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(PLURI)POTENTIAL COMPACTIFICATIONS

EVGENY A. POLETSKY

Abstract. Using pluricomplex Green functions we introduce a compactifi-
cation of a complex manifold M invariant with respect to biholomorphisms
similar to the Martin compactification in the potential theory.

For this we show the existence of a norming volume form V on M such that
all negative plurisubharmonic functions on M are in L1(M,V ). Moreover, the
set of such functions with the norm not exceeding 1 is compact. Identifying a
point w ∈ M with the normalized pluricomplex Green function with pole at
w we get an imbedding of M into a compact set and the closure of M in this
set is the pluripotential compactification.

1. Introduction

In this paper we construct biholomorphically invariant compactifications of com-
plex manifolds. For domains in the complex plane there is the Carathéodory com-
pactification that is invariant with respect to biholomorphisms. It is constructed
using prime ends. There are papers that used this notion for higher dimensions but
it, seemingly, did not lead to invariant compactifications.

Our construction is similar to the Martin compactification but instead of Green
functions that are not biholomorphically invariant we use their analog on complex
manifolds, namely, the pluricomplex Green functions.

The classical Martin’s approach is to consider the normalized Green functions

G̃D(x, y) = GD(x, y)/GD(x0, y) on a domain D ⊂ Rn, where x0 is a fixed point

in D, and then define the Martin boundary as the set of all sequences G̃D(x, yj)
that converge in L1

loc. Due to Harnack’s inequalities the choice of the point x0
is non-essential. The limit is a harmonic function on D that is called the Martin
kernel.

On a complex manifold M this normalization does not work because pluricom-
plex Green functions gM (z, w) are only maximal, i. e., (ddczgM (z, w))n = 0 outside
of w. There are no Harnack’s inequalities and the existence of a subsequence con-
verging in L1

loc is not guaranteed.
To circumvent this obstacle we show the existence of a norming volume form V

on M or D such that all negative (pluri)subharmonic functions on M or D are in
L1(M,V ) or L1(D,V ) respectively. Moreover, the set of such functions with the
norm not exceeding 1 is compact. Identifying a point w ∈ M with the normalized
pluricomplex Green function with pole at w we get an imbedding of M into a
compact set and the closure of M in this set is the pluripotential compactification.
The same approach in the real case produces the Martin compactification.
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Unfortunately, we were not able to prove that the limits of pluricomplex Green
functions are maximal. It is known due to Lelong [10] that almost any plurisubhar-
monic function is the limit in L1

loc of maximal functions. Thus the general theory
is not applicable. At the last section we compute pluripotential compactification
for a ball, smooth strongly convex domains and a bidisk. In all cases the limits
are maximal and are scalar multiples of pluriharmonic Poisson kernels computed
in [4] and [2]. In the two first cases the pluripotential boundary coincides with the
Euclidean boundary while in the case of a bidisk it is the product of a circle and a
2-sphere.

We are grateful to the referee whose corrections and comments significantly im-
proved the exposition.

2. Green functions

We denote by GD(x, y) the negative Green function on a domain D in Rn. It is
known that the Green function is symmetric and continuous in GD×GD and if ∂D
is C2-smooth, then (see [16, 24.1]) GD(x, y) is continuous on D ×D and at every
point y ∈ ∂D there is the derivative

(1) PD(x, y) =
∂GD(x, y)

∂n(y)
,

along the outward normal vector n(y) to ∂D at y. The function P (x, y) is harmonic
in x, positive on D and is called the Poisson kernel of D.

By [5, Theorem 6.18] every negative subharmonic function u on D can be rep-
resented as

u(x) =

∫

D

GD(x, y)∆u(y) +H(x),

where ∆u is the Riesz mass of u and H(x) is the least harmonic majorant of u.
It was proved in [14] that if H(x) is a negative harmonic function on a domain D
with C2-boundary, then

H(x) = −
∫

∂D

PD(x, y) dµ(y),

where µ is a Borel measure on ∂D.
Combining the two previous equations we get the Poisson–Jensen formula for a

negative subharmonic function u on D:

(2) u(x) =

∫

D

GD(x, y)∆u(y)−
∫

∂D

PD(x, y) dµ(y).

Let δ(x) be the distance from x to ∂D. The following theorem was proved in [9]
and [15, Eqns. (5) and (7)] (see also [17] and [18]).

Theorem 2.1. If D ⊂ Rn is a domain with C2-boundary, then there is a constant

A > 0 depending only on D such that the Green function satisfies the inequality

(3) GD(x, y) ≥ −1

2
ln

(
1 +A

δ(x)δ(y)

|x− y|2
)
, n = 2,

and

(4) GD(x, y) ≥ −Aδ(x)δ(y)|x− y|n , n > 2.

2



It follows from this inequalities (see [14] and [15]) that there is a constant B > 0
depending only on D such that

(5) PD(x, y) ≤ Bδ(x)

|x− y|n
for all n ≥ 2.

3. Norming functions and Martin compactification

If φ > 0 is a continuous function on a domain D ⊂ Rn, then we denote by
L1(D,φ) the space of all Lebesgue measurable functions u on D such that

‖u‖φ =

∫

D

|u|φdx <∞.

Let us call a positive continuous function φ(z) on D norming if for each compact
set F ⊂⊂ D there is a positive constant C(F ) and for every increasing sequence
of subdomains Dj ⊂⊂ D with ∪Dj = D there is a sequence of numbers εj > 0
converging to zero such that for every negative subharmonic function u on D:

(1) ‖u‖φ <∞;
(2) u(x) ≤ −C(F )‖u‖φ for every point x ∈ F ;
(3) ‖u‖L1(D\Dj ,φ) ≤ εj‖u‖φ.

The first important feature of norming functions φ on D is the integrability of
all negative subharmonic functions. Hence, the cone SH−(D) of all non-positive
subharmonic functions on D lies in the Banach space L1(D,φ).

As the following lemma shows this embedding of SH−(D) into L1(D,φ) practi-
cally does not depend on the choice of φ.

Lemma 3.1. Norming functions determine equivalent norms on the cone of nega-

tive subharmonic functions.

Proof. Let φ1 and φ2 be norming functions on D. We take a compact set F ⊂ D
of positive Lebesgue measure and find a constant c > 0 such that u(x) ≤ −c‖u‖φ1

for all x ∈ F and all negative subharmonic functions u on D. Then

−‖u‖φ2 ≤
∫

F

uφ2 dx ≤ −c‖u‖φ1

∫

F

φ2 dx.

This shows that there is a constant a > 0 such that ‖u‖φ2 ≥ a‖u‖φ1 on SH−(D).
�

Another important feature of norming functions φ is given by the following the-
orem.

Theorem 3.2. The set SH−
1 (D,φ) = {u ∈ SH−(D) : ‖u‖φ ≤ 1} is compact in

L1(D,φ).

Proof. Let vj be a sequence of subharmonic functions in SH−
1 (D). By [6, Theorem

4.1.9] there is a subsequence vjk converging in L1
loc(D) to a subharmonic function

v on D. Moreover,

lim sup
k→∞

vjk(z) ≤ v(z)

and the left and the right side of this inequality are equal a.e.
3



By the third property of norming functions this subsequence converges to v in
L1(D,φ) and by Fatou’s lemma ‖v‖φ ≤ 1. �

The following lemma provides estimates of integrals of subharmonic functions
on compact sets.

Lemma 3.3. Let φ be a norming function on a domain D ⊂ Rn and let F be

a compact set in D with a = ‖χF ‖φ > 0. Then there is a positive constant c,
depending only on F , such that for every negative subharmonic function u on D
we have

ca‖u‖φ ≤ −
∫

F

uφdx.

Proof. By the second property of norming functions
∫

F

uφdx ≤ −C(F )‖u‖φ
∫

F

φdx = −C(F )‖χF ‖φ‖u‖φ.

�

Let D ⊂ Rn be a Greenian domain (see [1]), i. e. a domain such that for
each y ∈ D there is the Green function GD(x, y). Since the Green functions are
continuous in both variables, the mapping Φ : D → SH−

1 (D,φ) defined as Φ(y) =

G̃D(x, y) = l−1(y)GD(x, y), where l(y) = ‖GD(x, y)‖φ, is a homeomorphism on its

image. The closure D̃φ of Φ(D) in SH−
1 (D,φ) is compact and consists of Φ(D)

and the set ∂MD of the limits in L1(D,φ) of sequences of functions {G̃D(x, yj)}
such that the sequence {yj} has no accumulation points in D. Since these limits
are harmonic on D, the sets ∂MD and Φ(D) do not meet. By Lemma 3.1 if φ and

ψ are norming functions on D, then the sets D̃φ are homeomorphic to each other.
In [12] R. S. Martin defines the Martin compactification of D by choosing a

point x0 ∈ D and then adding to D all equivalence classes of converging uniformly
on compacta sequences of function m−1(yj)GD(x, yj), where m(yj) = GD(x0, yj)
and the sequence {yj} has no accumulation points. By Harnack’s inequality, the
third property of a norming function φ and Lemma 3.3 the uniform convergence on
compacta of harmonic functions is equivalent to convergence in L1(D,φ). Therefore,

D̃φ is homeomorphic to the Martin compactification of D and ∂MD is the Martin
boundary of D.

4. The existence of norming functions

Now we will show that every domain D ⊂ Rn has a norming function. We start
with a lemma. Let B(a, r) be the ball of radius r centered at a in Rn

Lemma 4.1. If D ⊂ Rn is a domain with C2-boundary, then the function φ(x) ≡ 1
on D is norming.

Proof. First we prove that both Green and Poisson kernels are uniformly integrable
on D. We may assume that B(0, s) ⊂ D ⊂ B(0, 1) for some s > 0. For ε > 0 we
let Dε = {x ∈ D : δ(x) < ε},

vε(y) =

∫

Dε

GD(x, y) dx and hε(y) =

∫

Dε

PD(x, y) dx.

4



Since D ⊂ B(0, 1),

GD(x, y) ≥ − 1

|x− y|n−2
, n ≥ 3 and GD(x, y) ≥ ln

|x− y|
2

, n = 2.

Thus the function vε(y) is defined and continuous on D.
Let n ≥ 3. For a point y ∈ Dε take a ball B = B(y, r) of the radius r = δ(y).

Since δ(x) ≤ δ(y) + |x− y|, by Theorem 2.1

GD(x, y) ≥ −A
(

r2

|x− y|n +
r

|x− y|n−1

)
.

Therefore

vε(y) ≥ −
∫

B

1

|x− y|n−2
dx−A

∫

Dε\B

r2

|x− y|n dx−
∫

Dε\B

r

|x− y|n−1
dx.

The first integral is equal to cnr
2. The second integral does not exceed

A

∫

B(y,2)\B

r2

|x− y|n dx = cnr
2 ln

2

r
.

The function |x|1−n is integrable on B(0, 2). Since the measure of Dε converges to
0 as ε → 0, by the absolute continuity of the integral there is C1(ε) → 0 as ε → 0
such that ∫

Dε\B

1

|x− y|n−1
dx ≤ C1(ε).

Thus vε(y) ≥ −C(ε)δ(y) when y ∈ Dε, where C(ε) → 0 as ε → 0. Since vε is
harmonic on D′

ε = D \Dε we see that

vε(y) ≥ −C(ε)ε ≥ −C(ε)δ(y)
on D. In particular, when ε = 1

(6) v1(y) =

∫

D

GD(x, y) dx ≥ −C(1)δ(y).

If y ∈ ∂D, then δ(x) ≤ |x− y| and by (5)

hε(y) =

∫

Dε

PD(x, y) dx ≤
∫

Dε

B

|x− y|n−1
dx ≤M(ε),

where M(ε) depends only on D and ε and converges to 0 as ε→ 0.
The function GD(x, y), considered as a mapping into the extended real line

[−∞,∞], is continuous on D × D. Hence there is a constant d1(ε) > 0 such
that GD(x, y) < −d1(ε) on B(0, s) when x, y ∈ D′

ε. Let h(y) be a continuous
subharmonic function on D equal to −d1(ε) on B(0, s), zero on ∂D and harmonic
on D \B(0, s). By the maximum principle, the Keldysch–Lavrentiev–Hopf lemma
and (6) we have

GD(x, y) ≤ h(y) < −K(ε)δ(y) ≤ d(ε)v1(y),

where K(ε) > 0, d(ε) = C(1)K(ε), x ∈ D′
ε and y ∈ D. Also

PD(x, y) =
∂GD(x, y)

∂n(y)
≥ K(ε) > 0,
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when x ∈ D′
ε.

Let u be a negative subharmonic function on D. By Fubini’s theorem and (2)

(7)

∫

D

u dy =

∫

D

v1∆u−
∫

∂D

h1 dµ.

The second integral in the right side is finite because 0 ≤ h1(y) ≤ M(1). Now
for x ∈ D′

ε we have
∫

D

v1∆u ≥ 1

d(ε)

∫

D

GD(x, y)∆u(y) ≥ 1

d(ε)
u(x).

Therefore, if the first integral in the right side of (7) is infinite, then u will be equal
to −∞ everywhere. Thus ‖u‖1 < ∞ and this proves the first property of norming
functions.

If x ∈ D′
ε, then the estimate for GD above yields

∫

D

GD(x, y)∆u(y) ≤ d(ε)

∫

D

v1∆u.

The estimate for P tells us that∫

∂D

PD(x, y) dµ(y) ≥ K(ε)

∫

∂D

dµ ≥ K(ε)

M(1)

∫

∂D

h1(y) dµ.

Let a(ε) = min{d(ε),K(ε)/M(1)}. For x ∈ D′
ε by (2) and (7) we get

u(x) ≤ a(ε)



∫

D

v1(y)∆u(y)−
∫

∂D

h1(y)dµ


 = a(ε)

∫

D

u(y) dy

and this proves the second property of norming functions.
The function v1(y) is negative and subharmonic on D. Hence by Keldysch–

Lavrentiev–Hopf lemma v1(y) < −αδ(y), α > 0. Also h1(y) > β > 0 on ∂D.
Thus ∫

Dε

u dy =

∫

D

vε∆u −
∫

∂D

hε dµ ≥ −C(ε)
∫

D

δ∆u −M(ε)

∫

∂D

dµ ≥

C(ε)

α

∫

D

v1∆u− M(ε)

β

∫

∂D

h1dµ ≥ b(ε)

∫

D

u(y) dy,

where b(ε) = max{C(ε)α−1,M(ε)β−1} converges to 0 as ε → 0. This shows the
third property of norming functions.

The case n = 2 has a completely analogous proof. �

This lemma fails for general bounded domains as the following example shows.

Example 4.2. Let D = {z = x+ iy ∈ C : |z| < 1, 0 < Arg z < π/2} and let

u(z) = Im
1

z2
= − 2xy

(x2 + y2)2
.

Then u is a negative harmonic function on D and it is not integrable.

Theorem 4.3. Every domain D ⊂ R
n has a norming function.

6



Proof. Let Dj ⊂⊂ Dj+1 ⊂⊂ D be a sequence of subdomains with smooth bound-
aries such that ∪Dj = D and let Gj = Dj+1 \Dj .

By Lemma 4.1 there are positive constants cj such that

(8) u(x) ≤ cj

∫

Dj+1

u dx

for each negative subharmonic function u on D and every point x ∈ Dj. Conse-
quently, there are constants bj, 0 < bj < 1, such that

∫

Dj

u dx ≤ bj

∫

Dj+1

u dx

and ∫

D1

u dx ≤ dj

∫

Dj

u dx,

where 0 < dj = b1b2 . . . bj−1 < 1.
Let Gj = Dj+1 \ Dj and let φ(x) be a positive continuous function on D such

that φ ≤ 1 on D1 and φ(x) ≤ 2−jdj on Gj .
Now

(9)

∫

D\Dj

uφdx =

∞∑

k=j

∫

Gk

uφdx ≥
∞∑

k=j+1

dk2
−k

∫

Dk

u dx ≥ 2−j

∫

D1

u dx.

So ∫

D

uφdx ≥ 2

∫

D1

u dx > −∞.

By (9)

(10)

∫

D\Dj

uφdx ≥ 2−j+1

c

∫

D

uφdx,

where c = inf φ(x) on D1.
By (8) and (10) for all points x ∈ Dj we have

(11) u(x) ≤ cj

∫

Dj+1

u dx ≤ cj

∫

D1

u dx ≤ cj
2

∫

D

uφdx.

Formulas (10) and (11) show that the function φ is norming. �

5. Norming volume forms on complex manifolds

If V is a positive continuous volume form on a complex manifold M , then
L1(M,V ) is the space of all Lebesgue functions u on M such that

‖u‖V =

∫

M

|u| dV <∞.

A positive continuous volume form V on M is norming if for each compact
set F ⊂⊂ M there is a positive constant C(F ) and for every increasing sequence
of open sets Mj ⊂⊂ M with ∪Mj = M there is a sequence of numbers εj > 0
converging to zero such that for every negative plurisubharmonic function u on M :

7



(1) ‖u‖V <∞;
(2) u(z) ≤ −C(F )‖u‖V for every point z ∈ F ;
(3) ‖u‖L1(M\Mj ,V ) ≤ εj‖u‖V .

Theorem 5.1. Every connected complex manifold M has a norming volume form.

Proof. First, we prove this theorem whenM is a relatively compact connected open
set with smooth boundary in a complex manifold. Let us take a finite open cover
ofM by biholomorphic images Fj(D

′
j) of domains D′

j ⊂ Cn, where n = dimM and

1 ≤ j ≤ m. We may assume that the sets Dj = F−1
j (M ∩ Fj(Dj)) are domains.

Then the open sets Uj = Fj(Dj) ⊂ M form a finite open cover of M . Let φj be

a norming function on Dj , Gj = F−1
j and Vj = G∗

j (φj dx) be the pull-back of the
volume form φj dx on Dj to Uj.

Let ψj be a partition of unity subordinated to the cover {Uj}. We let V =∑k

j=1 ψjVj . We assume that for all j the sets {ψj > 0} are non-empty. If u is a
negative plurisubharmonic function on M , then

∫

M

u dV =
m∑

j=1

∫

Dj

u(Fj(x))φj(x) dx > −∞.

Suppose that the intersection of Uj and Uk is non-empty. Let us take a compact
set A ⊂ Uj ∩ Uk such that

Vj(A) =

∫

A

dVj > 0.

There is a constant ck > 0 such that

u(z) < ck

∫

Uk

u dVk = ck

∫

Dk

u(Fk(x))φk(x) dx

for any point z ∈ A. Hence
∫

Uj

u dVj ≤
∫

A

u dVj < ckVj(A)

∫

Uk

u dVk.

This means that there are constants cjk > 0 such that
∫

Uj

u dVj ≤ cjk

∫

Uk

u dVk

whenever Uj ∩ Uk 6= ∅.
Since M is connected for any 1 ≤ j, k ≤ m there is a finite chain of sets

Ui1 , . . . , Uip such that Uj = Ui1 , Uk = Uip and Uil ∩ Uil+1
6= ∅. Hence for any

any 1 ≤ j, k ≤ m there are constants cjk > 0 such that
∫

Uj

u dVj ≤ cjk

∫

Uk

u dVk.

This, in its turn, implies that for any 1 ≤ j ≤ m there is a constant dj > 0 such
that ∫

Uj

u dVj ≤
m∑

k=1

cjk

∫

Uk

ψku dVk ≤ dj

∫

M

u dV.

8



Let F be a compact set in M . For every point z ∈ F ∩ Uj we take relatively
compact open sets Fz ⊂ Uj containing z and then choose a finite cover of F by
such sets. Let Aj ⊂⊂ Uk(j) be the elements of this cover. If z ∈ Aj ∩F , then there
is a constant aj > 0 such that

u(z) < aj

∫

Uk(j)

u dVk(j) ≤ ajdk(j)

∫

M

u dV.

Taking as C(F ) the minimal constant ajck(j) we see that V satisfies the second
property of norming volume forms.

LetMk be an increasing sequence of open setsMk ⊂⊂M with ∪Mk =M . Then
for each j there is a sequence of numbers εjk converging to zero such that

∫

Uj\Mk

u dV ≥ εjk

∫

Uj

u dVj .

Hence
∫

M\Mk

u dV =

m∑

j=1

∫

Uj\Mk

ψju dVj ≥
m∑

j=1

∫

Uj\Mk

u dVj ≥
m∑

j=1

εjk

∫

Uj

u dVj .

For each j there is a compact set Bj ⊂ Uj and a constant aj > 0 such that
Vj(Bj) > 0 and ψj > aj on Bj . By Lemma 3.3 there are constants bj > 0 such that

∫

Uj

u dVj ≥ bj

∫

Bj

u dVj ≥
bj
aj

∫

Uj

ψju dVj .

Hence ∫

M\Mk

u dV ≥
m∑

j=1

εjkbj
dj

∫

Uj

ψju dVj ≥ εk

∫

M

u dV,

where εk is some positive sequence converging to 0. This shows the existence of
norming forms on relatively compact connected open sets with smooth boundary
in a complex manifold.

In the general case we exhaustM by relatively compact connected open sets Mj

with smooth boundary and repeat the proof of Theorem 4.3. �

The first important feature of norming volume forms V on a connected complex
manifold M is the fact that every non-positive plurisubharmonic function u 6≡ −∞
is integrable with respect to the measure dV . Hence, the cone PSH−(M) of all
negative plurisubharmonic functions on M belongs to the Banach space L1(M,V ).

Repeating the proof of Lemma 3.1 we get

Lemma 5.2. Norming volume forms determine equivalent norms on the cone of

negative plurisubharmonic functions.

Analogously the following plurisubharmonic version of Lemma 3.3 is valid.

Lemma 5.3. Let V be a norming volume on a complex manifold M and let F be

a compact set in M with V (F ) > 0. Then there is a positive constant c, depending
only on F , such that for every negative plurisubharmonic function u on M we have

c‖u‖V ≤ −
∫

F

u dV.

9



Let us denote by BV the closed unit ball in L1(M,V ).

Theorem 5.4. The set PSH−
1 (M,V ) = PSH−(M)∩BV is compact in L1(M,V ).

Proof. Let vj be a sequence of plurisubharmonic functions in PSH−
1 (M,V ) and

let U ⊂ M be the biholomorphic image of a domain D ⊂ Cn by a mapping F .
Then the functions uj = vj ◦ F are subharmonic on D. By [6, Theorem 4.1.9]
there is a subsequence ujk converging in L1

loc(D) to a subharmonic function u on
D. Moreover,

w(z) = lim sup
k→∞

ujk(z) ≤ u(z)

on D and the left and the right side are equal a.e. Thus u is the upper semicontin-
uous regularization of w and by [8, Prop. 2.9.17] u is plurisubharmonic.

It follows that ifMi ⊂⊂M is an increasing sequence of connected open sets such
that ∪Mi =M , then there is a subsequence {vjk} converging in L1(Mi, V ) for any
i to a plurisubharmonic function v onM . By the third property of norming volume
forms there is a sequence of numbers εi > 0 converging to zero such that

∫

M\Mi

u dV ≥ εi

∫

M

u dV

for all u ∈ PSH−(M). Hence
∫

M

|vjk − v| dV ≤
∫

Mi

|vjk − v| dV −
∫

M\Mi

(vjk + v) dV

≤
∫

Mi

|vjk − v| dV − εi

∫

M

(vjk + v) dV ≤
∫

Mi

|vjk − v| dV + 2εi.

Thus this subsequence converges to v in L1(M,V ). �

Proposition 5.5. If F : M → N is a proper holomorphic mapping between com-

plex manifolds M and N and V is a norming volume form on N , then V ∗ = F ∗V
is a norming volume form on M .

Proof. Let A be a singular set of F and A′ = F (A). Any point in N \ A′ has
the same finite number m of preimages under the mapping F . If u is a negative
plurisubharmonic function on M , then u∗(w) =

∑
F (z)=w u(z) is a plurisubhar-

monic function on N \A′ that is locally bounded above near any point of A′. Since
the set A′ is analytic, u∗ extends uniquely to N as a plurisubharmonic function.
Thus ∫

M

u dV ∗ = m

∫

N

u∗ dV > −∞,

when u is a negative plurisubharmonic function on M .
If G is a compact set in M , then G′ = F (G) is a compact set in N and

u(z) ≤ u∗(F (z)) ≤ c

∫

N

u∗ dV =
c

m

∫

M

u dV ∗.
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If Mj ⊂⊂ M is an exhaustion of M and M ′
j = M \Mj , then taking into account

that F is proper we get
∫

M ′

j

u dV ∗ ≥ m

∫

F (M ′

j
)

u∗ dV ≥ mεj

∫

N

u∗ dV = εj

∫

M

u dV ∗,

where εj > 0 is some sequence converging to 0. �

6. Pluripotential compactification

Let M be a complex manifold. For w ∈M we consider the pluricomplex Green
function, introduced in [7],

gM (z, w) = supu(z),

where the supremum is taken over all negative plurisubharmonic functions u such
that the function u(z) − log ‖z − w‖ is bounded above near w. It is known that
gM (z, w) is plurisubharmonic in z. (Here we assume that u ≡ −∞ is a plurisub-
harmonic function.)

The function gM (z, w) is also maximal in z outside w, i.e., if G ⊂ M is a
domain whose closure does not contain w and v is a plurisubharmonic function on
a neighborhood U of G such that v(z) ≤ gM (z, w) on ∂G, then v(z) ≤ gM (z, w) on
G. Indeed, if v is a negative plurisubharmonic function on M which is less than gM
on a neighborhood of the boundary of a domain G ⊂ M , w 6∈ G, then we take the
function v1 equal to gM on M \G and to max{gM , v} on G. This function will be
negative and plurisubharmonic on M and v1 = gM near w0. Thus gM ≥ v on G.

We introduce locally uniformly pluri-Greenian complex manifolds M , where ev-
ery point w0 ∈ M has a coordinate neighborhood U with the following prop-
erty: there is an open set W ⊂ U containing w0 and a constant c such that
gM (z, w) > log ‖z − w‖ + c on U whenever w ∈W ;

IfM is a ball B(w0, r) of radius r centered at w0 ∈ Cn, then gM (z, w0) = log(‖z−
w0‖/r). Since gM is monotonic in M , it follows that if M is a bounded domain
in C

n, then gM (z, w) ≥ log(‖z − w‖/r), where r is the radius of circumscribed
ball of M centered at w. Hence bounded domains in Cn are locally uniformly
pluri-Greenian.

We will need a version of [8, Lemma 6.2.4].

Lemma 6.1. If M is a locally uniformly pluri-Greenian complex manifold and

w0 ∈M , then for any ε > 0 and any neighborhood X of w0 there is a neighborhood

Y of w0 such that

1− ε ≤ gM (z, w0)

gM (z, w)
< 1 + ε

whenever w ∈ Y and z ∈M \X.

Proof. Let U be a coordinate neighborhood of w0 from the definition of locally uni-
formly pluri-Greenian manifolds. We may assume that U ⊂ X . By this definition
gM (z, w) > log ‖z − w‖ + c on U when w ∈ B(w0, r) ⊂ U for some r > 0. On
the other hand, if w ∈ B(w0, r/4), then B(w0, r/2) ⊂ B(w, 3r/4) ⊂ B(w0, r) and
by monotonicity of pluricomplex Green functions there is a constant c1 depending
only on r such that gM (z, w) ≤ log ‖z − w‖ + c1 on B(w0, r/2).

If 0 < t < r/4, and ‖w−w0‖ < t/2, then log t+ c− 2 ≤ gM (z, w) ≤ log t+ c1+2
on ∂B(w0, t). Hence there is 0 < t0 < r/4 such that (1+ ε)gM(z, w) ≤ gM (z, w0) ≤
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(1 − ε)gM (z, w0) on ∂B(w0, t0) when w ∈ B(w0, t0/2). Our lemma follows with
Y = B(w0, t0/2) by the maximality of gM . �

Let V be a norming volume form on M . Let cV (w) = ‖gM(z, w)‖V . We define
the mapping ΦV : M → PSH−

1 (M) as ΦV (w) = g̃M (z, w) = c−1
V (w)gM (z, w).

Lemma 6.2. If M is a locally uniformly pluri-Greenian complex manifold, then

the mapping ΦV has the following properties:

(1) ΦV is a continuous bijection onto ΦV (M);
(2) for every compact set N ⊂M the mapping ΦV is a homeomorphism between

N and ΦV (N).

Proof. From properties of locally uniformly pluri-Greenian complex manifolds it
follows immediately that ΦV is a bijection. It follows from Lemma 6.1 and the
inequality gM (z, w) > log ‖z−w‖+ c near w that the function cV (w) is continuous
and, consequently, ΦV is continuous.

If a set N ⊂⊂ M , then ΦV is continuous and bijective on N . If a sequence
g̃M (z, wj), wj ∈ N , converges to g̃M (z, w0) in L1(M,V ), then we take any sub-
sequence wjk of {wj} converging to x0 ∈ N . By continuity of ΦV the sequence
g̃M (z, wjk) converges to g̃M (z, x0) and this implies that x0 = w0. Thus the se-
quence {wj} converges to w0 in M . �

The norm of ΦV (w) in L
1(M,V ) is equal to 1. Hence, by Theorem 5.4 the closure

M̃V of ΦV (M) in L1(M,V ) is compact and we call the set M̃V the pluripotential

compactification of M . The set M̃V consists of ΦV (M) and the set ∂MD of the

limits in L1(M,V ) of sequences of functions {G̃D(x, yj)} such that the sequence

{yj} has no accumulation points in D. The closure ∂P of the set M̃V \ ΦV (M) is
called the pluripotential boundary of M .

Lemma 6.3. Let M and N be locally uniformly pluri-Greenian complex manifolds

and F : M → N be a biholomorphism. Let V and U be norming volume forms on

M and N respectively. Then there is a canonical homeomorphism H of ÑU onto

M̃V such that H(ΦU (N)) = ΦV (M).

Proof. We define H̃ : PSH−
1 (N,U) → PSH−

1 (M,V ) as H̃(u) = l−1(v)v, where

v = u ◦ F and l(v) = ‖v‖V . If we prove that H̃ is a homeomorphism and

H̃(ΦU (N)) = ΦV (M), then the restriction H of H̃ to ÑU will be the required
mapping.

First of all, we note that H̃ is bijective. Secondly, if U∗ = F ∗U and the mapping

P̃ : PSH−
1 (N,U) → PSH−

1 (M,U∗) is defined as P̃ (u) = u ◦ F , then P̃ is a
bijective isometry. Finally, by Lemma 5.3 the function l(v) is continuous on the
compact set PSH−

1 (M,U∗). Hence the mapping v → l−1(v)v is a homeomorphism
of PSH−

1 (M,V ∗) onto PSH−
1 (M,V ). The composition of two latter mappings is

H̃ and our lemma is proved. �

In particular, all pluripotential compactifications are homeomorphic to each

other and we will denote them by M̃ . Another immediate consequence of this
lemma is

Theorem 6.4. Let M and N be locally uniformly pluri-Greenian complex mani-

folds. Then any biholomorphic mapping F : M → N extends to a homeomorphism

of M̃ onto Ñ .
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7. Examples

When working with examples it is useful to choose a better normalizing factor for
pluricomplex Green function. The factor ‖gM (z, w)‖−1

V was optimal for the proofs
but hard to calculate in concrete cases. However, if a sequence α(wj)gM (z, wj)
converges in L1(M,V ) to some non-zero function u, then the sequence g̃M (z, wj)
also converges to a scalar multiple of u.

Example 7.1. Let M = B2 be the unit ball in C2. Evidently, gM (z, 0) = log ||z||
and gM (z, a) = gM (f(z), f(a)) = log ||f(z)||, where f is an automorphism of the
ball transforming a = (a1, a2) into 0. If w = (w1, w2) = f(z) = f(z1, z2) then

w1 =
r − z′1
1− z′1r

; w2 =

√
1− r2

1− z′1r
z′2,

where r = ||a||, z′1 = r−1(z, a) and z′2 = r−1(z, ā). Therefore,

gM (z, a) = log

∣∣∣∣1−
(1 − ||z||2)(1 − r2)

|1− z′1r|2
∣∣∣∣ .

As a normalizing factor we take |g(0, a)| = −2 log r. Then

g̃M (z, a) = − 1

2 log r
log

∣∣∣∣1−
(1− ||z||2)(1− r2)

|1− z′1r|2
∣∣∣∣ .

If a sequence g̃M (z, aj) converges and ‖aj‖ → 1, then aj → a = (a1, a2) ∈ ∂B2 and
the limit is

g̃M (z, a) =
||z||2 − 1

|1− (z, a)|2 .

The function g̃M (z, a) is maximal because for mappings f(ζ) = (ζ, C(1− ζ)) : D →
B2 the functions g̃M (f(ζ), a) are harmonic.

So in this case M̃ = B
2
, ∂PM = ∂B2 and the mapping ΦV is a homeomorphism

of B
2
onto M̃ . This means that the Euclidean boundary and the pluripotential

boundary coincide.

Example 7.2. Let M = D2 ⊂ C2, z = (z1, z2) and w = (w1, w2). Then

gM (z, w) = logmax

{∣∣∣∣
z1 − w1

1− z1w̄1

∣∣∣∣ ,
∣∣∣∣
z2 − w2

1− z2w̄2

∣∣∣∣
}
.

As a normalizing factor we take α(w) = |g−1
M (0, w)| = − log−1 max{|w1|, |w2|}.

If a sequence wj = (w1j , w2j) in M converges to w0 = (w10, w20) and |w10| = 1
while |w20| < 1, then the sequence g̃M (z, wj) converges to

(12) g̃M (z, w0) =
|z1|2 − 1

|1− z1w̄10)|2
.

Similarly, if |w01| < 1 while |w02| = 1, then the sequence g̃M (z, wj) converges to

(13) g̃M (z, w0) =
|z2|2 − 1

|1− z2w̄20)|2
.

If |w01| = |w02|, then the sequence g̃M (z, wj) converges if and only if the sequence
(log |w1j |)/ log |w2j | has the finite or infinite limit c. If c = ∞, then g̃M (z, wj)
converges to the function from (13), while if c = 0, then the limit of g̃M (z, wj) is
the function from (12).
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If 0 < c ≤ 1, then g̃M (z, wj) converges to the function

g̃M (z, w0) = logmax

{ |z1|2 − 1

|1− z1w̄10)|2
, c−1 |z2|2 − 1

|1− z2w̄20)|2
}
.

If 1 ≤ c <∞, then g̃M (z, wj) converges to the function

g̃M (z, w0) = logmax

{
c

|z1|2 − 1

|1− z1w̄10)|2
,

|z2|2 − 1

|1− z2w̄20)|2
}
.

All limit functions are maximal. The non-distinguished part of ∂M is squeezed
into two circles while every point in the distinguished boundary, that is a 2-torus
T2, blows up to an interval (0,∞) connecting these circles. If we add to every
point of T2 the interval (0, 1] and the circle from (12) we will get a filled torus in
R3. Adding interval (1,∞) and the circle from (13) we will get another filled torus
in R

3. Thus ∂PM is the double of a filled torus or the product of a circle and a
2-sphere.

Example 7.3. LetM be a smooth strongly convex domain in Cn. A complex geodesic

is a holomorphic map φ : D →M which is an isometry between the Poincaré metric
on D and the Kobayashi distance kM on M . According to Lempert (see [11]) on
smooth strongly convex domains complex geodesics are injective maps smooth up
to the boundary and the Kobayashi and Carathéodory distances coincide. The
latter implies (see [13] or [2]) that gM (z, w) = log(tanh kM (z, w)).

In [3, Theorem 3] the authors constructed a continuous mapping Φ : ∂M×M →
Bn that is smooth on ∂M ×M outside of the diagonal in ∂M × ∂M and has the
following properties:

(1) for every p ∈ ∂M there is q ∈ ∂Bn such that Φ(p, φ(ζ)), where φ is any
complex geodesic in M and p ∈ φ(T), is a complex geodesic in Bn passing
through q;

(2) for a fixed p ∈ ∂M the mapping Φ(p, z) is a homeomorphism of M onto Bn

smooth outside of {p}.
For a complex geodesic φ such that φ(0) = w and φ(ζ) = z we choose a

point p ∈ φ(T). Due to the isometry properties of Φ the value of the function
log(tanh kBn(Φ(p, w),Φ(p, z)) does not depend on the choice of p and is equal to
log(tanh kM (z, w)) = gM (z, w).

Let {wj} ⊂ B be a sequence converging to p ∈ ∂M . For a complex geodesic
passing through wj and z we choose as pj(z) the nearest point to p in φ(T). By
the continuity of Φ the mappings Φ(pj(z), z) converge to Φ(p, z) uniformly on
compacta in M . Let xj ∈ M be the points such that Φ(pj(xj), xj) = 0 and let

λj = −2 log−1 ‖Φ(pj(xj), wj)‖. Then the functions

λjgM (z, wj) = λj log(tanh kBn(Φ(pj(z), z),Φ(pj(z), wj))

converge uniformly on compacta to g̃M (z, p) = g̃Bn(Φ(p, z), p). This function is
maximal because it is harmonic on geodesics passing through p, equal to 0 on
∂M \ {p} and smooth. So by [2, Theorem 7.3] g̃M (z, p) is a scalar multiple of the
function ΩM,p(z). In [2] the latter function is called pluricomplex Poisson kernel of
M and it is equal to the derivative of gM (z, p) along the outside normal at p like
in the classical formula (1).

In [4] Demailly introduced the notion of pluriharmonic Poisson kernels that de-
pend on the choice of a measure on the boundary and are scalar multiples of each
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other. It was proved in [2] that ΩM,p is a pluriharmonic Poisson kernel in the sense
of Demailly. He also computed these kernels for the ball and the polydisk and they
are scalar multiples of the functions computed in Examples 1 and 2.
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