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ERROR ESTIMATION OF THE BESSE RELAXATION SCHEME
FOR A SEMILINEAR HEAT EQUATION

GEORQGIOS E. ZOURARIS?

ABSTRACT. The solution to the initial and Dirichlet boundary value problem for a semilinear,
one dimensional heat equation is approximated by a numerical method that combines the Besse
relaxation scheme in time (C. R. Acad. Sci. Paris Sér. I, vol. 326 (1998)) with a central finite
difference method in space. A new, composite stability argument is developed, leading to an
optimal, second-order error estimate in the discrete L?(H%)—norm. It is the first time in the
literature where an error estimate for fully discrete approximations based on the Besse relaxation
scheme is provided.

1. INTRODUCTION

1.1. Formulation of the problem. Let T > 0, z,, 2, € R with o > 24, Z = [x4,2] and
u:[0,T] xZ - R be the solution of the following initial and boundary value problem:

(1.1) Ut = Uz + g(uw)u+ f on [0,T]xZ,
(1.2) u(t,xq) =ult,zp) =0 Vte[0,T],
(1.3) u(0,2) =up(x) Vrel,
where g:R> R, f:[0,T7]xZ > R and ug : Z - R with

(1.4) uo(2a) = uo(zp) = 0.

Furthermore, we assume that the data f, ug and g are smooth enough and compatible, in order
to guarantee the existence and uniqueness of a solution u to the problem above that is sufficiently
smooth for our purposes.

Two decades ago, for the discretization in time of the nonlinear Schrédinger equation, C. Besse
[4] introduced a new linear-implicit time-stepping method (called Relazation Scheme) as an at-
tempt to avoid the numerical solution of the nonlinear systems of algebraic equations that the
application of the implicit Crank-Nicolson method yields. The proposed time discretization tech-
nique, combined with a finite element or a finite difference space discretization, is computationally
efficient (see, e.g., [3], [8], [6]) and performs as a second order method (see, e.g., [5], [8]). Later, C.
Besse [5] analyzing the Relaxation Scheme as a semidiscrete in time method to approximate the
solution of the Cauchy problem (i.e. without the presence of boundary conditions) shows, using
that it is local well-posedness and convergent without concluding a convergent rate with respect
to the time-step. Until today, in spite of the results in [5], there is no scientific work in the lit-
erature providing an error estimate for the Relaxation Scheme. Since the Relaxation Scheme can
not be classified as a Runge-Kutta or a linear multistep method, a natural question arises: “is the
Relaxation Scheme a special method or a representative member of a new family of linear implicit
time-discretization methods?” One way moving toward to find an answer is first to understand its
convergence and then to construct methods with similar characteristics.

1991 Mathematics Subject Classification. 65M12, 65M60.

Key words and phrases. Besse relaxation method, semilinear heat equation, finite differences, Dirichlet boundary
conditions, optimal order error estimates.

¥ Department of Mathematics and Applied Mathematics, University of Crete, GR-700 13 Panepistimioupolis,
Heraklion, Crete, Greece.


http://arxiv.org/abs/1812.09273v1

The aim of the work at hands is to contribute to the understanding of the convergence nature of
the Besse relaxation scheme, by investigating its use, along with a finite difference space discretiza-
tion, to obtain approximations of the solution to the parabolic problem (LI)-(T4). By building up
a proper stability argument and using energy techniques, we are able to prove an optimal, second
order error estimate in a discrete L$°( H}!)-norm. The result is new and opens the discussion on the
applicability and the extension of the Relaxation Scheme to other non-linear evolution equations.

1.2. Formulation of the numerical method.

1.2.1. Notation. Let N be the set of all positive integers and L := 2, —x,. For given N € N, we define

a uniform partition of the time interval [0, T'] with time-step 7 := %, nodes t, :=n7forn=0,...,N,
and intermediate nodes t"*2 = tn+ 5 forn=0,...,N -1. Also, for given J € N, we consider a
uniform partition of Z with mesh-width A := ﬁ and nodes x; := x4, +jh for j=0,...,J+1. Then,

we introduce the discrete spaces
X ::{(vj ‘]{;6: vj €R, j:O,...,J+1} and Xj ::{(vj)‘j’iéei"h: vO:v‘,H:O},

a discrete product operator - ® - : X;, x X, - X, by

(vow); =vjw;, j=0,....,J+1, Vv,weXy,
and a discrete Laplacian operator Ay, : X7 — X7 by

Appj = U200 o T Yo X
In addition, we introduce operators I, : C(Z;R) — X5, and I, : C(Z;R) — X}, which, for given
z € C(Z;R), are defined by (lp2); := z(x;) for j=0,...,J+1 and z € C(Z;R) and (I} z); := z(x;) for
j=1,...,J. Finally, for £ € N and for any function ¢: R = R and any w = (w?,...,w") € (%3)",
we define g(w) € X5, by (¢(w)); = q(w},...,wf) for j=0,...,J+1.

1.2.2. The Besse Relazation Finite Difference method. The Besse Relaxation Finite Difference
(BRFD) method combines a standard finite difference discetization in space with the Besse relax-
ation scheme in time (cf. [4]). Its algorithm consists of the following steps:

Step I: Define U € X3 by

(1.5) U%:= 4
and then find U? ¢ X; such that
1 1 1 prpd .
ho o)) () [ taptaa]

Step II: Define P2 € X, by

(1.7) ®3 = g(U?)
and then find U! € Xj, such that
(1.8) Ut g (E500 ) 4 o (LU0 4 gy [£C0eft10) ]

Step III: Forn=1,...,N -1, first define P e Xy, by

(1.9) ™3 = 2g(U™) - "2
and then find U™ ¢ X; such that

n+l_rrm n+1 n n+i n+1 n ° 1y )+ "y
(1.10) U TU :Ah(U 2+U )+<I> +2®(U 2+U )+|h[f(t 1%+f(t )]'

Obviously, the numerical method above requires, at each time step, the solution of a tridiagonal
linear system of algebraic equations.



1.3. An overview of the paper. In the error analysis of the (BRFD) method, we face the locally
Lipschitz nonlinearity of the problem by introducing the (MBRFD) scheme (see Section[d.2]), which
follows from the (BRFD) method after molifying properly the terms with nonlinear structure
(cf. [, @, [[]). The (MBRFD) approximations depend on a parameter § > 0 and have the
following key property: when their discrete L*-norm is bounded by §, then they are also (BRFD)
approximations, because, in that case, the molifier (see (£1])) acts as an indentity. Assuming that
d is large enough and 7 is sufficiently small, for the non computable (BRFD) approximations, first
we show that are well-defined (see Proposition 1)), and then we establish an optimal, second order
error estimate in the discrete H'-norm (see Theorem A2). Letting h and 7 be sufficiently small
(see ([@58)) and applying a discrete Sobolev inequality (see (1)), the latter convergence result
implies that the discrete L*°-norm of the (MBRFD) approximations are lower than § and thus
they, also, are (BRFD) approximations. Finally, we are show that the (BRFD) approximations are
unique and hence inherit the convergence properties of the (MBRFD) scheme (see Theorem [4.3)),
i.e. that there exist constants C; and Cs, independent of 7 and h, such that

(U2 =15 [u(t?,)]],, < C1 (72 + 72 h?)

and
max [|c1>"+% ~a[g(u(t™2, )] |Lh +| U™ =15 [u(ty, )] |Lh] < Cy (7% + 1),

0<n<N

where |- |15, is a discrete H!-norm which is stronger than the discrete L*°-norm.

At every time-step, the (BRFD) method computes first an approximation of g(u) at the midpoint
of the current time interval (see (7)) and (L9)) and then an approximation of u at the next
time node (see (L8) and (I0)). However, the computation of the approximations of g(u) at
the midpoints is a simple postprocessing procedure and has no obvious discrete dynamic structure.
The stability argument we employ is based first on taking a discrete derivative of the error equation
that corresponds to (L9) (see (@.27)) and then on including the discrete L? and discrete H' norm
of the time increment of the error in the stability norm (see (£32) and (£52)).

We close this section by giving a brief overview of the paper. In Section 2l we introduce
additional notation and provide a series of auxiliary results. Section[3lis dedicated to the estimation
of several type of consistency errors and of the approximation error of a discrete elliptic projection.
In Section 4] we define a modified version of the (BRFD) method, and then analyze its convergence
properties and arrive at a set of conditions that ensure the well-posedness and convergence of the
(BRFD) method.

2. PRELIMINARIES

Let us introduce another discrete space by &y, := {(Zj)'j’:o zjeR, §=0,..., J} and the dis-
crete space derivative operator dy, : X, — &y, by

Opvji= L j=0,...,J, VueX,.

We define on &, an inner product (-,-)o,n by (2,v)on = h X2 v; for z,v € &y, and we will
denote by |- Jo.n the corresponding norm, i.e. |z]o.s = [(2,2)0.n]"* for z € &),. Also, we define a
discrete maximum norm [ - oo, 00 Sp, by Jv]eo,n = maxogj<s [vj] for ve Sy,

We provide Xj with the discrete inner product (-,-)o,n given by (v,2)on = h ¥j_ vj2; for
v,z € X3, and we shall denote by | - [o,, its induced norm, i.e. [v]on = [(v,v)0n]"* for v e X5.
Also, we equip X, with a discrete L*°-norm |- |e,p, defined by |w|eo p, = maxoe <1 |wy| for w e X,
and with a discrete H'-seminorm |-|; , given by |wly p := |[6pw]o.n for w € Xj,. Tt is easily seen that
| |1,n becomes a norm when it is restricted on X} and satisfies the following useful inequalities:

(2.1) [Vloo.n < LY 0|11,
(2.2) lvllo,n < L|vh,n

3



for v € X;. In the sequel, we present a series of auxiliary results that they will be in often use in
the rest of the work.

Lemma 2.1. For all v,z € X} it holds that

(2.3) (Anv,2)o,n = =(0nv, 002 )o.n = (v, Anz)o,h,
(2.4) (Anv,v)n = =7 -

Proof. Let v,z € Xj. First, we establish (Z3]) proceeding as follows:

J J

(Anv,2)o.n = ) [ (8n0)j = (6nv)j1] 25 = Z]E)(&zv)j zj = 2 (0n0); zjs1 = =(nv,6n2)0,h-

j=1 =0
Then, we set z =v in (23) to get (24). O
Lemma 2.2. Let g€ CZ(R;R). Then, for v,w € X5, it holds that
(2.5) |9(v) = g(w)l1n < goo [v = whn + 5 [Onweo,n [0 = won

where g., = sup, |¢'| and g. :=sup, |g"|.

Proof. Let v,w € Xj. First, we define a®, b° € &, by aj = svj41+(1-5) v; and b] := swj,1+(1-5) w;
for j=0,...,J and s €[0,1]. Then, we use the mean value theorem, to conclude that

(2.6) on(g(v) —g(w)) = L*+ L”

where L#, L” € &), given by L7 = (0(v - w)); fol ¢'(a}) ds and L7 = dpw; fol [g’(a?) —g’(b?)] ds
for 7=0,...,J. Observing that

2] < suplg’|[(dn (v - w)),], §=0,....7,
and
1
A [S(ijrl_wj+1)+(1_5)(1)j—’wj)] dS

<5 1(6nw);jl suplg”| (Jujer —wjea| + |vj —wsl), §=0,...,J,
R

17| <|(6pw) ;] supg”|
R

we, easily, arrive at
(2.7) 1£%o.n < suplg’[§on (v = w)lo,n,
R

(2.8) 1£%10.n < 10nwleo. . suple”| v - w

|0,
Thus, (Z3) follows as a simple consequence of [26), (Z7) and (Z3). O
Lemma 2.3. Let g € C3(R;R). Then, for v, o0, 2%, 2t e X3, it holds that

la(v®) = g(v") = 9(=*) + 8(z")o.h <0 [2° = 2loo,n [0 = 2" 0,0

2.9
(29) + (9o + 9% 2% = 2%eo,n) 0 =0

b_ oy Zb”o,h

and
lg(v™) - g(v") = a(z*) + a(z") 1w <F* (v 0") o =¥ =2 + 2%
(2.10) + FB(2%2) (oo =0 =29+ 2o p + 00 = 2o )
+ F (2%, zb) ( [v® - W - 2%+ zb|17h + |’Ub - zb|1)h ) ,
where gq, = sup, |¢'], go, == sup, [g”],
FA ") =gl + L5 0L (0%ln +[0ln),
FP(2%2") =gl 16n (2" = 2") oo s
FO(2",2") =12 = 2% [0 + Lol (1002 Dot + 1002 oo ,n) ]
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nro,

and go; = sup, |g

III|

Proof. Let v, 0%, 2%, 2% € X;. We simplify the notation, first, by defining a®, b° € X} by a® :=
sv? + (1 -5)v® and b% = 527 + (1 - s) 2Y for s € [0,1], and then, by introducing § € X5 by
fi= 01 g’'(a®) ds and t e Xj by t:= [0 (a®) - g'(b°)] ds. Also, we set e® := v~ 2% and e’ := v’ - 2°.

First, we use the definition of f and the mean value theorem, to get
(2.11) [floo.n < 95

and
1
ol <3 [l - g'(a)l ds

1
g;’of |s5hv?+(1—s)5hv§|ds
<300 (0nvf]+10n05]), 5=0,....7,

IA

IA

which, obviously, yields
(2.12) [flin < 3 0% ([ +10"n) -

Next, we use the definition of t and the mean value theorem, to obtain

1
1 <al [ 15 -blds

<gl / |s (v§ —’U - 2§ +zb)+(vg—z?)|ds
<Poo (|v —vé’—z +zb|+|v -2z |), j=1,...,J,
which, leads to
(2.13) Ion < a7 (1e® = o+ Ie?lou).
Finally, for s € [0,1], we apply (28) and [22), to arrive at

l9'(a®) = g’ (6")|1.n <0 la® = 6°[1 + 8L 1016 foo 0 = 670,
(2.14) <(9% +Lgl 10n6%oon ) 0® = 0% 0

<(g + Lol 10n6% oo ) (e = €¥lin + i )

Observing that §,t = fol dn[g'(a®) —g’(6°)] ds and using (2I4) we have

1
< [ lo'@") g (6% ds

<[o% + L g (I6n2"Noor + 160 2"Doon) ] (1€ = €”lin +[e®l1n ) -

(2.15)

Using the mean value theorem, we obtain

(2.16) 0(v") - g(v") —a(z") +a(z") = £* + £7,

where £4, £7 € X5 are defined by £ = (v* =0’ - 2% + 2°) ® f and £7 := (2® - 2°) ® t. Thus, using

@I0) and @2I3), we have
1£% o
1£7 o )

The desired inequality ([2.9) follows, easily, as a simple outcome of (Z.16]) and 2.I7).
5

0.n SO e —e
(2.17) |

0.h S Goo |2 = 2loo,n ([l — €



Part Ill. | For the discrete derivative of £* and £7, we, easily, obtain the following formulas:

(6n8%); =0n(v® = v° = 2%+ 2%) 41 + (v§ ~ ’U? -z + zf) (onf);,
(0nL7); =0n(z" = 2) tj1 + (2% = 2°); (Snt),
for 7=0,...,J, which yield
124110 <le® = €11, n [floo,n + €* = €”loon [fl1ns

€711 <10 (2% = 2" oo, [t

Using (218), 1), @II) and 2I2), we have
(2.19) [0 < ol + 5 0% (0%ln + 0" 1)] Je = €lon
Combining [218), (213), @I5) and @.1), we arrive at

€711 <00 10n (2% = 2")eo,n ([ = €] o1 )

12" = 2"un [0% + L ool (1002 Noos + 102" Lo ) ] (le® = €"lin + 1€l )

Finally, (2Z.10) follows, easily, in view of (2.16), (Z19) and (2.20). O

(2.18)
lo,n + 2% = 2Joo,n [tl1,n-

on+ e’

(2.20)

3. CONSISTENCY ERRORS

To simplify the notation, we set 1= T ut = Ih[u(ti,-)], u” = lp[u(ty, )] forn=0,...,N, and
w2 = 1 [u(t"2,)] for n = 0,...,N — 1. In view of the Dirichlet boundary conditions ([Z) and
the compatibility conditions (L), it holds that ut e X;,u"eX; forn=0,...,N and u"tE e x5,
forn=0,...,N-1.

3.1. Time consistency error at the nodes. Let ri e X5, be defined by

1 1 1 1
(3.1) wlw -y, [um(tz ,~>2+um(to,~>] +g(u®) ® (u22+u0) o [mz ,~>2+f(to,-)] i

and let r"*2 € X, be specified by

(32) u"+:-fun — Ih I:Uzm(tn+17‘)2+umz(tnv‘)] + g(un+%) ® (un+12+un) + Ih I:f(tn-#lv‘%*'f(tnv‘)] + rn+%

for n=0,...,N - 1. Assuming that the solution u is smooth enough on [0,7'] x Z, and using (.4
and the Dirichlet boundary conditions (L2), we conclude that u,,(t,z) = —f(¢,2) for t € [0,T] and
x € {xq,xp}. Thus, we have (e X; and T e X7 forn=0,...,N-1.

Substracting (L)) with (¢,2) = (t%,xj) from BI)), and (L) with (¢,z) = (t"*é,xj) from (32),
we get

1 L 1 1 1 1 n+s n+i n+ i n+i
(3.3) re=rl—rp—rd-r2 ME o, Ty 2-rg 2 -1y 2, n=0,...,N-1,

1 1 1 1 1 1 1 1
I L nyl nel 1L nyl n+l
where r},ré,ry *,rc > eX) and ri,ri,ry *,rp ° € Xy, be defined by

1 1
n+-= n+1 n 1 n+= . . 1

2 .U u n+ 2 . Uzz (tn+1,) TUae (tn,) n+
M4 . p= Ih[ut(t 25')]7 s = Ih[ B )2 E— _umm(t 25') ’

n+1 n

1 1 . .
rg+2 - g(un+%) ® [% _u"Jr%]’ r7DL+2 =1y, [M _f(trwé,.)]



and
e s ST [u (t% )] L s (13 ) e (f0:) ~ gy (t1,)
A +/2) h[ Wt ) B h p) T ) )
1
b= = [oluh) - g(@)] @ ut + gu) o[ 52 - ut],

=1 [f(t%w);rf(to-:) - f(t%,)].

Applying the Taylor formula we obtain
1
N 1
(rz+2 )j = %2 fo : [52 Ut (bn + ST, 25) + (% -5)? um(t"*% + 57, arj)] ds,

1

1 n+l . b}
(rz+2)j :MTQ f02 [sutt(tn+s7',xj)+(%—s)utt(t"+% +s7',:1:j)] ds,

(3.4)

1
1 2 2 1
(rg+2)j =5 /0 [sumtt(tn +ST,T;) + (% = 8) Ugare (E"F2 +s7',:17j)] ds,

(5 =5 [T [shultarrsa) e G-) fult™d +rsw) ] d
b MIT tt\ln + T 5,2 5 —S)Jtt TS, T; S

forj=0,...,J+1land n=0,...,N-1, and

Nl=

(D=5 [ [ ualsma) + (- 9wt +57.2,) ] ds.
(rh), = —u(th,a;) T foig’(u(ST,xj))ut(ST,xj) ds
55 o) 2 [ o)+ (3 9wt +s7,7)] .
(rg)j :%2 foi [sumtt(snxj) +(3- 8) gt (£7 +577$J‘)] ds,
(5 =% foi [Sftt(tn +7s,m;) + (5= 8) fu(t™? +T=975”J’)] ds

for j=0,...,J +1. Then, from B3), (4) and (1), we arrive at

(3.6) Ir3llon + Idllon + Ik lon -+ max |7 Hon < Tiar?,
(3.7) Irifon < Ciar
and
.
(3.8) pmax 2] < G2,
(3.9) Fhn < Crar

3.2. Space consistency error. Also, let st e X;, be defined by

1 1 s L .
uz;uo) +g(u’) ® (—w;uo) +15, [71‘“2“);“%“)] +57

1 0

(3.10) Gy = Ah(

1

and, for n=0,...,N -1, let s"*2 € X; be given by

(3.11) “M:_*u" = A, (U"“2+u" ) + g(u"Jr%) ® (u"*12+u") L1 [ff(tnﬂ,.;rf(tn,.)] s
7




Subtracting I0) from BI) and BII) from B2)), we obtain
1
ot o[t aptea] o, (1),
n+ 1

5 za(tnsl, za(tny g
r 2_sn+2:|2|:u (tn+1 )2+u ( ):I_Ah(u 2+u ), n=0,...,N-1.

EN[

(3.12) r

The use of the Taylor formula yields
1
° 2
(Ih [umc(ta )] - Ap (Ih[u(ta )]))] = % ‘/0 (1 - y)B uzzzz(ta Tj+ hy) dy

1
2
+ % fo Y Upzwn (t, 251 + hy) dy,

for j=1,...,J and t € [0,T], which along with ([B.12) yields

(3.13) Isi —rifon+ max [$"7F - 3o, < Coh2.
0<n<N-1
3.3. Time consistency error at the intermediate nodes. Forn=1,...,N -1, let r" € X} be

determined by

n+d n-1

(3.14) 920 2) - (™) 4,

Setting w(t,z) = g(u(t,z)) and using, again, the Taylor formula we have
1

(3.15) =17’ f ’ [(% —s)wy(tn +sT,25) + swy (177F + ST,{Ej)] ds

0

for 7=0,...,J+1and n=1,..., N — 1, which, easily, yields

(3.16) max |r"[o.n+ max [r"|1 <Csq72,
1<n<N-1 ’ 1<n<N-1 ’ ’

(3.17) max " =" Yo+ max "=, <Chard

2<n<N-1 2<n<N-1

3.4. A Discrete Ellliptic Projection. Let v € C*(Z;R). Then, we define Ry, (v) € X5, (cf. [2]) by
requiring

(3.18) Ap(Rpv) =15 (0").
Using the Taylor formula, it follows that
(3.19) Ap(I50) =18 (0") = 22 1= (v)
where r(v) € X5, is defined by
1
(3.20) (r°(v)); = fo [(1-y)® """ (zj+hy) +y* V" (xjo1 +hy) | dy, G=1,....J
First, subtract (8:18) from B.I9)) to get
(3.21) AR50 - Ryv) = 12 15 (v).

Then, take the (-,-)o,,—inner product of both sides of [B.2I)) with (I;v — Ryv) and use (Z4), the
Cauchy-Schwarz inequality and ([2:2)) to obtain

(3.22) IRpv = hvlin < 55 2 |r°(v)
Finally, we use (8.22]) to have

l0,h-

] () stes]]
' S%lf max |Utzgzel, n=0,...,N-1.
[0,T]xT



4. CONVERGENCE ANALYSIS

4.1. A mollifier. For § >0, let ns € C3(R;R) (cf. [7], [9]) be an odd fuction defined by

x, if ze€l0,4],
(4.1) ns(z) =14 ps(x), if ze(4,20], Va0,
24, if x> 20,

where ps is the unique polynomial of P7[4,24] that satisfies the following conditions:
ps(8) =6, p5(6) =1, p5(8) =p5'(6) =0, ps(208) =28, p5(26) = p5(26) = ps'(26) = 0.

4.2. The (MBRFD) scheme. The modified version of the (BRFD) method (cf. [, [7], [9]) is
a recursive procedure that, for given ¢ > 0, derives approximations (V5*))_, c X} of the solution u
performing the steps below.

Step 1: Let V(;O € X7 be defined by

(4.2) V50 =
1
and Vi® € X} be specified by
3 _yo 5.0 3 1,0 1
(4.3) % - Ah( V522+Va ) +g(u®) ® (V522+V5 ) i |:f(t2,');'f(t07‘):|.

1
Step 2: Define &7 € X, by

(9 o} =a(us(1})
and find V51 € X} such that
(@5) R e e R L R |

1
Step 3: Forn=1,...,N -1, first define <I>:5H2 € Xp by

(4.6) BT = 2g(ns(VF)) - @ 2
and, then, find V;**! € X3 such that
(47) VLV 2 g (B (0 F) o () ¢ [ L ef e ]

4.3. Existence and uniqueness of the (MBRFD) approximations.

Proposition 4.1. Let g? = max,. |g(uo(z))[, 6 > ¢2 and C3*':= 1 sup, [ns|. When 7 C5*' < 1, then

the modified (BRFD) approzimations are well-defined. !

Proof. Let ¢ € Xp, £ € (0,1] and Tg : X5, — X5, be a linear operator given by
Terv:=2v—-eTApv—e7 [ns(()®v] VveX.

Since § > g2, the definition of ns yields thait ns(g(u®)) = g(u®). Thus, from @3), @EF) and @) it

is easily seen that the well-posedness of V? and (Vy*),_; follows easily by securing the invertibility
of Ter. Moving towards to this target, first we use (2.4]) to obtain

(Texv, o, =2 [0lg p + el =7 (n5(C) ®v,v)q
6.1 105(Cloo,n
_z

>refofly+alold (4 - % maxins )
1
2

225 ), + Telols, —Te v
(4.8)

ZT8|’U|ih +4 HUH%_h (— —TC(B;R") VoveXy.
9



Let us assume that 7 C5™' < % When v € Ker(Tgg), then (Tgrv,v)o,5 = 0, which, along with ([£38]),
yields |v]1,, =0, or, equivalently, v = 0. The latter argument shows that Ker(Tg:) = {0} and, thus,
Ter is invertible, since X; has finite dimension. O

1
Remark 4.1. Let us assume that 7C5*' <1 and § > ¢9. Since Vi :=u® and Vi# is well-defined, in

view of @3) and (L), we conclude that U? is, also, well-defined and U? = V?.

4.4. Convergence of the (MBRFD) scheme. In the theorem below, we investigate the con-

vergence properties of the modified (BRFD) approximations.

Theorem 4.2. Let u, := max [u, g, := max |g(u)|, 6, > max{u.,g.} and 7CF*' < 1,
[0,T]xT [0,T] «

is the constant specified in Proposition [{1 Then, there exist constants C3™** > CF*, Cgf“ > 0,

C5* >0 and C5™"* > 0, independent of T and h, such that: if T C3™" < L then

where C5*'

<35

1
(4.9) u? ~ V2 i < C32 (72 4 7% h2),

m+ly  gFmts m _ym BCV,3 ¢, 2 2

(4.10) pdmax g(u™2) = ®5 " fo.p + max |u™ = ViThp < C5F (7 + 07)
and

1 +4
(4.11) max |g(u""?) - @g’z 2 |1)h < 5t (12 + h?).

0<m<N-1

. . . 1 1 1
Proof. To simplify the notation, we set u? := max; [u°|, 2 = u2 - V2, em =u™ - V" for m =

0,...,N, and 0™ := g(um"%) - fIJZZJr% for m=0,...,N —1. In the sequel, we will use the symbol C
to denote a generic constant that is independent of 7, A and J., and may changes value from one
line to the other. Also, we will use the symbol Cs, to denote a generic constant that depends on
0, but is independent of 7, h, and may changes value from one line to the other.

Since e = 0, after subtracting (@3] from ([B.10) we obtain
(4.12) e? = EAhe% + 7 [g(u0)®e%]+§si.

Next, take the (-,-)o.,—inner product of #I2) with e?, and then use (24), the Cauchy-Schwarz
inequality, 33), G.6), (1), (I3) and the arithmetic mean inequality to get

2[5, + F le2[ 1 = 5 (9(u”) @ e e2)on + 5 (sF,2)on
<F19()loo,n €% [3 5+ 5 [ I5¥ = r¥llon + Ir¥llo.n ] 2 fo,n
<Z1g(u) oo n [€7 |3 1, + C (72 + 7 1) |€2 o
<7 max, [g@)|le? 5, +C (" +mh%)?+ 5 e [§ .
Let C3*" := max{3 max, [0 401 |9(2)], C5*'} and 7 C§*" < 5. Then, the inequality above yields that
(4.13) le% |2, +7le®[3, < C (v + Th?)2.

Taking the (-,-)o,,—inner product of [@IZ) with Aye?, and then using (24), we obtain

(4.14) 4le32 ) +7|Aned |2, =at +a?,
where
a' = - 7(g(u") ®e%,Ahe%)o,h,
a?:=-27 (n%,Ahe%)o,h.

10



Now, we use the Cauchy-Schwarz inequality, the arithmetic mean inequality and ([@I3]), to have

al <T| lrr[lax lg(z)

<Crle|2, + I |Ape® |2,
<CT(r?+7h?)?+ T Ape?|?,.

Also, B3), the Cauchy-Schwarz inequality, 23)), B.6), 3.9), BI3) and the arithmetic mean
inequality, yield

a’= —27'(5i —r%,AheE)

(4.15)

—2T(r§—r§—r%,Ahe%) +27( T ,Ape? )

]

0,h 0,h

S2T[ 27((6hr§,5he%))07h

1
(4.16) <Cr(r2+ 0 | Ane on+ 272 i letn

<CT(r2+h2) | Ane? on + CT2le|1n
1 1
<C [7‘ (2 +h%)* + 4 ] + 5 [Ane? Hgﬁ + ez |§h
In view of ([@I4), (4I5) and (LIM), we arrive at
(4.17) e, + 7 |ARe® |2, < C (12 + 72 h?)?,

which, obviously, yields (£9).
Since 4, > uy, using (@1), Q) and [@I3]), we have

16°)2 :

=g(ns. (u¥)) - g(ns. (Vf))HM
(4.18) <sup|(gons,) | [e? ]2,
R

<Cs, (77 +7h*)%
Also, using Lemma [22] (22)) and [@IT), we get

6°% 1 =lg(na. (u?)) - g(na. (V)L

/|2 2

1 1
<2supl(gons,)*le? [} ), + 2 sup|(gons,)" Iong(u?)]
R R

(4.19)
1
<Cs, |e? ﬁh

<Cs. (2 +77 h2)2

We subtract (L3) and (@) from (BII]), to obtain the following error equations:
3
(4.20) 2" —e") =T A (e"Jr1 + e”) +Q"", n=0,...,N-1,
k=1
where
Ql,n =9 g2
n+z n n
e o)
QB’"::T[g(u 2) n5 ]® ntl )

We take the inner product (:,-)o., of [@20) with (e"*! —e™), and then, use ([Z.3)), to have

—e
3
(4.21) 2]e™ ! —e"gn+T [l h-le"Rn]= 2 a"", n=0,...,N-1L,
k=1
11



where
qn,n - (Qn,n7en+1 _ en)O,h-

Let n € {0...,N - 1}. Using the Cauchy-Schwarz inequality, the arithmetic mean inequality,

BE) and (BI3), we have
Q" <27 [ F = E o+ [ E o | o e
(4.22) <27 (% +h?) ™! —e"|on

<O (7 + 12)? + L™ — €2

lo,n

Next, we use the Cauchy-Schwarz inequality, (22), (@) and the arithmetic mean inequality, to
get

1
A" <7 s, (D) ) oo €7 + €™ on "

(4_23) ch* T |en+1 + en|l,h Hen+l _et |0,h

<Co, 7 [l p+ e n ]+ G le™ " —e”

—e"Ho,h

2
0,h"

Finally, taking into account that d, > g., we apply the Cauchy-Schwarz inequality, (£1) and the
arithmetic mean inequality to obtain

1
a*" <27 u, |ns, (g(u"F)) =5, (@5 ) o €™ —e"on
<C'7 max|nj | Hg(u”’%) - @;H% || €™t —e™[o.n
(4.24) RO + ok ’

<Cs. 710" o.n €™ ~e"on

<Co. 70" [0 + 5 ™ — €[G5

From (Z21), #22), E23) and @24), we conclude that there exists a constant C3*" > 0, such
that

n+l n+1

le™* " —e™[5n+7le™ iy <Tlef ), + i [l i, + e + 167154 ]

4.25
( ) +CT2(*+h*? n=0,...,N-1.

Let us find an error equation governing the midpoint error |0 . Subtracting (£8) from (B3.14)
and using (A.I) and the assumption d, > u., we obtain

(4.26) 0" +0" " =2 [g(ns, (u") - g(ns, (V)] +2r", n=1,...,.N-1

3

which, easily, yields that
(4.27) 0" -0"2=2R"+2(r"-r"1), n

I
“l\D
=

|

where R" € X7 is defined by
(4.28) R™ = g(ns, (V571)) = 9(n5, (V) = g(ns. (u™™)) + g(ns, (u")).
Then, we use ([29)), (1) and the mean value theorem, to get

IR Jo.n < sup|(g ons.)'| e —e" o
R

(4.29) +sup|(gons,) "™ = u"oon [l€" =€ o + " o0,]
R

<Cs, [He”—e"_1\|07h+THe"H0,h], n=2,...,N-1.
12



Taking the (-,-)o,; inner product of both sides of ([2ZT7) with 7(6" + 0"’2), and then using the
Cauchy-Schwarz inequality, (£29), BI7) and (Z2I), it follows that

71015, — 7167215 < [27 IR o,n + 27 ¢ =" on ] 16" + 6" o.n
<Cs. [T]e™-e" o +7* e on] 6™ +6"[on
+CTH0" + 60"
<Cs, 7" —e"onlO0+60"|on

+C5, 72110 10" + 6" 2|o.n

+C7'4H0n+0n_2|0,h7 n:2’_,_,N_1,

which, along with the application of the arithmetic mean inequality, yields

10" 55+ 716" 5 <7167 5 + 716" IF s + e — "G + O r°

(430 O [ B 16" 5 1672 ], =2, N1
Thus, from (@28) and [@30), we conclude that there exists a constant C5*" > 0 such that:

(4.31) (1-CFVr)ZM < (L+ CPV ) 2P+ C 2 (72 + h2)?, n=2,... N -1,

where

@32) 27 e e Ry hr [+ 107 6723 ], m=2,... .

Assuming that 7 C*" <
based on ([@31)) yields

" 2 2 232
(4.33) 221n§§zvz <Cs, [Z +71 (7% + h?) ]

3 with C5*V == max{C3*", C§*"}, a standard discrete Gronwall argument

<Cs, [le® €[5 n+7Ie’[i n+710%13 )+ 71615 +7 (72 + h%)*].
Since e’ = 0, after setting n = 0 in ([E25) and then using (Z.I]), we obtain
le! I3 +7le'ffn <Co. [72 (72 +1%) +726°13 1, ]
<Cs, T2 (12 + h?)2.

Also, setting n =1 in (£26)) and then using (£.2), we get

(4.34)

(4.35) 0" =-0°+2r',
which, along with (£I8)) and BI0)), yields
(4.36) H01H(2Jyh < Cs, (T2 +Th?)2

Also, setting n =1 in (£25), and then using (£34) and (£36]), we have

|e* -5+ TIe’ n <CT (7% + h*)? + Cs, [Tle'[i + 7210 5,1 ]
<Cs, 7 (7% + h?)%

Thus, [@33), (@31), (£306) and (£I]) yield

(4.38) max Z™ < Cs, 7 (7% + h?)2.

2<m<N

Since €° = 0, (I0) follows, easily, from ([E32), [@38) and E34).

Let us define p™ := Rp[u(t™,-)] —u™ € Xj and 9™ = Vi — Ry[u(t™,-)] € X} for
m=0,...,N. Then, using (@3], (@1), B2) and B.IY) we get
4

(4.39) 2™t -n") =7 A (™ +0™)+ Y. B, n=0,...,N-1,

k=1

(4.37)
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where

B =27 ( “nt*"n -Rpn [u(tnﬂ")_u(tn’.)] ) )

T

1
B2":= 27" 2,

1
B3:m .= —7'115*(‘1):;3—2 ) ® (en+1 +e"),

n 1 =
B4™ .= I:n5*((1)6:—2) —ng*(g(urﬁé)) ] ® (un+1 +um).

Take the (-,-)o s—inner product of @3J) with Ay (n™*' —n"), and then, use (Z4) and 23), to
have

(4.40) 2™ ="+ [ A"

4
|%,h_HAh77n|%,h]: anm]? TLZO,...,N—l,
k=1

where
b™™ = ((0nB™", Sn (0™ =1")))o,n-
Let n € {0...,N - 1}. Using the Cauchy-Schwarz inequality, the arithmetic mean inequality,
B3) and @323)), we have
bl,n < |Bl,n|1)h |,r’n+1 _ nn|11h
(4.41) <CTh? ™t ="

214 1 n+l n|2
<CToh+ 5™ —n"l,
and

b2" <97 |rn+% |1,h |,r]n+1 _ 77"|1,h
(4.42) <O "™ =0l
n+1

<Cr° +%|’7 —n”l?,h-

Using, again, the Cauchy-Schwarz inequality and the arithmetic mean inequality, we get
3, 4, 2 (|.3,n2 4,n)2 1 2

(4.43) b + b7 < 277 (I + IR ) + & ™ =0,

where

1
A" =g, (fl)g:r2 )® (" +e™),

el
b= (g(um%) - ng*(q)éjz @ (u"t +u™).

Then, we use (1), 1), EI0), 22), 1) and the assumption d. > g. to get

n+1 n+1

3,n / ”‘*’% n n
|c>"|1,n < sup |nj, | |<I>5* | e +e"e,n + supns,||e" +e"|1n
R R

"

n+x 1 1
<Cs, [1+ I _ g(unte +|g(umte 1,h] ey p + e
(4.44) 5,2 —g(u™ )|, + g™ 2)n | (™ un +le"|1n)

<Cs. [1 ot g(u"+%)|1)h] (> + h%)

SC(;* [|0n|1)h + (T2 + h2)]
14



and
n+t n+s ntg
[ <C [ s, (g(u™ %)) =15, (@5 ) o + s, (g(u™#)) - g, (. ”m]
n+i n+:
<Clng, (952) - ns (g(u™=)),,
<C [sup 5,116 |1, + max[n 154 (9(u™ ) oo, ue"no,h]
R
<Csy, [|9"|1,h + (7% + h?) ] .

Thus, ([@43), (E44) and ([E45) yield
(4.46) b>™ + b*" < Oy, 72 [ |0”|%h + (7'2 + h2)2] + % |77"Jr1 - n"|ih.

(4.45)

From ([@40), (EAI), #EZ2) and ([£48), we conclude that there exists a constant C5**' > 0, such
that

n+1 n+1

|g,h <T I\Ahn"\lﬁ,h + G5 72 |0n|%,h

+C§T’VIT2(T2+h2)27 n=0,...,N-1.

™t ="+ T Anm

(4.47)

Taking the (-,-)g inner product of both sides of @2T) by 7 A(8™ + 60" ?), and using (Z3), the
Cauchy-Schwarz inequality and ([BI7), we have

T10"3, - T10" 2 =27 (6hR™, 60(0™ + 0" 7))o + 27 (O (r" =1 ),6,(0" +0"7%) o
(4.48) <27 (R + 1" =" Min) (1™ + 107 210)
<27 (R™un +7%) (10"1,0 +10"21n), n=2,...,N-1

Using (28), 210), 22), (I0) and B23), we get
IR™|1,n <Cs, [ le" —e" i+ (T + h2)]
(4.49) <Co. [l ="+ o™ = p" o+ 7 (72 4 %) ]
<Cs, [|77n—"7"_1|1,h+7'(7'2 +h2)], n=2,...,N-1.
Then, (£48), ([£Z9) and the arithmetic mean inequality, yield
710", + 10" R, <7 |07 2, < T 10" 2,

+Cs, 7 [In" = 0" Mo+ 7 (2 +182)] (10"1n +10"|1n)

(4.50) s
¥n

<7 |0n71|%,h +7 |0n72|ih +n" -
+C5, [ 72 (10", +16" 2 ) + 7> (7P +h*)?], n=2,...,N-L

Combining ([#47) and ([#350), we conclude that there exists a positive constant C§*" such that:

(4.51) (L-CPVM ) Zi < (L+ CPY ) Z0 + Cs, 72 (77 + 1°)?, n=2,... N-1,
where
(4.52) Z0 =™ = T A G+ 10T 4 107 m=2, N

Assuming that 7 C§*"" < £, where C*"" := max{C{""", C3*"'}, and using a standard discrete Gron-
wall argument based on ([{51l), we obtain

max £, <Cyg, LT+
i 7m <0 [ 72 2 p2)2
(4.53) SmsN
<Cs, [|7”I2 - 771|%,h +7 ”AhTI2 H(2),h + T|01|ih + T|00|ih +T (T2 + h2)2 ] .
15



After setting n =0 in (£47) and then using (@19) and B2ZI]), we obtain

=0 R+ 7 AR 12 <7 IAR0 12 + Co, [7216%F  + 72 (72 + h2)?]
(4.54) <CTh*+C5, 72 (1% + h?)?

<Cs, 7 (1% + h?)%

Using (£35), @I9) and BI6]), we have
(4.55) 0'% , <Cs, (7° + h?)>.
Set n =1 in (AA41) to conclude that

w2 A B < 7 A B+ G, [P (720 12 2 02

which, along with, (£54) and {355), yields

(4.56) 0 ="+ 71 Ann?[5 ) < Co, 7 (77 + h%)%.
Thus, from (£53), (@356), (£58) and @I9), we obtain
(4.57) max Z7 < Cs, 7 (7% + h?)2.
2<msN
Finally, (@.I1)) follows, easily, from [@.52]) and (L.571). O
4.5. Convergence of the (BRFD) method.
Theorem 4.3. Let u, = max |u|, g, = max |g(u)|, d, > 2 max{u.,g.}, C' be the constant
[0,T]xT [0,T]xT «

determined in Proposition [{-1, C5*', C5™*, C5* and C5™* be the constants specified in Theo-
. . . .
BCV,1 BR, I
rem [{.3, where C5™"" > C5%'. If

(4.58) TN L CVRVL(P i) < S, GV ) < 5
then, the method (BRFD) is well-defined and the following error estimates hold
(4.59) u? ~ U2y < C&2 (72 + 7% h?)
and
mE+sy _ Fmta m _rrm BCV,3 (~BCV,4 2 2
(4.60) Osrrxnléslj)vilm(u 2) - P, +0217§§N|u U™ € max{C5™"* C 4} (77 + h7).

Proof. Since 0, > 2 max{g.,u.}, the convergence estimates (£9) and [@II), the discrete Sobolev
inequality (ZI)) and the mesh size conditions (£E8) imply that the (MBRFD) are well-defined and

573 <lour )~ B3 E| L+ o)

co,h —
1 1
<V -3, o
, Ox
SGYVL(P + 1) + %
<d., n=0,...,N-1,
and
3 I _yr 1
Vil <lu® = V| + T oo

S\/[|u"+% - V;;%

*

Lt U

<CEVPVL(r + 73 h%) + &
<6y,
which, along with 1], yield
1 1 n+i n+i
(4.61) ns, (Vi2) =V, ns (@5 %)=05 %, n
16
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Thus, the (MBRFD) approxunatlons are (BRFD) approximations when ¢ = d., i.e. (CI)-(CI0)
hold after replacing Uz by V;;z, U™ by V§' forn=0,...,N, and s by <I> 3 forn=0,...,N-1.

Let Uz, (U™)N_, and (®"*2)¥-} be approximations derived by the (BRFD) method Then, we
introduce the errors q% = Vé -Waz, q" =Vt - W" for n = N, and q7 := <I>n:r - ®"*2 for
n=0,..,N-1 Since 7C§" < § and 6, > g, > ¢, Remarklﬂland ([C5) yield ¢° =0, g2 =0

and q? = 0. Now, we assume that for a given m € {0,..., N — 1} it holds that g™ = 0 and q” = 0.
Subracting (LI0) from @7) (or (L) from @3) when m =0), and then using ([@.61]), we obtain

(462) qm+1 — %Ahqurl + % [“&(‘bg )® qm+1:|

Next, taking the inner product (-,-)o, with ¢™*! and then using (Z4), the Cauchy-Schwarz in-
equality, (@I) and the definion of C*', we get

B

1
0= quJrlH(Q),h + % |qm+1|ih _ (né*(@gz+2 ) ® qm+17qm+1)

2 0,h
> 1+ 2R (4 - F sup g )
R
> Tl R, + 2 uqm“né,h (5-7C5")
T 2
§| |1 h»

which, obviously, yields that q™*! = 0. When m < N -2, observing that
Q=2 [g(Vh) —g(U™H] - al,
we arrive at q7'"" = 0. The induction argument above, shows that, under our assumptions the

(BRFD) approximations are those derived from of the (MBRFD) scheme when § = d,, and thus
the error estimates (£59) and [60) follow as a natural outcome of (£9), (AI0) and @II). O

Remark 4.2. Let us make the choice ®2 = g(u®) (see [], [5]) instead of LT). Then, we obtain
16%)0.n = O(7), |0 o = O(r) and 2% = O(7 (1 + h?)?). Thus, from @E33) we arrive at a
suboptimal error estimate of the form O(t + h?). Here, we skip the problem by introducing (L8]
(cf. [@O]) that derives a higher order approzimation 2 of g(u(ty,")).

m+1
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