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Abstract

Representation theory of the symmetric group Sn has a very distinctive com-
binatorial flavor. The conjugacy classes as well as the irreducible characters are
indexed by integer partitions λ ⊢ n. We introduce class functions on Sn that count
the number of certain tilings of Young diagrams. The counting interpretation gives
a uniform expression of these class functions in the ring of character polynomials,
as defined by [Mur37]. A modern treatment of character polynomials is given in
[OZ15]. We prove a relation between these combinatorial class functions in the (vir-
tual) character ring. From this relation, we were able to prove Goupil’s generating
function identity [Gou99], which can then be used to derive Rosas’ formula [Ros00]
for Kronecker coefficients of hook shape partitions and two row partitions.
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1 Introduction

Representation theory of the symmetric group Sn employs a good amount of combina-
torics of (integer) partitions of n. The irreducible representations of Sn are indexed by
partitions. One way to generate these irreducible representations is through construct-
ing a vector space Mλ generated by equivalence classes of tableaux, called tabloids of
shape λ. And then show that each Mλ contains an irreducible representation of Sn as
a subspace. The number of tabloids of shape λ can also be viewed as certain tilings
of Young diagram of shape λ. This motivates us to define class functions over Sn that
count certain tilings we call brick tilings. In this section, we review representations the-
ory of Sn, and define these class functions. We also recall Doubilet’s inversion formula,
and face numbers of permutohedron which will be of use in the later sections.

1.1 Partitions and compositions

A partition λ of a positive integer n, denoted as λ ⊢ n, is a weakly decreasing sequence
λ = (λ1, λ2, · · · , λr) of positive integers adding up to n. The positive integers λi are
called parts of λ, and the number of parts is called the length of λ, denoted as ℓ(λ). If we
want to emphasize that ℓ(λ) = r, we write λ ⊢r n. In relation to λ, the integer n is called
the weight of λ, and it is denoted by |λ|. It is also useful to write λ = (1m1 , 2m2, . . . , nmn),
where mi denote the multiplicity of i in the partition λ. Given a partition λ ⊢ n, the
reduced partition 〈λ〉 is a partition of n − λ1 defined as 〈λ〉 = (λ2, . . . , λr) ⊢ |λ| − λ1.
Similarly, for a partition λ ⊢ k, and a positive integer n ≥ k + λ1, the augmented partition
λ[n] is a partition of n defined as λ[n] = (n− k, λ1, · · · , λr). In other words, the reduced
partition 〈λ〉 is a partition we get by removing the first part of λ, while the augmented
partition is a partition we get by augmenting a suitable first part to λ. We identify
partition λ with its Young diagram, which is a finite collection of unit cells arranged in
left justified rows with λi cells in the ith row. A Young tableau of shape λ, is a labeling of
the cells of the Young diagram of λ with integers 1, 2, . . . , n, with each number occurring
exactly once.

A composition µ of a positive integer n, denoted as µ � n, is a sequence (µ1, µ2, · · · , µr)
of positive integers adding to n. We extend the definitions and notation introduced
above for partitions to compositions. Given a composition µ, we denote by µ̃ the parti-
tion obtained by rearranging the parts of µ in weakly decreasing order.

For any positive integer n, let Comp(n) denote the set of all compositions of n. We
define a partial order on Comp(n) in the following manner: Given two compositions
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(1, 1, 1, 1, 1)

(2, 1, 1, 1) (1, 2, 1, 1) (1, 1, 2, 1) (1, 1, 1, 2)

(1,2,2)(3,1,1) (1,3,1) (1,1,3)(2,2,1) (2,1,2)

(4,1) (1, 4)(3,2) (2,3)

(5)

Figure 1: Poset of composition Comp(5)

ν = (ν1, . . . , νs) and µ = (µ1, . . . , µt) in Comp(n), we say that µ covers ν, and write ν⋖ µ
if ℓ(µ) = ℓ(ν) + 1 and there exists a unique j such that

µi =





νi for i < j

νi + νi+1 for i = j

νi+1 for i > j

i.e. the covering relations are given by adding adjacent entries. The partial order on
Comp(n) induced by this relation is denoted by ≤. For instance, in figure 1 we see the
Hasse diagram of this partial order on Comp(5).

We identify the abstract group Sn with the group of permutations on the set [n] =
{1, 2, . . . , n}. Let w be an element of Sn, then w can be written as a product of pairwise
disjoint cycles, called cyclic factors of w. Let r denote the number of these cyclic factors
including the fixed points (1-cycles). Let li be their lengths for i = 1, . . . , r. By choosing
an element ji for the i-th cyclic factor, we can write

w =
r

∏
i=1

(ji, wji, · · · , wli−1ji)

3



We can make this notation unique by choosing ji such that for all positive integer m,

ji ≥ wm ji

and for all i = 1, 2, . . . , r− 1, take

ji < ji+1

Such a unique decomposition is called canonical cycle decomposition of w. This plays an
important role in Foata’s first fundamental bijection [FS78]. Note that l = (l1, l2, · · · , lr)
is a composition of n. The underlying partition l̃ is called the cycle type of w and is
denoted as cyc(w). We know that two permutations u, w belong to the same conjugacy
class in Sn if and only if cyc(u) = cyc(w).

Example 1.1. If w = 947213865 ∈ S9, then we have the canonical cycle decomposition

w = (4, 2)(8, 6, 3, 7)(9, 5, 1)

with cyc(w) = (4, 3, 2) ⊢ 9.

1.2 Representation theory of symmetric group Sn

A tabloid [t] of shape λ is an equivalence class of Young tableaux of shape λ, where we
consider two tableaux t and t′ equivalent if the entries in each row of t agrees with the
corresponding entries in row of t′. Given the set T(λ) of all Young tableaux of shape
λ, there is a natural action of Sn on T(λ) by just permuting the labels of tableaux. This
induces an action on tabloids. Given a Young tableau t, the polytabloid et associated to
t is defined as the linear combination

et := ∑
π∈Ct

sign(π)π[t]

where Ct is the column group associated to t, i.e. the subgroup of Sn consisting of per-
mutations that only permute elements within each column of t. For each partition λ ⊢ n,
C-linear combination of polytabloids of shape λ gives an irreducible representation of
Sn over C. This is referred as Specht module Sλ corresponding to λ ⊢ n in the literature
[Ste12]. Let Cl(Sn) denote the vector space of class functions on the group Sn over C.
The characters of Specht modules, (χλ)λ⊢n, gives a basis for Cl(Sn). There is a scalar
product 〈·, ·〉

Sn
on Cl(Sn) defined as

〈
χλ, χµ

〉
=

1

n! ∑
σ∈Sn

χλ(σ)χµ(σ)

and extended linearly. The decomposition of the permutation character in terms of the
irreducible character basis {χµ} is given by Young’s rule, which gives:

ζλ = ∑
µEλ

Kµλχµ (1)

where Kµλ, are the Kostka numbers, and the sum is over all partitions µ which are less
than or equal to λ in the dominance order.
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1.3 Brick tilings

A brick of length j is a labelled horizontal array of j unit cells. We will view it as a 1× j
rectangle. To each j-cycle a = (a1a2 · · · aj) in the canonical cycle decomposition of w, we
can associate a brick of length j with ith square labelled ai. Given w ∈ Sn where w has
cycle type λ = (λ1, · · · , λr) ⊢ n, we denote by Bw the set of associated bricks of length
λ1, · · · , λr corresponding to each cyclic factor in the canonical cycle decomposition of
w. Note that the 1-cycles correspond to 1× 1 square bricks. A tiling of a diagram λ ⊢ n
by a set of bricks B is a covering of the diagram λ with bricks from B such that no brick
is used twice and each cell of λ is covered by some brick from B. An ordered brick tiling
of λ ⊢ k (or λ � k) by w ∈ Sn is a tiling of Young diagram of λ by bricks from Bw, where
no brick is in more than one row and the order of the bricks in a row is irrelevant. To
be more precise, the ordered brick tiling of shape λ = (λ1, · · · , λk) with w ∈ Sn is an
ordered tuple (S1, S2, · · · , Sr) of disjoint subsets of Bw such that

∣∣∣
⋃

U∈Sj

U
∣∣∣ = λj

for all j = 1, · · · , r. The set of brick tilings of λ ⊢ n by w ∈ Sn is denoted by Bw(λ).
So in each element (S1, S2, . . . , Sr) of Bw(λ) with ℓ(λ) = r, the set Si represent the set of
bricks used to tile the i-th row of Young diagram of λ. Notice since the order of tiles in
a row does not matter, therefore there is no ambiguity in this notation. If need be, we
write Ti explicitly using the canonical cycle decomposition.

We can define an equivalence relation among brick tilings of shape λ as follows:
Two brick tilings S = (S1, S2, . . . , Sr) and T = (T1, T2, . . . , Tr) of partition λ ⊢r n, are
equivalent if one is a permutation of other i.e.

(S1, · · · , Sr) = (Tπ(1), · · · , Tπ(r)) for some π ∈ Sr

We refer to these equivalence classes of tilings as unordered brick tilings of λ by w, and

we denote the set of these equivalence classes by B̃w(λ). We say a brick tiling is crackless
whenever we have exactly one tile in each row. Otherwise, we say it is cracked. A crack
in a brick tiling is the occurrence of two tiles in one row of a Young diagram. If a row
contains c many tiles, we say it has c − 1 cracks, and the number of cracks in a brick

tiling is sum of number of cracks in its rows. For a T in B̃w(λ) (resp. Bw(λ)), we call λ
the shape of T and denote it by sh(T). Furthermore, for any subset A = {b1, b2, . . . , br} of
Bw, the shape of A, denoted as sh(A) is the sequence of lengths of bricks bi in decreasing
order.

Example 1.2. Consider λ = (2, 2, 1) ⊢ 5 and let u = (3, 1)(4)(5, 2) and w = (2)(3, 1)(4)(5)

in S5. We have Bu =
{

3 1 , 4 , 5 2
}

and Bw =
{

2 , 3 1 , 4 , 5
}

. The diagram of λ is
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given by . The ordered and unordered tilings of λ by u and w are given below

B̃u(λ) =





3 1
5 2
4

, 5 2
3 1
4





B̃w(λ) =





3 1
2 4
5

, 3 1
2 5
4

, 3 1
4 5
2

, 2 4
3 1
5

, 2 5
3 1
4

, 4 5
3 1
2





and

Bu(λ) =






 3 1

5 2
4








Bw(λ) =






 3 1

2 4
5


 ,


 3 1

2 5
4


 ,


 3 1

4 5
2








.

Note that all the elements of B̃u(λ) are crackless, but all the elements of B̃w(λ) are cracked with
one crack each.

1.4 Tiling class functions

In this section, we define class functions on Sn that count the number of different types
of brick tilings. Let k be a positive integer less than or equal to n and let λ ⊢ k (or λ � k).
We define functions ζλ, ξλ, ηλ : Sn −→ N as follow

ζλ(w) := number of ordered brick tilings of λ by w i.e. |B̃w(λ)|

ξλ(w) := number of unordered brick tilings of λ by w i.e. |Bw(λ)|

ηλ(w) := number of unordered crackless brick tilings of λ by w

These are class functions on Sn. What that means is that they are constant on each
conjugacy class of Sn. The notion of tiling of λ ⊢ k with w ∈ Sn when k 6= n still make
sense. For k > n, all of the above class functions are identically zero, so we keep the
condition k ≤ n.

Example 1.3. Going back to example 1.2, for the respective partition λ and permutations u, w,
we have

6



ζλ(u) = 2 ζλ(w) = 6
ξλ(u) = 1 ξλ(w) = 3
ηλ(u) = 1 ηλ(w) = 0

Table 1: Combinatorial class functions for example 1.2

The interesting case is when k = n. This means that all of the bricks from Bw are
utilized to cover diagram λ ⊢ n. So the ordered brick tilings correspond precisely to
tabloids, and hence we have the following result.

Theorem 1.4. For λ ⊢ n,

• ζλ is the character corresponding to the permutation representation Mλ of Sn. Further-
more,

ξλ =
1

λ!
ζλ

where λ! := m1!m2! · · · for λ = (1m1 , 2m2 , · · · ).

• ηλ is the indicator function of cycle structure i.e.

ηλ(w) =

{
1 if cyc(w) = λ

0 otherwise

Proof. Recall that for a partition λ = (λ1, · · · , λℓ) ⊢ n and w ∈ Sn with cyc(w) = µ =

(µ1, · · · , µr), the character of Sn corresponding to Mλ is the coefficient of xλ1
1 xλ2

2 · · · x
λℓ

ℓ

in the product

r

∏
i=1

(x
µi
1 + · · ·+ x

µi

ℓ
)

which precisely counts the ordered brick tilings of w by λ. Furthermore, to each un-
ordered brick tiling of λ we get λ! = m1!m2! · · · ordered brick tilings by permuting the
tilings in the parts of same size, and vice versa. For the second part, a crackless tiling of
λ is only possible if each part of cyc(w) fits perfectly in a unique part of λ. This is just
another way of saying that cyc(w) = λ.

Lemma 1.5. Let k ≤ n, then

• for any µ � k the following holds as identities of class functions on Sn.

ζµ = ζµ̃ , ξµ = ξµ̃ , ηµ = ηµ̃

7



• for any λ ⊢ n then the following holds as an identity of class functions on Sn.

ζλ = ζ〈λ〉

and if λ1 > λ2, then ξλ = ξ〈λ〉 and ηλ = η〈λ〉.

Proof. The first statement is just a consequence of the fact that the brick tilings of any
type does not depend in the relative order of parts of λ. The second says that if the
weight of λ and the weight of cyc(w) are equal, then to determine a tiling of λ by w, we
just need to determine a tiling of 〈λ〉 by w. Because whatever tiles are not being used
will have to fit in λ1, and there is only one way of doing that, as the order of tiles in rows
of λ does not matter.

Example 1.6. Let λ = (2, 2, 1) ⊢ 5 and u = (3, 1)(4)(5, 2) and w = (2)(3, 1)(4)(5), recall

ζλ(u) = |B̃u(λ)| = 2

ζλ(w) = |B̃w(λ)| = 6

In this case, 〈λ〉 = (2, 1) ⊢ 3 diagram of λ is given by , we have

B̃u(〈λ〉) =

{
5 2
4

, 3 1
4

}

B̃w(〈λ〉) =

{
2 4
5

, 2 5
4

, 4 5
2

, 3 1
5

, 3 1
4

, 3 1
2

}

which is in accordance with table 1.

For T ⊆ Bw be a set of bricks coming from w ∈ Sn and we denote by ξλ
T the number

of tilings of λ ⊢ n with brick set given by T. Then counting brickwise, we have

ξλ = ∑
T⊆Bw

ξλ
T (2)

and
ηλ = ∑

T⊆Bw
sh(T)=λ

1 (3)

Furthermore, since for the row shape (k) ⊢ k, we can count the tilings of all shapes,
which gives

ζ(k) = ξ(k) = ∑
µ⊢k

ηµ (4)

These are some identities that will come handy in later to prove our main result.
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1.5 Doubilet’s inversion formula

Recall the Young’s rule which states that

Mλ =
⊕

µEλ

KµλSλ

where Kµλ are the Kostka numbers. If we denote by χλ the irreducible character of Sn

corresponding to the Specht module Sλ, then this implies

ζλ = ∑
µEλ

Kµλχµ

We also know that for partitions λ, µ ⊢ n, the coefficients Kµλ 6= 0 if and only if µ E λ.
Furthermore, Kλλ = 1. This implies that the Kostka matrix K = (Kµλ) is invertible.

Therefore, we can write the irreducible character χλ as a linear combination of ζλ’s.
Such an inversion formula was given by Doubilet in [Dou73], which states

χλ = ∑
σ∈Sn

σ̃λ⊢n

sign(σ)ζσ̃λ

where σλ is the sequence defined as

σλ = (λ1 + σ(1)− 1, λ2 + σ(2)− 2, · · · , λn + σ(n)− n)

(σλ)i = λi + σ(i)− i for all i = 1, 2, . . . , n and σ̃λ is the rearrangement of this sequence

in a weakly decreasing order. Since λi = 0 for ℓ(λ) < i ≤ n, this implies that for σ̃λ to
be a partition, we should have

σ(i)− i ≥ 0

equivalently σ(i) ≥ i for all ℓ(λ) < i ≤ n. This implies σ(n) = n and since σ is
a bijection and hence injective σ(n − 1) = n − 1. Inductively, we have σ(i) = i for
ℓ(µ) < i < n. Let Sℓ(λ) be the subgroup of permutations that pointwise fix all the
elements from ℓ(λ) + 1 to n. Then, the above observation implies that the sum on the

right of the inversion formula can be taken over σ ∈ Sℓ(λ) such that σ̃λ ⊢ n. Hence we
can restate the inversion formula as:

Lemma 1.7. (Doubilet’s inversion formula) Let λ ⊢ n, then keeping the notation of this section,
we have

χλ = ∑
σ∈Sℓ(λ)

σ̃λ⊢n

sign(σ)ζσ̃λ

9



For our purposes later, we will be able to reduce this sum to a smaller indexing set
using the condition that σλ needs to be a composition of n. This enforces that none of
the parts of σλ should be less than 1. For the time being, we show a simple example.

Example 1.8. For a positive integer n ≥ 1, take the partition λ = (n− 1, 1) ⊢ n, then

χ(n−1,n) = ζ(n−1,1) − ζ(n)

which reminiscent of the fact that the M(n−1,1) = S(n−1,1) ⊕M(n), where we know that Sn−1,n

is the regular representation and M(n) is the trivial representation of Sn.

1.6 Face numbers of permutohedron

The standard permutohedron is an example of a convex polytope associated to permu-
tations. To each permutation w ∈ Sn, we associate a point in Rn

pw = (w(1), w(2), · · · , w(n)) ∈ Rn

The standard permutohedron Πn is defined to be the convex hull of these points, i.e.

Πn = conv{pw : w ∈ Sn}

Note that for each pw, the sum of all the coordinates equals 1 + 2 + · · ·+ n, i.e.

n

∑
i=1

pw,i = 1 + 2 + · · ·+ n =

(
n + 1

2

)

This means that Πn lies in a hyperplane in Rn and consequently dim(Πn) ≤ n − 1.
Furthermore, for each pw, sum of any k coordinates is atleast 1+ 2+ · · ·+ k, i.e. for any
I ⊂ [n]

∑
i∈I

pw,i ≥ 1 + 2 + · · ·+ |I| =

(
|I|+ 1

2

)

It is known classically that these inequalities are enough to describe Πn. We need the
following known result (see for example [Zie95]) from polytope theory.

Theorem 1.9. The standard permutohedron Πn is a simple (n− 1)-dimensional convex poly-
tope given by

Πn =

{
x ∈ Rn :

n

∑
i=1

xi = n and ∑
i∈I

xi ≥

(
|I|+ 1

2

)
, for all I ⊂ [n]

}

with face numbers given by

fk(Πn) = (n− k)!

{
n

n− k

}

for k = 0, · · · , n − 1, where

{
n
k

}
is the Stirling number of the second kind (that counts the

partitions of [n] into k blocks).
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Since Πn is simple convex polytope, its dual Π∗n is a simplicial convex polytope. We
can consider the simplicial complex ∆n−1 := ∂Π∗n (the boundary complex of Π∗n). Its
face numbers are given by

fk−1(∆n−1) = (k + 1)!

{
n

k + 1

}

for k = 0, 1, · · · , n− 1. This implies that the reduced Euler characteristic of ∆n−1 is given
by

n−1

∑
k=0

(−1)k−1 fk−1(∆n−1) =
n−1

∑
k=0

(−1)k−1(k + 1)!

{
n

k + 1

}

=
n

∑
k=1

(−1)k−1k!

{
n
k

}

Since ∆n−1 is homeomorphic to the (n− 2)-dimensional sphere Sn−2, its reduced Euler
characteristic equals to (−1)n−2. This can be rewritten as

n

∑
k=1

(−1)kk!

{
n
k

}
= (−1)n (5)

We will use this identity in later section.

2 Combinatorics of tiling class functions

Characters of the symmetric group Sn are examples of class functions. What that means
is that they are constant over conjugacy classes in Sn. This implies that they only de-
pend on cycle structure of evaluating permutation. Simple examples of class functions
are ci’s which count the number of cycles of length i in a permutation. It is a result of
Frobenius [Fro04] that the every irreducible character of Sn is a polynomial function of
ci’s, called character polynomials. They were also studied later by Murnaghan [Mur51]
and Specht [Spe60]. Macdonald mentions them in [Mac79] and attribute them to Frobe-
nius. Garsia and Goupil [GG09] gave an umbral construction of these polynomials.
Kerber also studied them in his book [Ker99] on group actions. Recently, they have
reoccurred in the context of representation stability [CEF15]. We study our tiling class
functions as polynomials in ci’s. The main result in this section is identity 2.5, which
equates two alternating sums of class functions. We provide two proofs of it: one using
homology on poset of brick tilings, and the other using reduced Euler characteristic of
boundary complex of dual polytope to permutohedron.

11



2.1 Character polynomials

The class functions {ci}i∈N are defined as

ci : Sn −→ N

w 7−→ number of cycles of w of length i

Let Q[c1, c2, · · · ] be the ring of polynomials in ci’s with rational coefficient. We call a
polynomial q(c1, c2, · · · ) ∈ Q[c1, c2, · · · ] a class polynomial. Frobenius [Fro04] showed
the following

Theorem 2.1. Let λ = (λ1, · · · , λℓ) ⊢ n and let w ∈ Sn be a permutation of cycle type

cyc(w) = µ = (µ1, · · · , µr) ⊢ n, then χλ(w) equals the coefficient of xλ1+ℓ−1
1 xλ+ℓ−2

2 · · · xλℓ

ℓ

in the expansion of

∏
1≤i<j≤ℓ

(xi − xj)
r

∏
i=1

(x
µi
1 + x

µi
2 + · · ·+ x

µi

ℓ
)

The character polynomial qλ(c1, c2, · · · ) is defined as the unique polynomial in Q[c1, c2, · · · ]
such that for all partitions λ ⊢ k and n ≥ λ1 + k, we have

χλ[n](w) = qλ(c1(w), c2(w), · · · ) (6)

for all w ∈ Sn. Note that the character polynomial qλ as a polynomial does not depend
on n, and hence gives a uniform description of irreducible characters corresponding to
augmented partition λ[n] for all symmetric groups at the same time (with n ≥ λ1 + k).
This is quite remarkable.

Example 2.2. The character polynomial for empty partition is the constant function 1, as it
corresponds to the trivial representation. The character polynomial forλ = 1 is given by

q(1) = c1 − 1

as λ[n] = (n− 1, 1) corresponds to the regular representation.

For λ ⊢ k, there is a special family of class polynomials called binomial class polyno-
mials ( c

λ) defined as

(
c

λ

)
:=

n

∏
i=1

(
ci

mi(λ)

)

where mi(λ) is the multiplicity of i in λ. As an example, for λ = (4, 2, 2, 1, 1), we have

(
c

λ

)
:=

(
c4

1

)(
c2

2

)(
c1

2

)

12



Notice that for λ ⊢ k and w ∈ Sn with n ≥ k, having a unordered crackless tiling of
λ by π is equivalent to choosing mi(λ) bricks from all ci(w) bricks of w of length i, for
each i = 1, · · · , n. This implies

ηλ =

(
c

λ

)
(7)

as class functions on Sn. This implies the generating function equality

∞

∑
k=0

(

∑
µ⊢k

ηµ

)
tk =

∞

∏
i=1

(1 + ti)ci (8)

in the ring of formal power series Q[c1, c2 · · · ][[t]].

2.2 Characters corresponding to two row partitions

We consider the case of λ = (k) to generalize example 1.8. In this case, we are looking
at the augmented partition λ[n] = (n − k, k) ⊢ n for n ≥ 2k. The 1.7 implies as class
functions on Sn

χλ[n] = ∑
σ∈S2

sign(σ)ζσ̃λ[n]

= ζ(n−k,k) − ζ(n−k+1,k−1)

= ζ(k) − ζ(k−1)

= ∑
µ⊢k

ηµ − ∑
µ⊢k−1

ηµ

Therefore from equation 8 we have the following identity in Q[c1, c2, · · · ][[t]]

∞

∑
k=0

q(k)t
k = (1− t)

∞

∏
i=1

(1− ti)ci (9)

We should be careful about stating the above equality. Becuase what we really mean is
that the coefficients of tn are equal as polynomial functions of ci’s.

Example 2.3. We find first few character polynomials from the above equality. A table of them
can also be found[Ker99]

q() = 1

q(1) =

(
c1

1

)
− 1

q(2) =

(
c2

1

)
+

(
c1

2

)
−

(
c1

1

)

q(3) =

(
c3

1

)
+

(
c1

1

)(
c2

1

)
+

(
c1

3

)
−

(
c2

1

)
−

(
c1

2

)

13



2.3 Characters corresponding to hook partitions

Let us consider λ = (1k) ⊢ k. The augmented partition in this case is the hook partition
λ[n] = (n− k, 1k) ⊢ n, for n ≥ 2k. Recall that the Doubilet inversion formula 1.7 says

χλ[n] = ∑
σ∈Sk+1

sign(σ)ζσ̃λ[n] (10)

where Sk+1 denote the subgroup consisting of permutations in Sn that fixes all the
elements from k + 2 to n. The sum can further be restricted to those σ ∈ Sk for which

σ̃λ[n] is a partition of n, i.e.

(σ̃λ[n])i = λi + σ(i)− i ≥ 0

For i = 2, . . . k + 1, λi = 1, therefore we are looking for σ ∈ Sk+1 such that σ(i) ≥ i− 1.
Note that there is no condition on σ(1) as n ≥ 2k. So we can say that

σ(i) ≥ i− 1

for all i = 1, . . . , k + 1. This implies such a permutation is uniquely determined by the
set

S(σ) = {(i, σ(i)) : σ(i) ≥ i}

Fixing j = k + 1− σ(1), we see that there are 2j−1 such permutations and each such
permutation gives a composition µ � j. On the other hand, given a composition µ � j,
we can construct σ by taking

S(σ) = {(1, k + 1− j), (k + 1− j + 1, k + 1− j + µ1),

(k + 1− j + µ1 + 1, k + 1− j + µ1 + µ2), · · · } (11)

And for such a σ, we have

σλ[n] = (n− σ(1), µ1, µ2, · · · , µℓ)

〈σλ[n]〉 = (µ1, · · · , µℓ) � j

Combining these we can prove the following theorem:

Theorem 2.4. For λ = (1k) ⊢ k and n ≥ 2k, we have the following equality of class functions

χλ[n] =
k

∑
j=0

(−1)j+1

(

∑
µ�j

(−1)ℓ(µ)ζµ

)

14



Proof. Due to the observations above, we can simplify equation 10 as follows: Fix σ(1) =
k + 1− j, now each permutation gives a unique composition µ of j, so we sum over all
compositions of j. And we do this over all possible images σ(1), which can be any
integer from 1 to k + 1. This translates to j varying from 0 to k.

χλ[n] = ∑
σ∈Sk+1

sign(σ)ζσ̃λ

= ∑
σ∈Sk+1

sign(σ)ζ〈σ̃λ〉

=
k

∑
j=0

(−1)k+1−j

(

∑
µ�j

(−1)∑ µ+1ζµ

)

=
k

∑
j=0

(−1)k+1−j

(

∑
µ�j

(−1)ℓ(µ)+jζµ

)

= (−1)k+1
k

∑
j=0

(

∑
µ�j

(−1)ℓ(µ)ζµ

)

In above, we appropriately kept track of the sign as the cycle type of σ with σ(1) =
k+ 1− j that give rise to composition µ is given by the weakly decreasing rearrangement
of (k + 1− j, µ1 + 1, · · · , µℓ + 1). This gives

sign(σ) =
( ℓ(µ)

∑
i=1

(µi + 1)
)
+ k + 1− j

= ℓ(µ) + k + 1

This explains the simplification in the sum above.

Now we move to an interesting observation that simplifies further the calculation of

χλ[n] for λ = (1k) ⊢ k where n ≥ 2k. This result should be thought of as the main result
of this paper.

Theorem 2.5. For a positive integer j ≤ n, we have the following equality of class functions

∑
µ�j

(−1)ℓ(µ)ζµ = ∑
µ⊢j

(−1)ℓ(µ)ηµ

on Sn

The left-hand side is an alternating sum over compositions of j, while the right-hand
side is an alternating sum over partitions of j. It is worth noticing that not only the sum
on the right has fewer terms but even each term is smaller. In the sections to follow, we
provide two proofs of this result.
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5 2 4
3 1

5 2
3 1 4
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3 1 5 2
4

3 1 5 2 4

Figure 2: Poset Til(w; j) for w = (3, 1)(4)(5, 2) and j = 4

2.4 The Tiling poset

Fix a positive integer j ≤ n and w ∈ Sn, then we can consider the set Til(w; j) of all
ordered brick tilings of all compositions of k by w, that is

Til(w; j) :=
⋃{

B̃w(λ) : λ � j
}

We equip this set with a partial order that is induced by the following covering relations:
For two ordered brick tilings A′ = (A′1, . . . , A′k+1) and A = (A1, . . . , Ak) in Til(w; j), we
say A covers A′, and write A′ ⋖ A if both of the following conditions are satisfied:

• sh(A′)⋖ sh(A) in Comp(k).

• There exists a unique t ∈ {1, · · · , k} such that for all i = 1, . . . , k

Ai =





A′i for i < t

A′i ∪ A′i+1 for i = t

A′i+1 for i > t

Example 2.6. For w = (31)(4)(5, 2), and j = 5, we show the Hasse diagram of the poset
Til(w; j) in figure 2.6.

Notice that in general Til(w; j) can be thought of as disjoint union of smaller posets,
that is,

Til(w; j) =
⊔

T⊆Bw

Til(T; j) (12)
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where Til(T; j) is the set of all ordered brick tilings of all compositions of j, whose brick
set is T. From the poset Til(w; j), we define following chain complex over field with 2
elements F2

0 −→ Cj−1 −→ Cj−2 −→ · · · −→ C1 −→ C0 −→ 0

where the chains are defined as

Ci = F2

{
eA : A ∈ Til(w; j) such that sh(A) �j−i j

}

where eT are just formal symbols. And the differentials is induced by the down map of
the poset, i.e. for i = 1, . . . , j− 1

∂i : Ci −→ Ci−1

eA 7−→ ∑
A′⋖T

eA′

To show we indeed have a chain complex we still need to show that ∂2 = 0. Without
loss of generality, assume that there exist some A′′ < A such that [A′′, A] is an interval
of length 2 . Then let

∂i−1 ◦ ∂i(eA) = ∑ αAA′′eA′′

where the sum is over all A′′ for which there exists A′ such that A′′ ⋖ A′ ⋖ A and the
coefficients are given by

αAA′′ = |{A′ : such that A′′ ⋖ A′ ⋖ A}| (mod 2)

Let βAA′′ = |{A′ : such that A′′ ⋖ A′ ⋖ A}|. We claim that for every pair (A′′, A) such
that there exists A′ with A′′ ⋖ A′ ⋖ A, we have βAA′′ = 2. Let A′′ = (A′′1 , A′′2 , . . . , A′′k+2)
and A = (A1, A2, . . . , Ak), then we can have one of the following situations:

• We have two indices a, b, with a < b, such that

Ai =





A′′i if i < a

A′′i ∪ A′′i+1 if i = a

A′′i+1 if a ≤ i ≤ b

A′′i+1 ∪ A′′i+2 if i = b

A′′i+2 if b < i ≤ k

In this case, there are two possible A′: (A′′1 , . . . , A′′a ∪A′′a+1, . . . , A′′k+2) or (A′′1 , . . . , A′′b ∪
A′′b+1, . . . , A′′k+2). Then, βAA′′ = 2.
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• We have an index a such that

Ai =





A′′i if i < a

A′′i ∪ A′′i+1 ∪ A′′i+2 if i = a

A′′i+2 if a < i ≤ k

In this case, A′ = (A′′1 , . . . , A′′a ∪A′′a+1, . . . , A′′k+2) or A′ = (A′′1 , . . . , A′′a+1∪A′′a+2, . . . , A′′k+2),
and we also have that βAA′′ = 2.

Since we are dealing with coefficients mod 2, in both cases αAA′′ = 0. This proves that
∂2 = 0, and so we indeed have a chain complex. To illustrate the idea, we show an
example

Example 2.7. For w = (3, 1)(5, 2)(4), we get the following for k = 5

∂ 3 1 5 2 4 = 3 1
5 2 4

+ 5 2 4
3 1

+ 3 1 5 2
4

+ 4
3 1 5 2

+ 3 1 4
5 2

+ 5 2
3 1 4

∂ 3 1
5 2 4

= 3 1
5 2
4

+ 3 1
4
5 2

∂ 5 2 4
3 1

= 5 2
4
3 1

+ 4
5 2
3 1

∂ 3 1 5 2
4

= 3 1
5 2
4

+ 5 2
3 1
4

∂ 4
3 1 5 2

= 4
3 1
5 2

+ 4
5 2
3 1

∂ 3 1 4
5 2

= 3 1
4
5 2

+ 4
3 1
5 2

∂ 5 2
3 1 4

= 5 2
3 1
4

+ 5 2
4
3 1

∂ 3 1
5 2
4

= ∂ 3 1
4
5 2

= ∂ 5 2
3 1
4

= ∂ 5 2
4
3 1

= ∂ 4
3 1
5 2

= ∂ 4
5 2
3 1

= 0

An element J ∈ Ci for some positive integer i < j, can be written as

J = ∑
T∈L

eT

The set L is called the support of J, and we denote it by supp(J). For a subspace V of the
chain complex, let V be the subspace of V generated by elements in V whose support
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is crackless brick tilings, and let Ṽ be the subspace of V generated by elements in V
whose support is cracked brick tilings. An interesting consequence of equation 12 is the
following decomposition:

ker ∂i = k̃er ∂i ⊕ ker ∂i and im∂i+1 = ˜im∂i+1⊕ im∂i+1

One inclusion is obvious. The other inclusion is the consequence of the fact that a
cracked brick tiling and a crackless brick tiling with j − i parts cannot have the same
set of bricks for all i = 1, · · · , j− 1. Therefore the decomposition follows from the par-
tition 12. Hence, we can write the homology of the above chain complex as

Hi(C) =
ker∂i

im∂i+1

=
k̃er∂i ⊕ ker∂i

˜im∂i+1⊕ im∂i+1

Notice in proving ∂2 = 0, we concluded something more than that. We proved that each
subinterval of rank 2 in Til(w; j) is isomorphic to the boolean interval of length B(2) as

posets, which implies ˜im∂i+1 = k̃er∂i. This simplifies the above expression to

Hi(C) =
ker∂i

im∂i+1

Now notice that every crackless brick tiling with k− i parts is in the kernel of ∂i, hence

Hi(C) =
Ci

im∂i+1

We know that im∂i+1 is generated by ∂ieA for eA ∈ Ci+1. The crackless part of im∂i+1 is
generated by image of eA ∈ Ci+1 which have exactly one crack, and for each such A we
have

∂i+1eA = eB + eB′

where B and B′ you get by “cracking” A in either way. This implies we can thought of
Hi(C) as

Hi(C) =
Ci

(eB = eB′)

Since this says eB = eB′ , whenever the Young diagram of B differs from B′ by a simple
transposition. Now notice that if eA ∈ Ci, then for every permutation A′ of A, eA′ ∈
Ci. But the relation eB = eB′ identify all of them since all permutations are generated
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by transpositions. This implies Hi(C) is generated by eA, where A is an unordered
crackless brick tiling with j− i parts. Hence

dim Hi(C) = ∑
µ⊢j

ℓ(µ)=j−i

ηµ(w) (13)

Now using this, we provide a proof for theorem 2.5.

Proof. Given positive integer j ≤ n, for any permutation w ∈ Sn, we construct the
poset Til(w; j), and consider the chain complex associated to it as defined above. The
construction implies that the dim(Ci) is given by

dim(Ci) = ∑
µ�j

ℓ(µ)=j−i

ζµ(w)

Now we can compute Euler characteristic of this chain complex as an alternating sum
of these dimensions, which gives

j−1

∑
i=0

(−1)i dim(Ci) =
j−1

∑
i=0

(−1)i ∑
µ�j

ℓ(µ)=j−i

ζµ(w)

= ∑
µ�j

(−1)j−ℓ(µ)ζµ(w)

while, computing the Euler characteristic via alternating sum of dimensions of homolo-
gies (employing equation 13 ) gives

j−1

∑
i=0

(−1)i dim(Hi) =
j−1

∑
i=0

(−1)i ∑
µ⊢j

ℓ(µ)=j−i

ηµ(w)

= ∑
µ⊢j

(−1)j−ℓ(µ)ηµ(w)

Since both of the them are Euler characteristic of the same complex, hence they are equal
for each w ∈ Sn. This implies that the equality holds as equality of class functions on
Sn.

2.5 Counting proof

Though the proof using homology on brick tiling poset was quite interesting, we were
also tempted to provide a counting proof. This is given below:

20



Proof. Since ζλ = ζµ for µ ⊢ j and λ � j such that λ̃ = µ, we can write

∑
µ�j

(−1)ℓ(µ)ζµ = ∑
µ⊢j

(−1)ℓ(µ) ∑
λ̃=µ

ζλ

The sum ∑λ̃=µ ζλ(w) counts the number of ordered tilings by w of all compositions λ

whose underlying partition is µ. This can also be regarded as counting all permutations
(of parts) of unordered brick tilings of µ. Therefore, we can rewrite

∑
µ⊢j

(−1)ℓ(µ) ∑
λ̃=µ

ζλ(w) = ∑
µ⊢j

(−1)ℓ(µ)ℓ(w)!ξµ(w)

where ξµ(w) is the number of unordered tilings of µ by w. For a subset of bricks T ⊆ Bw,
let ξ

µ
T be the number of unordered brick tilings of µ by T, then we can count the sum

over T’s

∑
µ⊢j

(−1)ℓ(µ)ℓ(µ)!ξµ(w) = ∑
µ⊢j

(−1)ℓ(µ)ℓ(µ)! ∑
T⊆Bw

ξ
µ
T

= ∑
T⊆Bw

∑
µ⊢j

(−1)ℓ(µ)ℓ(µ)!ξ
µ
T

= ∑
T⊆Bw

j

∑
k=1

∑
µ⊢j

ℓ(µ)=k

(−1)ℓ(µ)ℓ(µ)!ξ
µ
T

= ∑
T⊆Bw

j

∑
k=1

(−1)kk! ∑
µ⊢j

ℓ(µ)=k

ξ
µ
T

Since the tilings counted in ∑ µ⊢j
ℓ(µ)=k

ξ
µ
T is in one to one correspondence with unordered

partitions of T into k sets. These are counted by Stirling numbers of second kind

{
ℓ(sh(T))

k

}
.

∑
T⊆Bw

j

∑
k=1

(−1)kk! ∑
µ⊢j

ℓ(µ)=k

ξ
µ
T(π) = ∑

T⊆Bw

j

∑
k=1

(−1)kk!

{
ℓ(sh(T))

k

}

We have encountered the inner alternating sum in before, and from equation 5 it equals
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(−1)ℓ(sh(T)). Hence,

∑
µ�j

(−1)ℓ(µ)ζµ = ∑
T⊆Bw

(−1)ℓ(sh(T))

= ∑
µ⊢j

∑
T⊆Bw

sh(T)=µ

(−1)ℓ(µ)

= ∑
µ⊢j

(−1)ℓ(µ) ∑
T⊆Bw

sh(T)=µ

1

Now the interior sum just counts the number of unordered tilings of µ by Bw as indi-
cated by equation 3. Therefore

∑
µ�j

(−1)ℓ(µ)ζµ = ∑
µ⊢j

(−1)ℓ(µ)ηµ(w)

Let us illustrate the identity 2.5 using a small example:

Example 2.8. In the table 2, we take the case of j = 4. From the table 2, we can see that

ζ(4) = η(4) + η(3,1) + η(2,2) + η(2,1,1) + η(1,1,1,1)

ζ(3,1) = η(3,1) 2η(2,1,1) + 4η(1,1,1,1)

ζ(1,3) = η(3,1) 2η(2,1,1) + 4η(1,1,1,1)

ζ(2,2) = 2η(2,2) + 2η(2,1,1) + 12η(1,1,1,1)

ζ(2,1,1) = 2η(2,1,1) + 6η(1,1,1,1)

ζ(1,2,1) = 2η(2,1,1) + 6η(1,1,1,1)

ζ(1,1,2) = 2η(2,1,1) + 6η(1,1,1,1)

ζ(1,1,1,1) = 24η(1,1,1,1)

Table 2: Example for j = 4

∑µ�4(−1)ℓ(µ)ζµ equals

−η(4) + η(3,1) + η(2,2) − η(2,1,1) + η(1,1,1,1)

3 Applications

In order to continue our study for generating functions of character polynomals, and ap-
ply our results to get some previously known identities we define the notion of stability
in first subsection. The generating function relevant to our discussion is cycle-index
generating function. We go back to our main identity 2.5 and use it to derive Goupil’s
generating function identity [Gou99] for hook partitions. Lastly, combining this identity
with stability of cycle-index generating function, we were able to provide an alternating
proof of Rosas’ formula [Ros00].
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3.1 Stability for sequence of polynomials and power series

We say a sequence ( fn)n∈N of polynomials fn ∈ Q[x], stabilizes to f ∈ Q[[x]] if for each
positive integer k, there exists a positive integer Nk such that for all m, n > Nk, we can
find f ∈ Q[x] satisfying

[xk] fm = [xk] fn = [xk] f

where [xk] f denote the coefficient of xk in f . If f exists, then it is seen to be unique. This
definition can also be generalized to multivariable case. We say a sequence ( fn)n∈N of
multivariable polynomials fn ∈ Q[x1, x2, · · · , xr], stabilizes to f ∈ Q[[x1, · · · , xr]] if for
each sequence of positive integers k = (k1, · · · , kr), there exists a positive integer Nk

such that for all m, n > Nk, we can find f ∈ Q[x] satisfying

[xk1
1 · · · x

kr
r ] fm = [xk1

1 · · · x
kr
r ] fn = [xk] f

Example 3.1. Let fn(x) = xn + xn−1 + · · ·+ x + 1 is a sequence which stabilizes to f (x) =
1

1−x . On the other hand the sequence fn(x) = xn does not stabilize. An example for multivari-
able case would be the sequence

gn(x, y) = ∑
i+j=n

xiyj

this sequence stabilize to

g(x, y) =
1

1− x

1

1− y

For a commutative ring R and an element f ∈ R[[t]], we say coefficients of f stabilize
if there exists a least integer k such that for all n > k, we have

[tn] f = [tn+1] f

The limiting coefficient is called coefficient of stabilization, and such a k is called point of
stability.

Example 3.2. Given a polynomial p(t) ∈ Q[t], the coefficents of the power series

p(t)

1− t
∈ Q[[t]]

stabilizes with coefficient of stabilization p(1) and point of stability is deg(p) + 1.

We require a generalization of the above notion for the ring Q[c1, c2, · · · ][[t]] of for-
mal power series. Consider an element f ∈ Q[c1, c2, · · · ][[t]], given by

f =
∞

∑
n=0

fntn
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where fn ∈ Q[c1, c2, · · · ] are polynomials in ci’s. We say f stabilizes if the sequence of
polynomials ( fn)n∈N stabilizes to some g. In that case, there exists sequence (m1, · · · , mr)
such that we have the equality

[ck1
1 · · · c

kr
r ] f = [ck1

1 · · · c
kr
r ]

g

1− t

for ki > mi for all i.

Example 3.3. Consider the element f ∈ Q[x][[t]] given by

f = 1 + (1 + x)t + (1 + x + x2)t + · · ·

then g = 1
1−x , and therefore f stabilizes to

1

1− x

1

1− t

3.2 The cycle-index generating function

Recall the cycle index of the symmetric group Sn which is defined as

Z(Sn) =
1

n! ∑
w∈Sn

n

∏
i=1

x
ci(w)
i

It is well known, for example from [Cam99], that the generating function Γ of cycle
indices of Sn is given by

Γ = 1 +
∞

∑
n=1

Z(Sn)t
n

can also be written as

Γ = exp

(
∞

∑
i=1

xit
i

i

)
(14)

This is a very useful result as indicated by the following example:

Example 3.4. Consider the formal equality

1 +
∞

∑
n=1

Z(Sn)t
n = exp

(
∞

∑
i=1

xit
i

i

)

Evaluating the formal partial derivative ∂
∂xk

of both sides at xi = 1 for all i = 1, 2, · · · , gives the

following

∞

∑
n=1

( 1

n! ∑
w∈Sn

ck(w)
)

tn =
1

k

tk

1− t

which is saying that the expected number of k cycles in a permutation of Sn for n ≥ k equals 1
k .

This is a classical result in combinatorial probability theory [B1́2].
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Some other identities we would like to highlight here are

Γ[xi −→ xi] =
1

1− xt
(15)

and

Γ[xi −→ 1− xi] =
1− xt

1− t
(16)

where the notation Γ[xi −→ f (xi)] means substituting f (xi) for xi in the expression for
Γ.

3.3 Goupil’s generating function identity

Going back to our identity 2.5, we consider the class function

∑
µ⊢j

(−1)ℓ(µ)+1ηµ

from the identity 8, we have the following generating function

∞

∑
j=0

(

∑
µ⊢j

(−1)ℓ(µ)+1ηµ

)
tj =

∞

∏
i=1

(
1− (−t)i

)ci

Using this and theorem 2.4 we have another proof of the following identity of Goupil
[Gou99] for generating function for hook characters

Theorem 3.5. For λ = (1k) ⊢ k, we have the following generating function

∞

∑
k=0

q(1k)t
k .
=

1

1 + t

∞

∏
i=1

(
1− (−t)i

)ci
(17)

Proof. Since from theorem 2.4, we have

χλ[n] =
k

∑
j=0

(−1)j+1

(

∑
µ�j

(−1)ℓ(µ)ζµ

)

which corresponds to alternating sum of class function whose generating function is
given by equation 17. Now recall that the generating function for alternating sum of a
sequence can be constructed by multiplying the generating function by 1

1+t . This gives
the required result.

25



Example 3.6. From the above expression we derive expressions for first few character polyno-
mials. A table of these can also be found in [Ker99]

q() = 1

q(1) =

(
c1

1

)
− 1

q(12) =

(
c1

2

)
−

(
c2

1

)
−

(
c1

1

)
+ 1

q(13) =

(
c1

2

)
−

(
c1

1

)(
c2

1

)
+

(
c3

1

)
−

(
c1

2

)
+

(
c2

1

)
+

(
c1

1

)
− 1

3.4 Rosas’ formula for certain Kronecker coefficients

Let λ, µ and ν be partitions of n. The Kronecker coefficients gλ
µν(Sn) are defined as the

coefficient of χλ in the expansion of χµχν into irreducible characters:

gλ
µν(Sn) =

〈
χλ, χµχν

〉
Sn

=
1

n! ∑
σ∈Sn

χλ(σ)χµ(σ)χν(σ)

Using the equation 17 for generating function of irreducible hook character, here we will
derive the formula for Kronecker coefficients indexed by hooks given by Rosas [Ros00],
which says:

Theorem 3.7. Let gk1k2k3
be the reduced Kronecker coefficients corresponding to the triple ((n−

k1, 1k1), (n− k2, 1k2), (n− k3, 1k3)), then

∑
k1,k2,k3

gk1k2k3
xk1yk2 zk3 =

1 + xyz

(1− xy)(1− yz)(1− xz)

Proof. We start with the substituion xi ← (1− (−x)i) in the cycle index function

Z(Sn)[xi ← (1− (−x)i)] =
1

n! ∑
w∈Sn

n

∏
i=1

(1− (−x)i)ai(w)

[xk]
1

1 + x
Z(Sn)[xi ← (1− (−x)i)] =

1

n! ∑
w∈Sn

χ(1k)[n](w)

This suggests that if we let Yn = Z(Sn)[xi ← (1− (−x)i)(1− (−y)i)(1− (−z)i)], we
have

[xk1 yk2 zk3 ]
1

(1 + x)(1 + y)(1 + z)
Yn =

1

n! ∑
w∈Sn

χ(1k1 )[n](w)χ(1k2 )[n](w)χ(1k3 )[n](w)

= gk1k2k3
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Now notice that Y := ∑
∞
n=0 Yntn is given by substituting [xi ← (1− (−x)i)(1− (−y)i)(1−

(−z)i)] in Γ which using equation 14 becomes

Y = exp

(
∞

∑
i=1

xi

i
ti

)
[xi ← (1− (−x)i)(1− (−y)i)(1− (−z)i)]

Now using equation 16, we have

Y =
1

1− t

(1 + xyzt)(1 + xt)(1 + yt)(1 + zt)

(1− xyt)(1− yzt)(1− xzt)

Note that the identity

W :=
1

1− t

1

(1− xyt)(1− yzt)(1− xzt)
=

(
∞

∑
i=0

(
n

∑
j=0

∑
a+b+c=j

(xy)a(yz)b(xz)c

)
tn

)

implies that W as member of Q[x, y, z][[t]] stabilize to

1

1− t

1

(1− xy)(1− yz)(1− xz)

which in turn implies that 1
(1+x)(1+y)(1+z)

Y stabilizes to

1

1− t

(1 + xyz)

(1− xy)(1− yz)(1− xz)

but 1
(1+x)(1+y)(1+z)

Y is the generating function of gk1k2k3
. This implies that the generating

function for the reduced Kronecker coefficients gk1k2k3
is given by

(1 + xyz)

(1− xy)(1− yz)(1− xz)
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