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AN ALTERNATIVE APPROACH TO VOLUMES OF MATROID

POLYTOPES

A. U. ASHRAF

Abstract. We present a new algorithm for computing the volume of an arbi-
trary matroid base polytope. We provide two applications of this approach: a
relation between the volume of the base polytope of a matroid M and its relax-
ation M′, and a formula for the volume of an arbitrary sparse paving matroid
base polytope.
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1. Introduction

For a point p in the Grassmannian Grk,n(C) with a representative k × n matrix
Ap, the closure of the torus orbit of p is a toric variety denoted by Xp. It is known
that the corresponding lattice polytope of Xp is the matroid polytope, PM, of the
matroid M of the matrix Ap. Thus, the degree of this variety is given by the
volume of PM. This motivates the interest in computing the volume of a general
matroid polytope. There has been plenty of work done on this problem [ABD10]
and its special cases [LP07]. Here we present another approach for the general
case that is more amenable when the cyclic flats of the matroid are known. We
assume familiarity with matroid theory and suggest the standard reference [Ox11]
for further inquiry.

Let M be a matroid of rank d + 1 on a set E of size n + 1. The matroid (base)
polytope PM is defined as the convex hull of the incidence vectors of bases of M;
that is,

PM = conv

(
∑

i∈B

ei : B ∈ B(M)

)

⊆ RE(1.1)

where B(M) is the collection of bases of M. The dimension and the facets of PM

were characterised combinatorially in [FS05]. In particular, they showed that the
dimension of PM is n + 1 − c, where c is the number of connected components
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of M. At about the same time, Ardila and Klivans [AK06] gave a combinatorial
characterisation of all faces of PM. It is worth mentioning that the face lattice of
PM is still not entirely understood.

We use Vol(P ) to denote the normalised volume of the polytope P in its affine
hull aff(P ), fixing 1 to be the volume of the unit hypercube in aff(P ). We use the
terminology matroid base polytope and base polytope of a matroid interchangeably.
From the definition, it is clear that the volume of a matroid polytope is a matroid
isomorphism invariant.

In the rest of the paper, we will fix our underlying set E to be the set JnK :=
{0, 1, . . . , n}, and assume n ≥ 1. In what follow, we assume the rank of our matroid
is d + 1, where d is a positive integer. We also note that if M = M1 ⊕ · · · ⊕Mk is
a decomposition of M into its connected components, then PM = PM1

× · · · × PMk
.

This implies that Vol(PM) = Vol(PM1
) · · ·Vol(PMk

). Hence, we further reduce our
discussion to the connected case.

We present a combinatorial approach to compute the volume of a (connected)
matroid polytope. This approach is different from the one presented by Ardila,
Benedetti and Doker in [ABD10]. As an application, we derive the relation between
volume of a base polytope of a matroid M and its relaxation M′. Using this relation
inductively, we give a formula for volumes of sparse paving matroid polytopes. Note
that the volume of a sparse paving matroid polytope can also be derived from a
result of Joswig and Schröter (Theorem 26 in [JS17]) on split matroids. Our main
result is primarily based on Hampe’s relation (Theorem 3.12 in [Ham17]) between
a loopless matroid M and Schubert matroids associated with M. We state the main
theorem below and provide its proof in Section 3.

Theorem 1.1. Let M be a connected matroid on JnK of rank d + 1. Then the
normalised volume of its base polytope is given by

Vol(PM) =
1

n!

∑

F

µ(F)δ�(bF)(1.2)

where the sum is over all anchored chains of cyclic flats.

When the lattice of cyclic flats of a given matroid is known, we can explicitly
compute this volume. In the special case of connected sparse paving matroids, we
can reduce the summation to a closed formula.

Theorem 1.2. Let Mα be a connected sparse paving matroid on JnK of rank d+ 1
with α circuit-hyperplanes. Then

Vol(PMα
) =

1

n!

(

An,d − α

(
n− 1

d

))

(1.3)

where An,d is the (n, d)-th Eulerian number: the number of permutations of [n] :=
{1, 2, . . . , n} with d descents.

We prove this in Section 4 as a consequence of Theorem 1.1. Another interesting
application of this result is the relation between the volume of a base polytope of
a matroid M and its relaxation M′.

Theorem 1.3. Let M be a matroid on JnK of rank d+ 1 with a circuit-hyperplane
H, and let M′ be the relaxation of M with respect to H. Then

Vol(PM′) = Vol(PM) +

(
n− 1

d

)

(1.4)
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This also implies that two matroid base polytopes have the same volume if
they have a common relaxation (up to matroid isomorphism). In particular, the
matroids R6 and Q6 both have a relaxation that is isomorphic to the matroid P6.
This provides a structural explanation to why the base polytopes of matroids R6

and Q6 have the same volume.

2. The Young poset on (JnK, d + 1)-Schubert matroids

Let us denote by Ld(n) the set of all binary sequences of length n+1 with exactly
d+1 1s, that start with a 1 and end with a 0. We define the following partial order
� on Ld(n):

a � b iff

j
∑

i=0

ai ≤

j
∑

i=0

bi ∀j ∈ JnK(2.1)

Under this partial order, we have the top element 1̂Ld(n) = 1d+10n−d and the

bottom element 0̂Ld(n) = 10n−d−11d0. Note that Ld(n) is isomorphic to its dual
under the involution that maps a binary sequence b = (b0, b1, . . . , bn) ∈ Ld(n) to
b∗ = (b0, bn−1, bn−2, . . . , b1, bn). For a permutation w = w1 . . . wn of [n], the binary
descent sequence des(w) = (d0, d1, . . . , dn) of w is defined by

di =

{

1 if wi > wi+1

0 if wi < wi+1

(2.2)

for i = 1, . . . , n− 1 where we set d0 = 1 and dn = 0 for all permutations. Note that
the descent sequence des(w) is an element of Ld(n) for every permutation w. For
each a ∈ Ld(n), let δ(a) denote the number of permutations on [n] with descent
sequence a.

Lemma 2.1. For integers n ≥ d > 0, we have

δ(1d+10n−d) =

(
n− 1

d

)

(2.3)

and

δ((10)d+1) = E2d(2.4)

where E2d is the (2d)th Euler number that counts the number of zigzag permutations
on [2d] := {1, 2, . . . , 2d}.

Proof. For a permutation w on [n], the descent sequence des(w) = (1d+10n−d) if

w1 > w2 > · · · > wd > wd+1 < wd+2 < · · · < wn(2.5)

Note that this implies wd+1 = 1, and now choosing any d elements from [n] to
write in increasing order as w1, w2, . . . , wd determine the complete permutation.
This implies the Equation (2.3). For Equation (2.4),observe that des(w) = (10)n+1

implies that

w1 < w2 > w3 < w4 · · · > w2d−1 < w2d(2.6)

It is well known that such permutations are counted by the Euler number E2d (see
Proposition 1.4.3 in [St12]). �
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Furthermore, we denote

δ�(b) :=
∑

a�b

δ(a)(2.7)

We state the following observation as a lemma:

Lemma 2.2. For b = 1d+10n−d, we have δ�(b) = An,d, the (n, d)-Eulerian num-
ber; that is, the number of permutations on [n] with d descents.

Proof. Note that b = 1d+10n−d is the top element of the poset Ld(n), so δ�(b)
equals the number of all permutations on [n] whose descent sequence has d + 1
ones. The number of ones in the descent sequence of a permutation w is exactly
one less than the number of descents of the permutation w. Therefore, δ� counts
the number of permutations with exactly d descents, which by definition equals the
Eulerian number An,d. �

With each binary sequence b = (b0, b1, . . . , bn) ∈ Ld(n), we can also associate a
Schubert matroid S(b) of rank d+1 on JnK, in the following manner: Starting from
the empty set ∅, reading b from left to right, we add a coloop (coloop addition) for
each 1 and extend freely (free extension) for each 0. We add the elements 0, 1, . . . , n
in their natural order. This construction is also studied in [BJR09] with the roles
of 0 and 1 reversed. We make the following observation:

Lemma 2.3. The set Ld(n) under the partial order � is isomorphic to the Young
lattice L(ηn,d) where ηn,d = (n− d, . . . , n− d

︸ ︷︷ ︸

d

) is the rectangle partition.

Proof. The map ϕ : Ld(n) −→ L(ηn,d) is defined as follows: Let b ∈ Ld(n) and
consider supp(b) := {i ∈ N : bi 6= 0, 0 < i < n}. If

supp(b) = {i1 < i2 < · · · < id}(2.8)

Then we defined λj := #{k ∈ N : bk = 0, ij < k < n} for j = 1, . . . , d. This is the
number of zeros to the right of (j + 1)st 1, minus one. We consider the decreasing
sequence (λ1, . . . , λd) of non-negative numbers and suppress any zeros at the end.
We denote the resulting integer partition by λ and define ϕ(b) = λ. Note that
the map ϕ, by construction, is an injective map between two equicardinal sets. To
show that it is a poset isomorphism, we take two sequences a,b ∈ Ld(n) such that
a � b. Let (λ1, . . . , λd) and (µ1, . . . , µd) be the respective decreasing sequence of
non-negative integers. By construction λj ≤ µj for all j = 1, 2, . . . , d, therefore λ
is below µ in the Young lattice L(ηn,d). �

The importance of the partial order � on Ld(n) in the context of matroid poly-
topes is evident from the result of Lam and Postnikov [LP07]: if the Schubert ma-
troid S(b) is connected, then its base polytope is of dimension n whose normalised
volume is given by

Vol(PS(b)) =
δ�(b)

n!
(2.9)

Example 2.4. Note that for b = 1d+10n−d, the matroid S(b) is the uniform
matroid Ud+1,n+1. In this case, we have δ�(b) = An,d. Equation 2.9 gives the
number 1

n!An,d as the normalised volume of the hypersimplex △d+1,n+1.
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Another well-known example of Schubert matroid is the nth Catalan matroid
Cn studied in [Ard03]. This corresponds to the case when n + 1 = 2(d + 1), and
b = (01)d+1. The normalised volume of the matroid polytope PCn

was calculated
in [BS11] to equal the Eulerian number 1

n!
1
d
An,d.

It is worth mentioning that the duality of Ld(n) is not the same as matroid
duality. Recall that for a matroid M and its dual M∗, we have Vol(PM) = Vol(PM∗).
For the duality of Ld(n), we have the following proposition:

Proposition 2.5. The function δ is invariant with respect to the duality of Ld(n);
that is, for all b, δ(b) = δ(b∗). In particular, if G(x) := {y ∈ Ld(n) : y � x}, then

Vol(PS(b))−Vol(PS(b∗)) =
∑

a∈G(b)

(

Vol(PS(a))−Vol(PS(a∗))

)

(2.10)

Proof. Recall that δ(b) counts the number of permutations with descent sequence b.
The reversal involution on permutations that maps a permutation w = w1w2 · · ·wn

to wnwn−1 · · ·wn maps a permutation of descent sequence b to one with the descent
sequence b∗. This map being an involution shows that δ(b) = δ(b∗). Now notice
that from Equation (2.9) it follows that δ(b) = δ(b∗), can be rewritten as

Vol(PS(b))−
∑

a∈G(b)

Vol(PS(a)) = Vol(PS(b∗))−
∑

a∈G(b∗)

Vol(PS(a))(2.11)

This equation can then be rearranged to give Equation (2.10). �

3. Cyclic flats and Schubert matroids

Recall that a cyclic flat of a connected matroid M is a flat F for which the
restriction M|F is connected. Note that in the case of loopless matroid the empty
set ∅ and the underlying set JnK are cyclic flats. We call a chain of subsets (or
flats) F : F0 ( F1 ( . . . Fk ⊆ Fk+1 of JnK anchored if F0 = ∅ and Fk+1 = JnK.
Let Fn be the collection of all anchored chains of subsets of JnK. Given a loopless
connected matroid M on JnK of rank d+1, we define a map Fn → Ld(n) that maps
F 7−→ bF given by

bF = 1 . . . 1
︸ ︷︷ ︸

ρM(F1)

0 . . . 0
︸ ︷︷ ︸

|F1|−ρM(F1)

. . . 1 . . . 1
︸ ︷︷ ︸

(d+1)−ρM(Fk)

0 . . . 0
︸ ︷︷ ︸

n+1−ρ(Fk)

(3.1)

For a binary sequence b, let bij be the jth occurrence of a 0 followed by a 1. We
define a map Ld(n) → Fn that maps b 7−→ Fb, given by

Fb : ∅ ( F1 ( · · · ( Ft ( JnK(3.2)

where Fj = {0, 1, . . . , ij}. Note that, for a fixed matroid M these maps are inverse
of each other.

Lemma 3.1. The Schubert matroid S(b) has a unique maximal chain of cyclic
flats given by Fb. Furthermore, if M is a loopless connected matroid on JnK of rank
d+ 1 with a unique maximal chain of cyclic flats F , then M ∼= S(bF ).

Proof. Given b = (b0, b1, . . . , bn) ∈ Ld(n), consider the flag of sets Fb. By con-
struction of S(b) described in the paragraph, all Fj in Fb are cyclic flats. Note
that ∅ and JnK are also cyclic flats of S(b). Consider any subset S ⊆ JnK, and let
k be its maximal element with respect to the usual order on JnK . The coordinate
bk is either a 0 or 1. If bk = 1, this implies k is a coloop and hence S is no longer
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cyclic. If bk = 0, let i be the maximal index less than k such that bi = 1 and let
j be the minimal index greater than k such that bj = 1. Then k belongs (only)
to circuits that contain every index below j. Any of these circuits spans the set
{0, 1, . . . , i, . . . , k, . . . , j − 1}, which is a cyclic flat. Hence, S is one of the flats in
Fb. This implies that

∅ ( F1 ( · · · ( Ft ⊆ JnK(3.3)

is the unique maximal chain of cyclic flats of S(b).
The Schubert matroid S(bF ) has a unique maximal chain of cyclic flats given by

F with the rank function prescribed by the matroid M. Hence, M and S(b) have
the same collection of cyclic flats with the same assigned ranks. Since the collection
of cyclic flats along with their ranks uniquely determine a matroid (see [Bry75]).
Therefore, M and S(bF ) must be isomorphic.

�

Proof of Theorem 1.1. For each anchored chain F of cyclic flats, we consider the
polytope

PF :=

(
⋂

F∈F

h≤
F

)

∩△d+1,n+1(3.4)

where by definition h≤
F := {(x0, . . . , xn) ∈ Rn+1 :

∑

i∈F xi ≤ ρM(F )}, and ρM
denotes the rank function of the matroid M. We recall the halfspace-intersection
description of matroid polytopes:

PM =

(
⋂

F∈L(M)

h≤
F

)

∩△d+1,n+1(3.5)

where L(M) denote the lattice of flats ofM. We can reduce the index set of intersec-
tion to the set L(M)>1 of flats of M of size strictly greater than 1. This is because

the △d+1,n+1 ⊆ ∩|F |=1h
≤
F . Feichtner and Sturmfels [FS05] gave an irredundant

description of PM for a connected matroid M, where the intersection varies over
flats F such that the restriction M|F and the contraction M/F both are connected.
All such flats of size 2 or bigger are cyclic flats. In particular for Schubert matroid
S(bF ), by Lemma 3.1, we have

PF = PS(bF )(3.6)

In this notation, P∅(JnK = △d+1,n+1.
The set of all anchored chains of cyclic flats of M is naturally ordered by refine-

ment (i.e. F ≤ G if F refines G), and we denote this poset by Γ. Note that the poset
Γ is a lattice with the top element ∅, the empty chain, and is without a bottom ele-
ment. Let Γ̂ be the lattice Γ along with a bottom element 0̂Γ adjoined. The Möbius
function of Γ evaluated at F is defined by the equation µΓ(F) := −µΓ̂(0̂Γ,F). Let
[PF ] be the indicator function of the polytope PF ; that is,

[PF ] : R
n+1 −→ R(3.7)

[PF ](x) =

{

1 if x ∈ PF ,

0 otherwise
(3.8)
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We consider the Möbius sum χM of these indicator functions over Γ:

χM =
∑

F∈Γ

µ(F)[PF ](3.9)

It lives in the R-vector space generated by indicator functions of polytopes (see
[L06]). Evaluation of χM on points in PM amounts to inclusion-exclusion over the
Schubert matroids whose intersection is PM. Therefore, the sum χM equals 1 at
points inside PM.

We also show that the evaluation of χM on points in △n+1,d+1\PM gives 0. First
note that if F ≤ G, then PF ⊆ PG . This is because we get PG from PF be relaxing
some of the half-space intersection conditions. This implies that [PF ](x) = 1 for
some x ∈ Rd implies [PG ](x) = 1 for all G ≥ F . So the sum on the right-hand side
in Equation (3.9) reduces to the Möbius sum over a proper order filter of Γ.

Let us denote the order filter by R. The sum χM(x) for x ∈ △n+1,d+1\PM

equals
∑

F∈R µ(F). Hampe showed that this sum equals 0 (see Equation (1) and
Equation (2) of [Ham17]). Now note that χM is zero outside the hypersimplex
△n+1,d+1. Integrating χM with respect to the Jordan measure gives

Vol(PM) =
∑

F∈Γ

µ(F)
δ�(bF )

n!
(3.10)

�

Remark 3.2. This should be seen in contrast to Theorem 3.3 in [ABD10], where
the sum is over all the ordered collections of coconnected flats satisfying the Dragon
marriage condition (due to [Pos09]).

We recall that a coconnected flat of M is a flat F such that the contraction
M/F is connected. In lattice-theoretic terms, a flat F is cyclic if the interval [∅, F ]
is connected (as a subposet of lattice of flats), and a flat F is coconnected if the
interval [F, JnK] is connected. It would be interesting to know further the relation
between Theorem 1.1 and Theorem 3.3 of [ABD10].

4. Matroid relaxation and sparse paving matroid polytopes

Given a representable matroid M as a collection of vectors in a vector space
over F. A hyperplane in M might exists as a consequence of this representation.
Relaxing such a hyperplane might result in a non-representable matroid (over F).
Examples of matroids obtained via this construction include the non-Fano matroid
F
−
7 (from the Fano matroid), the non-Pappus N

−
9 (from the Pappus matroid). A

hyperplane H of a matroid M is called a circuit-hyperplane if it is also a circuit (of
M).

Proof of Theorem 1.3. Note that if M′ is a relaxation of M with respect to H , then
Γ(M′) consists of exactly one more element than Γ(M), namely H . Furthermore,
H is incomparable to every element of Γ(M) except ∅. Hence, Möbius function
of Γ(M′) have the same value as Möbius function of Γ(M), except at ∅ and {H}.
Therefore using Equation (1.2), we will have

Vol(PM′)−Vol(PM) = Vol(P∅)−Vol(P{H})(4.1)

=
1

n!

[

δ�(1
d+10n−d)− δ�(1

d010n−d−1)

]

(4.2)
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Since δ�(1
d+10n−1) = δ�(1

d010n−d−1)+ δ(1d+10n−d), the above expression simpli-
fies as

Vol(PM′)−Vol(PM) =
δ(1d+10n−d)

n!
(4.3)

�

Theorem 1.3 also implies that if two matroids have isomorphic relaxations, then
the volumes of their base polytopes are equal. This is the case with the matroids
R6 and Q6. It also implies that if two matroids are relaxations of the same matroid,
then the volumes of base polytopes of these relaxations are equal. This is the case
with the matroids R8 and F8.

A matroid M of rank d+ 1 on the ground set JnK is called sparse paving if each
subset of JnK of size d+ 1 is either a basis or a circuit-hyperplane.

Proof of Theorem 1.2. Since the only cyclic flats of Mα are the circuit-hyperplanes,
say {Hi}

α
i=1. The lattice of cyclic flats of Mα is a rank 2 lattice with atoms Hi’s.

Now using Equation (1.2), we get

Vol(PMα
) =

1

n!

[ α∑

i=1

δ�(1
d010n−d−1)− (α− 1)δ�(1

d+10n−d)

]

(4.4)

Since δ�(1
d+10n−1) = δ�(1

d010n−d−1)+ δ(1d+10n−d), the above expression simpli-
fies to

Vol(PM) =
1

n!

[

− αδ(1d+10n−d) + δ�(1
d+10n−d)

]

(4.5)

By Lemma 2.1 and Lemma 2.2, we have

=
1

n!

[

− α

(
n− 1

d

)

+An,d

]

(4.6)

�

This proof can also be seen as an inductive application of Theorem 1.2. Since we
can take a connected sparse paving matroid polytope with α circuit-hyperplanes,
and relax each circuit-hyperplane one by one, to get a uniform matroid.

Example 4.1. Consider M(K4), the complete graphic matroid on J5K. It is a
connected sparse paving matroid of rank d+1 = 3 with α = 4 hyperplanes. In this
case, the volume is given by

Vol(PM(K4)) =
1

5
(A5,2 − 4

(
4

2

)

)(4.7)

=
1

5
(66− 4 · 6) =

42

5!
(4.8)

Remark 4.2. Connected sparse paving matroids are split matroids in the sense
of [JS17]. They showed that the split flacets of such a matroid M are the same
as the faces defined by cyclic flats. These faces can be written as hF ∩ △d+1,n+1

where F is a cyclic flat. This implies that we get the polytope PM by peeling off

the polytopes h≥
F ∩ △d+1,n+1, each of which has volume 1

n!

(
n−1
d

)
. Therefore, their

result also implies Theorem 1.2,
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