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BRANCHING RULES FOR SPLINT ROOT SYSTEMS

LOGAN CREW, ALEXANDRE A. KIRILLOV, AND YAO-RUI YEO

ABSTRACT. A root system is splint if it is a decomposition into a union of two root systems. Examples
of such root systems arise naturally in studying embeddings of reductive Lie subalgebras into simple Lie
algebras. Given a splint root system, one can try to understand its branching rule. In this paper we discuss
methods to understand such branching rules, and give precise formulas for specific cases, including the
restriction functor from the exceptional Lie algebra go to sl3.

1. BACKGROUND

Branching rules in group representation theory are the mathematical counterpart of the phenomenon of
“broken symmetry” in physics. Gelfand-Tsetlin patterns [I] yield a very transparent algorithm to describe
the spectrum of the restriction of an irreducible representation of the “big” group G(n), which is either the
unitary group U(n) or the orthogonal group O(n), to the “small” group G(n — 1)

The second author has formulated and popularized numerous concrete problems and approaches related to
Gelfand-Tsetlin patterns. This resulted in the discovery of an analog of these patterns for symplectic groups
Sp(n) [BLQ] (but not for exceptional groups) and also provided the foundation for the present collaboration.

In the following, we give some context and motivation for our approach. Experimental data shows that
for some H C G, the multiplicity coeflicients my y in the restriction formula

Resg IIA = Z mamy for A€ G
\eH

coincide with the weight multiplicities of some irreducible representation of an auxiliary group K in a natural
way. Gelfand-Tsetlin patterns are a special case of this phenomenon; here K is the direct product of several
copies of SU(2).

This could be expanded as follows: Since the Weyl character formula for a representation II of G describes
the restriction of II to the maximal torus T' C G, the observation above is reminiscent of the chain rule for
the derivative of the composite map F' = f o g, where we have

DF(z) = Df(g(x))Dg(x).
In our case the role of the composite function is played by the restriction functor which satisfies
Resg = Resg oResg .

Moreover, the restriction functor is compatible with natural operations on representations (such as sums,
tensor products, and symmetric and exterior powers). This suggests a possible direction for future research:
to show that any functor with these properties and some “boundary conditions” must satisfy an analog of
the chain rule in the form proposed in this paper.

There are several other ways to prove the formula: from a change of variables in the Weyl formula to
using the integral formula for the character and geometry of co-adjoint orbits.

2. A CASE STUDY

Consider the following two tables of integers. Figure [Ial shows the table of dimensions of irreducible
representations of sl3 indexed by highest weight («, 3), and Figure [[Dl is the corresponding table for the
exceptional Lie algebra g indexed by highest weight (k,1). Let A, g be the integer at the (o, 8)-entry of

Date: December 27, 2018.
I [1], Gelfand and Tsetlin published their formulas without proof, possibly because the paper was intended as a contribution
to mathematical physics, and their proof may have been of a computational nature.
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the left table, and let Gj; be the integer at the (k,1)-entry of the right table. Then the explicit formulas for
Ay g and Gy are as follows:

Ay = (a+1D)(B+1D)(a+B+2)
o, — 2 9
Gy = (k+1)(k+1+2)(2k+31+5)(k+ 20+ 3)(k+3l+4)(I + 1)

120 '

B |28 63 105 154 210 273 343

21 48 81 120 165 216 273

I 1273 896 2079 4096
15 35 60 90 125 165 210

77 286 729 1547
10 24 42 64 90 120 154

14 64 189 448
6 15 27 42 60 81 105

1 To2T T

3 8§ 15 24 35 48 63

k
1 3 6 10 15 21 28

(B) Dimensions G, of irreducible representations of ga

«

(A) Dimensions A4, of irreducible representations of sl3
FIGURE 1. A, g and Gy for small values

By embedding sl3 into go via the long roots, we can ask how an irreducible representation of go decomposes
when restricted to sl3. We can conjecture the decomposition rule, also called the branching rule, by matching
up dimensions, i.e. picking a number d from the right table, and finding a consistent array of numbers from
the left table that sums to d.

Note that Gy is the sum of A, g over the triangle with vertices Ao,0), A(k,0), A(0,x)- Similarly, Go; is
the sum of A, g over the triangle with vertices A 1), A(1,0), A(0,1)- If we look at the nondegenerate example

« (0%

(A) Multiplicities, indexed by « and 3 (B) Hexagons in Aq 3

FIGURE 2. Hexagons with pointwise product Gz o
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G2 = 1547, it is the sum of the pointwise product of the following two hexagons on the («, 8)-plane, where
the second hexagon is a subset of the array of numbers A, 3.
In other words, G3 2 is the weighted sum of A, g on the hexagon with vertices

A5,2; A5,07 A2,0; A0,27 A0,55 A2,55

where the outer layer is counted with multiplicity one, the middle layer is counted with multiplicity two, and
the inner triangular layer is counted with multiplicity three. After some experimentation, we can derive the
following rule:

Gy = Z Na,gAa,8
a,p

where (a, 3) are integral points on and inside of the hexagon

0,k +1) (I, k+1)

(0,1) (k+1,1)

(1,0) (k+1,0)

with vertices
(k + l7 l)7 (k + l’ 0)7 (l7 O)’ (07 l)7 (O’ k—"_ l)’ (l’ k + l)7

and n, g are positive integers determined as follows.
If (o, B) lies on the perimeter (the zeroth layer) of the hexagon H above, then n, g = 1.
If (o, B) lies on the first layer of H (which are points adjacent to the perimeter), then n, g = 2.
Iterating, if (o, B) lies on the j** layer of H, and if this j* layer is still a hexagon, then n, 5 = j+1.
The hexagon H degenerates at the m!" = min{k, [}!" layer to a triangle with vertices (I, k), (k,1), (1,1)
(or possibly the single point (I,1) if k =1). Set n g =m + 1 for all points (a, §) on this triangle.
In Section [5.2] we will show that this decomposition of G} into A, g works on the representation theoretic
level as well.

We now raise a few questions about the branching rule of the restriction functor on simple Lie algebras.

Question 1. Given an embedding of a simple Lie algebra a into g, can we give an explicit branching rule
for Resy like the one for Resg; above?

Question 2. What governs the coefficients of the branching rule? For example, the coefficients for Resﬁ’f3
is the weighted hexagon illustrated above.

Question 3. How many irreducible factors of a are there in Resf IIx, where II, is an irreducible represen-
tation of g? In particular, what is the sum of the coefficients of the branching rule?

In this paper we will work with splint root systems. Then Question 1 is related to Weyl group symmetric
functions and the Littlewood-Richardson rule if viewed combinatorially, and Question 2 is related to the
weight diagram of a sub-root system corresponding to the splint root system. A solution to Question 3 falls
out from a satisfactory answer to Question 1, and is related to the dimension of a particular irreducible
representation of an auxiliary Lie algebra. For example, in the above case with go and sls we have the

curious identity
Z naﬁ = Ak,l-
o,pB
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3. SPLINT ROOT SYSTEMS

Let A be a simple root system. We want to study the root systems for which A is splint, i.e. A = AjLIAs
is a disjoint union of two root systems A; and Ay, each of which is embedded into A as an additive group,
with A; embedded metrically and As embedded in such a way that the length of roots are scaled uniformly.
The notion of a splint was introduced by David Richter in [8], and he gave a classification of possible splints of
root systems (including the cases where A; may not be embedded metrically, for which we do not consider).
The table below lists all possible splint root systems, and we label them Types (I) to (V).

Type A Al AQ
O |4 =2 A | ([A)*
I) |B, (r>2)| D, |(A)®"
() | C, (r>3)| (A)®" | D,
(IV) Gy A, A,
(V) F, Dy Dy

We note that the last four types of splint root system have Ay embedded metrically into A.
Now write a to be the Lie algebra of A;, corresponding to a Lie subalgebra of g. Letting IIy be an
irreducible representation of g of highest weight A\, we have a decomposition

ResITy = @D ba,um,

We are interested in computing the branching coefficients by ,. The branching coefficients for Types (I)
and (II) are well known examples of Gelfand-Tsetlin patterns [I], which we now state. For Type (I), every
irreducible representation of sl,. ;1 is indexed by a Young tableau Y with at most r rows, and its restriction to
sl, is the direct sum of irreducible representations of sl,. corresponding to those Young tableaux obtained from
Y by removing some boxes, each of multiplicity one. Explicitly, if 7§ is a highest weight representation
OfS[T+1 with )\i > )‘i+17 then

5[r+1 T _ r—1
Resslr Ty A @ Tl eeosttr—1

As for Type (II), recall that every irreducible representation of soy is labeled by

e fi>2>2fr12>2fr>20if N=2r+1,

L4 fl > Zfr—l > |f7‘| if N =2r.
where the f;’s are simultaneously integers or half-integers. If we write % s to be the highest weight
representation of §09,41, and if we write 7r§1  to be the highest weight representation of sos,., then the
branching rule is

3o g

502, —
Resﬁrzz:rl H;'l ..... fr = @ 7T;1 ..... gr®
2G> 2> fr 1200 12 fo 0]
fi—gi €L
We would like similar explicit branching rules for the other three types of splint root system listed above.
A computationally intensive heuristic for the branching coefficients by , exists in [6]. In this heuristic, the
computation of by , relies on the roots A\ Aj.

Theorem 1 ([6l Property 2.1]). Let ma, .. be the multiplicity of U from the weight diagram of Ao with
highest weight 1. Then

MA = bu—g(a—2);
where ¢ is the embedding of As into A.

This theorem, together with Freudenthal’s Multiplicity Formula [2| Section 22] tells us all the branching
coefficients in principle. However, this is not easy to compute in practice. Our goal in this paper is to give
a framework to understand the branching coefficients directly using the Weyl character formula and give an
explicit formula for the Type (IV) branching rule, as well as conjecture formulas for Types (III) and (V)
branching rules.
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4. PRELIMINARIES

4.1. The Weyl character and dimension formulas. We recall some computational tools from represen-
tation theory. These are very classical results (see [4] for an exposition, for instance), and our main purpose
is to fix notation.

Let G be a compact simply connected Lie group, and let 7" be a maximal torus of G. Then the Lie algebra
g of G can be written as

g=top,
where t = Lie(T) and p = Lie(G/T) is the subspace of eigenvectors for the roots.
For any irreducible representation L) of G with highest weight A\, we can decompose L) into its weight

decomposition
Ly= @ L[]
per*

where Ly[p] = {v € Ly : tv = p(t)v for all t € T'}. Define its character to be the finite sum

X(Lx) = Y dim(Lx[u])e".

perT*

Theorem 2 (Weyl Character Formula). Let W be the Weyl group of G, and let I(w) be the length of an

element w € W. Then
Zwew(_l)l(w)ew(/\er)

X(LA) = 5 )
where
s—er [La-e= ] -,
acERt aERT

and p is the half-sum of the positive Toots RY.
The formula below allows us to compute the dimension of any irreducible representation of G.

Theorem 3 (Weyl Dimension Formula). Let Ly be the irreducible representation of G with highest weight
A. Then
(A+p,q)

(p, )

dim(Ly) = []

a€ERT

4.2. A strategy. Let us return to the notations introduced in Section 1. Our strategy to write down
explicit branching coefficient by , is as follows. We check that our branching coefficients are plausible by first
verifying that dim ResfIIy and dim EBV bx,,m, agree. Then we will use the Weyl character formula to make
sure that the weight multiplicities check out. A way to do this is as follows. Write the denominator d4 of
the Weyl character formula for ITy as
§g = 6a0’,

where ¢’ corresponds to the roots of g inside g\ a. Observe that the function 6"x(IIy) is a symmetric function
on the Weyl group W, of the root system of a. Hence we can write both ¢’ x(II)) and ¢’ as a polynomial in
Xx(m,) and compute branching coefficients by comparing

& x(IL,) and &' x ().

If W, is the symmetric group, then the latter product can be understood using the Littlewood-Richardson
rule; we will see this when we prove the Type (IV) branching rule in Section In general one would need
to employ a suitable Littlewood-Richardson rule for Wj.

In our computations we are led to the following conjecture.

Conjecture 4. Write ResS IIy = @, bx,,m,. Then

Zbkvﬂ = dimw,\,
A

where wy is a highest weight representation (depending on \) for the root system Z of an auxiliary simple
Lie algebra.
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The Gelfand-Tsetlin patterns for Types (I) and (IT) imply that = can be taken to be Ay. For example, if
we index the irreducible representations of B3 and D3 by three positive integers after choosing the standard

fundamental weights, then the Gelfand-Tsetlin pattern for Resgz can be written as

a b c
B3 _
ReSD; HU«,ILC - @ @ @ Ta+b—t—r,r+s,r+c—s-

t=0 r=0 s=0

In this case, the sum of coefficients equals dim wq p.., where wq p. . is the highest weight representation of Aie3
corresponding to the integers a, b, c.

The branching rule for Type (IV) proven in the next section will imply that = = Ay as well, and we
conjecture this is also the case for Type (III). However, the discussion in Section [f tells us this is not the
case for Type (V).

5. BRANCHING RULE FOR TYPE (IV)

In this section we work out Resgz explicitly. We first give an explicit formula for the functor Resgz
without using Gelfand-Tsetlin patterns in order to illustrate the ideas used in understanding Resgj.

5.1. Branching rule for Type (II) with r = 2. As D5 embeds into B; via the long roots, it is natural to
ask how their irreducible representations are related. The starting point is to compute their Weyl character
formulas. To do this we label roots L1, Lo, and all the positive roots, as below.

L2 L1 + L2 2Ll + L2

Ly

The fundamental weights w1, ws and 4, Qs for By and Dy are

2L+ L L 2L+ L
w1 = Ly + Lo, wy = 2 =2, Q= 2,
2 2 2
and the half sum of the positive roots for By and Dy are
3L
pp, =20+ =7, pp, =Li+ Lo

Define I ; to be the highest weight representation of By with weight kwy +lws = (2k+21)L1/2+ (2k+1)L2/2,
and define 7, g to be the highest weight representation of Dy with weight af)y + Qe = 8L1 + (o + ) L2/2.
By writing 21 = e“*1t52/2 and x5 = e?2/2, we have the following explicit formulas for the characters of Iy
and 7y g:

Aki.B
X(ky) = 5—2 X(Ta,8) =
B2

Aa.ﬂ,Dz
op,
where

k142 k41 k142, —(k+1) —(k+142) _—(k+1) —(k+142) k+1
Ag,1,By = 27 To' + Xy Ty + Lo + Ty Ty

—(k+1+2) —(k+1) k+i142,,—(k+1) E+I+2 k+1 —(k+14+2) kt1
—IQ Il —Il IQ —IQ .Il —Il .IQ y
—1 —1 —1 —1
6py = (@1 —ay J(@w2 —xy )(@1 +ay —22—ay ),
_ (notl —(a+1)y/, B+1 —(8+1)
Aap.Dy = (257 — x5 )@y =y ),

6p, = (w1 — a7 ") (w2 — a3 "),
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Finally let us write down the Weyl dimension formulas for By and Ds:

(k+ 1)1+ 1)(k+1+2)(2k +1+3)

dim HkJ = 6

dimma g =(a+1)(B+1)

Proposition 5. We have
kol
Resgi Iy = @ @ Ty ts,rtl—s-
r=0 s=0
Corollary 6. The number of irreducible representations of Do in the decomposition of ResIB)z Ik, equals
dim 7 = (k + 1Dl +1).

This corollary is an immediate consequence of Proposition[5] so we just need to prove the above theorem.
For this case we can simply use a telescoping sum argument to compute the Weyl character formula on
both sides, but in general we want approaches that will allow us to deduce the decomposition from our
computations. To this end we give two approaches to the proof: the first approach is bare-hands computation,
and the second approach is an explicit computation using the strategy described in the previous section.

Proof 1. Factor Ay p, as

k —(k+1 k+l — (k4142 k —(k+1 k+1 — (k4142
Ak1,B, = (I2+1 - Iz( ))(5171Jr 2 €Ty ( )) - (331+1 — I ( ))(332+ 2 I2( ))-

Then we observe that
Ak1.Bs

(z1 — 2y (w2 — 23 ")

= (h +ah 2y ) (I i g (D,

— (@) (T T

—(k+1+1)
Tq ).
We can view the above expressions as sums over the polynomial
s, .t s .t —s, . —t —s, -1
p(s,t) = a3a) — ajwy +ay "y —ay 2y,

where s ranges over the nonnegative numbers in {k,k—2,..., —k} and ¢ ranges over the nonnegative numbers
in{k+1+1,k+1-1,...,—(k+1+1)}. Writing u= 11/2:10%/2 and v = x1/2x;1/2, we can write
p(s t) — uertvfert _ uert,Usft _|_ ufsftvsft _ ufsftvfert

_ (us-i-t _ u—(s-l—t))(,u—s—i-t _ ’U_(_S-H)).

Now, after observing x1 + 27 — 22 — x5 = (u —u~')(v — v 1), we get

p(s,t)
(u—ut)(v—v71)

By comparing this expression with the Weyl character formula for Do

— (uertfl + us+t73 TS uf(ertfl))(,Ufertfl + U75+t73 N ,Uf(fertfl))'

A _ _ _ -
SOBDe (o gty (a] 4ol 0]
Do
— Z ua—i—bv—a—i-b
ac{a,a—2,...,—a}
be{B,-2,...,—B}
we get what we want. O

Proof 2. Write Xa,3 = X(7a,s). By factoring Ay, g, as above, we observe that

Xk, k+14+1 — Xk+I1+1,k
X(IMg ) = == S
X0,1 — X1,0
Note that
(X0,1 = X1,0)Xa,8 = Xaf+1 + Xa,f—1 — Xa+1,8 — Xa—1,8
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where the second term exists only when 8 > 0, and the last term exists only when o > 0. On the («, 3)-plane,
this amounts to taking the weighted sum of the following four vertices, with sign as below.

B+1 +

We can now easily check that

k l
Xk b1 — XhbieLh = 3 D (X0.1 = X1.0)Xrts.rti—s;

a=r f=s
as desired. 0
5.2. Branching rule for Type (IV). Again As embeds into G2 via the long roots. We need to compute

the Weyl character formula for Go and A,. To do this we label roots L1, Lo, L3, and all the positive roots,
as below.

Li+2L, 2Ly + Ly

Ly L,

Ly — Ly

We chose the labeling above because the action of the Weyl group W4, = S3 on Li, L, L3 is simply by
permuting the indices. The fundamental weights wy, w2 and Q1,5 for Gy and As are

w1 = L1+ Lo, wg = 2Ly + Lo, O = L1+ Lo, Qo = Ly,
and the half sum of the positive roots are
PG, = 3L1 + 2L, pa, = 2L1 + Lo.

Define IIj; to be the highest weight representation of G with weight kwq + lwe = (k + 21) L1 + (k + 1) Lo,
and define 7, 3 to be the highest weight representation of Ay with weight o€y + Qs = (a + 5)L1 + aLs.
By writing x; = el we have the following explicit formulas for the characters of Il ; and m, g:

Ag, An Bsu(3
X(Igp) = === 2, X(Tap) = 755 ue)
g2 su(3)

)
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where

k2043 kHA2 | k2043 k42 | kF2U3, k42
Ap 1,6, = 7 Ty + 3 xy + Ty T3

—(k4+2043) —(k+I1+2 —(k+2043) —(k+1+2 —(k+2043) —(k+1+2
g (BFREH0) () | (b 2040) () (e 2043) (Rt 42)

_ :Elf+2l+3$§+l+2 _ :E§+2l+3xg+l+2 _ $§+2l+3xlf+l+2
—(k+2043) —(k+1+2 —(k+2043) —(k+1+2 —(k+2043) —(k+142
_ (28 (b 2) (e 208) (e 142) (R 2043) (ke 142)
6@2 = ((El — ,’Ez)(l‘l — ,’Eg)(xg — 1'3)(1 — {El)(l — {Ez)(l — ,’Eg),
2 1 2 1 2 1
Aa,B,Ag _ xtll-‘r,@-i- xg-‘r +.’L‘§+B+ xtlx-i- +xg+3+ xg-‘r
a+B+2 a+1l a+B+2 a+1
— .Il .IB — ZEB ZE2 —

)

Ig+6+2x<1x+l,
04, = (x1 — 22)(x1 — x3) (22 — T3),
and 1, xo, x3 satisfies the relation z1xox3 = 1.
Example 7. The Weyl character formula x(Ily ;) for the adjoint representation Iy 1 of G is

—5,.—3 5,3 —5,-3 -5 -3 5,3 —5,.—3
x?x% + xgx? + xg:zg + Ty Ty Ty g — x?x% — 3:2:1:% — x%x? — XT3 T Xy "X T — X3 Xy
(w1 — w2) (21 — @3) (w2 — 23)(1 — 21)(1 — 22)(1 — w3)
We can check using the relation z1zox3 = 1 that the above expression equals the polynomial

x2y+yzz+z2x+xy2+y22+zx2+xy+yz+zx+x+y+z+2.

Notice that the above polynomial equals x(7o,1) + x(71,0) + x(71,1), so we see that
Resgj H011 = To,1 ) 71,0 D 1,1

Finally let us write down the Weyl dimension formulas for G and As.

(k4 1)(k+1+4+2)(2k + 31 +5)(k+ 20+ 3)(k+ 31+ 4)(1 + 1)
120
(a+1)(B+1)(a+B+2)
2

Theorem 8. Let Il ; be the irreducible representation of Ga with weight kwi + lwe, and let my 5 be the
irreducible representation of Ay with weight oy + Q2 = (o + B)L1 + aLy. Then

Resij Hk,l = @ Na,BTa, B
B

dim Hk,l =

dimm, g =

where («, B) are integral points on and inside of the hexagon

(0,k+1) (LE+1)

(0,1) (k+L1)

(1,0) (k+1,0)

with vertices

(k+1,1),(kE+1,0),(,0),(0,0),0,k+1),I, k+1),
and nq,p are positive integers determined as follows.
If (o, B) lies on the perimeter (the zeroth layer) of the hexagon H above, then ny g = 1.
If («, B) lies on the first layer of H (which are points adjacent to the perimeter), then nq g = 2.
Tterating, if (o, B) lies on the j layer of H, and if this j'" layer is still a hexagon, then na g = j+1.
The hezagon H degenerates at the m" = min(k, )" layer to a triangle with vertices (I, k), (k,1), (1,1)
(or possibly the single point (I,1) if k =1). Set no.g =m+1 for all points (o, B) on this triangle.
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Corollary 9. The number of irreducible representations of As in the decomposition of Resgj Ik, equals

dimy, = D0 ;)(k +1+2)

In the remainder of this section we prove Theorem [§ Again, it is enough to show that the characters of
the two sides are equal. In the numerator Ay ; ¢, of the character formula for G, by separating the terms
with positive exponents from those with negative exponents, we may check that

—(k+21+3 —(k+21+3 — (k42043

Illc+2l+3 $12c+2l+3 pht20+3 1’1( +214-3) :1:2( +214-3) z (k+21+3)

$11c+l+2 x§+l+2 $§+l+2 + Il_(k+l+2) x;(’““”) l,g—(k+l+2)
1 1 1 1 1 1

II =
X([t) (w1 — w2) (@1 — @3) (@2 — 73)(1 — 21) (1 — 22)(1 — 23)
One might recognize now in x(Ilx;) something resembling the well-known determinant-based definition

of Schur functions on three variables:
ai1+2 :Egl-i-? 201 +2

o +1 +1 a +1
as a as
Ty T T3
as as as
Ty ) )

Sa1,00.00 (1, 72, 23) = (x1 —x2) (21 — 23) (22 — 23)

Clearly the first summand in the numerator combines with the first three factors in the denominator to

make Spt2i+1,k+i+1,0(%1, 22, x3). To simplify the other summand, we use the fact that z1zex3 = 1 to write
(x1 — o) (w1 — w3) (w2 — w3) = — (a7 " — 2y (@' — 2z ) (25! —a3)

and so we can now recognize the full equation as

() = k2041, k+141,0(T1, T2, T3) — Sky2u41 k141,027 2y a5
’ s1,1,0(@1, T2, 23) — $1,0,0(T1, T2, T3) '

One can furthermore eliminate the term with negative exponents. Using [10, Chapter 7, Exercise 41|, when
r129x3 = 1, we have
-1 -1 _—1\y _
Sk2t+1,k+14+1,0(T1 5 T 5 T3 ) = Sky2+41,0,0(T1, T2, T3).
One can also rewrite the Weyl character formula of As as a Schur function in the same manner. To summarize

(suppressing the variables now that all have positive exponents):
I _ Sk+21+1,k+1+1,0 — Sk+21+1,k,0
X(Hgy) = ;
$1,1,0 — 5$1,0,0

X(Ta,8) = Sa+8,0,0-

Thus, we must show that

Sk4+204+1,k+1+1,0 — Sk4+21+1,k,0 = E na,ﬁ(81,1,o - 51,0,0)8a+5,a,0,

where the sum runs over those («, 3) described in the statement of Theorem [
In order to simplify the Schur functions that will appear in further computations we also note the following
lemma, which follows immediately from the determinant-based definition of Schur functions.

Lemma 10. In the case that x1x2x3 = 1, whenever a > B > ~v are positive integers, we have
Sa,8.7(T1, T2, T3) = Sa—v,8-~,0(1, T2, T3)

Now, we expand the right-hand side of the equation by Pieri’s Rule [10, Chapter 7.15], which states that,
for any partition pu,
SuS1k = Z SN,

where the sum is taken over all partitions A whose Young diagram is formed from the Young diagram of p
by adding k boxes into k distinct rows. We thus see (after using the previous lemma to simplify) that
$1,1,080+8,0,0 = Sa+B+1,a+1,0 T Sa+8,a—1,0 T Sa+8—1,0,0,
where the second summand does not exist if & = 0, and the third summand does not exist if # = 0. Similarly
we have
81,0,08a+8,a,0 = Sa+B+1,0,0 T Sa+8,a+1,0 T Sa+5-1,a—1,0,



BRANCHING RULES FOR SPLINT ROOT SYSTEMS 11

where the second summand does not exists if 3 = 0, and the third summand does not exist if o = 0.
Rather than deal with the casework of sometimes excluding terms, in using both sums we will still use all
three summands. However we still interpret s, p . = 0 whenever we do not have a > b > ¢ > 0.
We have reduced our goal to showing that

Sk4204+1,k+14+1,0 — Sk420+1,k,0 = g na,gHa g
where we define

Ha,ﬁ = Sa+B+1,a+1,0 — Sa+B,a+1,0 T Sa+B-1,a,0 — Sa+B—1,a—1,0 T Sa+8,a—1,0 — Sa+B+1,a,0-

For the remainder of the proof we will assume k > [ for ease of notation; the case for k < [ is exactly
analogous.

It will be helpful to extend the notion of H, s to collections of points (a, 3). Let L;(k,l) denote the i‘"
layer of the hexagon corresponding to k and [ as described in the statement of Theorem [8l Note then that
L;(k,1) for 0 < i <[ is the boundary of the hexagon joining the six vertices

(k+l_Zvl)v(k+l_Zvl)v(lvl)v(lvl)v(lvk+l_Z)a (l,k—l—l—l),
and L;(k,l) consists of the boundary and interior of the triangle with vertices (k,1), (I,1), (I, k) (or possibly
the single point (,1) if k =1). We then define
HLi(k,l) = Sk+2l—i+1,k+l—i+1,0 — Sk-+l,k+l—i+1,0 T Si4+i—1,1,0 — Si4+i—1,i—1,0 + Sk+1,i—1,0 — Sk+21—i+1,1,0-

To better visualize all of this, let us define f(a, 8) = (¢ + 8, ). Then H, g consists of six Schur function
summands whose corresponding points in the («, 8)-plane are orthogonally or diagonally adjacent to f(«, 5),
with signs given by the following figure.

a+1 — +

a+pf—-1 a+p a+p+1

Likewise, if S is a set of points in the (o, 8)-plane, we define
f8)={(a+B.a): (a,8) € S}.
In particular, f(L;(k,1)) is the boundary of the hexagon with vertices
(k+2l—ik+1—0),(k+Lk+1—14),(+40),(0+4,9),(k+110),(k+20—1,1),

and f(Li(k,1)) is the boundary and interior of the triangle with vertices (k + I, k), (21,1), (k 4+ 1,1) (or just
the single point (21,1) if k& = [). Note that, for any 0 < i <, the summands of Hy, ) correspond to the
vertices of f(L;—1(k,1)).

Lemma 11. For k > 1,

Z Hop=Hr (k-
(o, B)ELi(K,0)
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Proof. Let k =1+ j. We proceed by induction on j. The cases j = 0 and j = 1 are easy to verify for any .
For the inductive step, suppose that for a fixed j = J we have established the lemma. We now wish to show
that

g Hop=Hr (4541,
(e,B)eL(I4+T+1,1)
By the inductive hypothesis we have that
E Hop=Hpav
(a,B)ELi(1+,0)
= S J+1,I14+J+1,0 = S2+J1+J+1,0 T 521—1,1,0 = 521—1,1—1,0 T 5204J,1—1,0 — 5204+J+1,1,0-

To expand this sum to include all integer points of L;(I + J + 1,1), we must add

J+1
g Hiyigvg+1—i-
i=0
Doing so adds the following terms
J+1
E (52l+J,l+i,O - 32l+J,l—l+i,O) + (52l+J+1,l—1+i,0 - S2l+J+1,l+1+i,0) + (S2l+J+2,l+1+z‘,0 - 32l+J+2,l+i,O)
i=0

to the previous sum, which equals the following eights terms
82U+ J 1+ J+1,0 — S20+J,1—1,0 T S204+J+1,1—1,0 T S20+J+1,1,0
— 82U+ J+1,l+T+1,0 — S2+J+1,14+J+2,0 T S2+J+2,1+J+2,0 — S2+J+2,1,0

after telescoping.
Adding these terms to the sum in the inductive hypothesis and cancelling gives

Z H, g = 8214 J42,14J42,0 — S204+J+1,1+J+2,0 T 521—1,1,0
(B EL(I+T+1,D) — 821-1,0-1,0 T 8204 J41,0-1,0 = S204+J42,1,0
=Hr, (4741,
as desired. O

We now need to prove an analogous lemma for the hexagonal layers.
Lemma 12. For 0 <i <l we have

Z Hop=Hp, o) = 2Hi, (k) + Hio (k)
(a,8)€L;(k,0)

(In the case i =1 — 1 we define Hp, ey = 0.)

Proof. The sum on the left-hand side can be viewed as taking the hexagon in our figure and sliding it along
the hexagon defined by f(L;(k,l)). For any given i, note that any summand produced by the sum on the
left hand side must be on or adjacent to f(L;(k,1)), so the only Schur functions that can occur correspond
to points on one of f(L;11(k,1)), f(Li(k,1)), or f(L;—1(k,1)) (where when i = 0, we define L_1(k,1) to be
the hexagon surrounding Lo (k,!) in the appropriate way). All of these are hexagons except when i =1 — 1,
in which case f(L;(k,1)) is a triangle.

The proof strategy is to split the points (a,b) in these three layers into cases, and determine how often
and with what sign each point occurs in some H, g in our sum.

Case 1: The point (a,b) lies on f(L;11(k,1)).

Subcase 1.1: 4 =1 — 1. In this case, if kK =1, then f(L;(l,1)) is the single point (2[,1). Then there are six
H, s terms of our sum that produce sg;,0, one for every point on the hexagon L;_1(l,1), and the summand
591,1,0 will appear in three of these terms with a positive sign and in three with a negative sign, and thus will
get a total coefficient of 0.

If £ > [ then clearly we need only look at points on the boundary of the triangle f(L;(k,l)). Any
point (a,b) on the boundary that is not a vertex will be adjacent to three points of f(L;—1(k,1)), and its
corresponding summand s, 5,0 Will appear in two of the corresponding H, g of the sum with opposite signs,
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and so will vanish. This is easy to check for each side of the triangle f(L;(k,1)) separately; for example, if
we take a point (I + j,1) = f(I,j) for I < j < k, this will be adjacent to the three points

I+7j-1L1-1),(0+401-1),(0I+5+1,1-1)

of f(Li—1(k,1)), which correspond to f(I—1,j), f(l—1,74+1), f(I—1,7+2). Of the corresponding terms in
our sum, H;_; ; will contain +si4;1.0, Hi—1,j+1 will contain —s;4;;0, and H;_1 j42 does not contain ;40
at all.

If (a,b) is a vertex of f(L;(k,1)), then it is one of f(k,1), f(I,1), or f(I,k). Again, we can check directly
that if we take all adjacent points (c,d) € f(L;—1(k,[)) and sum the appearances of s,p,0 in Hp-1(.qy we
will get 0. Thus in the case ¢ = [ — 1, our sum produces no Schur functions corresponding to points on
f(Li(k,1)), justifying our defining Hy, , (x,;) = 0.

Subcase 1.2: 4 < 1 — 1. Then f(L;+1(k,!)) is a hexagon, and we consider any (a,b) lying on it. If (a,b)
is not a vertex of f(L;1+1(k,1)), it is adjacent to three points of f(L;(k,1)), and it is easy to check that its
summand will occur in two of the corresponding H, g with opposite signs and thus will vanish; this can be
verified for each side of the hexagon separately like in Subcase 1.1.

If (a,b) is a vertex of f(L;+1(k,1)), we end up with a different result than in Subcase 1.1. These vertices
are

(k+20—i—1k+l—i—1), (k+Lk+1—i—1),(I+i+1,0),(I+i+1,i+1), (k+1,i+1),(k+2l—i—1,0).

It can be checked for each of these points (a,b) separately that if we look at the set of adjacent (¢, d) in
f(Li(k,1)), and sum over Hy-1(. q4) the coefficient of s4 50, and then sum those results together, we get

Skt2l—i—1,k+l—i—1,0 — Skl,k+1—i—1,0 T Si+i+1,1,0 = Si4i+1,i+1,0 T Sk+1,i+1,0 — Sk+21—i—1,1,0 = HL, (k1)
Thus, considering only terms corresponding to points of f(L;+1(k,[)), we get that Z(a,ﬁ)eLi(k,l) H, g yields
H (k1)

Case 2: The point (a,b) lies on f(L;(k,1)). If (a,b) is not a vertex of f(L;(k,l)), then it will be adjacent
to two other points of f(L;(k,1)), and will appear in the two corresponding H, g of the sum with opposite
signs and vanish. This can be checked on each side of the hexagon separately as in the previous case.

If (a,b) is a vertex of f(L;(k,1)), it is one of six possibilities. We can again check the contribution of the
H, g to each point separately to determine that, when restricted to f(L;(k,1)), we get —2H7,, (k1)) out of
Z(a,B)ELi(k,l) Hap.

Case 3: The point (a,b) lies on f(L;—1(k,1)). If (a,b) is not a vertex of f(L;—1(k,1)), then as with the
other cases, it will appear in two H, g of the sum with opposite signs and vanish. This can be checked on
each side of the hexagon separately.

If (a,b) is a vertex of f(L;—1(k,1)), then as with the other cases, we can look at the contribution of the
H, g of the adjacent points of f(L;(k,l)) for each vertex separately, sum them, and get a contribution of
Hy, (k1)

Taking all three cases together, we have examined every point (a, b) such that s, 40 occurs as a summand
(with either sign) of some H, g in our sum, and determined the coefficient of s, 0 arising from summing
over all applicable H, g. Thus, adding the results together from the three cases, we may conclude that

Z Hop=Hrp, oepy — 2Hr, k) + Hr, k)
(a,B)ELi(k,T)

as desired. O

Now we can put this all together to finish proving Theorem @ Let H(k,1) = Ui:o L;(k,1) be the hexagon of
Theorem [lassociated with (k, ). Furthermore, using our new terminology n, g = i+1 when (o, 8) € L;(k,1).

We wish to evaluate
l

> napHep=>» (i+1) > Hap.
(e,B)EH (K1) =0 (e, B)EL;(k,l)
Simplifying this using our lemmas gives us
-1

(L + 1)HLl(kvl) + Z(Z +1) (HLi+2(k»l) - 2HL7;+1(kvl) + HLi(kvl)) :
=0
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We can check that for each 2 < j <1 the coefficient of Hy 4 is (j +1) —2j+ (j —1) =0, and for j = 1
the coefficient of Hy, (4, is also 0. The only summand that does not get cancelled is a single

Hpo(k,0) = Sk+204+1,k+14+1,0 — Sk-+Lk+1+1,0 T S1-1,1,0 — 81-1,-1,0 + Sk+1,—~1,0 — Sk+21+1,1,0

The middle four terms in this expression are 0, so all that remains is the desired Sgy214+1,k+1+1,0 — Sk+21+1,1,0,
and we are done.

6. CONJECTURES FOR OTHER CASES

In the final section of the paper we provide some conjectural descriptions for the Types (III) and (V)
branching rules. These conjectures are combinatorial in nature, in agreement with Conjecture @l and are
derived by comparing dimensions between irreducible representations of A and A;.

Type (III) with r = 3. Let A=a+1,B=0b+1,C = ¢+ 1, where a,b, ¢ are positive integers. Then the
irreducible representation of highest weight (a, b, ¢) in C5 has dimension

ABC
dimII, p . = TO(A +B)(B+C)(A+B+C)(B+2C)(A+B+2C)(A+2B+20C).

For (A;)3, one has
dim7, . = ABC.

Let IT denote a representation of C3, and 7 one of (A;)®3. First and most simply we have the formula

C
Res(gl)@s 1_[a,O,O = @ Tr,s,t
r+s+t=a

If we let Ty be the set of triples (r,s,t) of integers 0 < r,s,t < k with r + s + ¢t = 2k, then

Res®?

b
Do Tono =@ B kD

k=0 (71,72,73) €T}

We can in fact write down a branching rule for Resggl)@g IIg 5,0 that is very reminiscent of the one from
G2 to Ay. Assume a,b > 0, so that all three coordinates of (a + b,b,0) are distinct. Then the formula for
Resgil)€B3 I, 5,0 will be a direct sum of irreducible representations of (A1)693 with highest weights counted
as follows:

e Form a hexagon with the six vertices that are permutations of the coordinates of (a+b, b, 0), connected
in such a way that the resulting hexagon is convex. (This hexagon will be parallel to the plane
x+y+z=0.) We count with multiplicity 1 every representation on the perimeter of this hexagon,
with multiplicity 2 every point that is one coordinate orthogonally from the perimeter, and so on
until we reach an inner layer whose points form the perimeter of a triangle; then all points remaining
on this perimeter and inside the triangle all receive the same multiplicity.

e Now, form a smaller hexagon whose vertices are (a +b — 1,b — 1,0) and all its other coordinate
permutations. (It is possible that some of these values will be the same, so that there are only three
permutations; in that case, we just construct the triangle with those vertices.) We now double our
multiplicity count by giving those entries on the perimeter multiplicity 2, those on the first layer
inside multiplicity 4, and so on until reaching an interior triangle all of whose points get the same
multiplicity.

o Iterating, we keep forming smaller hexagons (or possibly triangles) with vertices (a +b— k,b— k,0)
and its coordinate permutations as long as b — k > 0. The perimeter of the level £ hexagon gets
multiplicity k + 1, the first layer inside the perimeter gets multiplicity 2(k + 1), and so on, until a
layer is reached that is a triangle, after which all points receives the same multiplicity.

Furthermore, we claim that

c
C
Res(Asl)eaS HO,O,C = @ @ Te—71,c—To,c—T3+
k=0 (71,72,73) €T}

At present we do not see a general formula for ResEJA:”l)653 II4 ., nor can we write down an explicit formula
for the branching rules of Types (III) with general r > 3.
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Type (V). One can try to understand Resg‘fL by understanding Resgi , for there are the embeddings Dy into
By, and B, into Fy. The highest weight representations of the root systems Fy, By, D4 are parameterized
by four integers in terms of fundamental weights, and we denote their highest weight representations by
I, p, w respectively. In the book [7] the restrictions from Fy to By are listed for small highest weights. This
suggests the following two branching rules for Resgi as we vary the weights corresponding to the first and
last vertices of the F; Dynkin diagram:

F
Respy U000 = @ £0,5,0,t5
s+t=k

Resp)! To,0,0,5 = @ Ps,0,0,t-
0<s+t<k
We now refer to the Gelfand-Tsetlin pattern of Type (II) stated in Section Bl Following the notations of
that section, the correspondence between II", 7" and p, mw, for the root systems By, D4 respectively, can be
stated as follow:
H?hfz;fs,fz; = Pfr1—f2.fa—f3,f3—fa,2fa>

r —
Tg1,92,93,91a — T91—g2,92—93,93—9ga,93+ga -

Using this, it is not hard to see that

B
ReSDi P0,s,0,t = @ Ts! s! 1/ t—t s

s/+s”:s
0<t'<t
R By _
€Sp, Ps,0,0,t = s’ 0,8,/ -
0<s'<s
t'+t" =t
Therefore
Resgi 1_IIC,O,O,O — @ 7Ts’,s”,t’,k—s’—s”—t’7
0<s’+s"+t'<k
Resg‘i HO,O,O,k = @ (k +1-— s —t — t”)ﬂ-s’,o,t/,t”-

0<s/+t/+t"" <k

Example 13. We list here four examples of Resgi . The last example is not included as a special case of
the two formulas presented above.

Resp! I0,0,0,1 = 270,0,0,0 @ (71,0,0,0 D T0,0,1,0 @ 70,0,0,1)
Resp! I11,0,0,0 = 70,1,0,0 @ (71,0,0,0 D 70,0,1,0 ® 70,0,0,1)
Res%; I12,0,0,0 = 70,2,0,0 @ (72,0,0,0 D 70,0,2,0 P 70,0,0,2) D (71,1,0,0 P 70,1,1,0 D 70,1,0,1)
@ (71,0,1,0 © 71,0,0,1 © T0,0,1,1)
Res%; o,0,1,0 = 270,1,0,0 © 2(71,0,0,0 © 70,0,1,0 D 70,0,0,1) D (71,0,1,0 D 71,0,0,1 D T0,0,1,1) D 70,0,0,0
Note that the branching rule in the above examples possesses the following symmetry: if 745 ¢4 appears

with multiplicity m, then so does T4 (4) b,0(c),0(a) for all o € S3.
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