riemannian case. Let (M, g) be a compact Riemannian manifold of dimension dim(M) =
d, with normalized volume form Vol(M) = 1. Let Un = {p1, . . . , pn} be a random set of points in-
dependently sampled from the uniform distribution on M . We denote by B̂(x, r) the Riemannian
ball2 centered at x ∈M of radius r > 0. We fix a positive number α > 0 and build the random set:

(1.1) Un =
n⋃
k=1

B̂(pk, αn
−1/d).

We denote by Č(Un) the corresponding Cech complex (which for n > 0 large enough, is homotopy
equivalent to Un itself, see Lemma 2.1 below).

Let now Ĝ be the set of equivalence classes of M -geometric, connected simplicial complexes, up
to homotopy equivalence (observe that this is a countable set). In other words, Ĝ consists of all
the connected simplicial complexes that arise as Cech complexes of some finite family of balls in
M . Note that different manifolds give rise to different sets Ĝ. For example, among all Rd-geometric
complexes we cannot find complexes with nonzero d-th Betti number; but ifM = Sd, such complexes
belong to Ĝ. When M = Rd we simply denote this set by G.

Given Un as above, we define the random probability measure µ̂n on Ĝ:

µ̂n =
1

b0(Č(Un))

∑
δ[s],

where the sum is over all connected components s of Un, [s] denotes the type of s (i.e., the equivalence
class of all connected complexes homotopy equivalent to s), and b0 denotes the number of connected
components.

Remark 1. The next theorem deals with the convergence of the random measure µ̂n in the limit
n→∞.We endow the set P of probability measures on the countable set Ĝ with the total variation
distance:

d(µ1, µ2) = sup
A⊂Ĝ
|µ1(A)− µ2(A)| .

In this way µ̂n is a random variable with values in the metric space (P, d). Convergence in probability
(which is used in Theorem 1.1 and Theorem 1.3) of a sequence of random variables {µn}n∈N to a
limit µ means that for every ε > 0 we have limn→∞ P{d(µn, µ) > ε} = 0.

2In this paper we adopt the convention that when an object is denoted with a “hat” sign, then it is related to M.

Analogous objects related to Euclidean space will have no “hat”. For example a ball in M is denoted by B̂(x, r) and
a ball in Rd by B(x, r).
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Figure 1. A geometric complex in the plane which is homotopy equivalent to S1 ∪
{p1}∪{p2}. The corresponding measure on the set of homotopy classes of connected,
simplicial complexes is: µ̂ = 1

3

(
δ[S1] + 2δ[pt]

)
. Theorem 1.1 says that as n → ∞ the

random measure µ̂n converges to a deterministic measure.

Theorem 1.1. The random measure µ̂n converges in probability to a universal deterministic prob-
ability measure µ ∈P supported on the set G of connected Rd-geometric complexes.

The “universal” in the previous statement means that µ does not depend on the manifold M (but
it depends on its dimension d and on the parameter α).

Remark 2. Since G is a proper subset of Ĝ, the measure µ does not charge some points in Ĝ. This
is consistent with the findings of [6] where it was shown that an additional factor of log n is needed
in the radii of the balls defining Un in order to see the so-called “connectivity threshold” where
nontrivial d-dimensional homology appears.

Remark 3. In the one-dimensional case d = 1, the set G contains only one element: the class of the
point (since any connected geometric complex in R is contractible). The case d = 2 is already more
interesting, since in this case G = {[wk]}k∈N where wk is the wedge of k-circles (k = 0 is the point).
In general the support of µ is more difficult to describe.

Remark 4. We can write the limiting measure µ as:

µ =
∑
γ∈G

aγδγ

for some non-negative constants aγ , γ ∈ G, which depend on the α > 0 appearing in (1.1), and
satisfy aγ = cγ/c with cγ , c defined in Proposition 3.1. All of the coefficients aγ are strictly positive
by Proposition 3.2.

The following result is related to the positivity of all coefficients aγ . While it is not needed for
showing such positivity (which follows from Proposition 3.2), it provides additional information on
the prevalence of localized components with prescribed homotopy type throughout the manifold, see
Section 6.

Proposition 1.2 (Existence of all topologies). Let P0 ⊂ Rd be a finite geometric complex and α > 0.
There exist R, a > 0 (depending on P0 and α but independent ofM and n) such that for every p ∈M
and for n large enough:

P
{
Un ∩ B̂(p,Rn−1/d) ' P0

}
> a.
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Remark 5. Let us point out an interesting consequence of the previous Proposition 1.2: given a
compact, embedded manifold M0 ↪→ Rd, then for R > 0 large enough with positive probability the
pair (Rd,M0) is homotopy equivalent to the pair (B̂(p,Rn−1/d),Un ∩ B̂(p,Rn−1/d)). This follows
from the fact that, by [16, Proposition 3.1], one can cover M0 with (possibly many) small Euclidean
balls M0 ⊂

⋃`
k=1B(pk, ε) = U with the inclusion M0 ↪→ U a homotopy equivalence – hence the pair

(Rd,M0) is homotopy equivalent to a pair (Rd,P0) with P0 a Rd-geometric complex.

1.2. The local model (the Euclidean case). The proof of Theorem 1.1 for the Riemannian case
involves a study of a rescaled version of the problem in a small neighborhood of a given point.
Specifically, one can fix R > 0 and a point p ∈M and study the asymptotic structure of our random
complex in the ball B̂(p,Rn−1/d). The random geometric complex that we obtain in the n → ∞
limit can be described as follows.

Let P = {p1, p2, . . .} be a set of points sampled from the standard spatial Poisson distribution on
Rd and for α > 0 consider the random set:

P =
⋃
p∈P

B(p, α).

We also define PR to be the subset of P consisting of all the connected components of P that are
completely contained in the interior of B(0, R). Note that each B(p, α) is now convex, and, by the
Nerve Lemma, PR is homotopy equivalent to the simplicial complex Č(PR). The relation between
Un ∩ B̂(p,Rn−1/d) and PR is described in Theorem 4.1.

Similarly to what we have done above, we define the random probability measure µR on the set
G of homotopy types of finite and connected Rd-geometric complexes:

µR =
1

b0(Č(PR))

∑
δ[s],

where the sum is over all connected components s of PR. The following result provides a limit law
for µR.

Theorem 1.3. The family of random measures µR converges in probability to a deterministic prob-
ability measure µ ∈P whose support is all of G.

It is important to note that the limiting measure µ appearing in Theorem 1.3 is the same one
appearing in Theorem 1.1 (this explains the statement on the support of the limiting measure in
Theorem 1.1).

Besides their positivity, little is known about the coefficients aγ in µ, and a worthwhile compu-
tational problem would be to perform Monte Carlo simulations in order to estimate their numerical
values and how they depend on α. Concerning dependence on α, a direction that has been suggested
to us by Matthew Kahle is to study whether the dependence of µ on α exhibits any interesting behav-
ior related to the “percolation threshold” (recalling that our random geometric complex is associated
to continuum percolation with disks for which existence of a percolation threshold α = αc is known
[14]).

While this paper was under review, K. A. Dowling and the third author posted a preprint [10]
further adapting these methods to study the limiting homotopy distribution for random cubical
complexes associated to Bernoulli site percolation on a cubical grid, where it was shown that the
limiting homotopy measure has an exponentially decaying tail for subcritical percolation and a
subexponential tail (slower than exponential decay) for supercritical percolation. It is then natural
to pose a specific version of the above problem suggested by M. Kahle, namely, to investigate the tail
decay of µ in the current setting of random geometric graphs and to determine whether it exhibits
a phase transition at the percolation threshold α = αc (see [10, Concluding Remarks]).
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Outline of the paper. We prove Theorem 1.3 addressing the Euclidean setting in Section 3. In
Section 4, we establish the “semi-local” result involving a double-scaling limit within a neighborhood
on the manifold, and in Section 5 we collect the semi-local information throughout the manifold in
order to prove the global result Theorem 1.1 for the manifold setting. We prove Proposition 1.2 in
Section 6. Section 2 contains some basic tools used throughout the paper, including the integral
geometry sandwiches that play an essential role.

Historical Note. The study of the topology of random simplicial complexes has taken shape only
recently with intense activity in the past few years, but it is worth mentioning (as it seems to
have been forgotten) that this theme was proposed by V.I. Arnold in the early 1970s, with specific
attention given to random geometric complexes in the thermodynamic regime. In the collection [1]
of Arnold’s problems, the 28th problem from 1973 states (notice that the set considered is homotopy
equivalent to a geometric complex by the nerve lemma):

Consider a random set of points in Rd with density λ. Let V (α) be the α-neighborhood of this set.
Consider the averaged Betti numbers

βi(α, λ) := lim
R→∞

bi(V (α) ∩B(0, R))

Rd
.

Investigate these numbers.

Acknowledgements. This work was initiated during the conference “Stochastic Topology and
Thermodynamic Limits” that was hosted at ICERM, and part of the work was completed dur-
ing a second week-long visit to ICERM through the collaborate@ICERM program. The authors
wish to thank the institute for their support and for a pleasant and hospitable work environment.
The authors would also like to thank the anonymous referee for a careful reading of the paper and
many helpful comments regarding the exposition. This research was conducted while A.A. was
supported by NSF Grant CAREER DMS-1653552.

2. Preliminary material

In this section we collect some basic tools used throughout the paper.

2.1. Geometry. A subset A of a Riemannian manifold (M, g) is called strongly convex if for any
pair of points y1, y2 ∈ clos(A) there exists a unique minimizing geodesic joining these two points
such that its interior is entirely contained in A (see [7, 9]).

Lemma 2.1. Let (M, g) be a compact Riemannian manifold. There exists r0 > 0 such that for
every point x ∈ M and every r < r0 the ball B̂(x, r) is strongly convex and contractible. Moreover
for every x1, . . . , xk ∈ M and 0 < r1, . . . , rk < r0 the set

⋂k
j=1 B̂(xj , rj) is also strongly convex and

contractible. In particular, by the Nerve Lemma, the set
⋃k
j=1 B̂(xj , rj) is homotopy equivalent to

its associated Cech complex.

Proof. By [7, Theorem 5.14] there exists a positive and continuous function r : M → (0,∞) such that
if r < r(x), then B̂(x, r) is strictly convex (this is in fact due to Whitehead). Since M is compact,
then r0 = min r > 0. Any strongly convex set in a Riemannian manifold is contractible with respect
to any of its point (star-shaped in exponential coordinates), hence it follows that for r < r0 the ball
B̂(x, r) is also contractible. To finish the proof, we simply observe that the intersection of strongly
convex sets A1, A2 is still strongly convex: in fact given two points y1, y2 ∈ A1 ∩ A2, by strong
convexity of the sets, the unique minimizing geodesic joining the two points is contained in both
sets. �
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From now on, the notation
{
`
k

}
denotes the collection of all k-element subsets of {1, 2, ..., `}.

We will say that a Rd-geometric complex
⋃`
k=1B(yk, r) is nondegenerate if for every 1 ≤ k ≤ ` and

J = {j1, . . . , jk} ∈
{
`
k

}
the intersection

⋂
j∈J ∂B(yj , r) is transversal (in particular this intersection

is empty for k > d).
Random geometric complexes are nondegenerate with probability one. However, it could be

that without the nondegeneracy assumption one could construct a geometric complex which is not
homotopy equivalent to any nondgenerate one. This is not the case, as next Lemma shows.

Lemma 2.2. The set of homotopy types of Rd-geometric, connected, nondegenerate complexes co-
incides with G3.

Proof. Given a possibly degenerate P =
⋃`
k=1B(yk, r), let f : Rd → R be the semialgebraic and

continuous function defined by

f(x) = d(x, {y1, . . . , yk}) = min
k
‖yk − x‖,

and observe that: ⋃̀
k=1

B(yk, r) = {f ≤ r}.

We consider now the semialgebraic, monotone family {X(r + ε) = {f ≤ r + ε}}ε≥0. By [2, Lemma
16.17] for ε > 0 the inclusion X(r) ↪→ X(r + ε) is a homotopy equivalence. It suffices therefore to
show that for ε > 0 small enough X(r + ε) is nondegenerate; this follows from the fact that given
points y1, . . . , y` ∈ Rd, for every 1 ≤ k ≤ d and J = {j1, . . . , jk} ∈

{
`
k

}
there are only finitely

many r > 0 such that the intersection
⋂
j∈J ∂B(yj , r) is nontransversal (and the number of possible

multi-indices to consider is also finite). �

The following Proposition plays an important role in all asymptotic stability arguments.

Proposition 2.3. Let (M, g) be a compact Riemannian manifold of dimension d and p ∈ M . Let
P ⊂ Rd be a nondegenerate complex such that:

P =
⋃̀
j=1

B(yj , r) ⊂ B(0, R′)

for some points y1, . . . , y` ∈ Rd and r,R′ > 0. Given α > 0 set R = αR′

r and consider the sequence
of maps:

ψn : B̂(p,Rn−1/d)
exp−1

p−−−−→ BTpM (0, Rn−1/d)
r
α
n1/d

−−−−→ BTpM (0, R′) ' B(0, R′).

Denoting by ϕn the inverse of ψn, there exist ε0 > 0 and n0 > 0 such that if ‖ỹk − yk‖ ≤ ε0 for
every k = 1, . . . , ` then for n ≥ n0 we have:⋃̀

k=1

B̂(ϕn(ỹk), αn
−1/d) '

⋃̀
k=1

B(yk, r).

Proof. For k ≤ d and for every J = {j1, . . . , jk} ∈
{
`
k

}
either one of these possibilities can verify:

(1)
⋂
j∈J B(yj , r) 6= ∅, in which case, by nondegeneracy, there exists εJ and yJ such that ‖yJ −

yj‖ < r − εJ for all j ∈ J ;
(2)

⋂
j∈J B(yj , r) = ∅, in which case there is no y solving ‖y − yj‖ ≤ r for all j ∈ J .

3Recall that we did not assume the nondegeneracy condition in the definition of G.
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Since the sequence of maps dn : B(0, R′)×B(0, R′)→ R defined by

rn1/d

α
· dn(z1, z2) = dM (ϕn(z1), ϕn(z2))

converges uniformly to dRd , then for every δ > 0 there exists n1 > 0 such that for all pairs of points
z1, z2 ∈ B(0, R′) and for all n ≥ n1 we have:

(2.1)

∣∣∣∣∣rn1/d

α
· dM (ϕn(z1), ϕn(z2))− ‖z1 − z2‖

∣∣∣∣∣ ≤ δ.
For every index set J satisfying condition (1) above, choosing δ = εJr

3α and setting εJ = δ, the
previous inequality (2.1) implies that, if ‖ỹk − yk‖ < εJ for every k = 1, . . . , `, then for n ≥ nJ :

dM (ϕn(ỹj), ϕn(yJ)) < αn−1/d.

This means that the combinatorics of the covers {B(yj , r)}j∈J and {B̂(ϕn(ỹj), αn
−1/d)}j∈J are the

same if ‖yj − ỹj‖ < εJ for j ∈ J and n ≥ nJ .
Let us consider now an index set J satisfying condition (2) above. We want to prove that there

exists εJ > 0 and nJ such that if ‖ỹj − yj‖ < εJ for all j ∈ J , then for n ≥ nJ the intersection
∩j∈J B̂(ϕn(ỹj), αn

−1/d) is still empty. We argue by contradiction and assume there exist a sequence
of points xn ∈ B̂(p,Rn−1/d) and for j ∈ J points yj,n ∈ B(0, R′) with ‖yi,n − yj‖ ≤ 1

n such that for
all j ∈ J and all n large enough:

(2.2) dM (xn, ϕn(yj,n)) < αn−1/d.

We call yn = ψn(xn) and assume that (up to subsequences) it converges to some y ∈ B(0, R′). Using
again the uniform convergence of dn to dRd , the inequality (2.2) would give:

r > lim
n→∞

n1/dr

α
· dM (xn, ϕn(yj,n)) = ‖y − yj‖ ∀j ∈ J

which gives the contradiction y ∈
⋂
j∈J B(yj , r) = ∅.

Set now n1 = max
J∈{`k},k≤d nJ and ε0 = min

J∈{`k},k≤d εJ . We have proved that, if ‖ỹj − yj‖ < ε0

for all j = 1, . . . , `, then for all n ≥ n1 the two open covers {B(yj , r)}j∈J and {B̂(ϕn(ỹj), αn
−1/d)}j∈J

have the same combinatorics. In particular their Cech complex is the same. Moreover, Lemma 2.1
implies that for a possibly larger n0 ≥ n1 all the balls B̂(x, αn−1/d) are strictly convex in M ;
consequently, by the Nerve Lemma, for n larger than such n0 these two open covers are each one
homotopy equivalent to their Cech complexes, hence they are themselves homotopy equivalent. �

2.2. Measure theory. The following lemma will be used in the proof of Theorem 1.3. This lemma
and its proof are essentially in [19, Thm. 4.2 (2)], but we provide a proof to make the paper more
self-contained and to ensure that it is clear this result is purely measure-theoretic.

Lemma 2.4. Let µλ =
∑
aλ,kδk be a one-parameter family of random probability measures on N,

and let µ =
∑
akδk be a deterministic probability measure on N. Assume that for every k ∈ N

aλ,k → ak in probability as λ→∞. Then µλ → µ in probability, i.e., for every ε > 0 we have

lim
λ→∞

P{d(µλ, µ) ≥ ε} = 0,

where d denotes the total variation distance.

Proof. Let δ > 0 be arbitrary.
Since µ is a probability measure on N, there exists K such that

(2.3)
∑
k≥K

ak <
ε

4
.
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We have

P
{
|aλ,k − ak| >

ε

4K

}
<

δ

2K
,

which implies (by a union bound)

(2.4) P

{∑
k<K

|aλ,k − ak| >
ε

4

}
<
δ

2
,

and also (by the triangle inequality)

(2.5) P

{∣∣∣∣∣∑
k<K

aλ,k −
∑
k<K

ak

∣∣∣∣∣ > ε

4

}
<
δ

2
,

for λ ≥ λ0.

The estimate (2.5) implies an estimate for the tails:

(2.6) P


∣∣∣∣∣∣
∑
k≥K

aλ,k −
∑
k≥K

ak

∣∣∣∣∣∣ > ε

4

 <
δ

2
,

since ∣∣∣∣∣∑
k<K

aλ,k −
∑
k<K

ak

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
k≥K

aλ,k −
∑
k≥K

ak

∣∣∣∣∣∣ ,
which follows from µλ and µ being probability measures.

For any λ > λ0, we then have

(2.7) P

∑
k≥K

aλ,k >
ε

2

 <
δ

2
.

Indeed, if ∑
k≥K

aλ,k >
ε

2

then equation (2.3) gives ∣∣∣∣∣∑
k<K

aλ,k −
∑
k<K

ak

∣∣∣∣∣ > ε

4
,

and (2.7) then follows from (2.6).

In order to estimate the total variation distance between µλ and µ, let A ⊂ N be arbitrary. We
have: ∣∣∣∣∣∑

k∈A
aλ,k −

∑
k∈A

ak

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈A,k<K
(aλ,k − ak) +

∑
k∈A,k≥K

aλ,k −
∑

k∈A,k≥K
ak

∣∣∣∣∣∣
≤

∑
k∈A,k<K

|aλ,k − ak|+
∑

k∈A,k≥K
aλ,k +

∑
k∈A,k≥K

ak

≤
∑
k<K

|aλ,k − ak|+
∑
k≥K

aλ,k +
∑
k≥K

ak

≤
∑
k<K

|aλ,k − ak|+
∑
k≥K

aλ,k +
ε

4
.
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Using a union bound, this implies

P

{∣∣∣∣∣∑
k∈A

aλ,k −
∑
k∈A

ak

∣∣∣∣∣ > ε

}
≤ P

{∑
k<K

|aλ,k − ak| >
ε

4

}
+ P

∑
k≥K

aλ,k >
ε

2

 ,

which is less than δ by (2.4) and (2.7).
This implies that for every δ > 0 we have, for all λ sufficiently large,

P
{

sup
A⊂N
|µλ(A)− µ(A)| ≥ ε

}
≤ δ,

i.e. we have shown
lim
λ→∞

P {d(µλ, µ) ≥ ε} = 0.

�

2.3. The ergodic theorem. The proof of Proposition 3.1 uses the following special case of the
d-dimensional ergodic theorem. We follow [14, Ch. 2] and [8, Sec. 12.2]).

Theorem 2.5 (Ergodic Theorem). Let (Ω,F , ρ) be a probability space, and let Tx, x ∈ Rd be an
Rd-action on Ω. Let f ∈ L1(ρ), and suppose further that the action of Tx on Ω is ergodic. Then we
have

1

Vol(BR)

∫
BR

f(Tx(ω))dx→ E f(ω) a.s. and in L1

as R→∞.

Let us explain the terminology appearing in the statement of this theorem. An Rd-action Tx,
x ∈ Rd is a group of invertible, commuting, measure-preserving transformations acting measurably
on a probability space (Ω,F , ρ) and indexed by Rd. An Rd-action Tx is said to be ergodic if any
invariant event has probability either zero or one.

For our application of the ergodic theorem (see the proof of Proposition 3.1 below), the Rd-action
Tx will simply be translation by x acting on the Poisson process (this case is known to be ergodic
[14, Prop. 2.6]).

2.4. Component counting function and the integral geometry sandwiches.

Definition 1 (Component counting function). Let Y1, Y2 ⊂ X and Z be topological spaces (in the
case of our interest they will be homotopy equivalent to finite simplicial complexes). We denote by
N (Y1, Y2; [Z]) the number of connected components of Y1 entirely contained in the interior of Y2 and
which have the same homotopy type as Z. Similarly, we denote by N ∗(Y1, Y2; [Z]) the number of
connected components of Y1 which intersect Y2 and which have the same homotopy type as Z.

Theorem 2.6 (Integral Geometry Sandwich). Let P be a generic geometric complex in Rd and fix
γ ∈ G. Then for 0 < r < R∫

BR−r

N (P, B(x, r); γ)

Vol (Br)
dx ≤ N (P, BR; γ) ≤

∫
BR+r

N ∗(P, B(x, r); γ)

Vol (Br)
dx.

Theorem 2.7 (Integral Geometry Sandwich on a Riemannian manifold). Let U be a generic geo-
metric complex on M and fix γ ∈ G. Then for any ε > 0 there exists η > 0 such that for every
r < η

(1− ε)
∫
M

N (U , B̂(x, r); γ)

Vol (Br)
dx ≤ N (U ,M ; γ) ≤ (1 + ε)

∫
M

N ∗(U , B̂(x, r); γ)

Vol (Br)
dx,

where Br still denotes the Euclidean ball of radius r.
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Proofs of Theorems 2.6 and 2.7. These results follow from the same proof as in [19]. �

Remark 6. Similar statements hold true if we take the sum over all components, ignoring their type
(an observation used throughout the paper). More precisely, denoting by N (Y1, Y2) the number of
components of Y1 entirely contained in the interior of Y2 and byN ∗(Y1, Y2) the number of components
of Y1 that intersect Y2, we have the following inequality:∫

BR−r

N (P, B(x, r))

Vol (Br)
dx ≤ N (P, BR) ≤

∫
BR+r

N ∗(P, B(x, r))

Vol (Br)
dx

and, in the Riemannian framework:

(1− ε)
∫
M

N (U , B̂(x, r))

Vol (Br)
dx ≤ N (U ,M) ≤ (1 + ε)

∫
M

N ∗(U , B̂(x, r))

Vol (Br)
dx.

Since both P and U have only finitely many components, these inequalities follow by simply summing
up the two inequalities from the previous theorems over all components type (the sums are over
finitely many elements). In fact the integral geometry sandwiches as proved in [19] are adaptations
of the original construction from [15], where components were counted without regard to topological
type.

3. Limit law for the Euclidean case

In this section we prove Theorem 1.3. The main step is provided by the following proposition.
We continue to use the above notation for the component counting function (see Definition 1).

Proposition 3.1. For every homotopy type γ ∈ G there exists a constant cγ such that the random
variable

cR,γ =
N (P, B(0, R); γ)

Vol(B(0, R))

converges to a constant cγ in L1 as R→∞. The same is true for the random variable

cR =
N (P, B(0, R))

Vol(B(0, R))
,

(i.e. when we consider all components, with no restriction on their types): as R→∞, it converges
to a constant c in L1.

The next proposition is proved in Section 6.

Proposition 3.2. The constants cγ defined in Proposition 3.1 are positive for all γ ∈ G.

Proof of Proposition 3.1. The proof follows the argument from [19, Theorem 3.3], with some needed
modifications.

We will use the shortened notation NR = N (P, B(0, R); γ), N (x, r) = N (P, B(x, r); γ) and
N ∗(x, r) = N ∗(P, B(x, r); γ) (γ will be fixed for the rest of the proof and we omit dependence on it
in the notation). Using Theorem 2.6 we can write, for 0 < α < r < R:
(3.1)(

1− r

R

)d 1

Vol(BR−r)

∫
BR−r

N (x, r)

Vol (Br)
dx ≤ NR

Vol(BR)
≤
(

1 +
r

R

)d 1

Vol(BR+r)

∫
BR+r

N ∗(x, r)
Vol (Br)

dx.

Denoting by A(x, r, α) the annulus {z ∈ Rd : r − α ≤ ‖x − z‖ ≤ r + α}, we can estimate the
integral on the r.h.s. of (3.1) with:∫

BR+r

N ∗(x, r)
Vol (Br)

dx ≤
∫
BR+r

N (x, r)

Vol (Br)
+

#P ∩A(x, r, α)

Vol (Br)
dx.
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In fact, if a component of P is not entirely contained in the interior of B(x, r), then it touches the
boundary of B(x, r) and hence this component must contain a point p ∈ P ∩A(x, r, α).

We now take R→∞ (with r fixed) and use the Ergodic Theorem in order to assert that

(3.2)
1

Vol(BR−r)

∫
BR−r

N (x, r)

Vol (Br)
dx→ λ(r) a.s. and in L1,

as R→∞ where λ(r) := E N (x,r)
Vol(Br)

is a constant.

In order to apply the ergodic theorem (Theorem 2.5 stated above) we introduce the function f
defined as

f(P ) =
N (0, r)

Vol(B(0, r))
,

where r is fixed, and the dependence of f on the Poisson process P is through P which we recall is
the α-neighborhood of P . We also let Tx denote translation by x acting on the Poisson process P .
This action is ergodic as noted above in Section 2. We also have f ∈ L1, since

E
[
N (P, B(0, r), γ)

Vol(B(0, r))

]
≤ E#P ∩B(0, r)

Vol(B(0, r))
= 1 <∞,

so that the ergodic theorem may be applied.
Furthermore, we notice that

f(Tx(P )) =
N (x, r)

Vol(B(0, r))
,

i.e., shifting P has the same effect as recentering the ball B(0, r) to B(x, r). Thus, the result of
applying the ergodic theorem to this choice of f gives precisely the convergence statement in (3.2).

Note that the same convergence statement in (3.2) holds for 1
Vol(BR+r)

∫
BR+r

N (x,r)
Vol(Br)

dx, namely,

(3.3)
1

Vol(BR+r)

∫
BR+r

N (x, r)

Vol (Br)
dx→ λ(r) a.s. and in L1,

as R→∞ where λ(r) is the same constant as in (3.2).
We also have

(3.4)
1

Vol(BR+r)

∫
BR+r

#P ∩A(x, r, α)

Vol (Br)
dx→ a(r) a.s. and in L1

as R→∞ where a(r) := E#P∩A(x,r,α)
Vol(Br)

= Vol(A(x,r,α))
Vol(Br)

. This follows from the ergodic theorem as well
(although it seems more natural to view it as a consequence of the law of large numbers).

Let ε > 0 be arbitrary. Since a(r) = O(r−1) we can choose r sufficiently large that a(r) < ε. We
then choose R >> r >> 0 sufficiently large so that (1 + r/R)d < 1 + ε, (1− r/R)d > 1− ε. Using
the above convergence statements (3.2), (3.3), and (3.4) (while making R even larger if necessary)
we have,

(3.5) (1− ε)(λ(r)− ε) ≤ NR
Vol(BR)

≤ (1 + ε)(λ(r) + a(r) + ε) in expectation.

Using a(r) < ε and also that λ(r) ≤ 1 for all r, which follows from

EN (x, r) ≤ E#P ∩B(0, r) = Vol(B(0, r)),

(3.5) implies

E
∣∣∣∣ NR
Vol(BR)

− λ(r)

∣∣∣∣ < ε(1 + λ(r)) + (1 + ε)a(r) < 2ε+ (1 + ε)ε.

Since ε > 0 was arbitrary, this implies the existence of a constant cγ such that λ(r) → cγ in L1 as
r →∞ and NR/Vol(BR)→ cγ in L1 as R→∞.
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The proof of the second statement in the proposition concerning the existence of a limit cR → c
for all components (with no restriction on homotopy type) follows from the same argument while
replacing the integral geometry sandwich with its more basic version (see Remark 6 in Section 2). �

3.1. Proof of Theorem 1.3. We write the measure µR as:

µR =
1

N (P, B(0, R))

∑
γ∈G
N (P, B(0, R); γ)δγ

=
Vol(B(0, R))

N (P, B(0, R))

∑
γ∈G

N (P, B(0, R); γ)

Vol(B(0, R))
δγ

=
∑
γ∈G

cR,γ
cR

δγ .

By the convergence statements in Proposition 3.1, and since c > 0 (which follows from Proposition
3.2 since c ≥ cγ), we have aR,γ =

cR,γ
cR

converges in L1 to a constant aγ =
cγ
c as R→∞.

The positivity of the coefficients aγ follows from the positivity of cγ stated in Proposition 3.2.
Next we prove that the measure

µ =
∑
γ∈G

aγδγ

is indeed a probability measure (see Proposition 3.4 below). The main obstacle, addressed in the
following lemma (cf. [19, Sec. 4]), is in preventing the mass in the sequence of measures µR from
escaping to infinity.

Lemma 3.3 (Topology does not leak to infinity). For every δ > 0 there exists a finite set g ⊂ G
and R0 > 0 such that for all R ≥ R0

E
∑
γ∈gc

cR,γ <
δ

4
.

Proof of Lemma 3.3. First we observe that

(3.6)
∑
γ∈G

EN(P, B(0, r); γ)

Vol (B(0, r))
< a0 <∞,

where a0 is independent of r. Indeed,∑
γ∈G

EN(P, B(0, r); γ)

Vol (B(0, r))
=

EN(P, B(0, r))

Vol (B(0, r))
≤ E|{P ∩B(0, r)}|

Vol (B(0, r))
,

which is a constant independent of r (the average number of points of a Poisson process in a given
region is proportional to the volume of the region).

Let A ⊂ G be arbitrary. Then, using the Integral Geometry Sandwich, we obtain:∫
Ω

∑
γ∈A

cR,γ(ω)dω ≤
(

1 +
r

R

)d 1

Vol(BR+r)
E

∑
γ∈A

∫
BR+r

N∗(P, B(x, r); γ)

Vol(Br)
dx


≤
(

1 +
r

R

)d∑
γ∈A

E
N(P, B(x, r); γ)

Vol(Br)
+O(r−1)

 .

Let δ > 0 be arbitrary, and choose r sufficiently large that the above O(r−1) error term is smaller
than δ/16.
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By the convergence (3.6) there exists a finite set g ⊂ G such that∑
γ∈gc

EN(P, B(0, r); γ)

Vol (B(0, r))
<

δ

16
.

Choosing R0 large enough that
(

1 +
r

R

)d
< 2 we then have for all R ≥ R0

E
∑
γ∈gc

cR,γ < 2

(
δ

16
+

δ

16

)
=
δ

4
,

as desired, and this completes the proof of the lemma. �

Proposition 3.4. The measure
µ =

∑
γ∈G

aγδγ ,

with aγ =
cγ
c , is a probability measure.

Proof of Proposition 3.4. We need to show that
∑

γ∈G aγ = 1, or equivalently,

(3.7)
∑
γ∈G

cγ = c.

Let δ > 0 and take g ⊂ G to be the set guaranteed by Lemma 3.3.

We want to show that

(3.8)

∣∣∣∣∣∣
∑
γ∈G

cγ − c

∣∣∣∣∣∣ ≤ δ,
which will then immediately establish (3.7) since δ > 0 is arbitrary.

For fixed ω in the sample space Ω observe that by Fatou’s lemma∑
γ∈gc

cγ ≤ lim inf
R→∞

∑
γ∈gc

cR,γ(ω),

and applying Fatou’s lemma again followed by Tonelli’s theorem, we have∫
Ω

∑
γ∈gc

cγdω ≤
∫

Ω
lim inf
R→∞

∑
γ∈gc

cR,γ(ω)dω

≤ lim inf
R→∞

∫
Ω

∑
γ∈gc

cR,γdω

= lim inf
R→∞

∑
γ∈gc

∫
Ω
cR,γ(ω)dω.

Combining this with Lemma 3.3 we obtain

(3.9)
∫

Ω

∑
γ∈gc

cγdω ≤
δ

4
.

We proceed to estimate

∣∣∣∣∣∣
∑
γ∈G

cγ − c

∣∣∣∣∣∣:
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∣∣∣∣∣∣
∑
γ∈G

cγ − c

∣∣∣∣∣∣ =

∫
Ω

∣∣∣∣∣∣
∑
γ∈G

cγ − c

∣∣∣∣∣∣ dω
=

∫
Ω

∣∣∣∣∣∣
∑
γ∈G

cγ − cR + cR − c

∣∣∣∣∣∣ dω
=

∫
Ω

∣∣∣∣∣∣
∑
γ∈G

cγ −
∑
γ∈G

cR,γ + cR − c

∣∣∣∣∣∣ dω
≤
∫

Ω

∣∣∣∣∣∣
∑
γ∈G

cγ −
∑
γ∈G

cR,γ

∣∣∣∣∣∣ dω +

∫
Ω
|cR − c| dω

≤
∫

Ω

∣∣∣∣∣∑
γ∈g

cγ −
∑
γ∈g

cR,γ

∣∣∣∣∣ dω +

∫
Ω

∣∣∣∣∣∑
γ∈gc

cγ −
∑
γ∈gc

cR,γ

∣∣∣∣∣ dω +

∫
Ω
|cR − c| dω

≤
∫

Ω

∑
γ∈g
|cγ − cR,γ | dω +

∫
Ω

∑
γ∈gc

cγdω +

∫
Ω

∑
γ∈gc

cR,γdω +

∫
Ω
|cR − c| dω

≤ δ

4
+
δ

4
+
δ

4
+
δ

4
.

In the last line, we have estimated the first and last terms by δ/4 by choosing R sufficiently large
and using the L1 convergence cR,γ → cγ (and the fact that g is a finite set) and the L1 convergence
cR → c; we have estimated the second term by δ/4 using (3.9); and we have estimated the third term
by δ/4 by choosing R sufficiently large to apply Lemma 3.3. This establishes (3.8) and concludes
the proof of the proposition. �

Having established by Proposition 3.4 that µ is a probability measure, the convergence in prob-
ability µR → µ now follows from the coefficient-wise convergence aR,γ → aγ along with the purely
measure-theoretic result Lemma 2.4.

The statement that the support of µ is all of G follows from the positivity of the coefficients aγ .
This concludes the proof of Theorem 1.3.

4. Semi-local counts in the Riemannian case

In this section, we study the components of Un contained in a neighborhood B̂(p,Rn−1/d) of a
point p ∈ M by relating this case to the Euclidean case. As a preliminary step, we consider the
following diffeomorphism (see also Proposition 2.3):

(4.1) ψn : B̂(p,Rn−1/d)
exp−1

p−−−−→ BTpM (0, Rn−1/d)
n1/d

−−−→ BTpM (0, R) ' B(0, R).

Through ψn, the stochastic point process Un ∩ B̂(p,Rn−1/d) induces a stochastic point process on
B(0, R) which converges in distribution to the uniform Poisson process on B(0, R) [18, Sec. 3.5]. By
Skorokhod’s representation theorem [3, Ch. 1, Sec. 6], there exists a representation, or “coupling”,
of these point processes defined on a common probability space such that the convergence of these
stochastic processes is almost sure.

Theorem 4.1. Let p ∈M . For every δ > 0 and for R > 0 sufficiently large there exists n0 such that
(using the coupling given by Skorokhod’s theorem mentioned above) for every γ ∈ G and for n ≥ n0:

(4.2) P
{
N (P, B(0, R); γ) = N (Un, B̂(p,Rn−1/d); γ)

}
≥ 1− δ.
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Proof. Let ϕn denote the inverse of the map ψn defined in (4.1). For the proof of (4.2) we will need
to establish the following three facts:

(1) There exists `0 > 0 and n1 > 0 such that with probability at least 1− δ/3 we have:

(4.3) #(Un ∩ B̂(p,Rn−1/d)) = #(P ∩B(0, R)) ≤ `0
(i.e. with positive probability for large n, depending on δ, both point processes have the
same number of points and this number is bounded by some constant `0, which also depends
on δ).

(2) There exists4 W ⊂
∐
`≤`0 B(0, R)` , r > 0 and n2 ≥ n1 > 0 such that P(W ) ≥ 1 − δ/3 and

for every x = (y1, . . . , y`) ∈W if x̃ = (ỹ1, . . . , ỹ`) is such that ‖x− x̃‖ < r and n ≥ n2 then:

(4.4)
⋃̀
k=1

B(yi, α) '
⋃̀
k=1

B̂(ϕn(ỹi), αn
−1/d),

(i.e. the two spaces are homotopy equivalent), and for every connected component of⋃`
k=1B(yi, α) this component intersects ∂B(0, R) if and only if the corresponding component

of
⋃`
k=1 B̂(ϕn(ỹi), αn

−1/d) intersects ∂B̂(p,Rn−1/d).
Let us explain this condition. A point x = (y1, . . . , y`) in W corresponds to the spatial

Poisson event: we sample ` points and each of these points is sampled uniformly from
B(0, R). With probability at least 1− δ/3, by the previous point, the number of samples of
the spatial Poisson distribution is at most `0. Each such Poisson sample in Rd gives rise to
a geometric complex in Rd, and this complex is nondgenerate with probability one. Given
such a nondegenerate complex

⋃`
k=1B(yi, α) in Rd, we can perturb “a little” (how little is

quantified by “r > 0”) the point x = (y1, . . . , y`) to a point x̃ = (ỹ1, . . . , ỹ`) inside W and
still get a nondegenerate complex which has the same homotopy type of the original one.
Now, to each point x̃ ∈ W there also corresponds a complex

⋃`
k=1 B̂(ϕn(ỹi), αn

−1/d) in the
manifold M , through the map ϕn. When n is “large enough”, it is natural to expect that
the two complexes

⋃`
k=1B(yi, α) and

⋃`
k=1 B̂(ϕn(ỹi), αn

−1/d) have the same homotopy type.
Point (2) says that, given `0, we can find W with probability at least 1 − δ/3, r > 0 small
enough and n > 0 large enough such that this is true. (We also added the requirement that
the intersection with the boundary of the big containing ball is the same, but the essence
of point (2) is in the requirement that the two complexes should have the same homotopy
type.)

(3) Assuming point (1), denoting by {x1, . . . , x`} = PR∩B(0, R), and by {x̃1, . . . , x̃`} = ψn(Un∩
B̂(p,Rn−1/d)), there exists n3 ≥ n1 > 0 such that for every n ≥ n3:

P {∀` ≤ `0, ∀k = 1, . . . , `, ‖xk − x̃k‖ ≤ r} ≥ 1− δ/3.

Assuming these three facts, (4.2) follows arguing as follows. With probability at least 1 − δ for
n ≥ n0 = max{n1, n2, n3} all the conditions from (1), (2) and (3) verify and the two random sets⋃

p∈PR

B(p, α) and
⋃

pk∈Un∩B̂(p,Rn−1/d)

B̂(pk, αn
−1/d)

are homotopy equivalent and by the second part of point (2) also the unions of all the components
entirely contained in B(0, R) (respectively B̂(p,Rn−1/d)) are homotopy equivalent. In particular
the number of components of a given homotopy type γ is the same for both sets with probability at
least 1− δ.

It remains to prove (1), (2) and (3).

4The symbol
∐

Aj denotes the disjoint union of the sets Aj .
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Point (1) follows from the fact that (working with the representation provided by Skorokhod’s
theorem), the point process ψn(Un ∩ B̂(p,Rn−1/d)) converges almost surely to the Poisson point
process on B(0, R). In particular the sequence of random variables {#(Un∩B̂(p,Rn−1/d))} converges
almost surely to #(PR∩B(0, R)) and (4.3) follows from the fact that almost sure convergence implies
convergence in probability.

For point (2) we argue as follows. Given `0 we consider the compact semialgebraic set:

X =
∐
`≤`0

B(0, R)`.

This set is endowed with the measure dρ:

dρ =
∑
`≤`0

vol(B(0, R)`)

`!
χB(0,R)`dλB(0,R)`

where dλ denotes the Lebesgue measure (this is the measure induced from the Poisson distribution).

Let now Z ⊂ X be the set of points x = (y1, . . . , y`) such that either the intersection
⋂
j∈J1 ∂B(yj , α)

or the intersection ∂B(0, R)
⋂
j∈J2 ∂B(yj , α) is non-transversal for some index sets J1, J2 ∈

{
d
`

}
(note

that the generic intersection of more than d spheres will be empty). This set Z is also a semialgebraic
set, and it has measure zero: it cannot contain any open set, because the nondegeneracy condition
is open and dense.

Let U(Z) be an open neighborhood of Z such that ρ(U(Z)c) ≥ 1− δ/3 (for example one can take
U(Z) =

∐
`≤`0{d(·, Z) < ε} for ε > 0 small enough). We setW = U(Z)c (note that P(W ) ≥ 1−δ/3).

We will first argue that for every x ∈ U(Z)c ⊂ W we can find r2(x) > 0 and n(x) > 0 such that
the two complexes (4.4) have the same homotopy type (and the same combinatorics of intersection
with the boundary of the big containing ball) whenever ‖x̃−x‖ < r2(x) and n > n(x). Then we will
use the compactness of U(Z)c in order to find uniform r > 0 and n > 0.

Pick therefore x = (y1, . . . , y`) ∈ U(Z)c. The property of transversal intersection implies that for
every index set J1 ∈

⋃
`≤`0

{
d
`

}
such that the intersection ∩j∈J1B(yj , α) is nonempty, this intersection

contains a nonempty open set, and there exists a point σJ1(x) such that for every j ∈ J1 we have ‖yj−
σJ1(x)‖ < α. Similarly for every J2 ∈

⋃
`≤`0

{
d
`

}
whenever an intersection ∂B(0, R)

⋂
j∈J2 ∂B(yj , α)

is transversal and nonempty, there exists a point σJ2(x) such that ‖σJ2(x)‖ > R and for every j ∈ J2

we have ‖yj − σJ2(x)‖ < α. Because these are open properties, there exists r1(x), r2(x) > 0 such
that for every w = (w1, . . . , w`) and z = (z1, . . . , z`) with ‖wj − yj‖ ≤ r1(x) and ‖zj − wj‖ < r2(x)
for all j = 1, . . . , `, we have:

∀j ∈ J1 : ‖zj − σJ1(x)‖ < α and ∀j ∈ J2 : ‖zj − σJ2(x)‖ < α.

Moreover since the property of having non-empty intersection is also stable under small perturba-
tions, we can assume that r1(x), r2(x) are small enough to guarantee also that:⋂

j∈J3

B(zj , α) = ∅ ⇐⇒
⋂
j∈J3

B(xj , α) = ∅.

Observe now that the sequence of functions dn : B(0, R)×B(0, R)→ R defined by:

dn(x1, x2) = dM (ϕn(x1), ϕn(x2))n1/d

converges uniformly to the Euclidean distance in Rd. In particular there exists n(x) > 0 such that
for every n ≥ n(x), for every w = (w1, . . . , w`) and z = (z1, . . . , z`) with ‖wj − yj‖ ≤ r1(x) and
‖zj − wj‖ < r2(x), for all j = 1, . . . , ` and for i = 1, 2 we have:

dM (ϕn(zj), ϕn(σJi(x))) < αn−1/d.
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Moreover, for a possibly larger n(x), we also have that⋂
j∈J3

B̂(ϕn(zj), αn
−1/d) = ∅ ⇐⇒

⋂
j∈J3

B(xj , α) = ∅.

Choosing n(x) to be even larger, so that balls of radius smaller than αn−1/d in M are geodesically
convex, these conditions imply that the combinatorics of the covers

{B(xj , α)}`j=1 and {B̂(ϕn(zj), αn
−1/d)}`j=1

are the same and, by Lemma 2.1, the two sets
⋃
j≤`B(xj , α) and

⋃
j≤` B̂(ϕn(zj), αn

−1/d) are ho-
motopy equivalent. Also, the above condition on σJ2(x) implies that a component of

⋃
j≤`B(xj , α)

intersects ∂B(0, R) if and only if the corresponding component of
⋃
j≤` B̂(ϕn(zj), αn

−1/d) intersects
B̂(p,Rn−1/d).

Finally, we cover now W = X\U(Z) with the family of open sets
⋃
x∈W B(x, r1(x)) and find, by

compactness ofW , finitely many points x1, . . . , xL such that the union of the balls B(xk, r1(xk)) with
k = 1, . . . , L covers W . With the choice n2 = max{n(xk), k = 1, . . . , L} and r = min{r2(xk), k =
1, . . . , L} property (2) is true.

Concerning point (3), we observe that again this follows from the fact that the point process
ψn(Un ∩ B̂(p,Rn−1/d)) converges almost surely (hence in probability) to the Poisson point process
on B(0, R). �

Corollary 4.2. For each γ ∈ G, α > 0, x ∈M , and ε > 0, we have

lim
R→∞

lim sup
n→∞

P

{∣∣∣∣∣N (Un, B̂(x,Rn−1/d); γ)

Vol(BR)
− cγ

∣∣∣∣∣ > ε

}
= 0.

Proof. This follows from Theorem 4.1 combined with Proposition 3.1. Indeed, let ε > 0 and δ > 0
be arbitrary. By Proposition 3.1 there exists R0 such that for R > R0 we have

P
{∣∣∣∣N (P, B(x,R); γ)

Vol(BR)
− cγ

∣∣∣∣ > ε

}
< δ.

Fix any such R > R0. The event∣∣∣∣∣N (Un, B̂(x,Rn−1/d); γ)

Vol(BR)
− cγ

∣∣∣∣∣ > ε

is contained in the union of the event E1 that∣∣∣∣N (P, B(x,R); γ)

Vol(BR)
− cγ

∣∣∣∣ > ε

and another event Eδ, which is the event that N (P, B(x,R); γ) 6= N (Un, B̂(x,Rn−1/d); γ). Thus,

(4.5) P

{∣∣∣∣∣N (Un, B̂(x,Rn−1/d); γ)

Vol(BR)
− cγ

∣∣∣∣∣ > ε

}
≤ P{E1}+ P{Eδ} < δ + P{Eδ}.

By Theorem 4.1, there exists n0 such that for all n ≥ n0 we have P{Eδ} ≤ δ.
Thus, applying this to (4.5) we obtain

lim sup
n→∞

P

{∣∣∣∣∣N (Un, B̂(x,Rn−1/d); γ)

Vol(BR)
− cγ

∣∣∣∣∣ > ε

}
< 2δ.

Since δ > 0 was arbitrary, this completes the proof of Corollary 4.2. �
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5. The global count for the Riemmanian case: proof of Theorem 1.1

In this section we establish the limit law in the manifold setting (cf. [19, Sec. 7]). As in
the Euclidean case, the main step is to prove coefficient-wise convergence, which is stated in the
following theorem.

Theorem 5.1. For every γ ∈ G, the random variable

cn,γ =
N (Un,M ; γ)

n

converges in L1 to the constant cγ = cγ(α) (the same constant as in Proposition 3.1). The same
statement is true for the random variable

cn =
N (Un,M)

n

(i.e. when we consider all components, with no restriction on their type): as n → ∞, it converges
in L1 to the constant c =

∑
γ∈G cγ.

5.1. Proof of Theorem 1.1 assuming Theorem 5.1. Since convergence in L1 implies conver-
gence in probability, Theorem 5.1 ensures that the random variable cn,γ = N (Un,M ;γ)

n converges in
probability to the constant cγ ; similarly the random variable cn = N (Un,M)

n converges in L1 (hence
in probability) to c > 0. The proof now proceeds similarly to the proof of Theorem 1.3. We write
the measure µ̂n as:

µ̂n =
1

b0(Č(Un))

∑
γ∈Ĝ

N (Un,M ; γ)δγ

=
1

b0(Č(Un))

∑
γ∈G
N (Un,M ; γ)δγ +

∑
γ∈Ĝ\G

N (Un,M ; γ)δγ


=

1

N (Un,M)

∑
γ∈G
N (Un,M ; γ)δγ +

1

N (Un,M)

∑
γ∈Ĝ\G

N (Un,M ; γ)δγ

=
n

N (Un,M)

∑
γ∈G

N (Un,M ; γ)

n
δγ +

n

N (Un,M)

∑
γ∈Ĝ\G

N (Un,M ; γ)

n
δγ

=
∑
γ∈G

cn,γ
cn

δγ +
∑
γ∈Ĝ\G

cn,γ
cn

δγ .(5.1)

We have an,γ =
cn,γ
cn

converges in L1 to the constant aγ =
cγ
c . Recalling that the measure

µ =
∑
γ∈G

aγδγ

is a probability measure (see Proposition 3.4), we can apply Lemma 2.4 to conclude that the measure
on the left in (5.1) converges in probability to µ.

Since µ is a probability measure, this implies that∑
γ∈G

cn,γ
cn
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converges to 1 in probability. For any γ0 ∈ Ĝ\G this implies that the coefficient cn,γ0
cn

appearing in
the measure on the right in (5.1) converges to zero in probability, since

0 ≤ cn,γ0
cn
≤ 1−

∑
γ∈G

cn,γ
cn

.

Thus, the measure µ̂n converges in probability to µ by another application of Lemma 2.4.

5.2. Proof of Theorem 5.1. Note: Since α > 0 and γ ∈ G are fixed, we will simply use

(5.2) Nn := N (Un,M ; γ)

to denote the number of components of Un in M of type γ. We will use

N ∗n(x, r) := N ∗(Un, B̂(x, r); γ)

to denote the number of such components intersecting the geodesic ball B̂(x, r) of radius r centered
at x and

Nn(x, r) := N (Un, B̂(x, r); γ)

to denote the number of components completely contained in B̂(x, r).
Thus, our goal, stated in the abbreviated notation (5.2), is to prove

(5.3) E
[∣∣∣∣Nnn − cγ

∣∣∣∣]→ 0.

Using the integral geometry sandwich from Theorem 2.7 we have

(5.4) (1− ε)
∫
M

Nn(x,Rn−1/d)

Vol (BR)
dx ≤ Nn

n
≤ (1 + ε)

∫
M

N ∗n(x,Rn−1/d)

Vol (BR)
dx.

Letting I1 denote the integral on the left side and I2 the one on the right side, we subtract I1 from
each part of (5.4) and write

(5.5) −εI1 ≤
Nn
n
− I1 ≤ εI1 + (1 + ε)(I2 − I1).

In order to estimate I2−I1 we note that the number of connected components of Un that intersect, but
are not completely contained in, the geodesic ball B̂(x,Rn−1/d) is bounded above by the number of
points that fall within distance αn−1/d to the boundary ∂B̂(x,Rn−1/d). This αn−1/d-neighborhood
of ∂B̂(x,Rn−1/d) is the same as the geodesic annulus centered at x with inner radius (R− α)n−1/d

and outer radius (R + α)n−1/d. The average number of points in this annulus equals its volume
which can be estimated (uniformly over x ∈M) by that of the Euclidean annulus, and this gives

E|I2 − I1| = O(R−1).

which together with (5.5) implies

(5.6) E
∣∣∣∣Nnn − I1

∣∣∣∣ = O(ε) +O(R−1),

where we have also used I1 ≤ 1
1−ε which follows from the first inequality in (5.4) along with the

simple estimate Nn ≤ n.
By (5.6) we obtain

E
[∣∣∣∣Nnn − cγ

∣∣∣∣] = E
[∣∣∣∣Nnn − I1 + I1 − cγ

∣∣∣∣]
≤ E [|I1 − cγ |] +O(ε) +O(R−1).

= E

[∣∣∣∣∣
∫
M

Nn(x,Rn−1/d)

Vol(BR)
− cγ dx

∣∣∣∣∣
]

+O(ε) +O(R−1).
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Thus, in order to prove the theorem it suffices to show that the above term E [|I1 − cγ |] can be
made arbitrarily small for all sufficiently large n.

Define the “bad” event

Ωx,R,n :=

{∣∣∣∣∣Nn(x,Rn−1/d)

Vol(BR)
− cγ

∣∣∣∣∣ > ε

}
.

Claim: There exists a sequence Rj → ∞ such that for every δ > 0 there exists Mδ ⊂ M with
Vol(Mδ) > 1− δ such that

(5.7) lim
Rj→∞

lim sup
n→∞

sup
x∈Mδ

P
(
Ωx,Rj ,n

)
= 0.

The proof of this claim closely follows [19] and uses Egorov’s theorem as well as the idea from the
proof of Egorov’s theorem. We start by recalling the point-wise limit stated in Corollary 4.2. For
each x ∈M , we have

lim
R→∞

lim sup
n→∞

P {Ωx,R,n} = 0.

Let us restrict to R ∈ N. Apply Egorov’s theorem to obtain M ′δ ⊂ M with Vol(M ′δ) > 1 − δ
2 such

that

(5.8) lim
R→∞

sup
x∈M ′δ

lim sup
n→∞

P {Ωx,R,n} = 0.

Next we use an additional Egorov-type argument in order to obtain the statement in the claim
(where we will obtain the set Mδ by slightly shrinking M ′δ). For each fixed integer j > 0, we can
find by (5.8) an Rj ∈ N sufficiently large so that

(5.9) sup
x∈M ′δ

lim sup
n→∞

P
{

Ωx,Rj ,n

}
<

1

j
.

Letting Fm(j) denote the monotone decreasing (with m) sequence of sets

Fm(j) =
⋃
k≥m

{
x ∈M ′δ : P(Ωx,Rj ,k) >

2

j

}
,

we see from (5.9) that ⋂
m≥1

Fm(j) = ∅.

Thus, there exists m = m(j) such that Vol(Fm(j)) < δ
2j+1 . We take

Mδ = M ′δ \

⋃
j≥1

Fm(j)(j)

 ,

which satisfies Vol(Mδ) > Vol(M ′δ)−
δ
2 > 1− δ. It follows from the definition of Fm(j) that

lim sup
n→∞

sup
x∈Mδ

P
{

Ωx,Rj ,n

}
≤ 2

j
,

and we see that (5.7) is satisfied.
Denoting the whole probability space as Ω, we separate the integration (defining the expectation)

over the two sets Ωx,Rj ,n and Ω \ Ωx,Rj ,n.

(5.10) E [|I1 − cγ |] =

∫
Ω\Ωx,Rj,n

|I1 − cγ | dω +

∫
Ωx,Rj,n

|I1 − cγ | dω.
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We use the definition of Ωx,Rj ,n to estimate the first integral in (5.10):

(5.11)
∫

Ω\Ωx,Rj,n
|I1 − cγ | dω ≤

∫
Ω\Ωx,Rj,n

∫
M

∣∣∣∣∣Nn(x,Rn−1/d)

Vol(BR)
− cγ

∣∣∣∣∣ dxdω ≤ ε.
For the second integral in (5.10), we use the estimate

(5.12)
Nn(x,Rn−1/d)

Vol(BR)
≤ (1 + ε)nξ−1 = O(1),

where ξ > 0 is the minimum (over x ∈ M) volume of a geodesic ball of radius αn−1/d, which is
uniformly (over x ∈ M) comparable to the volume of the Euclidean ball of the same radius, and
hence ξ is bounded below by a constant times n−1. The estimate (5.12) is based on the fact that
each component has volume trivially at least a constant times αd/n, and the fact that the minimal
volume of a component times the number of components cannot exceed the volume of the region
where they are contained (while fixing attention on components of type γ as we are throughout the
proof). Applying (5.12), we obtain

∫
Ωx,Rj,n

|I1 − cγ | dω ≤
∫
M

∫
Ωx,Rj,n

∣∣∣∣∣Nn(x,Rn−1/d)

Vol(BR)
− cγ

∣∣∣∣∣ dωdx(5.13)

≤ (O(1) + cγ) ·
∫
M

P(Ωx,Rj ,n)dx

= O(1) ·
∫
M

P(Ωx,Rj ,n)dx.

Next, we split this last integration over Mδ and M \Mδ:

∫
M

P(Ωx,Rj ,n)dx =

∫
Mδ

P(Ωx,Rj ,n)dx+

∫
M\Mδ

P(Ωx,Rj ,n)dx(5.14)

≤ sup
x∈Mδ

P(Ωx,Rj ,n) + δ.

Bringing the estimates (5.10), (5.11), (5.13), (5.14) together, we have

E [|I1 − cγ |] ≤ ε+O(1)

(
δ + sup

x∈Mδ

P(Ωx,Rj ,n)

)
,

which can be made arbitrarily small using (5.7). This establishes (5.3) and completes the proof of
the first part of Theorem 5.1. The proof of the second part concerning the count for all components
(without restriction on homotopy type) follows from the same proof while replacing the integral
geometry sandwich with its more basic version (see Remark 6 in Section 2).

6. Positivity of all coefficients

In this section, we prove Propositions 3.2 and 1.2.
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6.1. Proof of Proposition 3.2. Recall that, by Proposition 3.1, for every γ ∈ G we have:

cγ = lim
R→∞

E
(
N (P, B(0, R); γ)

Vol(B(0, R))

)
.

The desired lower bound will come from adding up certain local contributions provided by the
following lemma

Lemma 6.1. Let P0 ⊂ Rd be a finite geometric complex. Fix α > 0. There exist r, a > 0 (depending
on P0 and α) such that for any p ∈ Rd

P {P ∩B(p, r) ' P0} > a.

Proof of Lemma 6.1. By the translation invariance of the Poisson point process, it is enough to prove
the statement while taking p = 0. We can assume, by Remark 2.2 above, that P0 is nondegenerate,
and we write

P0 =
⋃̀
k=1

B(yk, α),

where y1, . . . , y` ∈ Rd, and we have taken the radius to be α, since we can dilate the entire set P0 if
necessary (which does not change the homotopy type). Choose r such that P0 ⊂ B(0, r − α). By
nondegeneracy, there exists ε > 0 such that if ‖ỹk − yk‖ ≤ ε then the two complexes

⋃`
k=1B(yk, α)

and
⋃`
k=1B(ỹk, α) are homotopy equivalent.

We are thus interested in the event E that for j = 1, 2, ..., ` each ball B(yj , ε) contains exactly one
point from the random set P = {p1, p2, ...} and that these ` points are the only points of P in the ball
B(0, r+α). If E occurs then we have P ∩B(0, r) ∼= P0 as desired. The positivity of the probability
of the event E can be seen by noticing that this probability is a product of finitely many positive
probabilities. Indeed, E is an intersection of the events that B(yj , ε) contains a single point from P

for j = 1, 2, ..., ` along with the event that there are no points in the set B(0, r + α) \ ∪`i=1B(yj , ε).
These events are independent by a basic property of the Poisson point process, and each of them
has positive probability (the probabilities can be specified explicitly in terms of the volumes of the
sets involved). �

Let r, a be given by Lemma 6.1 for the choice of [P0] = γ. For an appropriate β > 0 we can fit
k ≥ βVol(B(0, R)) many disjoint Riemannian balls

B1 = B(p1, r), . . . , Bk = B(pk, r)

in B(0, R). Observing that

N (P, B(0, R); γ) ≥
k∑
j=1

N (P, Bj ; γ),

we have (also using linearity of expectation)

E
(
N (P, B(0, R); γ)

Vol(B(0, R))

)
≥ βa > 0,

and the positivity of cγ follows.
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6.2. Proof of Proposition 1.2. The positivity of coefficients aγ in Theorem 1.1 is already estab-
lished in Proposition 3.2 proved above. In this section, we prove the related Proposition 1.2 which
provides a more direct analysis in the manifold setting.

Proof. Let y1, . . . , y` ∈ Rd and r > 0 such that⋃̀
k=1

B(yk, r) = P

with
⋃`
k=1B(yk, r) a nondegenerate complex (it is not restrictive to consider nondegenerate com-

plexes by Remark 2.2 above). Let now R′ > 0 such that B(0, R′) contains
⋃`
k=1B(yk, r) and set

R = R′α
r . Consider also the sequence of maps:

ψn : B̂(p,Rn−1/d)
exp−1

p−−−−→ BTpM (0, Rn−1/d)
r
α
n1/d

−−−−→ BTpM (0, R′) ' B(0, R′).

Proposition 2.3 implies that there exists ε0 > 0 and n0 such that if ‖ỹk − yk‖ ≤ ε0 then for n ≥ n0

the two complexes
⋃`
k=1B(yk, r) and

⋃`
k=1 B̂(ϕn(ỹk), αn

−1/d) are homotopy equivalent.

We are interested in the the event:

En =

{
∃I` ∈

{
n

`

}
: ∀j ∈ I` pj ∈ ψ−1

n (B(yj , ε)), and ∀j /∈ I` pj ∈ B̂(p, (R+ α)n−1/d)c
}
.

Observe that if En verifies, then Un ∩ B̂(p,Rn−1/d) ' P: in fact, since there is no other point
in B̂(p, (R + α)n−1/d) other than {pj}j ∈ I`, then the complex Un is the disjoint union of the two
complexes Un ∩ B̂(p,Rn−1/d) and Un ∩ B̂(p, (R+α)n−1/d)c; the complex Un ∩ B̂(p,Rn−1/d) ' P by
Proposition 2.3.

It is therefore enough to estimate from below the probability of En. Note that for every measurable
subset B ⊂ B(0, R′) there exists a constant cB > 0 such that Vol

(
ψ−1
n (B)

)
≥ cB

n . In particular,
using the independence of the points in Un, we can estimate

P(En) =

(
n

`

)
P
{
∀j ≤ ` : pj ∈ ψ−1

n (B(pj , ε)) and ∀j ≥ `+ 1 : pj ∈ B̂(p, (R+ α)n−1/d)c
}

=

(
n

`

)∏̀
j=1

vol
(
ψ−1
n (B(yj , ε))

)(vol(B̂(p, (R+ α)n−1/d)c)
)n−`

≥
(
n

`

)(c1

n

)` (
1− c2

n

)n−` n→∞−−−→ c`1
`!

(1− c2)−`e−c2 .

In particular there exists c > 0 such that:

P
{
Un ∩ B̂(p,Rn−1/d)) ' P

}
≥ P(En) > c,

and this concludes the proof. �
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