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BRANCHING RULES FOR SPLINT ROOT SYSTEMS

LOGAN CREW, ALEXANDRE A. KIRILLOV, AND YAO-RUI YEO

Abstract. A root system is splint if it is a decomposition into a union of two root systems. Examples
of such root systems arise naturally in studying embeddings of reductive Lie subalgebras into simple Lie
algebras. Given a splint root system, one can try to understand its branching rule. In this paper we discuss

methods to understand such branching rules, and give precise formulas for specific cases, including the
restriction functor from the exceptional Lie algebra g2 to sl3.

1. Background

Branching rules in group representation theory are the mathematical counterpart of the phenomenon of
“broken symmetry” in physics. Gelfand-Tsetlin patterns [1] yield a very transparent algorithm to describe
the spectrum of the restriction of an irreducible representation of the “big” group G(n), which is either the
unitary group U(n) or the orthogonal group O(n), to the “small” group G(n− 1).1

The second author has formulated and popularized numerous concrete problems and approaches related to
Gelfand-Tsetlin patterns. This resulted in the discovery of an analog of these patterns for symplectic groups
Sp(n) [3, 9] (but not for exceptional groups) and also provided the foundation for the present collaboration.

In the following, we give some context and motivation for our approach. Experimental data shows that
for some H ⊆ G, the multiplicity coefficients mΛ,λ in the restriction formula

ResGH ΠΛ =
∑

λ∈Ĥ

mΛ,λπλ for Λ ∈ Ĝ

coincide with the weight multiplicities of some irreducible representation of an auxiliary group K in a natural
way. Gelfand-Tsetlin patterns are a special case of this phenomenon; here K is the direct product of several
copies of SU(2).

This could be expanded as follows: Since the Weyl character formula for a representation Π of G describes
the restriction of Π to the maximal torus T ⊂ G, the observation above is reminiscent of the chain rule for
the derivative of the composite map F = f ◦ g, where we have

DF (x) = Df(g(x))Dg(x).

In our case the role of the composite function is played by the restriction functor which satisfies

ResGT = ResHT ◦ResGH .

Moreover, the restriction functor is compatible with natural operations on representations (such as sums,
tensor products, and symmetric and exterior powers). This suggests a possible direction for future research:
to show that any functor with these properties and some “boundary conditions” must satisfy an analog of
the chain rule in the form proposed in this paper.

There are several other ways to prove the formula: from a change of variables in the Weyl formula to
using the integral formula for the character and geometry of co-adjoint orbits.

2. A case study

Consider the following two tables of integers. Figure 1a shows the table of dimensions of irreducible
representations of sl3 indexed by highest weight (α, β), and Figure 1b is the corresponding table for the
exceptional Lie algebra g2 indexed by highest weight (k, l). Let Aα,β be the integer at the (α, β)-entry of

Date: December 27, 2018.
1 In [1], Gelfand and Tsetlin published their formulas without proof, possibly because the paper was intended as a contribution

to mathematical physics, and their proof may have been of a computational nature.
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the left table, and let Gk,l be the integer at the (k, l)-entry of the right table. Then the explicit formulas for
Aα,β and Gk,l are as follows:

Aα,β =
(α+ 1)(β + 1)(α+ β + 2)

2
,

Gk,l =
(k + 1)(k + l+ 2)(2k + 3l + 5)(k + 2l+ 3)(k + 3l+ 4)(l + 1)

120
.

α

β

1 3 6 10 15 21 28

3 8 15 24 35 48 63

6 15 27 42 60 81 105

10 24 42 64 90 120 154

15 35 60 90 125 165 210

21 48 81 120 165 216 273

28 63 105 154 210 273 343

(a) Dimensions Aα,β of irreducible representations of sl3

k

l

1 7 27 77

14 64 189 448

77 286 729 1547

273 896 2079 4096

(b) Dimensions Gk,l of irreducible representations of g2

Figure 1. Aα,β and Gk,l for small values

By embedding sl3 into g2 via the long roots, we can ask how an irreducible representation of g2 decomposes
when restricted to sl3. We can conjecture the decomposition rule, also called the branching rule, by matching
up dimensions, i.e. picking a number d from the right table, and finding a consistent array of numbers from
the left table that sums to d.

Note that Gk,0 is the sum of Aα,β over the triangle with vertices A(0,0), A(k,0), A(0,k). Similarly, G0,l is
the sum of Aα,β over the triangle with vertices A(l,l), A(l,0), A(0,l). If we look at the nondegenerate example

α

β

0 0 1 1 1 1 0

0 1 2 2 2 1 0

1 2 3 3 2 1 0

1 2 3 2 1 0 0

1 2 2 1 0 0 0

1 1 1 0 0 0 0

0 0 0 0 0 0 0

(a) Multiplicities, indexed by α and β

α

β

1 3 6 10 15 21 28

3 8 15 24 35 48 63

6 15 27 42 60 81 105

10 24 42 64 90 120 154

15 35 60 90 125 165 210

21 48 81 120 165 216 273

28 63 105 154 210 273 343

(b) Hexagons in Aα,β

Figure 2. Hexagons with pointwise product G3,2
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G3,2 = 1547, it is the sum of the pointwise product of the following two hexagons on the (α, β)-plane, where
the second hexagon is a subset of the array of numbers Aα,β .

In other words, G3,2 is the weighted sum of Aα,β on the hexagon with vertices

A5,2, A5,0, A2,0, A0,2, A0,5, A2,5,

where the outer layer is counted with multiplicity one, the middle layer is counted with multiplicity two, and
the inner triangular layer is counted with multiplicity three. After some experimentation, we can derive the
following rule:

Gk,l =
∑

α,β

nα,βAα,β ,

where (α, β) are integral points on and inside of the hexagon

(l, 0)

(0, l)

(0, k + l) (l, k + l)

(k + l, l)

(k + l, 0)

with vertices

(k + l, l), (k + l, 0), (l, 0), (0, l), (0, k+ l), (l, k + l),

and nα,β are positive integers determined as follows.
• If (α, β) lies on the perimeter (the zeroth layer) of the hexagon H above, then nα,β = 1.
• If (α, β) lies on the first layer of H (which are points adjacent to the perimeter), then nα,β = 2.
• Iterating, if (α, β) lies on the jth layer of H , and if this jth layer is still a hexagon, then nα,β = j+1.
• The hexagonH degenerates at themth = min{k, l}th layer to a triangle with vertices (l, k), (k, l), (l, l)
(or possibly the single point (l, l) if k = l). Set nα,β = m+ 1 for all points (α, β) on this triangle.

In Section 5.2 we will show that this decomposition of Gk,l into Aα,β works on the representation theoretic
level as well.

We now raise a few questions about the branching rule of the restriction functor on simple Lie algebras.

Question 1. Given an embedding of a simple Lie algebra a into g, can we give an explicit branching rule
for Resga like the one for Resg2

sl3
above?

Question 2. What governs the coefficients of the branching rule? For example, the coefficients for Resg2

sl3

is the weighted hexagon illustrated above.

Question 3. How many irreducible factors of a are there in Resga Πλ, where Πλ is an irreducible represen-
tation of g? In particular, what is the sum of the coefficients of the branching rule?

In this paper we will work with splint root systems. Then Question 1 is related to Weyl group symmetric
functions and the Littlewood-Richardson rule if viewed combinatorially, and Question 2 is related to the
weight diagram of a sub-root system corresponding to the splint root system. A solution to Question 3 falls
out from a satisfactory answer to Question 1, and is related to the dimension of a particular irreducible
representation of an auxiliary Lie algebra. For example, in the above case with g2 and sl3 we have the
curious identity

∑

α,β

nα,β = Ak,l.
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3. Splint root systems

Let ∆ be a simple root system. We want to study the root systems for which ∆ is splint, i.e. ∆ = ∆1⊔∆2

is a disjoint union of two root systems ∆1 and ∆2, each of which is embedded into ∆ as an additive group,
with ∆1 embedded metrically and ∆2 embedded in such a way that the length of roots are scaled uniformly.
The notion of a splint was introduced by David Richter in [8], and he gave a classification of possible splints of
root systems (including the cases where ∆1 may not be embedded metrically, for which we do not consider).
The table below lists all possible splint root systems, and we label them Types (I) to (V).

Type ∆ ∆1 ∆2

(I) Ar (r ≥ 2) Ar−1 (A1)
⊕r

(II) Br (r ≥ 2) Dr (A1)
⊕r

(III) Cr (r ≥ 3) (A1)
⊕r Dr

(IV) G2 A2 A2

(V) F4 D4 D4

We note that the last four types of splint root system have ∆2 embedded metrically into ∆.
Now write a to be the Lie algebra of ∆1, corresponding to a Lie subalgebra of g. Letting Πλ be an

irreducible representation of g of highest weight λ, we have a decomposition

ResgaΠλ =
⊕

ν

bλ,νπν

We are interested in computing the branching coefficients bλ,ν . The branching coefficients for Types (I)
and (II) are well known examples of Gelfand-Tsetlin patterns [1], which we now state. For Type (I), every
irreducible representation of slr+1 is indexed by a Young tableau Y with at most r rows, and its restriction to
slr is the direct sum of irreducible representations of slr corresponding to those Young tableaux obtained from
Y by removing some boxes, each of multiplicity one. Explicitly, if πr

λ1,...,λr
is a highest weight representation

of slr+1 with λi ≥ λi+1, then

Res
slr+1

slr
πr
λ1,...,λr

=
⊕

λi≥µi≥λi+1

πr−1
µ1,...,µr−1

.

As for Type (II), recall that every irreducible representation of soN is labeled by
• f1 ≥ · · · ≥ fr−1 ≥ fr ≥ 0 if N = 2r + 1,
• f1 ≥ · · · ≥ fr−1 ≥ |fr| if N = 2r.

where the fi’s are simultaneously integers or half-integers. If we write Πr
f1,...,fr

to be the highest weight
representation of so2r+1, and if we write πr

g1,...,gr to be the highest weight representation of so2r, then the
branching rule is

Resso2r+1

so2r
Πr

f1,...,fr =
⊕

f1≥g1≥f2≥···≥fr−1≥gr−1≥fr≥|gr|
fi−gi∈Z

πr
g1,...,gr .

We would like similar explicit branching rules for the other three types of splint root system listed above.
A computationally intensive heuristic for the branching coefficients bλ,ν exists in [6]. In this heuristic, the

computation of bλ,ν relies on the roots ∆ \∆1.

Theorem 1 ([6, Property 2.1]). Let m∆2,µ,ν be the multiplicity of ν̃ from the weight diagram of ∆2 with
highest weight µ̃. Then

m∆2,µ,ν = bµ−φ(µ̃−ν̃),

where φ is the embedding of ∆2 into ∆.

This theorem, together with Freudenthal’s Multiplicity Formula [2, Section 22] tells us all the branching
coefficients in principle. However, this is not easy to compute in practice. Our goal in this paper is to give
a framework to understand the branching coefficients directly using the Weyl character formula and give an
explicit formula for the Type (IV) branching rule, as well as conjecture formulas for Types (III) and (V)
branching rules.
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4. Preliminaries

4.1. The Weyl character and dimension formulas. We recall some computational tools from represen-
tation theory. These are very classical results (see [4] for an exposition, for instance), and our main purpose
is to fix notation.

Let G be a compact simply connected Lie group, and let T be a maximal torus of G. Then the Lie algebra
g of G can be written as

g = t⊕ p,

where t = Lie(T ) and p = Lie(G/T ) is the subspace of eigenvectors for the roots.
For any irreducible representation Lλ of G with highest weight λ, we can decompose Lλ into its weight

decomposition

Lλ =
⊕

µ∈T∗

Lλ[µ]

where Lλ[µ] = {v ∈ Lλ : tv = µ(t)v for all t ∈ T}. Define its character to be the finite sum

χ(Lλ) =
∑

µ∈T∗

dim(Lλ[µ])e
µ.

Theorem 2 (Weyl Character Formula). Let W be the Weyl group of G, and let l(w) be the length of an
element w ∈ W . Then

χ(Lλ) =

∑
w∈W (−1)l(w)ew(λ+ρ)

δ
,

where

δ = eρ
∏

α∈R+

(1 − e−α) =
∏

α∈R+

(eα/2 − e−α/2),

and ρ is the half-sum of the positive roots R+.

The formula below allows us to compute the dimension of any irreducible representation of G.

Theorem 3 (Weyl Dimension Formula). Let Lλ be the irreducible representation of G with highest weight
λ. Then

dim(Lλ) =
∏

α∈R+

(λ+ ρ, α)

(ρ, α)
.

4.2. A strategy. Let us return to the notations introduced in Section 1. Our strategy to write down
explicit branching coefficient bλ,ν is as follows. We check that our branching coefficients are plausible by first
verifying that dimResgaΠλ and dim

⊕
ν bλ,νπν agree. Then we will use the Weyl character formula to make

sure that the weight multiplicities check out. A way to do this is as follows. Write the denominator δg of
the Weyl character formula for Πλ as

δg = δaδ
′,

where δ′ corresponds to the roots of g inside g\a. Observe that the function δ′χ(Πλ) is a symmetric function
on the Weyl group Wa of the root system of a. Hence we can write both δ′χ(Πλ) and δ′ as a polynomial in
χ(πµ) and compute branching coefficients by comparing

δ′χ(Πλ) and δ′χ(πµ).

If Wa is the symmetric group, then the latter product can be understood using the Littlewood-Richardson
rule; we will see this when we prove the Type (IV) branching rule in Section 5.2. In general one would need
to employ a suitable Littlewood-Richardson rule for Wa.

In our computations we are led to the following conjecture.

Conjecture 4. Write Resga Πλ =
⊕

ν bλ,νπν . Then
∑

λ

bλ,µ = dimωλ,

where ωλ is a highest weight representation (depending on λ) for the root system Ξ of an auxiliary simple
Lie algebra.
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The Gelfand-Tsetlin patterns for Types (I) and (II) imply that Ξ can be taken to be ∆2. For example, if
we index the irreducible representations of B3 and D3 by three positive integers after choosing the standard
fundamental weights, then the Gelfand-Tsetlin pattern for ResB3

D3
can be written as

ResB3

D3
Πa,b,c =

a⊕

t=0

b⊕

r=0

c⊕

s=0

πa+b−t−r,r+s,r+c−s.

In this case, the sum of coefficients equals dimωa,b,c, where ωa,b,c is the highest weight representation of A⊕3
1

corresponding to the integers a, b, c.
The branching rule for Type (IV) proven in the next section will imply that Ξ = ∆2 as well, and we

conjecture this is also the case for Type (III). However, the discussion in Section 6 tells us this is not the
case for Type (V).

5. Branching rule for Type (IV)

In this section we work out ResG2

A2
explicitly. We first give an explicit formula for the functor ResB2

D2

without using Gelfand-Tsetlin patterns in order to illustrate the ideas used in understanding ResG2

A2
.

5.1. Branching rule for Type (II) with r = 2. As D2 embeds into B2 via the long roots, it is natural to
ask how their irreducible representations are related. The starting point is to compute their Weyl character
formulas. To do this we label roots L1, L2, and all the positive roots, as below.

L1

L1 + L2 2L1 + L2L2

The fundamental weights ω1, ω2 and Ω1,Ω2 for B2 and D2 are

ω1 = L1 + L2, ω2 =
2L1 + L2

2
, Ω1 =

L2

2
, Ω2 =

2L1 + L2

2
,

and the half sum of the positive roots for B2 and D2 are

ρB2
= 2L1 +

3L2

2
, ρD2

= L1 + L2.

Define Πk,l to be the highest weight representation of B2 with weight kω1+lω2 = (2k+2l)L1/2+(2k+l)L2/2,
and define πα,β to be the highest weight representation of D2 with weight αΩ1 + βΩ2 = βL1 +(α+ β)L2/2.

By writing x1 = eL1+L2/2 and x2 = eL2/2, we have the following explicit formulas for the characters of Πk,l

and πα,β :

χ(Πk,l) =
Ak,l,B2

δB2

, χ(πα,β) =
Aα,β,D2

δD2

,

where

Ak,l,B2
= xk+l+2

1 xk+1
2 + xk+l+2

2 x
−(k+1)
1 + x

−(k+l+2)
1 x

−(k+1)
2 + x

−(k+l+2)
2 xk+1

1

− x
−(k+l+2)
2 x

−(k+1)
1 − xk+l+2

1 x
−(k+1)
2 − xk+l+2

2 xk+1
1 − x

−(k+l+2)
1 xk+1

2 ,

δB2
= (x1 − x−1

1 )(x2 − x−1
2 )(x1 + x−1

1 − x2 − x−1
2 ),

Aα,β,D2
= (xα+1

2 − x
−(α+1)
2 )(xβ+1

1 − x
−(β+1)
1 ),

δD2
= (x1 − x−1

1 )(x2 − x−1
2 ).
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Finally let us write down the Weyl dimension formulas for B2 and D2:

dimΠk,l =
(k + 1)(l + 1)(k + l + 2)(2k + l + 3)

6
dim πα,β = (α+ 1)(β + 1)

Proposition 5. We have

ResB2

D2
Πk,l =

k⊕

r=0

l⊕

s=0

πr+s,r+l−s.

Corollary 6. The number of irreducible representations of D2 in the decomposition of ResB2

D2
Πk,l equals

dimπk,l = (k + 1)(l + 1).

This corollary is an immediate consequence of Proposition 5, so we just need to prove the above theorem.
For this case we can simply use a telescoping sum argument to compute the Weyl character formula on
both sides, but in general we want approaches that will allow us to deduce the decomposition from our
computations. To this end we give two approaches to the proof: the first approach is bare-hands computation,
and the second approach is an explicit computation using the strategy described in the previous section.

Proof 1. Factor Ak,l,B2
as

Ak,l,B2
= (xk+1

2 − x
−(k+1)
2 )(xk+l+2

1 − x
−(k+l+2)
1 )− (xk+1

1 − x
−(k+1)
1 )(xk+l+2

2 − x
−(k+l+2)
2 ).

Then we observe that

Ak,l,B2

(x1 − x−1
1 )(x2 − x−1

2 )
= (xk

2 + xk−2
2 + · · ·+ x−k

2 )(xk+l+1
1 + xk+l−1

1 + · · ·+ x
−(k+l+1)
1 )

− (xk
1 + xk−2

1 + · · ·+ x−k
1 )(xk+l+1

2 + xk+l−1
2 + · · ·+ x

−(k+l+1)
2 ).

We can view the above expressions as sums over the polynomial

p(s, t) = xs
2x

t
1 − xs

1x
t
2 + x−s

2 x−t
1 − x−s

1 x−t
2 ,

where s ranges over the nonnegative numbers in {k, k−2, . . . ,−k} and t ranges over the nonnegative numbers

in {k + l + 1, k + l − 1, . . . ,−(k + l + 1)}. Writing u = x
1/2
1 x

1/2
2 and v = x

1/2
1 x

−1/2
2 , we can write

p(s, t) = us+tv−s+t − us+tvs−t + u−s−tvs−t − u−s−tv−s+t

= (us+t − u−(s+t))(v−s+t − v−(−s+t)).

Now, after observing x1 + x−1
1 − x2 − x−1

2 = (u− u−1)(v − v−1), we get

p(s, t)

(u− u−1)(v − v−1)
= (us+t−1 + us+t−3 + · · ·+ u−(s+t−1))(v−s+t−1 + v−s+t−3 + · · ·+ v−(−s+t−1)).

By comparing this expression with the Weyl character formula for D2

Aα,β,D2

δD2

= (xα
2 + xα−2

2 + · · ·+ x−α
2 )(xβ

1 + xβ−2
1 + · · ·+ x−β

1 )

=
∑

a∈{α,α−2,...,−α}
b∈{β,β−2,...,−β}

ua+bv−a+b,

we get what we want. �

Proof 2. Write χα,β = χ(πα,β). By factoring Ak,l,B2
as above, we observe that

χ(Πk,l) =
χk,k+l+1 − χk+l+1,k

χ0,1 − χ1,0
.

Note that

(χ0,1 − χ1,0)χα,β = χα,β+1 + χα,β−1 − χα+1,β − χα−1,β,
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where the second term exists only when β > 0, and the last term exists only when α > 0. On the (α, β)-plane,
this amounts to taking the weighted sum of the following four vertices, with sign as below.

α− 1 α α+ 1

β − 1

β

β + 1

−−

+

+

We can now easily check that

χk,k+l+1 − χk+l+1,k =

k∑

α=r

l∑

β=s

(χ0,1 − χ1,0)χr+s,r+l−s,

as desired. �

5.2. Branching rule for Type (IV). Again A2 embeds into G2 via the long roots. We need to compute
the Weyl character formula for G2 and A2. To do this we label roots L1, L2, L3, and all the positive roots,
as below.

L1 − L2

2L1 + L2L1 + 2L2

L1

L1 + L2

L2

L3

We chose the labeling above because the action of the Weyl group WA2
∼= S3 on L1, L2, L3 is simply by

permuting the indices. The fundamental weights ω1, ω2 and Ω1,Ω2 for G2 and A2 are

ω1 = L1 + L2, ω2 = 2L1 + L2, Ω1 = L1 + L2, Ω2 = L1,

and the half sum of the positive roots are

ρG2
= 3L1 + 2L2, ρA2

= 2L1 + L2.

Define Πk,l to be the highest weight representation of G2 with weight kω1 + lω2 = (k + 2l)L1 + (k + l)L2,
and define πα,β to be the highest weight representation of A2 with weight αΩ1 + βΩ2 = (α + β)L1 + αL2.
By writing xi = eLi , we have the following explicit formulas for the characters of Πk,l and πα,β :

χ(Πk,l) =
Ak,l,g2

δg2

, χ(πα,β) =
Aα,β,su(3)

δsu(3)
,
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where

Ak,l,G2
= xk+2l+3

1 xk+l+2
2 + xk+2l+3

3 xk+l+2
1 + xk+2l+3

2 xk+l+2
3

+ x
−(k+2l+3)
1 x

−(k+l+2)
2 + x

−(k+2l+3)
2 x

−(k+l+2)
3 + x

−(k+2l+3)
3 x

−(k+l+2)
1

− xk+2l+3
1 xk+l+2

3 − xk+2l+3
3 xk+l+2

2 − xk+2l+3
2 xk+l+2

1

− x
−(k+2l+3)
1 x

−(k+l+2)
3 − x

−(k+2l+3)
2 x

−(k+l+2)
1 − x

−(k+2l+3)
3 x

−(k+l+2)
2 ,

δG2
= (x1 − x2)(x1 − x3)(x2 − x3)(1 − x1)(1 − x2)(1 − x3),

Aα,β,A2
= xα+β+2

1 xα+1
2 + xα+β+2

3 xα+1
1 + xα+β+2

2 xα+1
3

− xα+β+2
1 xα+1

3 − xα+β+2
3 xα+1

2 − xα+β+2
2 xα+1

1 ,

δA2
= (x1 − x2)(x1 − x3)(x2 − x3),

and x1, x2, x3 satisfies the relation x1x2x3 = 1.

Example 7. The Weyl character formula χ(Π0,1) for the adjoint representation Π0,1 of G2 is

x5
1x

3
2 + x5

3x
3
1 + x5

2x
3
3 + x−5

1 x−3
2 + x−5

2 x−3
3 + x−5

3 x−3
1 − x5

1x
3
3 − x5

3x
3
2 − x5

2x
3
1 − x−5

1 x−3
3 − x−5

2 x−3
1 − x−5

3 x−3
2

(x1 − x2)(x1 − x3)(x2 − x3)(1− x1)(1 − x2)(1 − x3)
.

We can check using the relation x1x2x3 = 1 that the above expression equals the polynomial

x2y + y2z + z2x+ xy2 + yz2 + zx2 + xy + yz + zx+ x+ y + z + 2.

Notice that the above polynomial equals χ(π0,1) + χ(π1,0) + χ(π1,1), so we see that

ResG2

A2
Π0,1 = π0,1 ⊕ π1,0 ⊕ π1,1.

Finally let us write down the Weyl dimension formulas for G2 and A2.

dimΠk,l =
(k + 1)(k + l + 2)(2k + 3l + 5)(k + 2l + 3)(k + 3l+ 4)(l + 1)

120

dimπα,β =
(α+ 1)(β + 1)(α+ β + 2)

2

Theorem 8. Let Πk,l be the irreducible representation of G2 with weight kω1 + lω2, and let πα,β be the
irreducible representation of A2 with weight αΩ1 + βΩ2 = (α+ β)L1 + αL2. Then

ResG2

A2
Πk,l =

⊕

α,β

nα,βπα,β ,

where (α, β) are integral points on and inside of the hexagon

(l,0)

(0,l)

(0,k+l) (l,k+l)

(k+l,l)

(k+l,0)

with vertices
(k + l, l), (k + l, 0), (l, 0), (0, l), (0, k+ l), (l, k + l),

and nα,β are positive integers determined as follows.
• If (α, β) lies on the perimeter (the zeroth layer) of the hexagon H above, then nα,β = 1.
• If (α, β) lies on the first layer of H (which are points adjacent to the perimeter), then nα,β = 2.
• Iterating, if (α, β) lies on the jth layer of H, and if this jth layer is still a hexagon, then nα,β = j+1.
• The hexagon H degenerates at the mth = min(k, l)th layer to a triangle with vertices (l, k), (k, l), (l, l)

(or possibly the single point (l, l) if k = l). Set nα,β = m+ 1 for all points (α, β) on this triangle.
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Corollary 9. The number of irreducible representations of A2 in the decomposition of ResG2

A2
Πk,l equals

dimπk,l =
(k + 1)(l + 1)(k + l + 2)

2
.

In the remainder of this section we prove Theorem 8. Again, it is enough to show that the characters of
the two sides are equal. In the numerator Ak,l,G2

of the character formula for G2, by separating the terms
with positive exponents from those with negative exponents, we may check that

χ(Πk,l) =

∣∣∣∣∣∣

xk+2l+3
1 xk+2l+3

2 xk+2l+3
3

xk+l+2
1 xk+l+2

2 xk+l+2
3

1 1 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

x
−(k+2l+3)
1 x

−(k+2l+3)
2 x

−(k+2l+3)
3

x
−(k+l+2)
1 x

−(k+l+2)
2 x

−(k+l+2)
3

1 1 1

∣∣∣∣∣∣∣
(x1 − x2)(x1 − x3)(x2 − x3)(1− x1)(1− x2)(1 − x3)

.

One might recognize now in χ(Πk,l) something resembling the well-known determinant-based definition
of Schur functions on three variables:

sa1,a2,a3
(x1, x2, x3) =

∣∣∣∣∣∣

xa1+2
1 xa1+2

2 xa1+2
3

xa2+1
1 xa2+1

2 xa2+1
3

xa3

1 xa3

2 xa3

3

∣∣∣∣∣∣
(x1 − x2)(x1 − x3)(x2 − x3)

.

Clearly the first summand in the numerator combines with the first three factors in the denominator to
make sk+2l+1,k+l+1,0(x1, x2, x3). To simplify the other summand, we use the fact that x1x2x3 = 1 to write

(x1 − x2)(x1 − x3)(x2 − x3) = −(x−1
1 − x−1

2 )(x−1
1 − x−1

3 )(x−1
2 − x−1

3 )

and so we can now recognize the full equation as

χ(Πk,l) =
sk+2l+1,k+l+1,0(x1, x2, x3)− sk+2l+1,k+l+1,0(x

−1
1 , x−1

2 , x−1
3 )

s1,1,0(x1, x2, x3)− s1,0,0(x1, x2, x3)
.

One can furthermore eliminate the term with negative exponents. Using [10, Chapter 7, Exercise 41], when
x1x2x3 = 1, we have

sk+2l+1,k+l+1,0(x
−1
1 , x−1

2 , x−1
3 ) = sk+2l+1,l,0(x1, x2, x3).

One can also rewrite the Weyl character formula of A2 as a Schur function in the same manner. To summarize
(suppressing the variables now that all have positive exponents):

χ(Πk,l) =
sk+2l+1,k+l+1,0 − sk+2l+1,k,0

s1,1,0 − s1,0,0
,

χ(πα,β) = sα+β,α,0.

Thus, we must show that

sk+2l+1,k+l+1,0 − sk+2l+1,k,0 =
∑

nα,β(s1,1,0 − s1,0,0)sα+β,α,0,

where the sum runs over those (α, β) described in the statement of Theorem 8.
In order to simplify the Schur functions that will appear in further computations we also note the following

lemma, which follows immediately from the determinant-based definition of Schur functions.

Lemma 10. In the case that x1x2x3 = 1, whenever α ≥ β ≥ γ are positive integers, we have

sα,β,γ(x1, x2, x3) = sα−γ,β−γ,0(x1, x2, x3)

Now, we expand the right-hand side of the equation by Pieri’s Rule [10, Chapter 7.15], which states that,
for any partition µ,

sµs1k =
∑

sλ,

where the sum is taken over all partitions λ whose Young diagram is formed from the Young diagram of µ
by adding k boxes into k distinct rows. We thus see (after using the previous lemma to simplify) that

s1,1,0sα+β,α,0 = sα+β+1,α+1,0 + sα+β,α−1,0 + sα+β−1,α,0,

where the second summand does not exist if α = 0, and the third summand does not exist if β = 0. Similarly
we have

s1,0,0sα+β,α,0 = sα+β+1,α,0 + sα+β,α+1,0 + sα+β−1,α−1,0,
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where the second summand does not exists if β = 0, and the third summand does not exist if α = 0.
Rather than deal with the casework of sometimes excluding terms, in using both sums we will still use all

three summands. However we still interpret sa,b,c = 0 whenever we do not have a ≥ b ≥ c ≥ 0.
We have reduced our goal to showing that

sk+2l+1,k+l+1,0 − sk+2l+1,k,0 =
∑

nα,βHα,β

where we define

Hα,β = sα+β+1,α+1,0 − sα+β,α+1,0 + sα+β−1,α,0 − sα+β−1,α−1,0 + sα+β,α−1,0 − sα+β+1,α,0.

For the remainder of the proof we will assume k ≥ l for ease of notation; the case for k < l is exactly
analogous.

It will be helpful to extend the notion of Hα,β to collections of points (α, β). Let Li(k, l) denote the ith

layer of the hexagon corresponding to k and l as described in the statement of Theorem 8. Note then that
Li(k, l) for 0 ≤ i < l is the boundary of the hexagon joining the six vertices

(k + l − i, l), (k + l − i, i), (l, i), (i, l), (i, k+ l − i), (l, k + l − i),

and Ll(k, l) consists of the boundary and interior of the triangle with vertices (k, l), (l, l), (l, k) (or possibly
the single point (l, l) if k = l). We then define

HLi(k,l) = sk+2l−i+1,k+l−i+1,0 − sk+l,k+l−i+1,0 + sl+i−1,l,0 − sl+i−1,i−1,0 + sk+l,i−1,0 − sk+2l−i+1,l,0.

To better visualize all of this, let us define f(α, β) = (α+ β, α). Then Hα,β consists of six Schur function
summands whose corresponding points in the (α, β)-plane are orthogonally or diagonally adjacent to f(α, β),
with signs given by the following figure.

α+ β − 1 α+ β α+ β + 1

α− 1

α

α+ 1

−

+

+

−

−

+

Likewise, if S is a set of points in the (α, β)-plane, we define

f(S) = {(α+ β, α) : (α, β) ∈ S}.

In particular, f(Li(k, l)) is the boundary of the hexagon with vertices

(k + 2l− i, k + l − i), (k + l, k + l − i), (l + i, l), (l+ i, i), (k + l, i), (k + 2l− i, l),

and f(Ll(k, l)) is the boundary and interior of the triangle with vertices (k + l, k), (2l, l), (k + l, l) (or just
the single point (2l, l) if k = l). Note that, for any 0 < i ≤ l, the summands of HLi(k,l) correspond to the
vertices of f(Li−1(k, l)).

Lemma 11. For k ≥ l, ∑

(α,β)∈Ll(k,l)

Hα,β = HLl(k,l).
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Proof. Let k = l+ j. We proceed by induction on j. The cases j = 0 and j = 1 are easy to verify for any l.
For the inductive step, suppose that for a fixed j = J we have established the lemma. We now wish to show
that ∑

(α,β)∈Ll(l+J+1,l)

Hα,β = HLl(l+J+1,l).

By the inductive hypothesis we have that
∑

(α,β)∈Ll(l+J,l)

Hα,β = HLl(l+J,l)

= s2l+J+1,l+J+1,0 − s2l+J,l+J+1,0 + s2l−1,l,0 − s2l−1,l−1,0 + s2l+J,l−1,0 − s2l+J+1,l,0.

To expand this sum to include all integer points of Ll(l + J + 1, l), we must add

J+1∑

i=0

Hl+i,l+J+1−i.

Doing so adds the following terms

J+1∑

i=0

(s2l+J,l+i,0 − s2l+J,l−1+i,0) + (s2l+J+1,l−1+i,0 − s2l+J+1,l+1+i,0) + (s2l+J+2,l+1+i,0 − s2l+J+2,l+i,0)

to the previous sum, which equals the following eights terms

s2l+J,l+J+1,0 − s2l+J,l−1,0 + s2l+J+1,l−1,0 + s2l+J+1,l,0

− s2l+J+1,l+J+1,0 − s2l+J+1,l+J+2,0 + s2l+J+2,l+J+2,0 − s2l+J+2,l,0

after telescoping.
Adding these terms to the sum in the inductive hypothesis and cancelling gives

∑

(α,β)∈Ll(l+J+1,l)

Hα,β = s2l+J+2,l+J+2,0 − s2l+J+1,l+J+2,0 + s2l−1,l,0

− s2l−1,l−1,0 + s2l+J+1,l−1,0 − s2l+J+2,l,0

= HLl(l+J+1,l),

as desired. �

We now need to prove an analogous lemma for the hexagonal layers.

Lemma 12. For 0 ≤ i < l we have
∑

(α,β)∈Li(k,l)

Hα,β = HLi+2(k,l) − 2HLi+1(k,l) +HLi(k,l).

(In the case i = l − 1 we define HLl+1(k,l) = 0.)

Proof. The sum on the left-hand side can be viewed as taking the hexagon in our figure and sliding it along
the hexagon defined by f(Li(k, l)). For any given i, note that any summand produced by the sum on the
left hand side must be on or adjacent to f(Li(k, l)), so the only Schur functions that can occur correspond
to points on one of f(Li+1(k, l)), f(Li(k, l)), or f(Li−1(k, l)) (where when i = 0, we define L−1(k, l) to be
the hexagon surrounding L0(k, l) in the appropriate way). All of these are hexagons except when i = l − 1,
in which case f(Ll(k, l)) is a triangle.

The proof strategy is to split the points (a, b) in these three layers into cases, and determine how often
and with what sign each point occurs in some Hα,β in our sum.

Case 1 : The point (a, b) lies on f(Li+1(k, l)).
Subcase 1.1: i = l − 1. In this case, if k = l, then f(Ll(l, l)) is the single point (2l, l). Then there are six

Hα,β terms of our sum that produce s2l,l,0, one for every point on the hexagon Ll−1(l, l), and the summand
s2l,l,0 will appear in three of these terms with a positive sign and in three with a negative sign, and thus will
get a total coefficient of 0.

If k > l then clearly we need only look at points on the boundary of the triangle f(Ll(k, l)). Any
point (a, b) on the boundary that is not a vertex will be adjacent to three points of f(Ll−1(k, l)), and its
corresponding summand sa,b,0 will appear in two of the corresponding Hα,β of the sum with opposite signs,
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and so will vanish. This is easy to check for each side of the triangle f(Ll(k, l)) separately; for example, if
we take a point (l + j, l) = f(l, j) for l < j < k, this will be adjacent to the three points

(l + j − 1, l − 1), (l + j, l − 1), (l + j + 1, l− 1)

of f(Ll−1(k, l)), which correspond to f(l− 1, j), f(l− 1, j+1), f(l− 1, j+2). Of the corresponding terms in
our sum, Hl−1,j will contain +sl+j,l,0, Hl−1,j+1 will contain −sl+j,l,0, and Hl−1,j+2 does not contain sl+j,l,0

at all.
If (a, b) is a vertex of f(Ll(k, l)), then it is one of f(k, l), f(l, l), or f(l, k). Again, we can check directly

that if we take all adjacent points (c, d) ∈ f(Ll−1(k, l)) and sum the appearances of sa,b,0 in Hf−1(c,d) we
will get 0. Thus in the case i = l − 1, our sum produces no Schur functions corresponding to points on
f(Ll(k, l)), justifying our defining HLl+1(k,l) = 0.

Subcase 1.2: i < l − 1. Then f(Li+1(k, l)) is a hexagon, and we consider any (a, b) lying on it. If (a, b)
is not a vertex of f(Li+1(k, l)), it is adjacent to three points of f(Li(k, l)), and it is easy to check that its
summand will occur in two of the corresponding Hα,β with opposite signs and thus will vanish; this can be
verified for each side of the hexagon separately like in Subcase 1.1.

If (a, b) is a vertex of f(Li+1(k, l)), we end up with a different result than in Subcase 1.1. These vertices
are

(k+2l− i− 1, k+ l− i− 1), (k+ l, k+ l− i− 1), (l+ i+1, l), (l+ i+1, i+1), (k+ l, i+1), (k+2l− i− 1, l).

It can be checked for each of these points (a, b) separately that if we look at the set of adjacent (c, d) in
f(Li(k, l)), and sum over Hf−1(c,d) the coefficient of sa,b,0, and then sum those results together, we get

sk+2l−i−1,k+l−i−1,0 − sk+l,k+l−i−1,0 + sl+i+1,l,0 − sl+i+1,i+1,0 + sk+l,i+1,0 − sk+2l−i−1,l,0 = HLi+2(k,l)

Thus, considering only terms corresponding to points of f(Li+1(k, l)), we get that
∑

(α,β)∈Li(k,l)
Hα,β yields

HLi+2(k,l).
Case 2 : The point (a, b) lies on f(Li(k, l)). If (a, b) is not a vertex of f(Li(k, l)), then it will be adjacent

to two other points of f(Li(k, l)), and will appear in the two corresponding Hα,β of the sum with opposite
signs and vanish. This can be checked on each side of the hexagon separately as in the previous case.

If (a, b) is a vertex of f(Li(k, l)), it is one of six possibilities. We can again check the contribution of the
Hα,β to each point separately to determine that, when restricted to f(Li(k, l)), we get −2HLi+1(k,l)) out of∑

(α,β)∈Li(k,l)
Hα,β .

Case 3 : The point (a, b) lies on f(Li−1(k, l)). If (a, b) is not a vertex of f(Li−1(k, l)), then as with the
other cases, it will appear in two Hα,β of the sum with opposite signs and vanish. This can be checked on
each side of the hexagon separately.

If (a, b) is a vertex of f(Li−1(k, l)), then as with the other cases, we can look at the contribution of the
Hα,β of the adjacent points of f(Li(k, l)) for each vertex separately, sum them, and get a contribution of
HLi(k,l).

Taking all three cases together, we have examined every point (a, b) such that sa,b,0 occurs as a summand
(with either sign) of some Hα,β in our sum, and determined the coefficient of sa,b,0 arising from summing
over all applicable Hα,β . Thus, adding the results together from the three cases, we may conclude that

∑

(α,β)∈Li(k,l)

Hα,β = HLi+2(k,l) − 2HLi+1(k,l) +HLi(k,l),

as desired. �

Now we can put this all together to finish proving Theorem 8. LetH(k, l) =
⋃l

i=0 Li(k, l) be the hexagon of
Theorem 8 associated with (k, l). Furthermore, using our new terminology nα,β = i+1 when (α, β) ∈ Li(k, l).
We wish to evaluate

∑

(α,β)∈H(k,l)

nα,βHα,β =

l∑

i=0

(i+ 1)
∑

(α,β)∈Li(k,l)

Hα,β .

Simplifying this using our lemmas gives us

(l + 1)HLl(k,l) +

l−1∑

i=0

(i + 1)
(
HLi+2(k,l) − 2HLi+1(k,l) +HLi(k,l)

)
.
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We can check that for each 2 ≤ j ≤ l the coefficient of HLj(k,l) is (j + 1) − 2j + (j − 1) = 0, and for j = 1
the coefficient of HL1(k,l) is also 0. The only summand that does not get cancelled is a single

HL0(k,l) = sk+2l+1,k+l+1,0 − sk+l,k+l+1,0 + sl−1,l,0 − sl−1,−1,0 + sk+l,−1,0 − sk+2l+1,l,0

The middle four terms in this expression are 0, so all that remains is the desired sk+2l+1,k+l+1,0−sk+2l+1,l,0,
and we are done.

6. Conjectures for other cases

In the final section of the paper we provide some conjectural descriptions for the Types (III) and (V)
branching rules. These conjectures are combinatorial in nature, in agreement with Conjecture 4, and are
derived by comparing dimensions between irreducible representations of ∆ and ∆1.

Type (III) with r = 3. Let A = a + 1, B = b + 1, C = c + 1, where a, b, c are positive integers. Then the
irreducible representation of highest weight (a, b, c) in C3 has dimension

dimΠa,b,c =
ABC

720
(A+B)(B + C)(A +B + C)(B + 2C)(A+B + 2C)(A+ 2B + 2C).

For (A1)
3, one has

dimπa,b,c = ABC.

Let Π denote a representation of C3, and π one of (A1)
⊕3. First and most simply we have the formula

ResC3

(A1)⊕3 Πa,0,0 =
⊕

r+s+t=a

πr,s,t

If we let Tk be the set of triples (r, s, t) of integers 0 ≤ r, s, t ≤ k with r + s+ t = 2k, then

ResC3

(A1)⊕3 Π0,b,0 =

b⊕

k=0

⊕

(τ1,τ2,τ3)∈Tk

(b− k + 1)πτ1,τ2,τ3 .

We can in fact write down a branching rule for ResC3

(A1)⊕3 Πa,b,0 that is very reminiscent of the one from

G2 to A2. Assume a, b > 0, so that all three coordinates of (a + b, b, 0) are distinct. Then the formula for

ResC3

(A1)⊕3 Πa,b,0 will be a direct sum of irreducible representations of (A1)
⊕3 with highest weights counted

as follows:
• Form a hexagon with the six vertices that are permutations of the coordinates of (a+b, b, 0), connected
in such a way that the resulting hexagon is convex. (This hexagon will be parallel to the plane
x+ y+ z = 0.) We count with multiplicity 1 every representation on the perimeter of this hexagon,
with multiplicity 2 every point that is one coordinate orthogonally from the perimeter, and so on
until we reach an inner layer whose points form the perimeter of a triangle; then all points remaining
on this perimeter and inside the triangle all receive the same multiplicity.

• Now, form a smaller hexagon whose vertices are (a + b − 1, b − 1, 0) and all its other coordinate
permutations. (It is possible that some of these values will be the same, so that there are only three
permutations; in that case, we just construct the triangle with those vertices.) We now double our
multiplicity count by giving those entries on the perimeter multiplicity 2, those on the first layer
inside multiplicity 4, and so on until reaching an interior triangle all of whose points get the same
multiplicity.

• Iterating, we keep forming smaller hexagons (or possibly triangles) with vertices (a+ b− k, b− k, 0)
and its coordinate permutations as long as b − k ≥ 0. The perimeter of the level k hexagon gets
multiplicity k + 1, the first layer inside the perimeter gets multiplicity 2(k + 1), and so on, until a
layer is reached that is a triangle, after which all points receives the same multiplicity.

Furthermore, we claim that

ResC3

(A1)⊕3 Π0,0,c =

c⊕

k=0

⊕

(τ1,τ2,τ3)∈Tk

πc−τ1,c−τ2,c−τ3 .

At present we do not see a general formula for ResC3

(A1)⊕3 Πa,b,c, nor can we write down an explicit formula

for the branching rules of Types (III) with general r ≥ 3.
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Type (V). One can try to understand ResF4

D4
by understanding ResF4

B4
, for there are the embeddings D4 into

B4, and B4 into F4. The highest weight representations of the root systems F4, B4, D4 are parameterized
by four integers in terms of fundamental weights, and we denote their highest weight representations by
Π, ρ, π respectively. In the book [7] the restrictions from F4 to B4 are listed for small highest weights. This

suggests the following two branching rules for ResF4

B4
as we vary the weights corresponding to the first and

last vertices of the F4 Dynkin diagram:

ResF4

D4
Πk,0,0,0 =

⊕

s+t=k

ρ0,s,0,t,

ResF4

D4
Π0,0,0,k =

⊕

0≤s+t≤k

ρs,0,0,t.

We now refer to the Gelfand-Tsetlin pattern of Type (II) stated in Section 3. Following the notations of
that section, the correspondence between Πr, πr and ρ, π, for the root systems B4, D4 respectively, can be
stated as follow:

Πr
f1,f2,f3,f4 = ρf1−f2,f2−f3,f3−f4,2f4 ,

πr
g1,g2,g3,g4 = πg1−g2,g2−g3,g3−g4,g3+g4 .

Using this, it is not hard to see that

ResB4

D4
ρ0,s,0,t =

⊕

s′+s′′=s
0≤t′≤t

πs′,s′′,t′,t−t′ ,

ResB4

D4
ρs,0,0,t =

⊕

0≤s′≤s
t′+t′′=t

πs′,0,t′,t′′ .

Therefore

ResF4

D4
Πk,0,0,0 =

⊕

0≤s′+s′′+t′≤k

πs′,s′′,t′,k−s′−s′′−t′ ,

ResF4

D4
Π0,0,0,k =

⊕

0≤s′+t′+t′′≤k

(k + 1− s′ − t′ − t′′)πs′,0,t′,t′′ .

Example 13. We list here four examples of ResB4

D4
. The last example is not included as a special case of

the two formulas presented above.

ResF4

D4
Π0,0,0,1 = 2π0,0,0,0 ⊕ (π1,0,0,0 ⊕ π0,0,1,0 ⊕ π0,0,0,1)

ResF4

D4
Π1,0,0,0 = π0,1,0,0 ⊕ (π1,0,0,0 ⊕ π0,0,1,0 ⊕ π0,0,0,1)

ResF4

D4
Π2,0,0,0 = π0,2,0,0 ⊕ (π2,0,0,0 ⊕ π0,0,2,0 ⊕ π0,0,0,2)⊕ (π1,1,0,0 ⊕ π0,1,1,0 ⊕ π0,1,0,1)

⊕ (π1,0,1,0 ⊕ π1,0,0,1 ⊕ π0,0,1,1)

ResF4

D4
Π0,0,1,0 = 2π0,1,0,0 ⊕ 2(π1,0,0,0 ⊕ π0,0,1,0 ⊕ π0,0,0,1)⊕ (π1,0,1,0 ⊕ π1,0,0,1 ⊕ π0,0,1,1)⊕ π0,0,0,0

Note that the branching rule in the above examples possesses the following symmetry: if πa,b,c,d appears
with multiplicity m, then so does πσ(a),b,σ(c),σ(d) for all σ ∈ S3.
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