
FORKING, IMAGINARIES AND OTHER FEATURES OF ACFG

CHRISTIAN D’ELBÉE

Abstract. We study the generic theory of algebraically closed fields of fixed positive
characteristic with a predicate for an additive subgroup, called ACFG. This theory was
introduced in [18] as a new example of NSOP1 non simple theory. In this paper we describe
more features of ACFG, such as imaginaries. We also study various independence relations
in ACFG, such as Kim-independence or forking independence, and describe interactions
between them.
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2 CHRISTIAN D’ELBÉE

Introduction

The theory of algebraically closed fields of fixed positive characteristic with a predicate
for an additive subgroup admits a model companion, ACFG [18]. Unlike other generic
expansions of ACFp, such as ACFA or the expansion by a generic predicate [11], ACFG is
NSOP1 and not simple. The study of NSOP1 theories has been rekindled due to the recent
success in developing a Kim-Pillay style characterization (Chernikov and Ramsey [13]) and
a geometric theory based on the notions of Kim-forking and Kim-independence (Kaplan
and Ramsey [23]). Various examples of strictly NSOP1 theories appear since then. Among
them are

(1) Generic L -structure T ∅L [26];
(2) Generic Kn,m-free bipartite graphs [15];
(3) omega-free PAC fields [9].

ACFG shares many features with those three archetypical examples. Our example ap-
pears to be slightly more complicated than (1) and (2), due to the lack of weak elimination
of imaginaries and its more algebraic aspect, which makes it closer to (3). Throughout
this paper, we will point out both the similarities and the differences between those four
examples, in order to emphasize what might be typical of NSOP1 theories.

We intend to give a description of ACFG based on the study of various independence
relations in models of ACFG. In Section 1, we give basic properties of ACFG. A notion of
weak independence (following the denomination of [9]) was already described in [18], and
shown to coincide with Kim-independence over models. We prove here that it satisfies all
the properties of the Kim-Pillay characterization of simple theories [25] except one: base
monotonicity. This phenomenon, not predicted by [23] is similar to the case of (2). We
define strong independence –a similar notion appears in (1), (2) and (3)– and we show
that it lacks only one property of the Kim-Pillay characterization of simple theories: local
character. We give some structural properties of models of ACFG, and prove that there
exists generic subgroups of Fp, even more, almost all (in the sense of Baire) subgroups of
Fp are generic, see Subsection 1.4.

Section 2 and Section 3 can be read independently.
Section 2 is dedicated to the description of imaginaries in a given model (K,G) of ACFG.

The weak independence has a "dual" definition in the expanded structure (K,G,K/G)
which turns out to be easier to grasp than its original definition in (K,G) (see Subsec-
tion 2.2). We extend the weak independence in (K,G,K/G) and this allows us to mimic the
classical argument that appears for instance in [11], [5], and [26] to prove that (K,G,K/G)
has weak elimination of imaginaries.

In Section 3, we describe forking in ACFG. The strong independence plays a key role to
show that forking equals dividing (for types). We also advertise some nice phenomena that
appear when one forces the base monotonicity property on a given independence relation.
It seems that a general method for proving that dividing equals forking for types is arising
from different examples, see Subsection 3.4

The diagram in Figure 1 represents the interactions between the independence relations
that appears in models of ACFG and links them with usual independences. All arrows are



FORKING, IMAGINARIES AND OTHER FEATURES OF ACFG 3

|ACF
^

|þ^ � K |a^
m

|st^ |w^
sm |w^

m |w^ |a^

|d^ |K^ |aeq^ � K.

|f^

Figure 1. Interactions of independence relations in ACFG.

strict, from that point of view, ACFG differs from (1), (2) and (3), see Subsection 3.4.
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Conventions and notations. Capital letters A,B,C stands for sets whereas small latin
letters a, b, c designate either singletons, finite or infinite tuples.

We often identify tuples and sets when dealing with independent relations, for some tuple
a = a1, . . . then c |̂ C a has the same meaning as c |̂

C
{a1, . . .}. Let |̂ , |0^ be two ternary

relations. We say that |̂ is stronger than |0^ (or |0^ is weaker than |̂ ) if for all a, b, C
we have a |̂

C
b =⇒ a |0^C

b. We denote it by |̂ → |0^ . For a prime q, Fqn is the field
with qn elements.

Throughout this paper numerous notions of independence will appear. The following
independence relations are defined in every theory.

(1) a |a^C
b if and only if acl(Ca) ∩ acl(Cb) = acl(C)

(2) a |aeq^C
b if and only if acleq(Ca) ∩ acleq(Cb) = acleq(C)

(3) a |þ^C
b if and only if tp(a/Cb) does not thorn-fork over C

(4) a |K^C
b if and only if tp(a/Cb) does not Kim-fork over C

(5) a |d^C
b if and only if tp(a/Cb) does not divide over C

(6) a |f^C
b if and only if tp(a/Cb) does not fork over C

(7) a |u^C
b if and only if tp(a/Cb) is finitely satisfiable in C

Here is a list of properties for a ternary relation |̂ defined over small subsets of M a big
model of some countable theory T (in the last case the property is defined with respect to
another ternary relation |̂ ′, also defined over small subsets of M).

• Invariance. If ABC ≡ A′B′C ′ then A |̂
C
B if and only if A′ |̂

C′ B
′.

• Finite Character. If a |̂
C
B for all finite a ⊆ A, then A |̂

C
B.

• Symmetry. If A |̂
C
B then B |̂

C
A.

• Closure A |̂
C
B if and only if A |̂

acl(C)
acl(BC).

• Monotonicity. If A |̂
C
BD then A |̂

C
B.

• Base Monotonicity. If A |̂
C
BD then A |̂

CD
B.

• Transitivity. If A |̂
CB

D and B |̂
C
D then AB |̂

C
D.

• Existence. For any C and A we have A |̂
C
C.

• Full Existence. For all A,B and C there exists A′ ≡C A such that A′ |̂
C
B.

• Extension. If A |̂
C
B, then for all D there exists A′ ≡CB A and A′ |̂

C
BD.

• Local Character. For all finite tuple a and infinite B there exists B0 ⊂ B with
|B0| ≤ ℵ0 and a |̂

B0
B.

• Strong Finite Character over E. If a 6 |̂
E
b, then there is a formula Λ(x, b, e) ∈

tp(a/Eb) such that for all a′, if a′ |= Λ(x, b, e) then a′ 6 |̂
E
b.

• Stationnarity over E. If c1 ≡E c2 and c1 |̂ E A, c2 |̂ E A then c1 ≡EA c2.
• Witnessing. Let a, b be tuples, M a model and assume that a 6 |̂

M
b. Then there

exists a formula Λ(x, b) ∈ tp(a/M b) such that for any global extension q(x) of
tp(b/M ) finitely satisfiable in M and for any (bi)i<ω such that for all i < ω we
have bi |= q � M b<i, the set {Λ(x, bi) | i < ω} is inconsistent.
• |̂ ′-amalgamation over E. If there exists tuples c1, c2 and sets A,B such that
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– c1 ≡E c2
– A |̂ ′

E
B

– c1 |̂ E A and c2 |̂ C B
then there exists c |̂

E
A,B such that c ≡A c1, c ≡B c2, A |a^Ec

B, c |a^EA
B and

c |a^EB
A.

If A |̂
C
B, the set C is called the base set.
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1. Generalities on ACFG

Let p > 0 be a fixed prime number. Unless stated otherwise, every field we consider
has characteristic p. Let Lring be the language of rings and LG = Lring ∪ {G} for G a
unary predicate. Let ACFG be the LG-theory whose models are algebraically closed fields
of characteristic p in which G is a predicate for an additive subgroup. Let ACFG be the
model companion of ACFG, see [18, Example 5.11].

1.1. Preliminaries, axioms and types. The following is [18, Proposition 5.4].

Fact 1.1 (Axiomatisation of ACFG). The theory ACFG is axiomatised by adding to ACFG
the following LG-sentences, for all tuples of variables x′ ⊂ x, y′ ⊂ y and Lring-formula
φ(x, y)

∀y(〈y′〉 ∩G = {0} ∧ θφ(y))→ (∃xφ(x, y) ∧ 〈xy′〉 ∩G = 〈x′〉),
where θφ(y) such that K |= θφ(b) if and only if in an elementary extension of K, there exists
a tuple of realisations of φ(x, b) which is Fp-linearly independent over K (see [18, Theorem
5.2]).

By [18, Proposition 1.15] we have the following, for (K,G) |= ACFG sufficiently satu-
rated, and a, b, C in K

(1) aclACFG(C) = aclACF(C) =: C;
(2) a ≡C b if and only if there exists an LG-isomorphism σ : Ca → Cb over C such

that σ(a) = b;
(3) the completions of ACFG are given by the LG-isomorphism type of (Fp, G(Fp)).
Let x be a tuple from a field extension of K and H be an additive subgroup of the field

Cx. If
Cx ∩K = C and H ∩ C = G(C)

then, by [18, Proposition 1.16], the type associated to the LG-isomorphism class of the
pair (Cx,H) is consistent in (K,G), i.e. there exists a tuple a from K such that there is a
LG-isomorphism over C

f : (Ca,G(Ca))→ (Cx,H)

with f(a) = x.

Example 1.2 (Empty types). Let (K,G) be a κ-saturated model of ACFG, C ⊆ K such
that |C| < κ and x a finite tuple algebraically independent over K. By previously, the
type associated to the pair (Cx,G(C)) is consistent. Hence there is some tuple a from
K, algebraically independent over C such that G(Ca) = G(C). This type is unique if
G(C) ⊆ C: let a and a′ realise this type, meaning that G(Ca) = G(Ca′) = G(C). Then
a ≡C a′. Indeed if σ is a field isomorphism over C between Ca and Ca′, then it fixes
G(C) so it is an LG-isomorphism. The type is unique in particular if C is algebraically
closed. This uniqueness is a special case of the stationarity of the strong independence see
Proposition 1.8.
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1.2. Independence relations in (K,G). We work in a monster model (K,G) of ACFG.

Definition 1.3 (Weak and strong independence). Let A,B,C be subsets of K. Let |ACF
^

be the forking independence in the sense of ACF. Recall the weak independence relation:

A |w^
C

B if and only if A |ACF
^
C

B and G(AC +BC) = G(AC) +G(BC),

and the strong independence relation:

A |st^
C

B if and only if A |ACF
^
C

B and G(ABC) = G(AC) +G(BC).

Theorem 1.4. The relation |w^ satisfies Invariance, Closure, Symmetry, Full Ex-
istence, Monotonicity, Existence, Local Character, Transitivity, Strong
Finite Character over algebraically closed sets, |a^ -amalgamation over algebraically
closed sets.

Proof. Apart from Transitivity and Local Character, all properties has been proven
in [18, Theorem 4.2] and [18, Example 5.21].

Transitivity. Assume that A |w^CB
D and B |w^C

D. We may assume that A =

ABC,B = CB and D = CD. By Monotonicity, it is sufficient to show that A |w^C
D.

We clearly have A |ACF
^C

D by Transitivity of |ACF
^ . We show that G(A+D) = G(A)+

G(D). By A |w^B
D we have G(A + BD) = G(A) + G(BD). It follows that G(A + D) is

included in (A+D) ∩ (G(A) +G(BD)), which, by modularity, is equal to

G(A) + (A+D) ∩G(BD) = G(A) +G(A ∩BD +D).

As A |ACF
^B

D, A ∩BD = B. By B |w^C
D, G(B +D) = G(B) +G(D) hence

G(A+D) = G(A) +G(B) +G(D) = G(A) +G(D).

Local Character. We start with a claim.

Claim. Let A,B be subsets of (K,G) with B subgroup of (K,+), then there exists C ⊆ B
with |C| ≤ |A| such that

G(A+B) = G(A+ C) +G(B).

Proof of the claim. For each a ∈ A define C(a) to be the set of those b ∈ B such that
a+ b ∈ G. Take c(a) ∈ C(a) for each a such that C(a) is nonempty, and set

C = {c(a) | a ∈ A and C(a) 6= ∅} .
Now if g ∈ G(A + B) then g = a + b with a ∈ A, b ∈ B. We have C(a) nonempty so we
can write for c = c(a)

g = (a+ c) + (b− c).
It follows that b−c ∈ G(B) hence g ∈ G(A+C)+G(B). The reverse inclusion is trivial. �
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Let a be a finite tuple and B an algebraically closed set. We construct two sequences
(Ai)i<ω and (Di)i<ω such that the following holds for all n < ω:

(1) An ⊆ An+1 ⊆ Ba and Dn ⊆ An
(2) G(An +B) ⊆ G(An+1) +G(B)
(3) An |ACF

^Dn
B

(4) |An| ≤ ℵ0
Using Local Character for |ACF

^ there exists a countable set D0 ⊆ B such that
a |ACF
^ D0B. We define A0 = aD0. Assume that Dn and An has been constructed and

that |An| ≤ ℵ0. By the claim there exists C ⊆ B with |C| ≤ ℵ0 such that G(An + B) =
G(An + C) + G(B). Using Local Character1 of |ACF

^ on the set AnC there exists
Dn+1 ⊆ B with |Dn+1| ≤ ℵ0 such that AnC |ACF

^Dn+1
B. We set An+1 = AnCDn+1. Note

that An + C ⊆ An+1 so G(An +B) ⊆ G(An+1) +G(B).
Now set Aω =

⋃
i<ω Ai and Dω =

⋃
i<ωDi. We have |Aω| ≤ ℵ0 and |Dω| ≤ ℵ0. We

claim that
Aω |w^

Dω

B.

If u is a finite tuple from Aω, then u ⊆ An for some n, so as An |ACF
^Dn

B we have
u |ACF
^Dn

B. Now as Dω ⊆ B, we use Base Monotonicity of |ACF
^ to conclude that

u |ACF
^Dω

B. As this holds for every finite tuple u from Aω, we conclude that

Aω |ACF
^
Dω

B.

It remains to show that G(Aω +B) = G(Aω) +G(B). If g ∈ G(Aω +B) then there is some
n such that g ∈ An +B and so

g ∈ G(An +B) ⊆ G(An+1) +G(B) ⊆ G(Aω) +G(B).

The reverse inclusion being trivial, we conclude that G(Aω + B) = G(Aω) + G(B), so
Aω |w^Dω

B. As a ⊆ Aω we conclude by Monotonicity of |w^ . �

Remark 1.5. The Kim-Pillay theorem states that if a relation |̂ satisfies Invariance,
Symmetry, Monotonicity, Base Monotonicity, Transitivity, Full Existence,
Local Character, |̂ -amalgamation over models and Finite Character2, then
the theory is simple and this relation is forking independence. From Theorem 1.4 and [18,
Proposition 5.20], the weak independence |w^ satisfies all the previous properties except
Base Monotonicity. This is similar to the case of Kn,m-free bipartite graph [15, Remark
4.17].

1Here we use a stronger version of Local Character which holds in any simple (countable) theory
(see [7, Proposition 5.5]): for all countable set A and arbitrary set B there exists B0 ⊆ B with |B0| ≤ ℵ0
with A |̂

B0
B.

2This property is trivial for |w^ and |st^ .
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Proposition 1.6. Assume that C = C. If a |w^ C
b, then for all C-indiscernible sequence

(bi)i<ω in tp(b/C) such that bi |a^ C
(bj)j<i there exists a′ such that a′bi ≡C ab for all i < ω.

In particular, the following are equivalent, for C algebraically closed and a |ACF
^ C

b.
(1) a |w^ C

b;
(2) for all C-indiscernible sequence (bi)i<ω in tp(b/C) such that, bi |a^ C

(bj)j<i and
G(Cbi + Cbk) = G(Cbi) +G(Cbk) there exists a′ such that a′bi ≡C ab for all i;

(3) for some C-indiscernible sequence (bi)i<ω in tp(b/C) such that, bi |a^ C
(bj)j<i and

G(Cbi + Cbk) = G(Cbi) +G(Cbk) there exists a′ such that a′bi ≡C ab for all i.

Proof. The first assertion holds because |w^ satisfies |a^ -amalgamation over algebraically
closed sets (Theorem 1.4). The proof is a classical induction similar to the proof of
Lemma 3.11 or [15, Proposition 4.11].

(1) implies (2) is a particular case of the first assertion. (2) implies (3) follows from
the fact that such sequence exists, which follows from Full Existence of |w^ . We show
that (3) implies (1). Assume that a 6 |w^C

b and let Λ(x, b, c) be as in [18, Lemma 3.6]. If
(3) holds, then in particular {Λ(x, bi, c) | i < ω} is consistent, for some (bi)i<ω such that
bi ≡C b and bi |a^C

bj . This contradicts [18, Lemma 3.6]. �

In particular, we have the following combinatorial characterization of |w^ over alge-
braically closed sets.

Corollary 1.7. The following are equivalent, for C algebraically closed
(1) a |w^ C

b;
(2) for all C-indiscernible sequence (bi)i<ω in tp(b/C) such that, bi |w^ C

(bj)j<i there
exists a′ such that a′bi ≡C ab for all i;

(3) for some C-indiscernible sequence (bi)i<ω in tp(b/C) such that, bi |w^ C
(bj)j<i there

exists a′ such that a′bi ≡C ab for all i.

Proof. (1) implies (2) follows from Proposition 1.6, and (2) implies (3) holds since |w^
satisfies Full Existence. Assume that (3) holds for some a′ and indiscernible sequence
(bi)i<ω such that bi |w^C

(bj)j<ifor all i < ω. In particular, (bi)i<ω is a Morley sequence in
the sense of ACFp, and a′bi ≡ACF

C ab for all i < ω. As |ACF
^ is forking independence in the

sense of ACFp, we have a |ACF^C
b. By Proposition 1.6 we have a |w^C

b. �

Proposition 1.8. The relation |st^ satisfies Invariance, Finite Character, Symmetry,
Closure, Monotonicity, Base Monotonicity, Transitivity, Full Existence,
Stationnarity over algebraically closed sets.

Proof. This is [18, Lemma 3.10]. �
Remark 1.9. The property |̂ -amalgamation over models follows from Stationnarity
over algebraically closed sets, hence from Proposition 1.8, the strong independence |st^
satisfies every property of the Kim-Pillay characterization except Local Character oth-
erwise, ACFG would be simple. Example 3.4 shows directly that Local Character is
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not satisfied by |st^ , nor by any relation stronger than |w^ which satisfies Base Mono-
tonicity. Finally, by Proposition 1.8 and [18, Remark 4.7], ACFG is mock stable in the
sense of Adler [1].

1.3. Some structural features of (K,G). Let P (X) be a polynomial in variables X =
X1, . . . , Xn with coefficients in K. We say that P is Fp-flat over K if whenever u is a zero
of P in some field extension of K, there exists a non trivial Fp-linear combination of u that
falls in K.

Lemma 1.10. Let (K,G) be an ℵ0-saturated model of ACFG, and P (X1, . . . , Xn) a poly-
nomial non-Fp-flat over K. Then for every I ⊂ {1, . . . , n} there exists a zero a of P in K
such that ai ∈ G ⇐⇒ i ∈ I.
Proof. Let I ⊂ {1, . . . , n}. As P is non-Fp-flat, there exists a zero t of P in an extension
of K such that no non nontrivial Fp-combination of t falls in K. It follows that (K(t), G+
〈ti | i ∈ I〉) is an LG-extension of (K,G). Indeed (G+ 〈ti | i ∈ I〉) ∩K = G. Furthermore
tj ∈ (G + 〈ti | i ∈ I〉) if and only if j ∈ I. As (K,G) is existentially closed in (K(t), G +
〈ti | i ∈ I〉), we have that

(K,G) |= ∃x(P (x) = 0 ∧
∧
i∈I

xi ∈ G ∧
∧
j /∈I

xj /∈ G).

�
Lemma 1.11. A polynomial P in K[X] is Fp-flat over K if and only if all its irreducible
factors in K[X] are of the form c(λ1X1 + · · ·+ λnXn − b) for some λ1, . . . , λn in Fp \ {0}
and b, c ∈ K.

Proof. Assume that P is Fp-flat over K. If |X| = 1, then P satisfies the conclusion.
Assume that |X| > 1. Let t2, . . . , tn be algebraically independent over K, and consider
P (X1, t2, . . . , tn). This polynomial has zeros in K(t2, . . . , tn) hence by Fp-flatness each root
u satisfies λ1u+λ2t2+ · · ·+λntn = b for some non-zero tuple λ1, . . . , λn from Fp and b ∈ K.
By hypothesis on t2, . . . , tn we have that λ1 6= 0. It follows thatX1−λ−11 (λ2t2+· · ·+λntn−b)
divides P (X1, t2, . . . , tn) hence λ1X1+· · ·+λnXn−b divides P , asK[X1, t2, . . . , tn] ∼= K[X].
If λi = 0 for some i, then the tuple (0, . . . , t, . . . , 0) with t transcendental over K at the
i-th coordinate, is a zero of P that contradicts the Fp-flatness. It follows that P is of the
desired form. The other direction is trivial. �
Example 1.12 (Fp-flatness might depends on p). Consider the polynomial P = X2 + Y 2,
with b ∈ K. Then P is Fp-flat over any algebraically closed field if and only if −1 is a
square in Fp. From [20, Exercice 1.9.24], when p > 2 this is equivalent to p ∈ 4Z+1. Using
Lemmas 1.10 and 1.11 it follows that whenever (K,G) |= ACFG, p > 2,

• if p /∈ 4Z + 1 there exists g ∈ G and u ∈ K \G such that g2 + u2 = 0;
• if p ∈ 4Z+1 such couple (u, g) does not exists in (K,G), as every couple of solution
to X2 + Y 2 = 0 are Fp-linearly dependent.

For two sets A and B in a field, we denote by A ·B the product set {ab | a ∈ A, b ∈ B}.
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Proposition 1.13. Let (K,G) be a model of ACFG. The following holds:
(1) K = G ·G = G · (K \G) = (K \G) · (K \G);
(2) G is stably embedded in K;
(3) For a /∈ Fp and P ∈ K[X] \ (K + Fp ·X), we have K = G+ aG = (K \G) + aG =

G+ P (G).

Proof. (1) For all b ∈ K the polynomial XY − b is not Fp-flat by Lemma 1.11, so we
conclude using Lemma 1.10.
(2) From (1), every element in K is product of two elements in G, so any LG-formula
φ(x, a1, . . . , an) is equivalent to φ(x, g1h1, . . . , gnhn) with gi, hi ∈ G.
(3) For all P ∈ K[X] \ (K + Fp ·X), b ∈ K, the polynomial Y + P (X) − b is not Fp-flat,
similarly to (1). �

Proposition 1.14. Let ζ1, . . . , ζn be Lring-definable endomorphisms of (K,+), Fp-linearly
independent. Then

K/(ζ−11 (G) ∩ · · · ∩ ζ−1n (G)) ∼= K/ζ−11 (G)× · · · ×K/ζ−1n (G).

Proof. Using the first isomorphism theorem, it is sufficient to prove that the function ζ :
K → K/ζ−11 (G)× · · · ×K/ζ−1n (G) defined by ζ(u) = (u+ ζ−11 (G), . . . , u+ ζ−1n (G)) is onto.
Let c1, . . . , cn ∈ K, we want to show that there exists c ∈ K such that for all i ζi(c−ci) ∈ G.
Let t be a transcendental element over K, by model completeness of ACFp, ζ1, . . . , ζn are
Fp-linearly independent definable endomorphisms of (Kt,+). Consider the LG-structure

(Kt,G+ 〈ζi(t− ci) | i ≤ n〉).
We have (G+ 〈ζi(t− ci) | i ≤ n〉) ∩K = G+ 〈ζi(t− ci) | i ≤ n〉 ∩K. For λ1, . . . , λn ∈ Fp,
if
∑

i λiζi(t − ci) ∈ K then
∑

i λiζi(t) ∈ K. It is standard that a definable additive
endomorphism is of the form x 7→ a1Frobn1(x) + · · · + akFrobnk(x) with ni ∈ Z (see [6,
Chapter 4, Corollary 1.5] and [22, Lemma A, VII, 20.3]) hence there is some k such that
t 7→ (

∑
i λiζi(t))

pk is polynomial. As t is transcendental over K, (
∑

i λiζi)
pk = 0, so∑

i λiζi = 0. As ζ1, . . . , ζn are Fp-linearly independent, λ1 = · · · = λn = 0. It follows
that (G + 〈ζi(t− ci) | i ≤ n〉) ∩ K = G, so (Kt,G + 〈ζi(t− ci) | i ≤ n〉) extends (K,G).
As (K,G) is existentially closed in (Kt,G + 〈ζi(t− ci) | i ≤ n〉) we have that (K,G) |=
∃x∧i ζi(x− ci) ∈ G, hence ζ is onto. �

If ζ1, . . . , ζn are Fp-linearly independent Lring-definable isomorphisms of (K,+), the pre-
vious result can be used to find canonical parameters for the quotient K/(ζ−11 (G) ∩ · · · ∩
ζ−1n (G)) provided one have canonical parameters for the quotient K/G, see Example 2.1.

1.4. Models of ACFG in Fp. From [18, Theorem 5.2], for any quantifier free Lring-formula
φ(x, y), there exists an Lring-formula θφ(y) such that for K |= ACFp sufficiently saturated
and b tuple in K such that K |= θφ(b) if and only if there exists a realisation a of φ(x, b)

which is Fp-linearly independent over Fp(b). By quantifier elimination in ACFp, the formula
θφ can be choosen quantifier-free.
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Lemma 1.15. If Fpn |= θφ(b) then for all m ≥ n there exists k > m such that

Fpk |= ∃xφ(x, b) ∧ x is Fp-linearly independent over Fpm .

Proof. Assume that Fpn |= θφ(b). Then as θφ is quantifier free, Fp |= θφ(b). It follows
that for some elementary extension K of Fp, there is some realisation a of φ(x, b) which is
Fp-linearly independent over Fp. In particular for every non trivial polynomial P (Z, Y ) ∈
Fp[Z, Y ] (where Z is a single variable and Y a tuple of variables with |Y | = |y|), no nontrivial
Fp-linear combination of a is a root of P (Z, b). As Fp ≡ACF K, the following sentence holds
in Fp:
∀y(θφ(y)→ (∃xφ(x, y) ∧ "no nontrivial Fp-linear combination of x is a root of P (Z, y)")).

In particular, for the polynomial Xpm −X for some m we have

Fp |= ∃xφ(x, b) ∧ "no non-trivial Fp-linear combination of x falls in Fpm".
Hence for some k > m,n there exists a tuple a from Fpk such that

Fp |= φ(a, b) ∧ "a is Fp-linearly independent over Fpm".
As φ(x, y) is quantifier-free, we also have that

Fpk |= φ(a, b) ∧ "a is Fp-linearly independent over Fpm".
�

Proposition 1.16. For any n ∈ N and any G0 additive subgroup of Fpn there exists a
subgroup G of Fp such that G ∩ Fpn = G0 and (Fp, G) |= ACFG.

Proof. Start with the following claim.

Claim. Let n ∈ N, let s ∈ N, let k1, . . . , ks ∈ N and let φ1(x1, y1), . . . , φs(xs, ys) be quantifier
free formulae in Lring. For i ≤ s, let Bi =

{
b ∈ F|y

i|
pn | b |= θφi(y)

}
. Then there existsm > n

such that for all i ≤ s and b ∈ Bi there exists some |xi|-tuples ai,1, . . . , ai,ki (depending on
b) from Fpm such that

(1) (ai,jk )i≤s,j≤ki,k≤|xi| is a Fp-linearly independent tuple over Fpn
(2) Fpm |= φi(a

i,1, b), . . . ,Fpm |= φi(a
i,ki , b).

Proof of the Claim. We do it step by step, as there are only a finite number of tuples to
add. Start with φ1(x

1, y1). Take a first b ∈ B1. As Fpn |= θφ1(b), we use Lemma 1.15
with m = n to get a first m1 > n such that there exists a1 ∈ F|x1|

pm1 such that |= φ1(a
1, b)

and a1 is Fp-linearly independent over Fpn . Using again Lemma 1.15 with m = m1 there
exists m2 > m1 and a second a2 ∈ F|x

1|
pm2 such that Fpm2 |= φ1(a

2, b) and a2 is Fp-linearly
independent over Fpm1 . In particular a2 is Fp-linearly independent from a1 over Fpn . So
we can construct as many (finitely) solution to φ1(x1, b) as we want which are Fp-linearly
independent over Fpn . Once we have enough Fp-linearly independent solutions of φ1(x, b),
we can do the same trick with another b′ ∈ B1, and add as many (finitely) solution as we
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want, Fp-linearly independent from one another and from the ones corresponding to b, in a
finite extension of Fpn . Once we have done it for all elements of B1, we do the same with
every element b ∈ B2, continuing to use Lemma 1.15 to get solutions of φ2(x2, b) Fp-linearly
independent from one another and from the previous ones. As every Bi is finite and they
are in finite number, we can finish to add Fp-linearly independent solutions of φi in a finite
number of steps and the claim is proven. �

From Proposition 1.1, the axioms for ACFG are given by the following scheme: for all
quantifier free Lring-formula φ(x, y), for all 0 ≤ k ≤ |x| and 0 ≤ k′ ≤ |y|
∀y ((θφ(y) ∧ 〈y1, . . . , yk′〉 ∩G = {0})→ (∃xφ(x, y) ∧ 〈x, y1, . . . , yk′〉 ∩G = 〈x1, . . . , xk〉))

with the following convention: a1, . . . , a0 = ∅. We will denote the previous sentence by
Γ(φ, k, k′). Now we construct by induction a model of ACFG starting from (Fpn , G0). Let
(φi(x

i, yi))i<ω be an enumeration of all quantifier-free formula in Lring. We construct an
increasing sequence (nj)j<ω starting with n0 = n and additive subgroups Gj of Fpnj such
that for all s < ω, for φ1(x1, y1), . . . , φs(xs, ys), for all 1 ≤ l ≤ s, for all 0 ≤ k ≤ |xl| and
0 ≤ k′ ≤ |yl| the following holds for all |yl|-tuples b from Fpns

If Fpns |= θφl(b) ∧ 〈b1, . . . , bk′〉 ∩Gs = {0} then there exists al,k an |xl|-tuple from Fpns+1

such that Fpns+1 |= φ(al,k, b) ∧ 〈al,k, b1, . . . , bk′〉 ∩Gs+1 = 〈al,k1 , . . . , al,kk 〉. (?)

Assume that for some s < ω we have n0, . . . , ns and G0 ⊆ Fpn0 , . . . , Gs ⊆ Fpns constructed
as above. For every i ≤ s, we define as above Bi =

{
b ∈ F|y

i|
pns | b |= θφi(y)

}
, and we apply

the claim with ki = |xi|+ 1, to get some ns+1 > ns. For each 1 ≤ i ≤ s and b ∈ Bi we have
|xi|+ 1 many |xi|-tuples ai,1(b), . . . , ai,ki(b) from Fpns+1 all Fp-independents over Fpns and
such that for all j, we have Fpns+1 |= φi(a

i,j(b), b). Now define Gs+1 to be

Gs ⊕
⊕
1≤i≤s

⊕
b∈Bi

〈ai,21 (b)〉 ⊕ 〈ai,31 (b), ai,32 (b)〉 ⊕ · · · ⊕ 〈ai,ki1 (b), . . . ,⊕ai,kiki
(b)〉.

We extend Gs by the low triangle of the (|xi| + 1) × |xi| matrix (ai,jk (b))1≤j≤ki,1≤k≤|xi| for
each i < s and b ∈ Bi: 

ai,11 ai,12 . . . ai,1|xi|
ai,21 ai,22 . . . ai,2|xi|
ai,31 ai,32 . . . ai,2|xi|
...

. . .
ai,ki1 ai,ki2 . . . ai,ki|xi|


.

Now we have for each 1 ≤ i ≤ s and any 0 ≤ k ≤ |xi| and 0 ≤ k′ ≤ |yi|, if
b ∈ Bi, then there exists ai,k(b) ∈ F|x

i|
pns+1 such that Fpns+1 |= φi(a

i,k(b), b). By con-
struction if 〈b1, . . . , bk′〉 ∩Gs = {0}, and by Fp-linear independence of all the ai,k, we have
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〈ai,k, b1, . . . , bk′〉 ∩ Gs+1 = 〈ai,k1 , . . . , ai,kk 〉. By induction we construct a familly (Fpni , Gi)
satisfying (?). Now let

G =
⋃
i<ω

Gi ⊆ Fp.

By construction, we have that (Fp, G) is a model of ACFG. �

The set of all subgroups of some countable abelian group can be endowed with a topology
that is compact, it is called the Chabauty topology (see for instance [16]). The Chabauty
topology of any countable abelian group is the one of the Cantor space provided that the
group is notminimax, see [17, Proposition A]. In the case of the group (Fp,+), this topology
has a very explicit description, in particular, it is the topology of the Cantor space, and is
generated by clopens of the form

B(H0,Fpn) =
{
H ∈ Sg(Fp) | H ∩ Fpn = H0

}
for some finite group H0 ∈ Sg(Fp). Let

C =
{
G ∈ Sg(Fp) | (Fp, G) |= ACFG

}
.

Recall that a set is Gδ if it is a countable intersection of open sets.

Proposition 1.17. C is a dense Gδ of Sg(Fp).

Proof. We first show that it is dense. By Proposition 1.16, evey ball of the form B(G0,Fpn) ={
H ∈ Sg(Fp) | H ∩ Fpn = G0

}
contains an element of C, hence C is dense.

We show that it is a Gδ. First, from Proposition 1.1, ACFG is axiomatised by adding to
the theory ACFG the following LG-sentences, for all tuples of variable x′ ⊂ x, y′ ⊂ y and
Lring-formula φ(x, y)

∀y(〈y′〉 ∩G = {0} ∧ θφ(y))→ (∃xφ(x, y) ∧ 〈xy′〉 ∩G = 〈x′〉)
which is equivalent to

∀y∃x
[
¬θφ(y)) ∨ 〈y′〉 ∩G 6= {0} ∨ (φ(x, y) ∧ 〈xy′〉 ∩G = 〈x′〉)

]
.

Let φ(x, y), x′ ⊆ x and y′ ⊆ y be given. Let b be a |y|-tuple, and consider the set

Ob =
⋃

a∈Fp
|x|
,Fp|=φ(a,b)

{
H | 〈b′〉 ∩H 6= {0}

}
∪
{
H | 〈ab′〉 ∩H = 〈a′〉

}
.

The set {H | 〈b′〉 ∩H 6= {0}} is equal to ⋃u∈〈b′〉\{0} {H | u ∈ H} which is clearly open. The
set {H | 〈ab′〉 ∩H = 〈a′〉} is also open, so Ob is open. Now it is an easy checking that

C =
⋂

φ(x,y),x′⊆x,y′⊆y

⋂
b∈Fp

|y|
,Fp|=θφ(b)

Ob.

Hence C is Gδ. �
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Remark 1.18 (Ultraproduct model of ACFG). From the proof of Proposition 1.16, starting
from G0 ⊆ Fpn0 , there exists a strictly increasing sequence (ni)i<ω of integers and an
increasing sequence of groups Gi ⊆ Fpni satisfying (?). Let U be a nonprincipal ultrafilter
on ω, it does not take long to see that the ultraproduct

∏
U (Fp, Gi)) is a model of ACFG, in

which the group is pseudo-finite. The construction of theG′is in the proof of Proposition 1.16
is rather artificial. Is there more "natural" generic subgroups of Fp? Given an arbitrary
set {Gi | i < ω} of subgroups of Fp and a non principal ultrafilter U on ω, how likely is it
that

∏
U (Fp, Gi)) is a model of ACFG?

Remark 1.19 (Pseudo finite generic subgroup of a pseudo-finite field). Observe that the
proof of Lemma 1.15 gives the following: if F is an infinite locally finite field3, and that
for some universal Lring-formula φ(x, y) there exists an existential formula θφ(y) such that
for all tuple b, we have F |= θφ(b) if and only if there exists a realisation a of φ(x, b) in
an elementary extension of F such that a is Fp-linearly independent over F ; then for all
finite subfields F0 ⊂ F1 of F , if F0 |= θφ(b) there exists a finite subfield F2 of F and a
tuple a from F2 realizing φ(x, b) which is Fp-linearly independent over F1. By the same
method as in the proof of Theorem 1.16, we may construct an increasing sequence of finite
fields (Fi)i<ω and finite subgroups Gi ⊆ Fi such that for an enumeration of universal
formula φ(x, y) and existential formula θφ(y), if (Fi, Gi) satisfies the premise of the axiom,
then the conclusion is satisfied in (Fi+1, Gi+1). Now consider the theory Psfc (the theory
of pseudo-finite fields with constants for irreducible polynomials, see [8, Section 3]), it is
model-complete, hence every formula is equivalent to an existential formula and a universal
formula, with some constants. It is then possible to choose constants c(i) in Fi such that
Xn + cn−1,n(i)Xn−1 + · · · + c0,n(i) is irreducible over Fi, for all n. Then one can check
that a non principal ultraproduct of (Fi, c(i))i<ω is a model of Psfc, hence the ultraproduct∏

U (Fi, ci, Gi) is a model of the expansion of a pseudo-finite field of characteristic p with a
generic subgroup (see [18, Example 5.10]).

Remark 1.20 (Characteristic 0). Let P be the set of prime numbers and U a non-principal
ultrafilter on P. For each q ∈P let Gq be a subgroup of Fq such that (Fq, Gq) is a model of
ACFG (here we mean ACFqG). Recall that C ∼=

∏
q∈P Fq/U . Consider the ultraproduct

(C, V ) ∼=
∏
q∈P

(Fq, Gq)/U .

It is clear that V is a subgroup of C. For each q ∈P,

StabFq(Gq) :=
{
a ∈ Fq | aGq ⊆ Gq

}
= Fq,

this follows from Proposition 1.13 (3). Hence F = StabC(V ) is a pseudo-finite subfield
of C, and V is an F -vector space. It follows from [18, Proposition 5.2] that (C, V ) is
not existentially closed in the class of LG-structures consisting of a field of characteristic

3A locally finite field is a field such that every finitely generated subfield is finite. Equivalently it is
embeddable in Fp.
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0 in which G is an additive subgroup. Nonetheless, some properties such as the ones in
Proposition 1.13 will be satisfied by (C, V ) (replacing Fp by F ).

2. Imaginaries

Let (K,G) be a saturated model of ACFG. It is easy to see that for all a ∈ K \ G,
there exists b ∈ K \ G algebraically independent from a over Fp such that a − b ∈ G (see
Lemma 2.2). Let α = a/G = b/G ∈ (K,G)eq. If it exists, a canonical parameter for α in K
would be definable over both a and b, hence it would be definable over an element of Fp.
This would give an embedding of K/G into the countable set dcleq(∅) which is absurd in a
saturated model (K,G) for cardinality reasons.

Let (K,G) be a model of ACFG, there is a canonical projection

π : K → K/G.

Consider the 2-sorted structure, (K,K/G) with the Lring-structure on K, the group
structure on K/G (in the language of abelian groups) and the group epimorphism π : K →
K/G. We forget about the predicate G as it is 0-definable in (K,K/G). The structure
(K,K/G) is bi-interpretable with (K,G). We fix (K,G) and (K,K/G) for the rest of this
section.
In this section, we show that (K,K/G) has weak elimination of imaginaries, hence imagi-
naries of (K,G) can be weakly eliminated up to the quotient K/G.

Some definable imaginaries in (K,G) can be easily eliminated in the structure (K,K/G).

Example 2.1. Let ζ : K → K be a Lring-definable group endomorphism. Then in
(K,K/G)eq, every element in K/ζ−1(G) is interdefinable with an element in K/G. In-
deed, for any element a ∈ K and any automorphism σ of (K,K/G), σ(a) − a ∈ ζ−1(G) if
and only if σ fixes π(ζ(a)), hence π(ζ(a)) is a canonical parameter for the class of a modulo
ζ−1(G).

Let ζ1, · · · , ζn be Fp-linearly independent ∅-Lring-definable group endomorphisms K →
K. Let πζ : K → K/ζ−11 (G) ∩ · · · ∩ ζ−1n (G) and consider an element α of the sort
K/ζ−11 (G) ∩ · · · ∩ ζ−1n (G) in (K,K/G)eq. From Proposition 1.14 the natural map

K/ζ−11 (G) ∩ · · · ∩ ζ−1n (G)→ K/ζ−11 (G)× · · · ×K/ζ−1n (G)

is an isomorphism. Let a be such that πζ(a) = α. For each 1 ≤ i ≤ n let αi = π(ζ−1i (a)) ∈
K/G. Then the tuple α1, · · · , αn is a canonical parameter for α.

If quotients of the form K/ζ−1(G) can be fully eliminated, what about quotients of
the form K/ζ(G)? In that case the kernel of ζ is a finite vector space, hence a canonical
parameter for α ∈ K/ζ(G) is a finite set of the form π(a+ ker(ζ)) which is not necessarily
eliminable in (K,K/G) as shows Example 2.16. We even show in Example 2.17 that adding
canonical parameters for the sort K/G is not sufficient to eliminate all finite imaginaries of
the structure (K,K/G).
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In this section, greek letters Γ, α denote subsets or tuples (which might be infinite) from
K/G. Any tuple in the structure (K,K/G) will be denoted by aγ, with a a tuple from K,
γ a tuple from K/G. We also extend π for (finite or infinite) tuples by π(a) := (π(ai))i.

2.1. First steps with imaginaries. Let σ be a field automorphism of K. It is clear that
the following are equivalent:

• σ is an L G-automorphism of K;
• there exists σ̃ : K/G→ K/G such that π ◦ σ = σ̃ ◦ π.

(K,G) (K,G)

K/G K/G

σ

π π

σ̃

An automorphism of the structure (K,K/G) is a pair (σ, σ̃) as above. It follows that for
a, b, C from K, we have

a ≡(K,G)
C b ⇐⇒ a ≡(K,K/G)

C b.

In this section, the relation ≡ means having the same type in the structure (K,K/G).

Lemma 2.2. Let a, b be two tuples of the same length from K. Let C,D ⊆ K and assume
that

• π(a) is an Fp-independent tuple over π(C)

• π(b) is an Fp-independent tuple over π(C)

Then there exists a′ ≡C a such that a′ |ACF
^ C

D and π(a′) = π(b).

Proof. Let x |ACF
^C

K such that x ≡ACF
C a, and f : Cx → Ca a field isomorphism over C

sending x to a. Let GCx = f−1(G(Ca)). Consider now the subgroup of CDbx defined by

H = GCx +G(CbD) + 〈xi − bi | i ≤ |x|〉.
We show that the type in the sense of ACFG defined by the pair (CDbx,H) is consistent.
As x |ACF

^C
K we have CDbx ∩K = CDb. In order to prove that H ∩CDb = G(CDb), it

suffices to show that

CDb ∩ (GCx + 〈xi − bi | i ≤ |x|〉) ⊆ G(C).

Assume that gCx+
∑

i λi(xi−bi) ∈ CDb, where gCx ∈ GCx. It follows that gCx+
∑

i λixi ∈
CDb. On the other hand gCx +

∑
i λixi ∈ Cx. As x |ACF

^C
bD we have Cx ∩ CDb = C

hence gCx +
∑

i λixi ∈ C. Apply π ◦ f to get that
∑

i λiπ(ai) ∈ π(C) hence by hypothesis
λi = 0 for all i ≤ |x|. It follows that gCx ∈ C and so gCx ∈ G(C). We have showed that
CDb ∩ (GCx + 〈xi − bi | i ≤ |x|〉) ⊆ G(C). The type is consistent by Subsection 1.1, so
realised by say a′. As x |ACF

^C
D we have a′ |ACF

^C
D. In order to show that a′ ≡C a we

have to check that H ∩ Cx = GCx, this is similar to the argument above, using this time
that π(b) is Fp-independent over π(C). We have a′i − bi ∈ G hence π(a′i) = π(bi), for all
i ≤ |x|. �
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Lemma 2.3 (Minimal representative). Let a, C be in K such that π(a) is an Fp-independent
tuple over π(C). Then there exists a′ of same length as a, algebraically independent over
Cb such that

• π(a) = π(a′)
• π(Ca′) = 〈π(C)π(a)〉
• a′ |ACF

^ C
b.

Proof. It is again a type to realize. Consider x of same length as a and algebraically
independent over Cba. Let V be a Fp-vector space complement to C ⊕ 〈x〉 in Cx and set

H = G(Cab) + 〈x− a〉+ V.

We check that the pair (Cabx,H) defines a consistent type over Cab. First H ∩ Cab =
G(Cab)+(〈x− a〉+V )∩Cab. For v ∈ V , if

∑
i λi(xi−ai)+v ∈ Cab then∑i λixi+v ∈ Cab.

As Cab∩Cx = C,
∑

i λixi + v ∈ C hence v = 0 and, as x is Fp-independent over C, λi = 0

for all i ≤ |x|. The type is consistent by Subsection 1.1. We show that H∩Cx = G(C)+V .
FirstH∩Cx = V +Cx∩(G(Cab)+〈x− a〉). Let g+

∑
i λi(xi−ai) ∈ (G(Cab)+〈x− a〉)∩Cx,

then g +
∑

i λiai ∈ Cab ∩ Cx = C and so applying π gives
∑

i λiπ(ai) ∈ π(C) hence
λi = 0 for all i ≤ |x|. It follows that Cx ∩ (G(Cab) + 〈x− a〉) = G(C) hence H ∩ Cx =
G(C)+V . Assume that a′ realises this type, it is clear that π(a) = π(a′) and a′ |ACF

^C
b. By

construction there exists V ′ ⊆ Ca′ such that Ca′ = C ⊕〈a〉⊕V ′ and G(Ca′) = G(C)⊕V ′,
so it follows that π(Ca′) = π(C)⊕ 〈π(a′)〉. �

In particular if α is an Fp-independent tuple over π(C) then there exists some alge-
braically independent tuple a over C such that π(a) = α and π(Ca) = 〈π(C)α〉. We call
such a tuple a minimal representative of α over C. Lemma 2.3 states that minimal repre-
sentatives always exists and that they can be taken independent in the sense of fields from
any parameters.

Corollary 2.4. Let α and β be tuples in K/G of the same length, γ tuple from K/G and
C ⊆ K. If α and β are Fp-independent tuples over 〈π(C)γ〉 then α ≡Cγ β.

Proof. We may assume that γ is linearly independent over π(C) and let rγ be a minimal
representative of γ over C. Let a and b be representatives of α and β over Crγ . Using
Lemma 2.2, there exists a′ ≡Crγ a such that π(a′) = π(b) = β. Let σ be an automorphism
of (K,K/G) over Crγ sending a on a′. It is clear that σ fixes γ and sends α to β hence
α ≡Cγ β. �

Remark 2.5. A consequence of Corollary 2.4 is that the induced structure on K/G is the
one of a pure Fp-vector space.

We will describe the algebraic closure acl in the structure (K,K/G). Surjectivity of
π : K → K/G implies that every formula in the language of (K,K/G) without parameters
and with free variables in the home sort K is equivalent to an L G-formula. In particular
acl(C) ∩K = C for all C ⊆ K.
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Corollary 2.6. Let C ⊆ K and γ ⊆ K/G, then
• acl(Cγ) ∩K = C
• acl(Cγ) ∩K/G = 〈π(C)γ〉.

Proof. For the first assertion, we may assume that γ is an Fp-independent tuple over π(C).
Let u be in acl(Cγ)∩K witnessed by an algebraic formula φ(x, c, γ) with c ∈ C. Using twice
Lemma 2.3, let rγ be a minimal representative of γ over C, and r′γ a minimal representative
of γ over C such that r′γ |ACF

^C
rγ . As u satisfies φ(x, c, π(rγ)) and φ(x, c, π(r′γ)), u belongs

to Crγ ∩ Cr′γ = C (note that we don’t use the minimality here). The reverse inclusion
being trivial, it follows that acl(Cγ) ∩K = C.

For the second assertion, assume that α /∈ 〈π(C)γ〉. By Corollary 2.4, any element in
K/G \ 〈π(C)γ〉 has the same type as α over Cγ hence α /∈ acl(Cγ). The reverse inclusion
being trivial, it follows that acl(Cγ) ∩K/G = 〈π(C)γ〉. �

2.2. Independence in (K,K/G). Recall the weak independence in (K,G):

a |w^
C

b ⇐⇒ a |ACF
^
C

b and G(Ca+ Cb) = G(Ca) +G(Cb)

It is an easy checking that under the assumption that Ca ∩ Cb = C the following two
assertions are equivalent:

• G(Ca+ Cb) = G(Ca) +G(Cb)
• π(Ca) ∩ π(Cb) = π(C)

We define the following relation in (K,K/G):

aα |w^
Cγ

bβ ⇐⇒ a |ACF
^
C

b and 〈π(Ca)αγ〉 ∩ 〈π(Cb)βγ〉 = 〈π(C)γ〉

It is the right candidate for Kim-independence in (K,K/G). We study only the restriction
of this relation to sets aα, bβ, Cγ with αβγ ⊆ π(Ca) ∩ π(Cb). This restriction can be
described only in terms of the structure (K,G) as we will see now.

An infinite tuple λ of elements of Fp is almost trivial if λi = 0 for cofinitely many i’s. If
γ is an infinite tuple, an element u ∈ 〈γ〉 is an almost trivial linear combination of γi’s, i.e.
there exists λ almost trivial such that u =

∑
i λiγi. Given two tuples a and b, the tuple

consisting of the coordinates ai − bi is denoted by a− b.
Lemma 2.7. Let a, b be tuples such that γ is a (finite or infinite) tuple from π(a) ∩ π(b).
Assume that a ∩ b = C, then the following are equivalent:

(1) π(a) ∩ π(b) = 〈π(C)γ〉
(2) G(a + b) = G(a) + G(b) + 〈ra − rb〉 for some (all) representatives ra, rb of γ in a

and b respectively.

Proof. (1) implies (2). Let ua ∈ a and ub ∈ b such that ua−ub ∈ G. Then π(ua) = π(ub) ∈
π(C) + 〈γ〉 so there exists uc ∈ C and λ ∈ F|γ|p such that for some (any) representatives ra
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and rb of γ in a and b respectively, there exists ga ∈ G(a), gb ∈ G(b) and an almost trivial
sequence λ ∈ F|γ|p with

ua = ga + uc +
∑
i

λir
a
i

ub = gb + uc +
∑
i

λir
b
i .

It follows that ua − ub ∈ G(a) +G(b) + 〈ra − rb〉.
(2) implies (1). If ua ∈ a and ub ∈ b are such that π(ua) = π(ub), then ua − ub ∈ G(a+ b)

hence ua−ub = ga + gb +
∑

i λi(r
a
i − rbi ) (for an almost trivial sequence λ ∈ F|γ|p ). It follows

that ua − ga −
∑

i λir
a
i ∈ a ∩ b = c, so π(ua) ∈ π(C) + 〈γ〉. �

Lemma 2.8 (Maximal representative). Let γ be a tuple Fp-independent over π(C) and d
a tuple from K such that π(d) = γ. Then there exists (K ′, G′) � (K,G) and a tuple rγ of
length |γ| in K ′, algebraically independent over K such that

G(Krγ) = G(K) + 〈rγ − d〉.
Furthermore the following hold for all tuples a, b from K containing C such that γ ∈ π(a)∩
π(b):

(1) if C = C then a ≡Cγ b if and only if a ≡Crγ b;
(2) a |w^ Cγ

b if and only if a |w^ Crγ
b.

Proof. Let x be an algebraically independent tuple over K of size |d|, and define H on K(x)

to be G(K) + 〈x− d〉. It is easy to see that (K(x), H) defines a consistent type over K so
let rγ be a realization of this type in an elementary extension (K ′, G′) of (K,G). We may
assume that (K ′, G′) is κ-saturated and κ-homogeneous for some big enough κ.

Claim. if C = C and r′γ ≡Cγ rγ with r′γ |ACF
^C

b and G(Cbr′γ) = G(b) + 〈r′γ − rb〉 for some

rb ∈ π−1(γ) ∩ b|γ|, then any L G-isomorphism over Cγ that sends an enumeration R′γ of
Cr′γ to an enumeration Rγ of Crγ (and sends r′γ to rγ) extends to an L G-isomorphism
between R′γb and Rγb which fixes b.

Proof of the Claim. . Let σ be an automorphism of (K ′,K ′/G′) over Cγ sending r′γ to rγ .
Then it sends any enumeration R′γ of Cr′γ to an enumeration Rγ of Crγ . We may assume
that b = b. By stationarity of the type tpACF(b/C), the field isomorphism σ � CR′γ extends
to σ̃ : bR′γ → bRγ with σ̃ fixing b. We show that σ̃ is an L G-isomorphism. First observe
that since G(Krγ) = G(K) + 〈rγ − rb〉 then G(brγ) = G(b) + 〈rγ − rb〉. As σ̃ fixes b and
sends r′γ to rγ it is clear that σ̃ send G(br′γ) to G(brγ) so σ̃ is an L G-isomorphism. Now this
isomorphism extends to an automorphism of (K ′, G′) and an automorphism of (K ′,K ′/G′)
that fixes γ as it send r′γ to rγ . �

(1). Assume that a ≡Cγ b and let σ be an automorphism of (K ′,K ′/G′) over Cγ sending
a on b. As before, we have that G(arγ) = G(a) + 〈rγ − ra〉 and G(brγ) = G(b) + 〈rγ − rb〉,
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for some (any) representatives ra, rb of γ in a, b respectively. Let Rγ be an enumeration
of Crγ and R′γ = σ(Rγ), r′γ = σ(rγ). As rγ |ACF

^C
a, we have r′γ |ACF

^C
b. Furthermore

G(arγ) = G(a) + 〈rγ − ra〉 and aRγ ≡Cγ bR′γ , then G(Cbr′γ) = G(b) + 〈r′γ − rb〉. By the
claim, σ−1 � Cr′γ extends Cr′γb with the identity on b hence Rγ ≡Cbγ R′γ . It follows that
aRγ ≡Cγ bRγ . The other direction is trivial.

(2). From left to right. It is clear that a |ACF
^Crγ

b. We want to show that G(arγ+brγ) =

G(arγ) + G(brγ). Observe that G(abrγ) = G(ab) + 〈ra − rγ〉 for any tuple ra from a with
π(ra). Let u ∈ arγ and v ∈ brγ . If u + v ∈ G there exists gab ∈ G(ab) and λ ∈ F|x|p
such that u + v = gab +

∑
i λi(r

a
i − rγi) for an almost trivial tuple λ. It follows that

gab ∈ (arγ + brγ) ∩ ab = a + b, using [18, Lemma 5.16.] with T = ACF. As a |w^Cγ
b

and using Lemma 2.7, we have that G(a + b) = G(a) + G(b) + 〈ra − rb〉. We deduce that
gab = ga + gb +

∑
i µi(r

a
i − rbi ), for an almost trivial tuple µ. For all i, rai − rγi ∈ G(arγ)

and rγi − rbi ∈ G(brγ) hence gab = ga + gb +
∑

i µi(r
a
i − rγi) +

∑
i µi(rγi − rbi ) ∈ G(arγ) +

G(brγ). It follows that u+ v ∈ G(arγ) +G(brγ). The other inclusion being trivial we have
G(arγ + brγ) = G(arγ) +G(brγ).

From right to left. First, rγ |ACF
^C

b hence by Transitivity and Monotonicity
a |ACF
^C

b. By hypothesis, G(arγ + brγ) = G(arγ) + G(brγ). Furthermore G(arγ) =

G(a) + 〈rγ − ra〉 and G(brγ) = G(b) + 〈rγ − rb〉. It is easy to see that

(G(a) +G(b) + 〈rγ − ra〉+ 〈rγ − rb〉) ∩ (a+ b) = G(a) +G(b) + 〈rb − ra〉.
It follows that a |w^Cγ

b. �

Remark 2.9. Let |ST^ be the following relation, defined for γ ∈ π(Ca) ∩ π(Cb):

a |ST^
Cγ

b ⇐⇒ a |ACF
^
C

b and G(Cab) = G(Ca) +G(Cb) + 〈raγ − rbγ〉

for some (any) representatives raγ , r
b
γ of γ in Ca, Cb respectively.

A maximal representative of γ over C with respect to b is a representative rγ such that
rγ |ST^Cγ

b. The previous result implies that this relation satisfies Full Existence and
Stationnarity over algebraically closed sets. This relation clearly extends the strong
independence in (K,G).
Theorem 2.10. The relation |w^ satisfies the following properties.

(1) (Full Existence) Let a, b, C = C in K and γ ∈ K/G such that γ ∈ π(Ca) ∩ π(Cb)
and γ Fp-independent over π(C). Then there exists a′ ≡Cγ a such that a′ |w^ Cγ

b.
(2) (Transitivity) If aα |w^ Cγ

bβ and aα |w^ Cbγβ
dδ then aα |w^ Cγ

bdβδ

(3) (Independence theorem) Let c1, c2, a, b, C = C in K and γ ∈ K/G such that γ ∈
π(Ca) ∩ π(Cb) ∩ π(Cc1) ∩ π(Cc2) and γ Fp-independent over π(C).

If c1 ≡Cγ c2 and c1 |w^ Cγ
a, c2 |w^ Cγ

b, a |ACF
^ C

b, then there exists c such that
c ≡Caγ c1, c ≡Cbγ c2 and c |w^ Cγ

a, b.
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Proof. Transitivity is just checking from the definition of |w^ . For Full Existence, assume the
hypothesis and let rγ be a maximal representative as in Lemma 2.8. By Full Existence
of |w^ in (K,G) there exists a′ ≡Crγ a such that a′ |w^Crγ

b. Using again Lemma 2.8,
a′ ≡Cγ a and a′ |w^Cγ

b. For Independence theorem, we use the same strategy. Assume the
hypothesis and let rγ be a maximal representative of γ as in Lemma 2.8. From Lemma 2.8,
we have that c1 ≡Crγ c2 and c1 |w^Crγ

a, c2 |w^Crγ
b, a |ACF

^Crγ
b. As |w^ in (K,G) satisfies

|a^ -amalgamation over algebraically closed sets there exists c such that c ≡Crγa c1,
c ≡Crγb c2 and c |w^Crγ

a, b. It follows that c ≡Caγ c1, c ≡Cbγ c2, and by Lemma 2.8,
c |w^Cγ

a, b. �

Remark 2.11. Notice that |w^ satisfies |a^ -amalgamation over algebraically closed fields in
(K,G). In Theorem 2.10, we can weaken the hypothesis a |ACF

^C
b to a |a^C

b because if
a |a^C

b and r |ACF
^C

ab, then a |a^Cr
b (this result is contained in the proof of Lemma 3.15).

2.3. Weak elimination of imaginaries in (K,K/G). The following Lemma is a rewriting
of the classical argument for the proof of elimination of imaginaries that appears for instance
in [11] and [26]. It is similar to [15, Proposition 4.25], the only difference being that in our
case, |̂ is defined only on some subsets, and the base set might contain imaginaries, but
the proof is the same.

Lemma 2.12. Let M be a κ-homogeneous and κ-saturated structure. Let E ⊂ M eq.
Assume that there exists a binary relation |̂

E
on some tuples from M such that

• (Invariance) If a |̂
E
b and ab ≡E a′b′ then a′ |̂ E b

′

• (Extension) If a |̂
E
b and d tuple from M then there exists a′ ≡Eb a and a′ |̂

E
bd

• (Independent consistency) If a1 |̂ E a2, b |̂ E a2 and a2 ≡E b, then there exists a
such that a ≡Ea1 a2, a ≡Ea2 b.

Let e ∈ M eq. If there exists a 0-definable function f in M eq and a1, a2 in M such that
f(a1) = f(a2) = e and a1 |̂ E a2 then e ∈ dcleq(E).

Proof. If e is not in dcleq(E), then there exists e′ 6= e such that e′ ≡E e. Let σ be an
automorphism of M eq over E sending e on e′. Let b1b2 = σ(a1a2). By Invariance, b1 |̂ E b2
and f(b1) = f(b2) = e′. By Extension there exists b ≡Eb1 b2 such that b |̂

E
a2. By

Independent Consistency, there exists a such that a ≡Ea1 a2, a ≡Ea2 b. From a ≡Ea1 a2
follows that f(a) = f(a1) = e and from a ≡Ea2 b follows that f(a) 6= e, a contradiction. �

Remark 2.13. Recall that Extension follows from Full Existence, Symmetry and Transitiv-
ity. Independent consistency is a consequence of the independence theorem. It follows from
Theorem 2.10 that for all C = C and γ Fp-independent over π(C), the restriction of |w^Cγ

to tuples a such that γ ∈ π(Ca) satisfies the hypothesis of the previous Lemma.

The following classical fact follows from a group theoretic Lemma due to P.M. Neu-
mann [27]. It appears first in [19, Lemma 1.4].
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Fact 2.14. Let M be a saturated model, X a 0-definable set, e ∈M , E = acl(e) ∩X and
a tuple a from X. Then there is a tuple b from X such that

a ≡Ee b and acl(Ea) ∩ acl(Eb) ∩X = E.

Theorem 2.15. Let e ∈ (K,G)eq then there exists a tuple cγ from (K,K/G) such that cγ ∈
acleq(e) and e ∈ dcleq(cγ). It follows that (K,K/G) has weak elimination of imaginaries.

Proof. We work in (K,G)eq, seeing (K,K/G) as a 0-definable subset. Suppose that e
is an imaginary element, there is a tuple a from K and a 0-definable function f such
that e = f(a). We set C〈π(C)γ〉 = acleq(e) ∩ (K,K/G). We may assume that γ is Fp-
linearly independent over π(C). As γ ⊆ acleq(e) ∩ K/G ⊆ acleq(a) ∩ K/G we have that
acleq(Caγ) ∩ (K,K/G) = Caπ(Ca) and γ ⊆ π(Ca). By Fact 2.14 there exists b ≡Cγe a
such that

acleq(Caγ) ∩ acleq(Cbγ) ∩ (K,K/G) = C〈π(C)γ〉.
Again, acleq(Cbγ) ∩ (K,K/G) = Cbπ(Cb) and γ ⊆ π(Cb). Furthermore f(b) = e and

(Caπ(Ca)) ∩ (Cbπ(Cb)) = C〈π(C)γ〉.
We construct a sequence (ai)i<ω such that

an+1 |w^
Cγan

a1, . . . , an−1 and anan+1 ≡Cγ ab.

Start by a1 = a and a2 = b. Assume that a1, . . . , an has already been constructed.
We have that an−1 ≡Cγ an so let σ be a cγ-automorphism of the monster such that
σ(an−1) = an. By Full Existence (Theorem 2.10) there exists an+1 ≡Canγ σ(an) such that
an+1 |w^Canγ

a1, . . . , an−1. It follows that

anan+1 ≡Cγ anσ(an) ≡Cγ an−1an.
Let (ai)i<ω be such a sequence. In particular the following holds for all i < j < k

ak |ACF
^
Caj

ai, Cai ∩ Caj = C and π(Cai) ∩ π(Caj) = 〈π(C)γ〉.

By Ramsey and compactness we may assume that (ai)i<ω is indiscernible over Cγ. As
the three properties above holds for the whole sequence, it is in the Erenfeucht-Mostowski
type of the sequence, and hence is still true for the indiscernible sequence. Note that
f(ai) = e. We have that (ai)i<ω is totally indiscernible over C in the sense of ACF
hence a1a2a3 ≡ACF

C a1a3a2. Furthermore we have a1 |ACF
^Ca2

a3, hence by Invariance

a1 |ACF
^Ca3

a2. By elimination of imaginaries in ACF it follows that a1 |ACF
^C

a2, since
Ca ∩ Cb = C. As π(Ca1) ∩ π(Ca2) = 〈π(C)γ〉, we have that

a1 |w^
Cγ

a2.

As f(a1) = f(a2) = e, we deduce from Lemma 2.12 that e ∈ dcleq(Cγ). �
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Example 2.16 ((K,K/G) does not eliminate finite imaginaries). The structure on K/G
is the one of an Fp-vector space (with twisted algebraic and definable closures, acl(α) =

〈π(Fp)α〉 and dcl(α) = 〈π(dcl(Fp))α〉). This follows from Corollaries 2.4 and 2.6. Consider
the unordered pair {α, β} for two singletons α, β ∈ K/G, linearly independent over π(Fp).
Assume that there exists a tuple dγ such that for all automorphism σ of (K,K/G)

σ(dγ) = dγ ⇐⇒ σ({α, β}) = {α, β} .

As dγ and αβ are interalgebraic, we have first that d ⊂ Fp and hence α, β ∈ acl(γ)∩K/G =
dcl(γ) ∩ K/G = 〈γ〉. As α, β are linearly independent over acl(∅), we have αβ ≡∅ βα so
let σ be an automorphism of (K,K/G) sending αβ on βα. As σ fixes γ, it fixes 〈γ〉 hence
α = β, a contradiction.

Example 2.17 (K × (K/G)eq does not eliminate finite imaginaries). Let t be a transcen-
dental element over Fp. For convenience, we assume for that G(Fp(t)) = Fp(t) (in a model
(K,G) of ACFG such that G(Fp) = Fp). Let α, β ∈ K/G be Fp-independent, and let e be
the unordered pair

{√
tα,−

√
tβ
}
. We have the following:

(1) dcleq(e) ∩K = dcl(t)
(2) dcleq(e) ∩ (K/G)eq = dcleq({α, β}) ∩ (K/G)eq

(1) The right to left inclusion is clear. Let u ∈ dcleq(e)∩K, in particular u ∈ dcleq(t, αβ)∩
K ⊆ acleq(t, αβ) ∩K = F(t). Assume that u /∈ dcl(t). There exists u′ 6= u with u′ ≡t u.
Let α′, β′ such that u′α′β′ ≡t uαβ. As α, β and α′, β′ are Fp-lineary independent over
π(F(t, u)) = π(F(t)) = {0}, we have that αβ ≡Fp(t) α

′β′ (Corollary 2.4). It follows that
u′ ≡t,α,β u hence u′ ≡e u so u /∈ dcleq(e), a contradiction.
(2) The right to left inclusion is clear. Let {γ1, . . . , γn} be an element of dcleq(e)∩ (K/G)eq.
For all i, γi is algebraic over tαβ, by Corollary 2.6 γi ∈ 〈π(Fp(t)), α, β〉 = 〈α, β〉. It follows
that permutations of the set

{√
tα,−

√
tβ
}
that permutes {γ1, . . . , γn} are exactly permu-

tations of the set {α, β} that permutes {γ1, . . . , γn} hence {γ1, . . . , γn} ∈ dcleq({α, β}). In
fact, such a set {γ1, . . . , γn} is the union of two sets of the same cardinal (possibly inter-
secting), every element in one set is of the form λα+µβ and has a “dual” element µα+λβ
in the other set.

If e is interdefinable with an element from K × (K/G)eq, by (1) and (2), we may as-
sume that e ∈ dcleq(t {α, β}). By hypothesis αβ ≡Fp(t) βα, hence an automorphism
sending

√
t,−
√
tαβ to

√
t,−
√
tβα fixes t {α, β} and moves e to

{√
tβ,−

√
tα
}
, hence

e /∈ dcleq(t {α, β}), a contradiction.

3. Forking and thorn-forking in ACFG

In this section, we give a description of forking and thorn-forking in the theory ACFG.
We also link these notions with other classical relations or other independence relations
encountered in the previous chapters.
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3.1. Forcing base monotonicity and extension. In this subsection, given a ternary
relation |̂ in an arbitrary theory, we introduce the relations |m^ and |∗^ , following the
work of Adler in [2].

Definition 3.1 (Monotonised). Let |̂ be any ternary relation, we define |m^ to be the
relation defined by

A |m^
C

B ⇐⇒ ∀D ⊆ CB A |̂
CD

BC.

We call |m^ the monotonised of |̂ .

Note that the relation |M^ in [2, Section 4] is the relation |a^
m in our context.

Lemma 3.2. The relation |m^ satisfies Base Monotonicity. Furthermore, for each of
the following point

• Invariance
• Monotonicity
• Transitivity

if |̂ satisfies it then so does |m^ .

Proof. Let A,B,C,D such that A |̂ m
C
BD. Then for all D′ ⊆ acl(BCD) we have that

A |̂
CD′ B so in particular for all D′ ⊆ acl(BCD) containing D we have A |̂

CD′ B hence
for all D′′ ⊆ acl(BCD) we have A |̂

CDD′′ B hence A |̂ m
CD

B. To prove that Invariance
is preserved, note that there exists an isomorphism σ : ABC → A′B′C ′ which extends to
acl(ABC) → acl(A′B′C ′) and so induces an isomorphism ABCD → A′B′C ′σ(D) for all
D ⊆ acl(BC). For Monotonicity, it is an easy checking. For Transitivity Assume that
B |m^C

A and A′ |m^CB
A, and take D ⊆ acl(AC). We have in particular that B |̂

CD
A

and A′ |̂
CBD

A hence using Transitivity of |̂ we have A′B |̂
CD

A. This holds for any
D ⊆ acl(AC) hence A′B |m^C

A. �

Let |̂ , |̂ ′ be two ternary relations, such that |̂ ′ is stronger than |̂ . If |̂ ′ satisfies
Base Monotonicity then |̂ ′ is stronger than |m^ . Note that |̂ may be symmetric and
|m^ not (see Corollary 3.16). However in some cases, the monotonised is symmetric, as

shows the following example.

Example 3.3. We work here in ACF. We have

A |a^
m

C
B ⇐⇒ A |ACF

^
C

B.

Indeed the right to left implication follows from |ACF
^ → |a^ and the fact that |ACF

^ satisfies
Base Monotonicity. From left to right, assume that A 6 |ACF

^C
B, we may assume that

A,B,C are algebraically closed, and C = A ∩ B. There exists b1, . . . , bs ∈ B algebraically
independent over C such that for D = {b2, . . . , bs}, then we have b1 ∈ (AD ∩ B) \ CD so
A 6 | a^

m

C
B.
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This result translates as follows: in ACF, |f^ = |a^
m. It raises the following question:

when do we recover forking independence from the monotonised of the relation |a^ ? Does
the Symmetry of the monotonised of a symmetric relation imply nice features on the the-
ory? Observe that the proof above shows that in any pregeometry (S, cl), the independence
relation associated with the pregeometry is obtained by forcing Base Monotonicity on
the relation A |̂

C
B ⇐⇒ cl(AC) ∩ cl(BC) = cl(C).

The following example shows that the monotonised does not preserve Local Charac-
ter. Also it implies that |st^ doesn’t satisfy Local Character since |st^ → |w^

m.

Example 3.4. In ACFG, the relation |w^
m does not satisfy Local Character.

Let κ be any uncountable cardinal and consider the set A = {ti, t′i | i < κ} and an element
t such that t(ti, t′i)i<κ are algebraically independent over K. Let F = Fp(t, A) and define
H over F as G(Fp) + 〈t · ti + t′i | i < κ〉. The pair (F,H) defines a consistent type over ∅,
as Fp ∩H = G(Fp) and F ∩K = Fp, so we assume that t, A are realisation of the type in
K. By contradiction suppose that there exists A0 ⊂ A with |A0| ≤ ℵ0 such that t |w^

m

A0
A.

By definition, for all D ⊆ A we have t |w^A0D
A. Let D = {ti | i < κ} \A0. We have that

G(tDA0 +A) = G(tDA0) +G(A).

We compute the Fp-dimension over G(Fp) on each side of the previous equation. On one
hand, we have t · ti + t′i ∈ G(tDA0 + A) for all i < κ, as they are Fp-linearly independent
over Fp we have Fp-dim(G(tDA0 + A)/G(Fp)) ≥ κ. For all i < κ, t · ti + t′i ∈ G(tDA0) if
and only if t′i ∈ tDA0 if and only if t′i ∈ A0, because if t′i is algebraic over t, A0, t1, . . . , tk
then t is in A0 otherwise this contradicts that t, A are algebraically independent. We
conclude that Fp-dim(G(tDA0)/G(Fp)) ≤ |A0| ≤ ℵ0. As G(A) = G(Fp) we have that
Fp-dim([G(tDA0) +G(A)]/G(Fp)) ≤ ℵ0 so the equality cannot hold.

Definition 3.5 (Adler, [2] Section 3). For |̂ any ternary relation, |∗^ is defined as follows:

A |∗^
C

B ⇐⇒ ∀B̂ ⊇ B ∃A′ ≡BC A A′ |̂
C

B̂.

Fact 3.6 ( [2] Lemma 3.1). If |̂ satisfies Invariance and Monotonicity then |∗^
satisfies Invariance, Monotonicity and Extension. Furthermore, for each of the
following point

• Base Monotonicity
• Transitivity
• Full Existence

if |̂ satisfies it then so does |∗^ .

Recall that a |u^C
b if and only if tp(a/Cb) is finitely satisfiable in C.

Remark 3.7. Let (bi)i<κ be a C-indiscernible infinite sequence with κ > ω. Then for all
≥ α ≥ ω

b<β |u^
Cb<α

bβ.
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Furthermore, for κ big enough, the sequence (bi)i<κ is indiscernible over acl(C) (see [7,
Corollary 1.7, 2.]).

Lemma 3.8. If |̂ satisfies Invariance and Extension, then A |̂
C
B implies A |̂

C
acl(CB).

If |̂ further satisfies Base Monotonicity, then |̂ satisfies Closure.

Proof. Assume thatA |̂
C
B. By Extension, letA′ be such thatA′ ≡BC A andA′ |̂

C
acl(BC).

There is an automorphism σ overBC sendingA′ toA hence by Invariance, A |̂
C
σ(acl(BC)).

Now, as sets, σ(acl(BC)) = acl(BC) so A |̂
C

acl(BC). The last assertion is trivial, as
acl(C) ⊆ acl(BC). �
Remark 3.9. By Lemma 3.8 and Fact 3.6, if |̂ satisfies Invariance, Monotonicity, then
|∗^ satisfies Invariance, Monotonicity, Extension and Closure over algebraically

closed sets. If |̂ satisfies also Base Monotonicity, then so does |∗^ hence |∗^ sat-
isfies Closure over any sets. In particular, by Lemma 3.2 if |̂ satisfies Invariance
and Monotonicity, then |m^

∗ satisfies Invariance, Monotonicity, Closure, Base
Monotonicity, Extension.

Fact 3.10. The following are standard facts more or less obvious from the definition.
(1) |a^ satisfies Invariance, Monotonicity, Transitivity, Existence, Extension

and Full Existence;
(2) |d^ satisfies Invariance, Monotonicity, Base Monotonicity, Transitivity;
(3) |f^ satisfies Invariance, Monotonicity, Base Monotonicity, Transitivity

and Extension;
(4) |u^ satisfies Invariance, Monotonicity, Base Monotonicity, Transitivity,

Extension, Existence over models, Full Existence over models;
(5) |d^ → |aeq^ � M;
(6) |u^ → |f^ → |d^ → |aeq^ � M→ |a^ ;
(7) |f^ → |K^ and |d^ → |Kd^ .

Proof. (1) is [2, Proposition 1.5]. (2) and (3) are [3, Proposition 1.3]. (4) is [12, Remark
2.16], Base Monotonicity is trivial. For (5), it is clear that if a |d^C

b in M, then
a |d^C

b in Meq, and by [2, Remark 5.4] it follows that acleq(Ca) ∩ acleq(Cb) = acleq(C)

hence a |aeq^C
b. (6) follows from [12, Example 2.22], and the previous results. (7) is by

definition. �
Lemma 3.11. Let |̂ be a ternary relation, which satisfies

• Invariance, Monotonicity;
• |u^ -amalgamation over algebraically closed sets.

Then |m^
∗ → |f^ .

Proof. We show that |m^
∗ → |d^ , the result follows from |f^ = |d^

∗, in Fact 3.10. By Re-
mark 3.9, |m^

∗ satisfies Invariance, Monotonicity, Base Monotonicity, Extension
and Closure. Assume a |m^

∗
C
b, for any a, b, C. Let (bi)i<κ be a C-indiscernible sequence
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with b = b0, for a big enough κ. By Remark 3.7, b<i |u^Cb<ω
bi for all i ≥ ω. By Fact 3.10,

and Lemma 3.8, |u^ satisfies Closure and Monotonicity, hence b<i |u^ acl(Cb<ω)
bi.

Also (bi)i≥ω is Cb<ω-indiscernible, so if κ is big enough, by Remark 3.7 we have that
bi ≡acl(Cb<ω) bω. There exists a C-automorphisme sending b to bω hence there exists some
aω such that aωbω ≡C ab. By Invariance, we have aω |m^

∗
C
bω, so by Closure we have

aω |m^
∗
acl(C)

acl(Cbω), hence by Extension there exists a′ω such that a′ω ≡acl(Cbω) aω and
a′ω |m^

∗
acl(C)

bωb<ω. It follows from Closure and Base Monotonicity that

a′ω |̂
acl(Cb<ω)

bω.

We also have
a′ωbω ≡C aωbω ≡C ab.

For each i ≥ ω there exists an acl(Cb<ω)-automorphism σi sending bω to bi, so setting
a′i = σi(a

′
ω) we have:

∀i ≥ ω a′ibi ≡acl(Cb<ω) a
′
ωbω and a′i |̂

acl(Cb<ω)

bi.

We show that there exists a′′ such that a′′bi ≡acl(Cb<ω) aωbω for all ω ≤ i < ω + ω. By
induction and compactness, it is sufficient to show that for all ω ≤ i < ω + ω, there exists
a′′i such that for all ω ≤ k ≤ i we have a′′i bk ≡acl(Cb<ω) aωbω and a′′i |̂ acl(Cb<ω)

b≤i. For the
case i = ω take a′′ω = a′ω. Assume that a′′i has been constructed, we have

a′i+1 |̂
acl(Cb<ω)

bi+1 and b≤i |u^
acl(Cb<ω)

bi+1 and a′′i |̂
acl(Cb<ω)

b≤i.

As a′i+1 ≡acl(Cb<ω) a
′′
i , by |u^ -amalgamation over algebraically closed sets, there exists

a′′i+1 such that
(1) a′′i+1bi+1 ≡acl(Cb<ω) a

′
i+1bi+1

(2) a′′i+1b≤i ≡acl(Cb<ω) a
′′
i b≤i

(3) a′′i+1 |̂ acl(Cb<ω)
b≤i+1.

By induction and compactness there exists a′′ be such that a′′bi ≡acl(Cb<ω) aωbω for all
ω ≤ i < ω + ω. By indiscernibility of (bi)i<κ there exists a′′′ such that for all i < κ
a′′′bi ≡C ab, hence a |d^C

b. �

Remark 3.12. It is important to observe that since |u^ is not in general a symmetric relation,
the parameters a and b in the statement of |u^ -amalgamation do not play a symmetrical
role. If a relation satisfies |u^ -amalgamation, we mean that tp(c1/Ca) and tp(c2/Cb) can
be amalgamated whenever a |u^C

b or b |u^C
a.

Proposition 3.13. Let |̂ be a relation such that
(1) |̂ is weaker than |d^ ;
(2) |̂ satisfies Invariance, Monotonicity, |u^ -amalgamation over algebraically

closed sets;



FORKING, IMAGINARIES AND OTHER FEATURES OF ACFG 29

(3) |m^ satisfies Extension over algebraically closed sets;

Then |m^ = |f^ = |d^ .

Proof. The relation |d^ satisfies Base Monotonicity by Fact 3.10 hence from (1) we
have |d^ → |m^ . By hypothesis (3), |m^ = |m^

∗, hence by (2) and Lemma 3.11 we have
|d^ = |m^ = |f^ . �

3.2. Forking in ACFG. We show that forking in ACFG is obtained by forcing the property
Base Monotonicity on Kim-independence.

We work in a big model (K,G) of ACFG.

Lemma 3.14. Let A,B,C be three additive subgroups of K, then A ∩ (B + C) = A ∩
[B + C ∩ (A+B)].

Proof. Let a ∈ A ∩ (B + C). There exist b ∈ B and c ∈ C, such that a = b + c. Then
c = a−b ∈ C∩(A+B) hence a ∈ A∩ [B + C ∩ (A+B)]. The other inclusion is trivial. �

Lemma 3.15 (Mixed Transitivity on the left). Let A,B,C,D be algebraically closed sets,
with A,B,D containing C and B ⊆ D. If A |w^

m

C
B and A |st^ B

D then A |w^
m

C
D.

Proof. Let A,B,C,D be as in the hypothesis. Let E ⊆ D containing C, we want to show
that A |w^E

D. We may assume that E is algebraically closed. We clearly have A |ACF
^E

D,
so we have to show that

G(AE +D) = G(AE) +G(D).

From A |ACF
^C

E,B we have AE ∩ AB |ACF
^E

E,B and AE ∩ AB |ACF
^B

E,B. By elim-
ination of imaginaries in ACF, AE ∩ AB |ACF

^E∩B E,B. By Lemma ??, it follows that
AE ∩AB = A(E ∩B).

Claim. (AE +D) ∩ (AB +D) = A(E ∩B) +D.

Proof of the claim. By modularity, we have that (AE+D)∩(AB+D) = D+AE∩(AB+D).
By Lemma 3.14 we have that

AE ∩ (AB +D) = AE ∩
(
AB + (AE +AB) ∩D

)
.

Applying [18, Lemma 5.16.] with T = ACF, we have (AE +AB) ∩D = E +B, hence

AE ∩ (AB +D) = AE ∩ (AB + E +B)

= AE ∩ (AB + E)

= AE ∩AB + E by modularity

= A(E ∩B) + E.

It follows that (AE +D) ∩ (AB +D) = A(E ∩B) +D + E = A(E ∩B) +D. �
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By hypothesis, G(AD) = G(AB) +G(D), so, by the claim

G(AE +D) = G(AE +D) ∩ (G(AB) +G(D)) = G
(
A(E ∩B) +D

)
∩G(AB) +G(D).

FurthermoreG
(
A(E ∩B) +D

)
∩G(AB) = G

(
A(E ∩B) +D ∩AB

)
= G

(
A(E ∩B) +B

)
.

As A |w^
m

C
B we have G(A(E ∩B) +B) = G(A(E ∩B)) +G(B). We conclude that

G(AE +D) = G(A(E ∩B)) +G(B) +G(D) = G(A(E ∩B)) +G(D).

�

Corollary 3.16. In ACFG, |w^
m satisfies Extension. In particular, in |w^

m = |f^ = |d^ .

Proof. Assume that a |w^
m

C
b and d is given. By Full Existence of |st^ there exists

a′ ≡Cb a such that a′ |st^Cb
d. Also a′ |w^

m

C
b hence by Lemma 3.15 a′ |w^

m

C
b, d, which

shows Extension for |w^
m. In particular |w^ satisfies hypothesis (3) of Proposition 3.13.

We check that it satisfies the rest of the hypotheses of Proposition 3.13. (1) follows from
Corollary 1.7. From Theorem 1.4, |w^ satisfies the properties Invariance, Monotonicity
and |u^ -amalgamation over algebraically closed sets (since |u^ → |a^ , by Fact 3.10), so
|w^ satisfies (2). �

3.3. Thorn-Forking in ACFG. Let (K,G) be a monster model of ACFG. Recall that
|aeq^ is the relation |a^ in the sense of (K,G)eq. The thorn-forking independence relation
|þ^ is the relation defined over subsets of (K,G)eq by |þ^ = ( |aeq^ )m∗. We will only consider

the restrictions of |aeq^ and |þ^ to the home sort, which we denote respectively by |aeq^ � K
and |þ^ � K. By Corollary 2.6 and Theorem 2.15, for a, b, C ⊂ K

a |aeq^
C

b ⇐⇒ Ca ∩ Cb = C and π(Ca) ∩ π(Cb) = π(C).

Fact 3.17 ( [2] Theorem 4.3). The following are equivalent.
• T is rosy
• |þ^ in T eq satisfies Local Character.

Proposition 3.18. Let (K,G) be a model of ACFG. Then |þ^ � K = |w^
m = |f^ = |d^ .

In particular ACFG is not rosy.

Proof. Assume that a |þ^C
b. In particular a |aeq^

m

C
b so for all C ⊆ D ⊆ Cb we have

Da ∩ Cb = D hence by Example 3.3 we have

a |ACF
^
C

b.

On the other hand, we have π(Ca) ∩ π(Cb) = π(C), hence by Section 2.1

a |w^
C

b.
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It follows that |þ^ � K → |w^
m. By Fact 3.10, |d^ → |aeq^ � K, hence as |f^ satisfies Base

Monotonicity and Extension it follows that |f^ → |þ^ � K. Hence by Corollary 3.16
we conclude that |þ^ � K = |w^

m = |f^ = |d^ . As ACFG is not simple, |f^ does not satisfy
Local Character, so |þ^ � K does not satisfy Local Character hence neither does
|þ^ . By Fact 3.17, ACFG is not rosy. �

Remark 3.19. There is another way of proving that ACFG is not rosy which does not use
the description of forking in ACFG but only the fact that |þ^ � K → |w^

m. Indeed |w^
m

does not satisfy Local Character from Example 3.4 hence neither does |þ^ � K and
hence neither does |þ^ .

Remark 3.20. It is worth mentioning that in the definition of |þ^ , the relation |aeq^ cannot
be replaced by |a^ . Indeed, in the structure (K,G), by Example 3.3 |a^

m = |ACF
^ and

then as Extension clearly holds for |ACF
^ , we have |a^

m∗ = |ACF
^ . This relation satisfies

Local Character. This means that |a^
m∗ is not the restriction of |aeq^

m∗ to the home
sort. This is what Adler mention in [2, Example 4.5].

3.4. Forking and thorn-forking in other generic constructions.
Forking and dividing. In the three following examples:

(1) Generic L -structure T ∅L [23, Proposition 3.18];
(2) Generic Kn,m-free bipartite graph [15, Corollary 4.12];
(3) omega-free PAC fields [9, Theorem 3.3];

we also have that forking and dividing coincides for types, and coincides with the mono-
tonised of Kim-independence. In (1) and (2) the strategy is the following: first prove that
|d^ = |K^

m and then show that |d^ satisfies Extension. The latter is obtained using Full
Existence of the strong independence relation and a similar mixed transitivity result.
This is discussed in [26, Subsection 3.3]. We followed a close strategy: using Lemma 3.11
(based on the approach of (3)), have that |w^

m∗ strengthens |d^ . Then we use a mixed
transitivity result and Full Existence of the strong independence to show that |K^

m

satisfies Extension. These results suggest that Proposition 3.13 can be used to show that
in other examples of NSOP1 theories, forking and dividing agrees on types, for instance in
Steiner triple system [4], or bilinear form over an infinite dimensional vector space over an
algebraically closed field [21] [13].

Strong independence and Mixed Transitivity. There is also a notion of strong in-
dependence in the three previous examples which is symmetric and stationary over al-
gebraically closed sets. Concerning (3) the strong independence satisfies also the other
axioms for mock stability [24, Example 0.1 (3)]. In (2), it also satisfies Full Existence,
Monotonicity and Transitivity [15, Proposition 4.20]. In (1), it is defined in [26, Re-
mark 3.19], as a remark, to state a mixed transitivity result, but nothing about it is proven.
It is likely that (1) and (2), are also mock stable, witnessed by the strong independence.
Informally, the strong independence is in general defined to hold between two sets when
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they are the most unrelated to each other with respect to the ambient theory. Another
way of seeing this relation is by saying that the two sets can be somehow “freely amalga-
mated ”. The definition given in [23, Remark 3.19] make this precise, for C ⊆ A ∩ B, we
have A |⊗^C

B if and only if the substructure spanned by ABC is isomorphic to the fibered
coproduct of the structures spanned by A and B over the substructure spanned by C. This
definition coincides with our definition of strong independence in ACFG.

Question 1. Is there a model-theoretic definition of the strong independence that encom-
passes the strong independence in the three examples above and in ACFG?

The mixed transitivity result (Lemma 3.15) is starting to be reccurent in NSOP1 exam-
ples. It holds in example (1) ( [26, Remark 3.19]) and in (2) ( [15, Lemma 4.23]). Note
that a similar mixed transitivity appears in a SOP3 (hence SOP1) example: the generic
Kn-free graph ( [14]), this was observed in [26, Remark 3.19].

The mixed transitivity result holds as well in omega-free PAC fields. Let |w^ be the
weak independence and |st^ the strong independence in the sens of [9, (1.2)]. Then for all
A,B,C,D acl-closed in an omega free PAC field, with C ⊆ A ∩B and B ⊆ D we have:

If A |w^
m

C
B and A |st^B

D then A |w^
m

C
D.

This is contained in the proof4 of [9, (3.1) Proposition].

Thorn-forking. The three other examples are also not rosy. For (1), it is [23, Subsection
3.3], for (2), it is [15, Proposition 4.28] and for (3), it is [10, Subsection 3.5]. Also, for both
(1) and (2) we have |f^ = |d^ = |þ^ , and they both weakly eliminate imaginaries.

The following questions have been asked for the last two or three years by specialists in
regards to the observations above.

Question 2. (Q1) Does forking equals dividing for types in every NSOP1 theory?
(Q2) Does the mixed transitivity result holds in every NSOP1 theory? (Provided an an-

swer to Question 1.)
(Q3) Is there an NSOP1 not simple rosy theory?

Remark 3.21. In omega-free PAC fields [9], the strong independence |st^ and the weak
independence |w^ are linked by the following relation for A,B,C acl-closed, A ∩B = C:

A |st^
C

B ⇐⇒ for all C ⊆ D ⊆ A and C ⊆ D′ ⊆ B A |w^
DD′

B.

In ACFG this is not the case. Let (K,G) be a model of ACFG and for conveniance
assume that G(Fp) = {0}. Let t and t′ be algebraically independent over Fp, let u =

t · t′. Assume that G(Fp(t, t′)) = 〈u〉. Then by [18, Lemma 5.19.], u /∈ Fp(t) + Fp(t′), so
G(Fp(t)) +G(Fp(t′)) = {0} so t 6 | st^ t′. We show that for all D ⊆ Fp(t) and D′ ⊆ Fp(t′) we

4In the proof of [9, (3.1) Proposition], D contains B, ψ is over C and F ∩ (Cψ(D))s = Cψ(D), hence ψ(D)
and C satisfies condition (I3) over B, so A1 = ψ(A0) and C satisfies condition (I3) over E. As A1 and C
satisfies condition (I1) over E, A1 and C are strongly independent over E. Also A1 and B satisfy condition
(I1) and (I2) over E. The rest of the proof consist in proving that A1 and C satisfy condition (I2) over E.
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|ACF
^

|þ^ � K |a^
m

|st^ |w^
sm |w^

m |w^ |a^

|d^ |K^ |aeq^ � K.

|f^

Figure 2. Interactions of independence relations in ACFG.

have t |w^DD′ t
′. Let D and D′ be as such. There are three cases to consider (the middle

case is symmetric):

t · t′ ∈ D′t and t · t′ ∈ Dt′ G(D′t) = 〈u〉 G(Dt′) = 〈u〉 G(D′t+Dt′) = 〈u〉
t · t′ ∈ D′t and t · t′ /∈ Dt′ G(D′t) = 〈u〉 G(Dt′) = {0} G(D′t+Dt′) = 〈u〉
t · t′ /∈ D′t and t · t′ /∈ Dt′ G(D′t) = {0} G(Dt′) = {0} G(D′t+Dt′) = {0}

In every cases we have G(D′t + Dt′) = G(D′t) + G(Dt′). As t |ACF
^DD′ t

′ is clear we have
t |w^DD′ t

′.

Summary on independence relations in ACFG. Every arrow in Figure 2 is strict,
from that point of view, ACFG is different from (1), (2) and (3).

Denote by A |w^
sm

C
B the relation for all C ⊆ D ⊆ AC and C ⊆ D′ ⊆ BC A |w^DD′ B.

Remark 3.21 states that |st^ is strictly stronger than |K^
sm, in (3), this is not the case. In

(1), we have that |a^ = |aeq^ = |K^ is strictly weaker than |a^
m = |d^ = |f^ = |þ^ . In (2),

|a^ = |aeq^ is strictly weaker than |K^ and |K^
m

= |d^ = |f^ = |þ^ .
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