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Generalized multiscale finite element method for
a strain-limiting nonlinear elasticity model

Shubin Fu, Eric Chung, Tina Mai

Abstract. In this paper, we consider multiscale methods for nonlinear elasticity. In
particular, we investigate the Generalized Multiscale Finite Element Method (GMsFEM)
for a strain-limiting elasticity problem. Being a special case of the naturally implicit con-
stitutive theory of nonlinear elasticity, strain-limiting relation has presented an interest-
ing class of material bodies, for which strains remain bounded (even infinitesimal) while
stresses can become arbitrarily large. The nonlinearity and material heterogeneities can
create multiscale features in the solution, and multiscale methods are therefore neces-
sary. To handle the resulting nonlinear monotone quasilinear elliptic equation, we use
linearization based on the Picard iteration. We consider two types of basis functions,
offline and online basis functions, following the general framework of GMsFEM. The
offline basis functions depend nonlinearly on the solution. Thus, we design an indicator
function and we will recompute the offline basis functions when the indicator function
predicts that the material property has significant change during the iterations. On the
other hand, we will use the residual based online basis functions to reduce the error sub-
stantially when updating basis functions is necessary. Our numerical results show that
the above combination of offline and online basis functions is able to give accurate solu-
tions with only a few basis functions per each coarse region and updating basis functions
in selected iterations.
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1. Introduction

Even though multiscale methods for linear equations are positively growing up, their
applications to nontrivial nonlinear problems are still hard. In addition, many nonlinear
elastic materials contain multiple scales and high contrast. To overcome the challenge
from nonlinearity, the main idea is to linearize it in Picard iteration, as employed in [16]
and references therein. To deal with the difficulties from multiple scales and high contrast,
we apply the GMsFEM ([15]) for the linear equation at the current iteration.

The motivation for our nonlinear elasticity problem is a remarkable trend of study-
ing nonlinear responses of materials based on the recently developed implicit constitutive
theory (see [22, 23, 25, 24]). As Rajagopal notes, the theory offers a framework for es-
tablishing nonlinear, infinitesimal strain theories for elastic-like (non-dissipative) material
behavior. This setting is different from classical Cauchy and Green approaches for model-
ing elasticity which, under the condition of infinitesimal strains, lead to traditional linear
models. Moreover, it is significant that the implicit constitutive theory provides a firm
theoretical foundation for modeling fluid and solid mechanics variously, in engineering,
physics, and chemistry.

We consider herein a special sub-class of the implicit constitutive theory in solids,
namely, the strain-limiting theory, for which the linearized strain remains bounded, even
when the stress is very large. (In the traditional linear model, the stress blows up when
the strain blows up and vice versa.) Therefore, the strain-limiting theory is helpful for
describing the behavior of fracture, brittle materials near crack tips or notches (e.g. crys-
tals), or intensive loads inside the material body or on its boundary. Either case leads
to stress concentration, regardless of the small gradient of the displacement (and thus
infinitesimal strain). Our considering materials are science-non-fiction and physically
meaningful. These materials can sustain infinite stresses, and do not break (because of
the boundedness of strains).

To solve the multiple scales, rather than direct numerical simulations on fine scales,
model reduction methods are proposed in literature to reduce the computational expen-
siveness. Generally, model reduction techniques include upscaling and multiscale ap-
proaches. On coarse grid (which is much larger than fine grid), upscaling methods involve
upscaling the media properties based on homogenization to capture macroscopic behavior,
whereas multiscale methods additionally need precomputed multiscale basis functions.

Within the framework of multiscale methods, the multiscale finite element method
(MsFEM), as in [18, 14], has effectively proved notable success in a variety of practical
applications, but it requires scale separation nevertheless. To overcome this requirement,
we use the generalized multiscale finite element method (GMsFEM), as in [15], to sys-
tematically construct multiple multiscale basis. More specifically, in the GMsFEM, the
computation is divided into two stages: offline and online. One constructs, in the offline
stage, a small dimension space, which can be used effectively in the online stage to con-
struct multiscale basis functions, to solve the problem on coarse grid. The construction
of offline and online spaces is based on the selection of local spectral problems as well
as the selection of the snapshot space. In [8], the GMsFEM was applied to handle the
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linear elasticity problem. In [6], a model reduction method was introduced to solve non-
linear monotone elliptic equations. In [2], thanks to [16] (for handling nonlinearities), the
GMsFEM was used to solve nonlinear poroelasticity problems.

Here, our paper will combine the ideas of Picard iteration and the GMsFEM in [9] to
solve a strain-limiting nonlinear elasticity problem [21, 20]. At each Picard iteration, we
will either apply the offline GMsFEM or the residual based online adaptive GMsFEM.
In the latter approach, we study the proposed online basis construction in conjunction
with adaptivity ([7, 9, 12]), which means that online basis functions are added in some
selected regions. Adaptivity is an important step to obtain an effective local multiscale
model reduction as it is crucial to reduce the cost of online multiscale basis computations.
More specifically, adaptive algorithm allows one to add more basis functions in neigh-
borhoods with more complexity without using a priori information. Given a sufficient
number of initial basis functions in the offline space, our numerical results show that the
adaptive addition of online basis functions substantially decreases the error, accelerates
the convergence, and reduces computational cost of the GMsFEM.

Our strategy is that after some Picard iterations, when the relative change of the
permeability coefficient is larger than a given fixed tolerance, we need to update (either
offline or online, context-dependently) basis functions. This updating procedure ends
when we obtain desired error, and these new basis functions is kept the same in the next
Picard iterations until we need to compute them again.

The next Section contains the mathematical background of our considering strain-
limiting nonlinear elasticity problem. Section 3 is for some preliminaries about the GMs-
FEM, including fine-scale discretization and Picard iteration for linearization. Section 4 is
devoted to the general idea of GMsFEM, including some existing results regarding offline
GMsFEM, for the current nonlinear elasticity problem. Section 5 is about the existing
method of residual based online adaptive GMsFEM for computing online multiscale basis
functions, in our context. In Section 6, some numerical examples will be shown. The last
Section 7 is for conclusions.

2. Formulation of the problem

2.1. Input problem and classical formulation. Let us consider, in dimension two, a
nonlinear elastic composite material Ω = Ω1 × Ω2 ∈ R× R.

We assume that the material is being at a static state after the action of body forces
f : Ω → R2 and traction forces G : ∂ΩT → R2. The boundary of the set Ω is denoted
by ∂Ω, which is Lipschitz continuous, consisting of two parts ∂ΩT and ∂ΩD , where the
displacement u : Ω→ R2 is given on ∂ΩD . We are considering the strain-limiting model
of the form (as in [21])

(2.1) E =
T

1 + β(x)|T |
.

Equivalently,

(2.2) T =
E

1− β(x)|E|
.
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In the equations (2.1) and (2.2), T denotes the Cauchy stress T : Ω→ R2×2; whereas, E
denotes the classical linearized strain tensor,

(2.3) E :=
1

2
(∇u+∇uT) .

We can write

E =D(u) = Du = ∇su .

Then, by (2.2), it follows that

(2.4) T =
D(u)

1− β(x)|D(u)|
.

The strain-limiting parameter function is denoted by β(x), which depends on the po-
sition variable x = (x1, x2). We notice from (2.1) that

(2.5) |E| =
|T |

1 + β(x)|T |
<

1

β(x)
.

This means that
1

β(x)
is the upper-bound on |E|, and taking sufficiently large β(x)

raises the limiting-strain small upper-bound, as desired. However, we avoid β(x) → ∞.

(If β(x) → ∞, then |E| <
1

β(x)
→ 0, a contradiction.) For the analysis of the problem,

β(x) is assumed to be smooth and have compact range 0 < m ≤ β(x) ≤ M . Here, β(x)
is chosen so that the strong ellipticity condition holds (see [21]), that is, β(x) is large
enough, to prevent bifurcations arising in numerical simulations.

2.2. Function space. The preliminaries are the same as in [13]. Latin indices vary in
the set {1, 2}. The space of functions, vector fields in R2, and 2× 2 matrix fields defined
over Ω are respectively denoted by italic capitals (e.g. L2(Ω)), boldface Roman capitals
(e.g. V ), and special Roman capitals (e.g. S). The space of symmetric matrices of order
2 is denoted by S2. The subscript s appended to a special Roman capital denotes a space
of symmetric matrix fields.

Our considering space is V := H1
0(Ω) = W

1,2
0 (Ω). However, the techniques here can

be used in more general space W 1,p
0 (Ω), where 2 ≤ p < ∞. The reason we consider the

spaceW 1,2
0 (Ω) is that we can characterize displacements that vanish on the boundary ∂Ω

of Ω. The dual space (also called the adjoint space), which consists of continuous linear
functionals on H1

0(Ω), is denoted by H−1(Ω), and the value of a functional b ∈H−1(Ω)
at a point v ∈H1

0(Ω) is denoted by 〈b, v〉.
The Sobolev norm ‖ · ‖

W
1,2
0

(Ω) is of the form

‖v‖
W

1,2
0

(Ω) = (‖v‖2
L

2(Ω) + ‖∇v‖
2
L2(Ω))

1

2 .

Here, ‖v‖L2(Ω) := ‖|v|‖L2(Ω) , where |v| denotes the Euclidean norm of the 2-component
vector-valued function v; and ‖∇v‖L2(Ω) := ‖|∇v|‖L2(Ω) , where |∇v| denotes the Frobe-
nius norm of the 2×2 matrix ∇v. We recall that the Frobenius norm on L2(Ω) is defined
by |X|2 :=X ·X = tr(XTX) .



Generalized multiscale finite element method for a nonlinear elasticity model 5

The dual norm to ‖ · ‖H1

0
(Ω) is ‖ · ‖H−1(Ω), i.e.,

‖b‖H−1(Ω) = sup
v∈H1

0
(Ω)

|〈b, v〉|

‖v‖H1

0
(Ω)

.

Let Ω be a bounded, simply connected, open, Lipschitz, convex domain of R2. Let

(2.6) f ∈H1
∗(Ω) =

{

g ∈H1(Ω)

∣

∣

∣

∣

∫

Ω

g dx = 0

}

⊂ L2(Ω) (H−1(Ω) .

be bounded in L2(Ω). We consider the following problem: Find u ∈ H1(Ω) and T ∈
L1(Ω) such that

−div(T ) = f in Ω ,

Du =
T

1 + β(x)|T |
in Ω ,

u = 0 on ∂ΩD ,

Tn = G on ∂ΩT ,

(2.7)

where n stands for the outer unit normal vector to the boundary of Ω.
Benefiting from the notations in [3], we will write

S as T and D(u) =Du as E = E(u) .

The considering model (2.1) is compatible with the laws of thermodynamics [26, 27],
which means that the class of materials are non-dissipative and are elastic.

We assume ∂ΩT = ∅. Using (2.7), we write the considering formulation in the form of
displacement problem: Find u ∈H1

0(Ω) such that

−div

(

D(u)

1− β(x)|D(u)|

)

= f in Ω ,(2.8)

u = 0 on ∂Ω .(2.9)

We denote

(2.10) κ(x, |D(u)|) =
1

1− β(x)|D(u)|
, a(x,D(u)) = κ(x, |D(u)|)D(u) ,

in which u(x) ∈W 1,2
0 (Ω). In this setting, a(x, ξ) ∈ L1(Ω), ξ ∈ L∞(Ω), as in [1].

2.3. Existence and uniqueness. Notice from (2.5) that
1

β(x)
is the upper-bound on

|D(u)|, and 0 < m ≤ β(x) ≤M such that

(2.11) 0 ≤ |D(u)| <
1

M
≤

1

β(x)
≤

1

m
.

We define

(2.12) F (ξ) =
ξ

1− β(x)|ξ|
,
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where ξ ∈ L∞(Ω), and

(2.13) 0 ≤ |ξ| <
1

M
≤

1

β(x)
.

With these facts and thanks to [3], we derive the following results, which were also
stated in [4] (p. 19).

Lemma 2.1. Let

(2.14) Z :=

{

ζ ∈ R2×2

∣

∣

∣

∣

0 ≤ |ζ| <
1

M

}

.

For any ξ ∈ Z such that 0 ≤ |ξ| <
1

M
, consider the mapping

ξ ∈ Z 7→ F (ξ) :=
ξ

1− β(x)|ξ|
∈ R2×2 .

Then, for each ξ1, ξ2 ∈ Z, we have

|F (ξ1)− F (ξ2)| ≤
|ξ1 − ξ2|

(1− β(x)(|ξ1|+ |ξ2|))
2
,(2.15)

(F (ξ1)− F (ξ2)) · (ξ1 − ξ2) ≥ |ξ1 − ξ2|
2 .(2.16)

Proof. We present here the proof in details, thanks to [3]. Notice first that

F (ξ1)− F (ξ2) =

∫ 1

0

d

dt
F (tξ1 + (1− t)ξ2)dt

=

∫ 1

0

d

dt

(

tξ1 + (1− t)ξ2
1− β(x)|tξ1 + (1− t)ξ2|

)

dt

=

∫ 1

0

ξ1 − ξ2
(1− β(x)|tξ1 + (1− t)ξ2|)

2
dt .

For the proof of (2.15), we observe that

|tξ1 + (1− t)ξ2| ≤ max{|ξ1|, |ξ2|} ≤ |ξ1|+ |ξ2| .

Therefore,

|F (ξ1)− F (ξ2)| ≤
|ξ1 − ξ2|

(1− β(x)(|ξ1|+ |ξ2|))
2
.

Then (2.15) follows.
For (2.16), we notice that (1− β(x)|tξ1 + (1− t)ξ2|)

2 ≤ 1. Thus,

(F (ξ1)− F (ξ2)) · (ξ1 − ξ2) =

∫ 1

0

|ξ1 − ξ2|
2

(1− β(x)|tξ1 + (1− t)ξ2|)
2
dt ≥ |ξ1 − ξ2|

2 .

�

Remark 2.2. The condition (2.16) also implies that F (ξ) is a monotone operator in ξ.

Remark 2.3. For the rest of the paper, without confusion, we will use the condition

ξ ∈ L∞(Ω) with the meaning that ξ ∈ Z ′ =

{

ζ ∈ L∞(Ω)

∣

∣

∣

∣

0 ≤ |ζ| <
1

M

}

.
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2.3.1. Weak formulation. Let

(2.17) U = {w ∈H1(Ω) |Dw ∈ Z ′} ,

with the given Z ′ in Remark 2.3.

Remark 2.4. For the rest of the paper, without confusion, we will use the condition
u, v ∈H1

0(Ω) or H
1(Ω) (context-dependently) with the meaning that u, v ∈ U .

Now, for u ∈ V = H1
0(Ω), we multiply equation (2.8) by v ∈ V and integrate the

equation with respect to x over Ω. Integrating the first term by parts and using the
condition v = 0 on ∂Ω, we obtain

(2.18)

∫

Ω

a(x,Du) ·Dv dx =

∫

Ω

f · v dx , ∀v ∈ V .

By the weak (often called generalized) formulation of the boundary value problem (2.8)-
(2.9), we interpret the problem as follows:
(2.19)
Find (u,Du) ∈ V ×L∞(Ω), that is, find u ∈ V such that (2.18) holds for each v ∈ V .

2.3.2. Existence and uniqueness. In [3], the existence and uniqueness of weak solution
(u,T ) for (2.7) have been proved. Also, see [28], for further reference.

Similarly, in our paper, we consider the problem: Find (u,T ) ∈ H1
0(Ω) × L1(Ω) such

that
∫

Ω

T ·D(w) dx =

∫

Ω

f ·w dx ∀w ∈H1
0(Ω) ,(2.20)

D(u) =
T

1 + β(x)|T |
in Ω ,(2.21)

u = 0 on ∂Ω .(2.22)

This problem is equivalent to problem (2.19).
As noticed in [4] (Section 4.3), the identity (2.1) can be equivalently rewritten as

T = a(x,Du) =
Du

1− β(x)|Du|
,

where a is a uniformly monotone operator (2.16) with at most linear growth at infinity
(2.15). Hence, the existence and uniqueness of the solution T ∈ L1(Ω) and u ∈ H1

0(Ω)
(or, in higher regularity, T ∈ L2(Ω) and u ∈W 1,2

0 (Ω)) to (2.20) - (2.22), or u ∈W 1,2
0 (Ω)

to (2.18), is guaranteed by [1].
In the case with β(x) in (2.7), these results are still valid, arriving from similar argument

as in [3], thanks to Lemma 2.1.

3. Fine-scale discretization and Picard iteration for linearization

The solution u ∈ V to (2.8) satisfies

(3.1) q(u, v) = (f , v), ∀v ∈ V ,
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where

q(u, v) =

∫

Ω

a(x,Du) ·Dv dx, (f , v) =

∫

Ω

f · v dx .(3.2)

Starting with an initial guess u0 = 0, to solve equation (2.8), we will linearize it by
Picard iteration, that is, we solve

−div(κ(x, |D(un)|)D(un+1)) = f in Ω ,(3.3)

un+1 = 0 on ∂Ω ,(3.4)

where superscripts involving n (≥ 0) denote respective iteration levels.
To discretize (3.3), we next introduce the notion of fine and coarse grids. Let T H be a

conforming partition of the domain Ω. We call H the coarse mesh size and T H the coarse
grid. Each element of T H is called a coarse grid block (patch). We denote by Nv the total
number of interior vertices of T H and N the total number of coarse blocks. Let {xi}

Nv

i=1

be the set of vertices in T H and wi = ∪{Kj ∈ T
H | xi ∈ K̄j} be the neighborhood of the

node xi. The conforming refinement of the triangulation T H is denoted by Th, which is
called the fine grid, where h > 0 is the fine mesh size. We assume that h is very small so
that the fine-scale solution uh (to be founded in the next paragraph) is sufficiently close
to the exact solution. The main goal of this paper is to find a multiscale solution ums

which is a good approximation of the fine-scale solution uh. This is the reason why the
GMsFEM is used to obtain the multiscale solution ums.

On the fine grid Th, we will approximate the solution of (3.1), denoted by uh (or u
for brevity). To fix the notation, we will use Picard iteration and the first-order (linear)
finite elements for the computation of the fine-scale solution uh. In particular, we let
V h (⊂ V = H1

0(Ω)) be the first-order Galerkin finite element basis space with respect
to the fine grid Th. Toward presenting the details of the Picard iteration algorithm, we
define the bilinear form a(·, ·; ·)

(3.5) a(u, v; |Dw|) =

∫

Ω

κ(x, |Dw|)(Du ·Dv)dx ,

and the functional J(·)

(3.6) J(v) =

∫

Ω

f · vdx .

Given un
h, the next approximation un+1

h is the solution of the linear elliptic equation

(3.7) a(un+1
h , v; |D(un

h)|) = J(v), ∀v ∈ V h .

This is an approximation of the linear equation

(3.8) − div(κ(x, |D(un
h)|)D(un+1

h )) = f .

We reformulate the iteration (3.7) in a matrix form. That is, we define An by

(3.9) a(w, v; |D(un
h)|) = v

TAnw ∀v,w ∈ V h .

and define vector b by

(3.10) J(v) = vTb, ∀v ∈ V h .
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Then, in V h, the equation (3.7) can be rewritten in the following matrix form:

(3.11) Anun+1
h = b .

Furthermore, at the (n + 1)-th Picard iteration, we can solve (3.11) for the multiscale
solution un+1

ms ∈ V
n
ms by using the GMsFEM (to be discussed in the next Sections 4 and

5), with multiscale basis functions in V n
ms computed for |Dun

ms| in each coarse region
wi, i = 1, · · · , N .

Each of uh and ums is computed in a separate Picard iteration procedure, whose ter-
mination criterion is that the relative L2 difference is less than δ0, which can be found in
Subsection 5.3 and Section 6 (δ0 = 10−7).

4. GMsFEM for nonlinear elasticity problem

4.1. Overview. We will construct the offline and online spaces. Being motivated by [2],
we will concentrate on the effects of the nonlinearities. From the linearized formulation
(3.8), we can define offline and online basis functions following the general framework of
GMsFEM.

Given un (which can stand for either un
h or un

ms, context-dependently), at the current
(n + 1)-th Picard iteration, we will obtain the fine-scale solution un+1

h ∈ V h by solving
the variational problem

(4.1) an(u
n+1
h , v) = (f , v), ∀v ∈ V h ,

where

(4.2) an(w, v) =

∫

Ω

κ(x, |Dun|)(Dw ·Dv)dx .

At the n-th Picard iteration, we equip the space V h with the energy norm ‖v‖2
V h

=
an(v, v).

4.2. General idea of GMsFEM. For details of GMsFEM, we refer the readers to
[16, 12, 9, 5]. In this paper, at the current n-th Picard iteration, we will consider the
continuous Galerkin (CG) formulation, having a similar form to the fine-scale problem
(4.1).

First, we start with constructing snapshot functions. Then, by solving a class of specific
spectral problems in that snapshot space, for each coarse node xi, we will obtain a set of
multiscale basis functions {ψi

k | k = 1, 2, · · · , li}, such that each ψi
k = ψwi

k is supported
on the coarse neighborhood wi. Furthermore, the basis functions satisfy a partition of
unity property, that is, there exist coefficients αi

k such that
∑Nv

i=1

∑li
k=1 α

i
kψ

i
k = 1. With

the constructed basis functions, their linear span (over i = 1, · · · , Nv, k = 1, · · · li) defines
the approximate space V m

ms (at the m-th inner iteration, to be specified in Section 5).
The GMsFEM solution um

ms ∈ V
m
ms can then be obtained via CG global coupling, which

is given through the variational form

(4.3) an(u
m
ms, v) = (f , v) , ∀v ∈ V m

ms ,

where an is defined by (4.2).
In summary, one observes that the key component of the GMsFEM is the construc-

tion of local basis functions. First, we will use only the so called offline basis functions,
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which can be computed in the offline stage. Second, to improve the accuracy of the
multiscale approximation, we will construct additional online basis functions that are
problem-dependent and computed locally and adaptively, based on the offline basis func-
tions and some local residuals. As in [9], our results show that the combination of both
offline and online basis functions will give a rapid convergence of the multiscale solution
um

ms to the fine-scale solution uh.

4.3. Construction of offline multiscale basis functions. At the current n-th Picard
iteration, we will present the construction of the offline basis functions ([9]). We start
with constructing, for each coarse subdomain wi, a snapshot space V i

snap. For simplicity,

the index i can be omitted when there is no confusion. The snapshot space V i
snap is a

set of functions defined on wi and contains all or most necessary components of the fine-
scale solution restricted to wi. A spectral problem is then solved in the snapshot space
to extract the dominant modes, which are the offline basis functions and the resulting
reduced space is called the offline space.

4.3.1. Snapshot space. The first choice of V i
snap is the restriction of the conforming space

V h in wi, and the resulting basis functions are called spectral basis functions. Note
that V i

snap contains all possible fine-scale functions defined on wi.

The second choice of V i
snap is the set of all κ-harmonic extensions, and the resulting

basis functions are called harmonic basis functions. More specifically, we denote the
fine-grid function δhj (xk) := δjk for xk ∈ Jh(wi), where Jh(wi) denotes the set of all nodes
of the fine mesh Th belonging to ∂wi. The cardinality of Jh(wi) is denoted by Ji. At the
n-th Picard iteration, for each j = 1, · · · , Ji, the snapshot function ψi

j is defined to be
the solution to the following system

−div(κ(x, |Dun
ms|)Dψ

i
j) = 0 in wi ,

ψi
j = (δhj , 0) on ∂wi .

For each coarse region wi, the corresponding local snapshot space V i
snap is defined as

V i
snap := span{ψi

j : j = 1, · · · , Ji}. Then, one may define the global snapshot space V snap

as V snap := ⊕Nv

i=1V
i
snap.

For simplicity, in this paper, we will use the first choice of V i
snap consisting of the

spectral basis functions. We also use this choice in our numerical simulations, and
still use Ji to denote the number of basis functions of V i

snap.

4.3.2. Offline multiscale basis construction. To obtain the offline basis functions, we need
to perform a space reduction by a spectral problem. The analysis in [9] motivates the
following construction. The spectral problem that is needed for the purpose of space
reduction is as follows: find (ψi

j, λ
i
j) ∈ V

i
snap × R, j = 1, 2, · · · , Ji such that

(4.4)

∫

wi

κ(x, |Dun
ms|)Dψ

i
j ·Dw dx = λi

j

∫

wi

κ̃(x, |Dun
ms|)ψ

i
j ·w dx , ∀w ∈ V i

snap ,
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where the weighted function κ̃(x, |Dun
ms|) is defined by (see [9])

κ̃(x, |Dun
ms|) = κ(x, |Dun

ms|)
Nv
∑

i=1

H2|Dχi|
2 ,

and {χi} is a set of standard multiscale finite element basis functions, which is a partition
of unity, for the coarse node xi (that is, with linear boundary conditions for cell problems).
Specifically, ∀K ∈ wi , χi is defined via

−div(κ(x, |Dun
ms|)ζi) = 0 in K ∈ wi ,

ζi = (Φi, 0)
T on ∂K, for all K ∈ wi ,

ζi = 0 on ∂wi ,

where Φi is linear and continuous on ∂K. That is, the multiscale partition of unity is
defined as χi = Φ̃i = (ζi)1.

After arranging the eigenvalues λi
j , j = 1, 2, · · · , Ji from (4.4) in ascending order, we

choose the first li eigenfunctions from (4.4), and denote them by Ψoff
1 , · · · ,Ψoff

li
. Using

these eigenfunctions, we can establish the corresponding eigenvectors in the space of
snapshots via the formulation

φ
i,off
k =

Ji
∑

j=1

(Ψi,off
k )jψ

i,snap
j ,

for k = 1, · · · , li, where (Ψi,off
k )j denotes the j-th component of the vector Ψi,off

k . At
the final step, the offline basis functions for the coarse neighborhood wi is defined by
ψ

i,off
k = χiφ

i,off
k , where {χi} is a set of standard multiscale finite element basis functions,

which is a partition of unity, for the coarse neighborhood wi. We now define the local
auxiliary offline multiscale space V i

off as the linear span of all ψi,off
k , k = 1, 2, · · · , li.

Using the notation in (4.3), one can take V m
ms as V

m
off := span{ψi,off

k | 1 ≤ i ≤ Nv , 1 ≤
k ≤ li}. We refer to [17] for the convergence of the method within the current Picard
iteration.

5. Residual based online adaptive GMsFEM

As we mentioned in the previous Sections, some online basis functions are required to
obtain a coarse representation of the fine-scale solution and give a fast convergence of the
corresponding adaptive enrichment algorithm. In [9], such online adaptivity is proposed
and mathematically analyzed. More specifically, at the current n-th Picard iteration,
when the local residual related to some coarse neighborhood wi is large (see Subsection
5.2), one may construct a new basis function φi ∈ V i =H

1
0(wi)∩V h (with the equipped

norm ‖v‖2
V i

=
∫

wi
κ(x, |Dun

ms|)|Dv|
2 dx), and add it to the multiscale basis functions

space. It is further shown that if the offline space contains sufficient information in the
form of offline basis functions, then the online basis construction results in an efficient
approximation of the fine-scale solution uh.

At the considering n-th Picard iteration, we use the index m (≥ 1) to stand for the
adaptive enrichment level. Thus, V m

ms denotes the corresponding GMsFEM space, and
um

ms represents the corresponding solution obtained in (4.3). The sequence of functions
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{um
ms}m≥1 will converge to the fine-scale solution uh. In this Section, we remark that our

space V m
ms can consist of both offline and online basis functions. We will establish an

approach for obtaining the space V m+1
ms from V m

ms.
In the following paragraphs, based on [9], we present a framework for the construction

of online basis functions. By online basis functions, we mean basis functions that are com-
puted during the adaptively iterative process, which contrasts with offline basis functions
that are computed before the iterative process. The online basis functions are computed
based on some local residuals for the current multiscale solution, that is, the function
um

ms. Hence, we realize that some offline basis functions are crucial for the computations
of online basis functions. We will also obtain the sufficiently large number of offline basis
functions, which are required in order to get a rapidly converging sequence of solutions.

At the current n-th Picard iteration, we are given a coarse neighborhood wi and an inner
adaptive iteration m-th with the approximation space V m

ms. Recall that the GMsFEM
solution um

ms ∈ V
m
ms can be obtained by solving (4.3):

an(u
m
ms, v) = (f , v) , ∀v ∈ V m

ms .

Suppose that we need to add a basis function φi ∈ V i on the i-th coarse neighborhood wi.
Initially, one can set V 0

ms = V off. Let V
m+1
ms = V m

ms+span{φi} be the new approximation
space, with um+1

ms ∈ V
m+1
ms being the corresponding GMsFEM solution from (4.3). Let

Ri(v) = (f , v)− an(u
m
ms, v) =

∫

wi

f · v dx−

∫

wi

κ(x, |Dun
ms|)Du

m
ms ·Dv dx , ∀v ∈ V i .

The argument from [9] deduces that the new online basis function φi ∈ V i is the solution
of

(5.1) an(φi, v) = Ri(v) , ∀v ∈ V i ,

and ‖φi‖V i
= ‖Ri‖V ∗

i
. This means the residual norm ‖Ri‖V ∗

i
(usingH−1(wi) norm) gives

a measure on the quantity of reduction in energy error. Also, it holds that

‖uh − (um
ms + αφi)‖

2
V h

= ‖uh − u
m
ms‖

2
V h
− ‖φi‖

2
V i

,

for α = an(uh −u
m
ms,φi). This algorithm is called the online adaptive GMsFEM because

only online basis functions are used.
The convergence of this algorithm is discussed in [9], within the current Picard iteration.

5.1. Error estimation in a Picard iteration. At the current n-th Picard iteration,
we show a sufficient condition for reduction in the error. Let Ip ⊂ {1, 2, · · · , Nv} be the
index set over coarse neighborhoods wi (i ∈ Ip), which are non-overlapping. For each
i ∈ Ip, we define the online basis functions φi ∈ V i by the solution to the equation (5.1).
Set V m+1

ms = V m
ms ⊕ span{φi : i ∈ Ip} . Let ri = ‖Ri‖V ∗

i
. Let Λp = min

i∈Ip
λi
li+1, where λi

li+1

is the (li + 1)-th eigenvalue (k = li + 1) from (4.4) in the coarse region wi.
From ([9], equation (15)), we obtain the following estimate for the energy norm error

reduction

(5.2) ‖uh − u
m+1
ms ‖V h

≤

(

1−
Λp

∑

i∈Ip
r2i (λ

i
li+1)

−1

C
∑Nv

i=1 r
2
i (λ

i
li+1)

−1

)1/2

‖uh − u
m
ms‖V h

,
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where C is a uniform constant, independent of the contrast in κ(x, |Dun
ms|). Toward error

decreasing, for a large enough Λp, there is a need to pick sufficiently many offline basis
functions, which means the online error reduction property ([9]) as below.

Definition 5.1. We say that V off satisfies Online Error Reduction Property (ONERP) if

Λp

∑

i∈Ip
r2i (λ

i
li+1)

−1

C
∑Nv

i=1 r
2
i (λ

i
li+1)

−1
≥ θ0 ,

for some θ0 > γ > 0, where γ is independent of physical parameters such as contrast.

Theoretically, the ONERP is required in order to obtain fast and robust convergence,
which is independent of the contrast in the permeability, for general quantities of interest.

5.2. Online adaptive algorithm. Set m = 0. Pick a parameter θ ∈ (0, 1] and denote
V m

ms = V 0
ms = V off. Choose a small tolerance tol ∈ R+. For each m ∈ N, assume that

V m
ms is given. Go to the following Step 1.

Step 1: Solve for um
ms ∈ V

m
ms from the equation (4.3).

Step 2: For each i = 1, · · · , Nv, compute the residual ri for the coarse region wi. Assume
that we obtain

r1 ≥ r2 ≥ · · · ≥ rNv
.

Step 3: Pick the smallest integer kp such that

θ

Nv
∑

i=1

r2i ≤

kp
∑

i=1

r2i .

Now, for i = 1, · · · , kp, add basis functions φi (by solving (5.1)) to the space V m
ms. The

new multiscale basis functions space is defined as V m+1
ms . That is

V m+1
ms = V m

ms ⊕ span{φi : 1 ≤ i ≤ kp} .

Step 4: If
Nv
∑

i=1

r2i ≤ tol or the dimension of V m+1
ms is sufficiently large, then stop. Other-

wise, set m← m+ 1 and go back to Step 1.

Remark 5.2. If θ = 1, then the adaptive enrichment is said to be uniform.

In practice, we do not update the basis function space V n+1
ms (n ≥ 0) at every Picard

iteration step (n + 1)-th. We consider a simple adaptive strategy to update the basis
space. More specifically, at each Picard iteration (n+1)-th, after updating the multiscale

solution un+1
ms in V n

ms, we compute the coefficient κ(x) =
1

1− β(x)|(Dun+1
ms )|

, and the

relative L2 change of this updated coefficient and the coefficient corresponding to the last
step that the basis was updated. If the change is larger than a predefined tolerance, then
we recompute the offline and online basis functions. In particular, δ = 0 implies that we
update the basis functions in every Picard iteration, while δ =∞ implies that we do not
update the basis functions.
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5.3. GMsFEM for nonlinear elasticity. We summarize the major steps of using the
GMsFEM to solve problem (2.8-2.9): pick a basis update tolerance value δ ∈ R+ and
Picard iteration termination tolerance value δ0 ∈ R+ (where δ0 and δ to be specified in

Section 6). We also take an initial guess of uold
ms , and compute κold(x) =

1

1− β(x)|(Duold
ms)|

and the multiscale space V old
ms , then we repeat following steps:

Step 1: Solve for unew
ms ∈ V

old
ms from the following equation (as (4.3)):

(5.3) aold(u
new
ms , v) = (f , v) ∀v ∈ V old

ms .

If
‖unew

ms − u
old
ms‖V h

‖uold
ms‖V h

> δ0, let u
old
ms = u

new
ms and go to Step 2.

Step 2: Calculate κnew(x) =
1

1− β(x)|(Dunew
ms )|

. If
||κold(x)− κnew(x)||L2(Ω)

||κold(x)||L2(Ω)

> δ, com-

pute the new basis functions space V new
ms , let V

old
ms=V

new
ms and κold(x) = κnew(x). Then go

to Step 1.

6. Numerical examples

In this section, we will present several test cases to show the performance of our GMs-
FEM. In our simulations, we consider two choices of β(x), which are shown in Figure 1.
In these two test cases, the blue region represents β(x) = 1 and the red regions (chan-
nels) represent β(x) = 10−4. In addition, the coefficient β(x) is defined on a 200 × 200
fine grid. For the coarse grid size, we choose H = 1/20. We take the source term

f = (
√

x2 + y2 + 1,
√

x2 + y2 + 1), δ0 = 10−7, and δ as in the following Tables 1-8.
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(a) Test model 1 (β(x)).
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(b) Test model 2 (β(x)).

Figure 1. Coefficients in subdomains (blue: subdomain 1; red: subdomain 2).

At the (n + 1)-th Picard iteration, to quantify the quality of our multiscale solutions,
we use the following relative L2 norm error and weighted H1 norm error:

eL2 =
||(ums − uh)||L2(Ω)

||uh||L2(Ω)

, eH1 =

√

an(ums − uh,ums − uh)

an(uh,uh)
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where the reference solution uh is computed on the fine grid, and the bilinear form an is
defined in (4.2).

We will first present the results using only offline basis functions. We tested the perfor-
mance on the use of various number of basis functions, which is denoted by Nb. The error
history with different number of basis functions and update tolerance δ is shown in Table 1
for the Model 1 and in Table 3 for the Model 2. First of all, we observe that by updating
the basis functions more frequently, one can obtain better approximate solutions. On the
other hand, we observe that the errors stay around a fixed level. This motivates us to use
the online basis functions in order to improve the approximation quality.

In our next test, we consider the addition of online basis functions. In this case, we will
construct both offline and online basis functions. More precisely, we will first find the new
offline basis functions by the updated coefficient. After that, we solve the PDE using the
new offline basis functions. Then, using the residual, we construct online basis functions.
The error history is shown in Table 2 for the Model 1 and in Table 4 for the Model 2.
In these tables, we use 1 + 2 in the Nb column to represent the use of 1 offline basis
function and 2 online basis functions. From these tables, we observe that updating the
basis functions will produce more significant improvement in the approximate solutions.
Also, we observe that the use of online basis functions is able to produce more accurate
solutions.

Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1 3.992e-02 1.175e-01 3.992e-02 1.175e-01 3.992e-02 1.175e-01 3.992e-02 1.175e-01 3.992e-02 1.175e-01
3 9.403e-03 7.939e-02 9.403e-03 7.939e-02 9.403e-03 7.939e-02 9.403e-03 7.939e-02 9.403e-03 7.939e-02
5 7.754e-03 6.864e-02 7.484e-03 6.769e-02 7.623e-03 6.817e-02 7.574e-03 6.800e-02 7.589e-03 6.805e-02
7 5.815e-03 6.215e-02 3.754e-03 5.401e-02 4.140e-03 5.589e-02 3.958e-03 5.498e-02 4.007e-03 5.526e-02

Table 1. Results with different update frequency, GMsFEM, H = 1/20,
model 1.

Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1+2 1.140e-02 6.602e-02 4.981e-03 2.884e-02 4.664e-03 1.718e-02 4.612e-03 1.872e-02 4.476e-03 1.163e-02
3+2 7.319e-03 5.572e-02 1.197e-03 2.325e-02 6.990e-04 1.006e-02 6.897e-04 1.294e-02 1.030e-06 3.281e-05
5+2 6.512e-03 5.190e-02 7.936e-04 1.708e-02 5.866e-04 9.318e-03 5.238e-04 1.011e-02 2.922e-07 1.300e-05
1+4 8.429e-03 5.815e-02 1.492e-03 2.348e-02 7.780e-04 1.067e-02 8.478e-04 1.360e-02 3.287e-05 2.639e-04

Table 2. Results with different update frequency, GMsFEM, H = 1/20,
model 1.

Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1 4.072e-02 1.228e-01 4.072e-02 1.228e-01 4.072e-02 1.228e-01 4.072e-02 1.228e-01 4.072e-02 1.228e-01
3 1.112e-02 9.049e-02 1.112e-02 9.049e-02 1.112e-02 9.049e-02 1.112e-02 9.049e-02 1.112e-02 9.049e-02
5 1.001e-02 8.277e-02 9.863e-03 8.209e-02 9.953e-03 8.253e-02 9.922e-03 8.238e-02 9.933e-03 8.244e-02
7 9.501e-03 8.059e-02 7.520e-03 7.173e-02 8.295e-03 7.558e-02 7.979e-03 7.392e-02 8.068e-03 7.443e-02

Table 3. Results with different update frequency, GMsFEM, H = 1/20,
model 2.
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Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1+2 9.917e-03 7.420e-02 4.065e-03 3.159e-02 3.055e-03 2.254e-02 3.171e-03 2.014e-02 2.835e-03 1.186e-02
3+2 8.956e-03 7.090e-02 1.350e-03 2.593e-02 1.324e-03 1.738e-02 7.605e-04 1.404e-02 9.314e-07 2.907e-05
5+2 8.636e-03 6.951e-02 9.361e-04 1.983e-02 1.047e-03 1.565e-02 5.917e-04 1.163e-02 3.039e-07 1.181e-05
1+4 9.130e-03 7.147e-02 1.673e-03 2.628e-02 1.352e-03 1.744e-02 8.785e-04 1.451e-02 4.033e-05 1.504e-04

Table 4. Results with different update frequency, GMsFEM, H = 1/20,
model 2.

In our second set of simulations, we repeat the above tests but with β(x) = 104 in

the red regions (channels). We take f = 10−4(
√

x2 + y2 + 1,
√

x2 + y2 + 1) to ensure the
convergence of the Picard iteration procedure. From the results in Tables 5-8, we observe
similar results to the first set of simulations. These results indicate that our method
is robust with respect to the contrast in the coefficient, and is able to give accurate
approximate solution with a few local basis functions per each coarse neighborhood.

Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1 3.288e-02 1.083e-01 3.288e-02 1.083e-01 3.288e-02 1.083e-01 3.288e-02 1.083e-01 3.288e-02 1.083e-01
3 1.051e-02 8.021e-02 1.051e-02 8.021e-02 1.051e-02 8.021e-02 1.051e-02 8.021e-02 1.051e-02 8.021e-02
5 8.279e-03 6.707e-02 8.279e-03 6.707e-02 8.279e-03 6.707e-02 8.412e-03 6.739e-02 8.395e-03 6.734e-02
7 6.394e-03 6.218e-02 6.394e-03 6.218e-02 6.394e-03 6.218e-02 5.084e-03 5.906e-02 5.283e-03 5.978e-02

Table 5. Results with different update frequency, GMsFEM, H = 1/20,
model 1, β(x) value in subdomain 2 is 104.

Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1+2 9.329e-03 5.461e-02 9.329e-03 5.461e-02 9.329e-03 5.461e-02 3.265e-03 1.596e-02 2.758e-03 1.153e-02
3+2 7.168e-03 4.745e-02 7.168e-03 4.745e-02 7.168e-03 4.745e-02 4.361e-04 7.253e-03 1.218e-06 3.714e-05
5+2 6.156e-03 4.414e-02 6.156e-03 4.414e-02 6.156e-03 4.414e-02 3.571e-04 6.565e-03 4.266e-07 1.570e-05
1+4 7.590e-03 4.928e-02 7.590e-03 4.928e-02 7.590e-03 4.928e-02 6.172e-04 7.747e-03 2.060e-05 1.008e-04

Table 6. Results with different update frequency, GMsFEM, H = 1/20,
model 1, β(x) value in subdomain 2 is 104.

Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1 3.476e-02 1.133e-01 3.476e-02 1.133e-01 3.476e-02 1.133e-01 3.476e-02 1.133e-01 3.476e-02 1.133e-01
3 1.678e-02 9.126e-02 1.678e-02 9.126e-02 1.678e-02 9.126e-02 1.678e-02 9.126e-02 1.678e-02 9.126e-02
5 1.435e-02 8.065e-02 1.435e-02 8.065e-02 1.435e-02 8.065e-02 1.446e-02 8.065e-02 1.447e-02 8.065e-02
7 1.323e-02 7.853e-02 1.323e-02 7.853e-02 1.323e-02 7.853e-02 1.134e-02 7.853e-02 1.166e-02 7.630e-02

Table 7. Results with different update frequency, GMsFEM, H = 1/20,
model 2, β(x) value in subdomain 2 is 104.
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Nb
δ =∞ δ = 0.5 δ = 0.25 δ = 0.1 δ = 0

eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1 eL2 eH1

1+2 1.372e-02 6.557e-02 1.372e-02 6.557e-02 1.372e-02 6.557e-02 2.924e-03 1.757e-02 2.279e-03 1.127e-02
3+2 1.253e-02 6.323e-02 1.253e-02 6.323e-02 1.253e-02 6.323e-02 5.954e-04 1.034e-02 1.210e-06 3.509e-05
5+2 1.161e-02 6.152e-02 1.161e-02 6.152e-02 1.161e-02 6.152e-02 4.242e-04 8.949e-03 3.447e-07 1.271e-05
1+4 1.275e-02 6.371e-02 1.275e-02 6.371e-02 1.275e-02 6.371e-02 6.797e-04 1.067e-02 8.580e-05 1.352e-04

Table 8. Results with different update frequency, GMsFEM, H = 1/20,
model 2, β(x) value in subdomain 2 is 104.

7. Conclusions

In this paper, we propose a GMsFEM framework for a strain-limiting nonlinear elas-
ticity model. The main idea here is the combination of Picard iteration procedure (for
linearization) and the two types (offline and online) of basis functions within GMsFEM
(for handling the multiple scales and high contrast of materials). This means that at each
Picard iteration, the problem is linear; and in each coarse neighborhood, we use offline
multiscale basis functions (whose number is determined by a local error indicator) or
combine them with residual based online adaptive basis functions (which are only added
in regions with large errors, and can capture global features of the solution).

Our numerical results show that the combination of offline and online basis functions
is able to give accurate solutions, accelerate the convergence, and reduce computational
cost with only a small number of Picard iterations as well as basis functions per each
coarse region. In a future contribution, we will address the development of this GMsFEM
using the constraint energy minimization approach [10, 11, 19], for nonlinear problems.
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