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Products of groups and class sizes of π-elements

M. J. Felipe · A. Mart́ınez-Pastor · V. M. Ortiz-Sotomayor ∗

Abstract

We provide structural criteria for some finite factorised groups G = AB when the
conjugacy class sizes in G of certain π-elements in A ∪ B are either π-numbers or
π′-numbers, for a set of primes π. In particular, we extend for products of groups
some earlier results.
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1 Introduction

Along the last decades, numerous researchers have investigated groups which can
be factorised as the product of two subgroups. In this setting, one of the main goals
is to study the influence that the structure of the factors has on the structure of the
whole group (and vice versa). In some occasions, the imposition of certain permutability
conditions on the subgroups in the factorisation has been revealed very useful in that
task. A detailed account on this topic can be found in the book [3]. Throughout this
paper, we deal with products of groups that possess a especial chief series, the so-called
core-factorisations, introduced in [11] (see also Definition 2.1).

On the other hand, a current activity shows up that, in a factorised group, the sizes
of the conjugacy classes in the group of the elements in the factors have a strong impact
on the structure of the whole group (see, for instance, [2, 10, 11, 14]). Our main purpose
here is to study the π-structure of groups with a core-factorisation when the class lengths
in the group of the π-elements in the factors are either π-numbers or π′-numbers, for a set
of primes π. In fact, we present alternative proofs of some earlier results as consequences
of our theorems when trivial factorisations are considered. We point out that Dolfi ([8])
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analysed this last property on the class lengths in a (not necessarily factorised) group,
but focusing on all its elements (not only on those with order a π-number). It is worth
also to highlight that, although some results on class sizes could be proved through
elementary arguments, the analysis of the considered class size properties in the context
of products of groups may need a wider approach, even for core-factorisations. Indeed,
in a core-factorisation, there is no relation in general between the class size of an element
in one factor and the size of the corresponding conjugacy class in the whole group, in
contrast to other developments (see, for example, [14]).

The paper is structured in the following way: in Section 2 we gather the definition
and some properties of core-factorisations. Later on, in Section 3 we analyse groups
with a core-factorisation such that the class lengths in the whole group of π-elements of
prime power order in the factors are π-numbers (Theorem A). Then, in Section 4, we
put focus on groups with a core-factorisation whose π-elements (not necessarily of prime
power order) in the factors have class sizes equal to either π-numbers or π′-numbers
(Theorem B, and Corollary C for not necessarily factorised groups). We also analyse in
Theorem D this last condition on the class sizes of every element in the factors. Finally,
as a consequence of the previous results, prime power class sizes are studied for the
π-elements in the factors of a group with a core-factorisation (Theorem E). We want
to remark that, along the whole paper, we provide numerous examples which show the
scope of the results presented.

In the sequel, all groups under consideration are finite. For a group G and an element
x ∈ G, we denote by xG the conjugacy class of x in G, and its size is

∣

∣xG
∣

∣ = |G : CCCG(x)|.
We represent the set of all prime divisors of a natural number n by π(n), and in particular
we use π(G) for the set of all prime divisors of the order of G. The set of all Hall π-
subgroups of G is expressed by Hallπ (G), where π will always denote a set of primes.
A group such that G = OOOπ(G) ×OOOπ′(G) is said to be π-decomposable. By coreX(H)
we mean the core in a group X of a subgroup H, i.e. the largest normal subgroup
of X contained in H. Given a group G = AB which is the product of the subgroups
A and B, a subgroup S is called prefactorised (with respect to this factorisation) if
S = (S ∩ A)(S ∩ B) (see [1]). We recall that a subgroup U covers a section V/W of
a group G if W (U ∩ V ) = V . As usual, CFSG will denote the classification of finite
simple groups. The remaining notation and terminology is standard within the theory
of groups, and it is taken mainly from [7]. We also refer to this book for details about
classes of groups.

2 On core-factorisations

As mentioned in the introduction, along the paper we deal with a especial kind of
products of groups, the core-factorisations. We start this section by introducing that
concept. Besides our initial inspiration in [11] within the framework of products of groups
with certain permutability conditions on the factors, this notion can be also motivated
by the following observation: If π is a set of primes and G is a group that possesses both
Hall π-subgroups and Hall π′-subgroups, say H and L respectively, then G = HL is a
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π-separable group if and only if for a chief series of G it holds that all the chief factors
are covered by either H or L.

Definition 2.1. Let 1 6= G = AB be the product of the subgroups A and B. We say
that G = AB is a core-factorisation whenever G possesses a chief series such that
each chief factor of G is covered by either A or B.

We point out that this definition of a core-factorisation is equivalent to that given
in [11] (see Lemma 2.4 below). Next we collect some of its properties, some of which
appear in the cited paper.

Remark 2.2. Let us state some remarkable facts:

(i) If either 1 6= G = A or 1 6= G = B, then G = AB is always a core-factorisation.

(ii) If G = AB is a core-factorisation, then there exists always a minimal normal
subgroup of G contained in either A or B.

(iii) [11, Example 1] Every (totally) mutually permutable product of two subgroups is
a core-factorisation.

(iv) By the initial paragraph, if G is π-separable, then G = HL is a core-factorisation
for any H ∈ Hallπ (G) and L ∈ Hallπ′ (G).

Notice that, in the last above statement, the property of having coprime orders for
the subgroups in the factorisation is essential, as the next example shows.

Example 2.3. Let G be a symmetric group of 4 letters. Then G = AB where A =
〈(1, 3, 2, 4), (1, 2)(3, 4)〉 and B = 〈(3, 4), (2, 3, 4)〉. Note that G is clearly π(A)-separable
(indeed it is soluble), but the unique minimal normal subgroup of G is not covered by
either A or B, so G = AB is not a core-factorisation.

We also provided a useful characterisation of core-factorisations via quotients (com-
pare with [11, Lemma 2]).

Lemma 2.4. Let 1 6= G = AB be the product of the subgroups A and B. The following
statements are pairwise equivalent:

(1) G = AB is a core-factorisation.

(2) There exists a normal series 1 = N0 EN1 E · · ·ENn−1 ENn = G such that either
Ni/Ni−1 6 ANi−1/Ni−1 or Ni/Ni−1 6 BNi−1/Ni−1, for each 1 ≤ i ≤ n (i.e.
Ni/Ni−1 is covered by either A or B).

(3) For every proper normal subgroup K of G it holds that there exists a normal sub-
group 1 6= M/K of G/K such that either M/K 6 AK/K or M/K 6 BK/K (i.e.
either A or B covers M/K).

Further, in (1) and (2), each term Ni of such (chief) normal series is prefactorised and
Ni = (Ni ∩A)(Ni ∩B) is also a core-factorisation.
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If we adopt the bar convention in statement (3) for the quotients over K, we point
out that this condition means coreG(A) coreG(B) 6= 1. This illustrates the given name
for such factorisations.

Moreover, as noted in [11, Example 2], if N is an arbitrary prefactorised normal
subgroup of a core-factorisation G = AB, then N = (N ∩ A)(N ∩ B) may not be a
core-factorisation. Nevertheless, this condition behaves well for quotients of G.

Lemma 2.5. [11, Lemma 1] Let G = AB be a core-factorisation, and let M be a proper
normal subgroup of G. Then G/M = (AM/M)(BM/M) is also a core-factorisation.

Next we show some series constructions for core-factorisations somehow similar to the
lower/upper π-series of a π-separable group. Let G = AB be the product of two sub-
groups A and B. We can consider CA(G) := coreG(A). Next we take G/CA(G) =
(A/CA(G))(BCA(G)/CA(G)). Since coreG/CA(G)(A/CA(G)) = 1, then we compute
coreG/CA(G)(BCA(G)/CA(G)). Let us denote its inverse image in G by CA,B(G), i.e.
CA,B(G)/CA(G) := coreG/CA(G)(BCA(G)/CA(G)). Similarly we define CA,B,A(G) to be
the inverse image in G of coreG/CA,B(G)(ACA,B(G)/CA,B(G)). Continuing these defini-
tions in the natural way, we can obtain a sequence of normal subgroups of G

1E CA(G) E CA,B(G) E CA,B,A(G)E · · · .

We call this series the core A-series of G. Similarly, we define the core B-series of G
to be

1E CB(G) E CB,A(G) E CB,A,B(G) E · · · .

In a core-factorisation G = AB, both series terminate in G in virtue of Lemmas 2.4 and
2.5; and conversely, if one of the two series terminates in G, then G = AB is certainly
a core-factorisation. Analogously, it is possible to define a core-length with respect to
either A or B in the same way as the π or π′-length of a π-separable group.

A well-known result asserts that OOOπ(G/OOOπ′(G)) is self-centralising in G/OOOπ′(G), for
any π-separable group G. The next example examines the analogous phenomenon in
core-factorisations.

Example 2.6. Let G = Sym(4) × 〈x〉, where Sym(4) denotes the symmetric group
of 4 letters and o(x) = 2. If A = 〈((1, 2), x), ((3, 4), x), ((1, 3)(2, 4), x)〉 and B =
〈((2, 3, 4), 1), ((3, 4), 1), (1, x)〉, then G = AB is a core-factorisation. Moreover, CA(G) =
1 but CB(G) is not self-centralising.

On the other hand, the next result on Hall π-subgroups of π-separable factorised
groups is a key step for our development (indeed the π-separability condition can be
relaxed to the Dπ-property, as can be seen in [1, 1.3.2]).

Lemma 2.7. Let the π-separable group G = AB be the product of the subgroups A and
B. Then there exists a Hall π-subgroup H of G such that H = (H ∩ A)(H ∩ B), with
H ∩A a Hall π-subgroup of A and H ∩B a Hall π-subgroup of B.

In particular, if G = AB is a core-factorisation, then H = (H ∩ A)(H ∩ B) is also
a core-factorisation.
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Proof. The first assertion is just a reformulation of [1, 1.3.2], so we concentrate on
the second claim. We assume that G = AB is a core-factorisation, and let us prove that
H = (H∩A)(H ∩B) so is. There exists a chief series 1 = N0EN1E · · ·ENn−1ENn = G
such that each Ni/Ni−1 is covered by either A or B, for all 1 ≤ i ≤ n.

Note that 1 = N0 ∩ H E N1 ∩ H E · · · E Nn−1 ∩ H E Nn ∩ H = H is a normal
series of H. We claim that each (Ni ∩ H)/(Ni−1 ∩ H) is covered by either H ∩ A or
H ∩ B, in order to apply Lemma 2.4. Since G is π-separable, then Ni/Ni−1 is either a
π-group or a π′-group. In the latter case, we easily get that (Ni ∩H)/(Ni−1 ∩H) = 1 is
clearly covered by either H ∩A or H ∩B. If Ni/Ni−1 is a π-group, since we may assume
for instance that Ni/Ni−1 is covered by A, then Ni/Ni−1 6 (H ∩A)Ni−1/Ni−1 because
H ∩A ∈ Hallπ (A). Now Ni = Ni−1(Ni ∩H ∩A) and H ∩Ni = H ∩Ni−1(Ni ∩H ∩A) =
(Ni ∩H ∩A)(H ∩Ni−1) 6 (H ∩A)(H ∩Ni−1). Thus (H ∩Ni)/(H ∩Ni−1) is covered by
H ∩A and we are done.

3 On conjugacy class sizes of prime power order π-elements

Along this section, we will consider products of groups and prime power order π-
elements in the factors whose class sizes are π-numbers. First of all, we start by present-
ing some preliminary results. The next elementary properties are used frequently and
without further reference.

Lemma 3.1. Let N be a normal subgroup of a group G, and A be a subgroup of G. We
have:

(a)
∣

∣xN
∣

∣ divides
∣

∣xG
∣

∣, for any x ∈ N .

(b)
∣

∣(xN)G/N
∣

∣ divides
∣

∣xG
∣

∣, for any x ∈ G.

(c) If xN is a π-element of AN/N , then there exists a π-element x1 ∈ A such that
xN = x1N .

The next observation is crucial in the sequel.

Remark 3.2. Let G = AB be a π-separable group. Consider by Lemma 2.7 a Hall π-
subgroup H = (H ∩A)(H ∩B) of G such that H∩A ∈ Hallπ (A) and H ∩B ∈ Hallπ (B).
Then, imposing arithmetical conditions on the class sizes of the (prime power order)
π-elements in A∪B is equivalent to impose them on the class sizes of the (prime power
order) elements in (H ∩A) ∪ (H ∩B), because of the conjugacy of Hall π-subgroups.

The lemma below is a transcription of a well-known Wielandt’s result for a set of
primes π.

Lemma 3.3. [6, Lemma 1] Let G be a group and H ∈ Hallπ (G). If
∣

∣xG
∣

∣ is a π-number
for some x ∈ H, then x ∈ Oπ(G).

Indeed, we can provide a useful π-separability criterion for factorised groups having
a Hall π-subgroup by means of the previous class size condition.
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Lemma 3.4. Assume that G = AB with Hallπ (G) 6= ∅. If
∣

∣xG
∣

∣ is a π-number for every
π-element x ∈ A∪B of prime power order, then OOOπ(G) ∈ Hallπ (G). In particular, G is
π-separable.

Proof. Let H ∈ Hallπ (G). We choose P = (P ∩ A)(P ∩ B) ∈ Sylp (G) for some
p ∈ π. Clearly P is G-conjugate to a Sylow p-subgroup of H, say P1. Hence for
some g ∈ G we have P = P g

1 6 Hg ∈ Hallπ (G). It follows by Lemma 3.3 that if
x ∈ (P ∩ A) ∪ (P ∩ B), then x ∈ OOOπ(G), so (P ∩ A) ∪ (P ∩ B) ⊆ OOOπ(G). Thus
P h 6 OOOπ(G) for all h ∈ G. Since this is valid for all p ∈ π, we deduce that H = OOOπ(G).
The second claim follows directly.

Further, under the additional assumption of being a core-factorisation, we get as
our first main result a characterisation of the π-decomposability of such a factorised
group. Our proof involves the following lemma, which makes use of the knowledge on
the automorphism groups of the non-abelian simple groups.

Lemma 3.5. [9, Lemma 2.6] Let S be a simple group. Then there exists r ∈ π(S) such
that gcd(r, |CCCS(α)|) = 1 for every non-trivial α ∈ Aut(S) of order coprime to S.

Theorem A. Let G = AB be a core-factorisation such that Hallπ (G) 6= ∅. Then:

(1) Each
∣

∣xG
∣

∣ is a π-number for every π-element x ∈ A ∪ B of prime power order if
and only if G is π-decomposable.

(2) Each
∣

∣xG
∣

∣ is a π-number for every prime power order element x ∈ A ∪ B if and
only if G is π-decomposable and its Hall π′-subgroup is abelian.

Proof. (1) The sufficient condition is clear. Let us prove that G = AB is π-
decomposable whenever every

∣

∣xG
∣

∣ is a π-number for each π-element x ∈ A∪B of prime
power order. Take G a minimal counterexample to the assertion. In virtue of Lemma 3.4
we can affirm that H := OOOπ(G) ∈ Hallπ (G), so G is π-separable. Applying Lemma 2.7,
we can choose F ∈ Hallπ′ (G) prefactorised. Take y ∈ F ∩A. We claim that Gy := H〈y〉
satisfies the hypotheses of the theorem. We have

Gy = 〈y〉(H ∩A)(H ∩B) ⊆ (Gy ∩A)(Gy ∩B) ⊆ Gy,

so Gy is prefactorised and Hallπ (Gy) = {H} 6= ∅. Now we take p ∈ π and P a prefac-
torised Sylow p-subgroup of Gy as in Lemma 2.7. Any element x ∈ P ∩Gy ∩A = P ∩A
has

∣

∣xG
∣

∣ a π-number. Hence, there exists g ∈ G such that F g 6 CCCG(x). We can assume
g ∈ H because G = HF . Since 〈y〉 6 F , we get 〈y〉g 6 CCCGy(x), so

∣

∣xGy
∣

∣ is a π-number.
This is analogously valid for the elements in P ∩Gy ∩B = P ∩B, and for all p ∈ π. Now
Remark 3.2 provide that all π-elements in (Gy∩A)∪ (Gy∩B) of prime power order have
conjugacy class size in Gy a π-number. It remains to show that Gy = (Gy∩A)(Gy∩B) is a
core-factorisation. If we reproduce the techniques in the proof of Lemma 2.7, we get that
1 = N0∩HEN1∩HE· · ·ENn−1∩HENn∩H = H is a normal series of H such that each
(Ni∩H)/(Ni−1∩H) is covered by eitherH∩A 6 Gy∩A orH∩B 6 Gy∩B. ButH and all
theNi are normal in G, so 1 = N0∩HEN1∩HE· · ·ENn−1∩HENn∩H = HEH〈y〉 = Gy
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is a normal series of Gy. Moreover, Gy/H is clearly covered by Gy∩A because y ∈ Gy∩A.
Thus all the factors are covered by either Gy ∩A or Gy ∩B and Gy = (Gy ∩A)(Gy ∩B)
is a core-factorisation by Lemma 2.4. If Gy < G, then it follows by minimality that
H 6 CCCG(y). Hence, we can suppose for some y ∈ (F ∩ A) ∪ (F ∩ B) that G = H〈y〉;
otherwise H 6 CCCG(F ), a contradiction. Indeed, by the decomposition of y as product
of prime power order elements, the same arguments apply and we can assume that o(y)
is a q-number for some prime number q ∈ π′.

Since the hypotheses are inherited by quotients of G, and the class of π-decomposable
groups is a saturated formation, we may assume ΦΦΦ(G) = 1 and that there exists a
unique minimal normal subgroup N of G, so N 6 H. Thus OOOπ′(G) = 1. As G/N is
π-decomposable, then 〈y〉NEG, and [H, 〈y〉] = [H, y] 6 N . Moreover, by coprime action
we get H = [H, y]CCCH(y) 6 NCCCH(y), so G = H〈y〉 = NCCCG(y).

We claim that G = N〈y〉. Set T := N〈y〉 and, contrariwise, we assume that T < G.
Note that Hallπ (T ) = {N} 6= ∅. Since G = AB is a core-factorisation and N is the
unique minimal normal subgroup ofG, we may suppose thatN 6 A. As y ∈ (F∩A)∪(F∩
B), then clearly T = (T ∩A)(T ∩B). If we consider the normal series 1EN EN〈y〉 = T ,
then the factors are covered by either T ∩ A or T ∩ B and T = (T ∩ A)(T ∩ B) is a
core-factorisation by Lemma 2.4. Moreover, the class size conditions are inherited by T
because it is prefactorised and normal in G. By minimality we obtain that N 6 CCCG(y)
and G = NCCCG(y) = CCCG(y), which leads to a contradiction. Therefore, G = N〈y〉.

Next we demonstrate that N is non-abelian. Otherwise N = CCCG(N) because of
standard group theoretic arguments ([7, Theorem A - 10.6]). By coprime action we
get N = [N, y] × CCCN (y). But CCCN (y) is normal in G and N = CCCG(N), so necessarily
CCCN (y) = 1. Since N is t-elementary abelian for some prime t ∈ π, any non-trivial
element n ∈ N 6 A satisfies that

∣

∣nG
∣

∣ is a π-number, so a G-conjugate of n lies in
CCCN (y) = 1, a contradiction.

Thus N is non-abelian and we can writeN = L1×· · ·×Lk where all Li are isomorphic
non-abelian simple groups and they form a full G-conjugacy class of subgroups. Since
G = N〈y〉, then 〈y〉 acts transitively on {L1, . . . , Lk}. As 〈y〉 is a q-group with q ∈ π′, if
k > 1, then we get a contradiction because |N | = k |L1| and N is a π-group. It follows
that k = 1 and N is simple. Now we can apply Lemma 3.5 in order to affirm that there
exists a prime s ∈ π(N) such that s does not divide |CCCN (y)|. Let x be a non-trivial s-
element in N 6 A. Since by hypotheses there is a conjugate of x which lies in CCCN (y) = 1,
we have reached the final contradiction. The proof of (1) is now completed.

(2) It is enough to show the necessity condition. Assume that
∣

∣xG
∣

∣ is a π-number
for every prime power order element x ∈ A ∪ B. Clearly, G is π-decomposable by (1).
Moreover, its unique Hall π′-subgroup OOOπ′(G) is prefactorised by Lemma 2.7. Since
OOOπ′(G) ∩ A and OOOπ′(G) ∩B are generated by prime power order elements, all of which
lying in ZZZ(OOOπ′(G)) due to the class size assumptions, then OOOπ′(G) is abelian.

A question which remains open is whether the hypothesis of being a core-factorisation
in Theorem A can be eliminated. Moreover, when we consider the trivial factorisation
G = A = B in the above theorem, we retrieve the next result in [14]. In fact, our
arguments provide an alternative proof. We remark that the proof given in that paper
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uses deeply the CFSG via a result due to Fein, Kantor and Schacher (see [14, Lemma
2]).

Corollary 3.6. [14, Theorem 3.1] Let G be a group with Hallπ (G) 6= ∅. Then each
∣

∣xG
∣

∣ is a π-number for every π-element x ∈ G of prime power order if and only if G is
π-decomposable.

Remark 3.7. Actually, when all the π-elements are considered in the above result
(not only those of prime power order), then the CFSG can be avoided (see either [6,
Supplement to Theorem 1] or Lemma 4.2 below).

Zhao et al. also provided in [14, Theorem 3.2] a similar characterisation to the one
in Theorem A, but considering a factorised group G = AB with one factor which is
subnormal. It is worth to remark that, if A is subnormal, then for every element x ∈ A
it holds that

∣

∣xA
∣

∣ divides
∣

∣xG
∣

∣, although in general this is not the case. Besides, there
exists a normal subgroup of G which contains A, so this normal subgroup is prefactorised.

Example 3.8. Notice that, a priori, groups with a core-factorisation and factorised
groups with one subnormal factor are not related. For instance, let G be the natural
wreath product of a symmetric group of degree 3 and a cyclic group 〈z〉 of order 2. If
we take A = 〈(2, 3), (1, 2, 3)z , (2, 3)z〉 and B = 〈(1, 3, 2)(4, 5, 6)z , (1, 3, 2)(4, 5, 6)z z〉, then
G = AB is not a core-factorisation and B is subnormal in G. On the other hand, it is
not difficult to find core-factorisations where the factors are neither subnormal in the
whole group nor mutually permutable ([11, Example 2]).

Next, we deal with the dual condition on the class sizes of prime power order π-
elements, i.e. when they are not divisible by any prime in π. We characterise arbitrary
factorisations of π-separable groups which have abelian Hall π-subgroups through ele-
mentary reasonaments.

Proposition 3.9. Let G = AB be a π-separable group. Then
∣

∣xG
∣

∣ is a π′-number for
each π-element x ∈ A∪B of prime power order if and only if the Hall π-subgroups of G
are abelian. Moreover, if this occurs, then the π-length of G is at most 1.

Proof. We can work with H = (H ∩ A)(H ∩ B) ∈ Hallπ (G) such that H ∩ A ∈
Hallπ (A) and H ∩B ∈ Hallπ (B) in virtue of Lemma 2.7. The converse of the first claim
is clear by Remark 3.2. So let us prove that H = (H ∩A)(H ∩B) is abelian when

∣

∣xG
∣

∣

is a π′-number for each π-element x ∈ A ∪ B of prime power order. Suppose that the
assertion is false and let us take G a minimal counterexample. Then OOOπ′(G) = 1 by
minimality, and so CCCG(OOOπ(G)) 6 OOOπ(G). Take a Sylow q-subgroup Q of H ∩ A. Then
each y ∈ Q satisfies by assumption that y ∈ CCCG(OOOπ(G)) 6 OOOπ(G). Since H ∩ A is
generated by its Sylow subgroups, it follows that H ∩ A 6 CCCG(OOOπ(G)) 6 OOOπ(G) and
analogously for H ∩ B. Hence H 6 CCCG(OOOπ(G)) 6 OOOπ(G), so H is abelian. The last
claim follows directly.

Example 3.10. Without the π-separability hypothesis, the previous result is not true,
even for a not necessarily factorised group: Let G = J4 be a Janko group, and let
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π = {3}. Then all the 3-elements of G have conjugacy class size not divisible by 3,
although a Sylow 3-subgroup is non-abelian. This example appears in [13].

Now we prove a result related to the above theorems.

Proposition 3.11. Let G = AB be a π-separable group. Assume that a given prime p
does not divide

∣

∣xG
∣

∣ for each π-element x ∈ A ∪ B of prime power order. Then there
exists a Sylow p-subgroup of G which normalises some Hall π-subgroup of G.

Proof. We may assume clearly that p ∈ π′. Besides, by conjugacy and Lemma
2.7, we may work with H = (H ∩ A)(H ∩ B) ∈ Hallπ (G). Let G be a counterexample
of least possible order. If OOOπ(G) 6= 1, then by minimality we get the thesis. Hence we
necessarily have that N := OOOπ′(G) 6= 1.

We claim that p does not divide |N : NNNN (H)|. Certainly, we may suppose that
p ∈ π(N). Let P0 ∈ Sylp (N), and G = NNNG(P0)N in virtue of Frattini’s argument. For
q ∈ π, let Q = (Q ∩ H ∩ A)(Q ∩ H ∩ B) = (Q ∩ A)(Q ∩ B) be a prefactorised Sylow
q-subgroup of H. If a ∈ Q ∩ A, then by hypotheses we get a ∈ CCCQ∩A(P

n
0 ) for some

n ∈ N . It follows
(Q ∩A)N ⊆ CCC(Q∩A)N (P0)N ⊆ (Q ∩A)N,

so (Q∩A)N = CCC(Q∩A)N (P0)N 6 CCCQN (P0)N . We can argue analogously with Q∩B and
thus QN = (Q ∩A)(Q ∩B)N = CCCQN(P0)N 6 CCCHN (P0)N 6 HN . Now for any h ∈ H,
we also have QhN = (QN)h 6 (CCCHN (P0)N)h = CCCHN (P h

0 )N . But h ∈ G = NNNG(P0)N ,
so we may assume h ∈ N and so QhN 6 CCCHN (P h

0 )N = (CCCHN (P0)N)h = CCCHN (P0)N .
Since this is valid for each q ∈ π we deduce HN =CCCHN (P0)N . But N is a π′-group, so
there exists n ∈ N such that H 6 CCCHN (Pn

0 ). Hence Pn
0 6 CCCN (H) 6 NNNN (H) 6 N . As

P0 ∈ Sylp (N), it follows that p does not divide |N : NNNN (H)|.
On the other hand, by minimality there exists a Sylow p-subgroup P of G that

P 6 NNNG(HN). Again Frattini’s argument for Hall π-subgroups produces NHP =
NHNNNNHP (H) = NNNNNHP (H). Therefore p does not divides |NHP : NNNNHP (H)| =
|N : NNNN (H)|. Thus there is a Sylow p-subgroup of HNP (which is a Sylow p-subgroup
of G) that normalises H.

In particular, when G = A = B and π = {q} we partially get [5, Theorem 4.1].
It is worth to remark again that both Propositions 3.9 and 3.11 hold for any arbitrary
factorisation of a π-separable group G = AB.

4 On conjugacy class sizes of π-elements

The assumptions in Corollary 3.6 imply that the elements in the centre of a Hall
π-subgroup H of a group G have to be central in G. Thus, a more general approach
is to consider only the elements in H r ZZZ(H), as Berkovich and Kazarin did through
elementary arguments in [6, Supplement to Theorem 1] for π-separable groups. For the
sake of completeness, we present a proof of that result for groups which have a Hall
π-subgroup (see Lemma 4.2 below).
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Lemma 4.1. Let H be a proper subgroup of a group G. Then G = 〈GrH〉.

Proof. Assume G rH = {x1, . . . , xk} for k ≥ 1. Clearly G is a disjoint union of
this last set and H. Let X := 〈x1, . . . , xk〉, and let z ∈ H. Since for any xj ∈ GrH it
holds that zxj ∈ GrH, then zxj = xs for some s, and it follows z ∈ X. Hence H and
GrH are contained in X, which finishes the proof.

Lemma 4.2. Let G be a group with a non-abelian Hall π-subgroup H. Then G is
π-decomposable whenever every element in H rZZZ(H) has class size a π-number.

Proof. In virtue of Lemma 3.3 it follows that every element x ∈ H r ZZZ(H) lies
in OOOπ(G), and Lemma 4.1 leads to H = 〈H r ZZZ(H)〉 6 OOOπ(G). So G has a normal
Hall π-subgroup and it is π-separable. Let F be a Hall π′-subgroup of G. If g ∈
H r ZZZ(H), then by hypotheses g ∈ CCCH(F x) for some x ∈ H since G = HF . Thus
H ⊆ ∪x∈H(ZZZ(H)CCCH(F ))x ⊆ H, so H = ZZZ(H)CCCH(F ) and CCCH(F ) is normal in H. Thus,
every element g ∈ H rZZZ(H) lies in CCCH(F ). Since H = 〈H rZZZ(H)〉 6 CCCH(F ), it follows
G = HF = H × F , as desired.

Example 4.3. In view of the previous section, one might wonder whether the hypotheses
in Lemma 4.2 can be restricted to only prime power order π-elements. However, this is
simply not possible:

Let G be the direct product of a symmetric group of degree 3 and a non-abelian
group of order 55, and let π = {2, 3, 11}. Then H ∈ Hallπ (G) is clearly non-abelian,
G is not π-decomposable, and

∣

∣xG
∣

∣ is a π-number for every element x ∈ H r ZZZ(H) of
prime power order.

Our next objective is to generalise Lemma 4.2 for π-separable groups with a core-
factorisation.

Theorem 4.4. Let G = AB be a core-factorisation, and suppose that G is π-separable.
Let H = (H ∩ A)(H ∩ B) be a Hall π-subgroup of G such that H ∩X ∈ Hallπ (X) for
all X ∈ {A,B}, and assume that H is non-abelian. Then the following statements are
equivalent:

(1) Every element in ((H ∩A) ∪ (H ∩B))rZZZ(H) has G-class size a π-number.

(2) For each X ∈ {A,B}, it follows that either H ∩X 6 ZZZ(H) or H ∩X 6 CCCH(F ) for
every F ∈ Hallπ′ (G).

Furthermore, if H ∩X 6 ZZZ(H), then X has π-length at most 1; and if H ∩X 6 CCCH(F )
for every F ∈ Hallπ′ (G), then X is π-decomposable.

Proof. Let F = (F∩A)(F∩B) be a prefactorised Hall π′-subgroup ofG as in Lemma
2.7. Since H ∩ X ∈ Hallπ (X), the last claim of the result follows from the fact that
either H ∩X is abelian, or H ∩X 6 CCCH∩X(F ) 6 CCCX(F ∩X) being F ∩X ∈ Hallπ′ (X).
Moreover, the implication (2) ⇒ (1) is clear. Therefore, it is enough to show that (1)
⇒ (2). Notice that H is non-abelian by assumption, so there exists some X ∈ {A,B}
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such that H ∩X 
 ZZZ(H). Now, let us fix some arbitrary F ∈ Hallπ′ (G), and note that
G = HF . We split the proof in a number of steps.

Step 1: If H ∩X 
 ZZZ(H) and H ∩X is normal in H, then H ∩X 6 CCCH(F ).

Let {X,Y } = {A,B}. We claim that H = (H ∩X)CCCH(F )ZZZ(H), and we distinguish
two cases. If H ∩ Y 6 ZZZ(H), then clearly H = (H ∩X)ZZZ(H) = (H ∩X)CCCH(F )ZZZ(H). If
H ∩Y 
 ZZZ(H), then we can pick y ∈ (H ∩Y )rZZZ(H). By our hypotheses, it follows that
y ∈ CCCG(F )h for some h ∈ H, and hence H ∩ Y ⊆ ∪h∈HCCCH(F )hZZZ(H). Since H ∩X EH,
then

H ⊆ (H ∩X)
⋃

h∈H

CCCH(F )hZZZ(H) ⊆
⋃

h∈H

[(H ∩X)CCCH(F )ZZZ(H)]h ⊆ H.

This fact yields H = (H ∩X)CCCH(F )ZZZ(H).
Now we choose x ∈ (H ∩ X) r ZZZ(H). Thus, we get x ∈ CCCH∩X(F h) with h ∈

(H∩X)ZZZ(H). Indeed, h = gz with g ∈ H∩X and z ∈ ZZZ(H), so xg
−1

= xh
−1

∈ CCCH∩X(F ).
We deduce

H ∩X =
⋃

g∈H∩X

CCCH∩X(F )g(ZZZ(H) ∩X) =
⋃

g∈H∩X

[CCCH∩X(F )(ZZZ(H) ∩X)]g,

so H ∩X = CCCH∩X(F )(ZZZ(H)∩X) and CCCH∩X(F ) is normal in H ∩X. Now each element
in (H ∩X)rZZZ(H) lies in CCCH∩X(F ). Since (H ∩X) rZZZ(H) = (H ∩X) r (ZZZ(H) ∩X),
in virtue of Lemma 4.1 we obtain H ∩X = 〈(H ∩X)rZZZ(H)〉 6 CCCH(F ), as wanted.

Now we assume without loss of generality that H ∩A 
 ZZZ(H). So the remainder of the
proof aims to show that H ∩A 6 CCCH(F ).

Step 2: We may suppose that neither H ∩A nor H ∩B are normal in H.

By Step 1, we may assume that H ∩A is not normal in H. If H ∩ B 6 ZZZ(H), then
H = (H ∩A)ZZZ(H) and H ∩AEH, a contradiction. Therefore H ∩B 
 ZZZ(H). If H ∩B
is normal in H, then by Step 1 it centralises F . So H = (H ∩ A)CCCH(F ) and arguing
similarly as in the last paragraph of Step 1, we can deduce that H ∩A 6 CCCH(F ).

Step 3: If N is a minimal normal subgroup of G, then N is a π-group.

Otherwise, we may assume that N is a π′-group because G is π-separable. We argue
by induction on the order of G. We claim that the quotient G := G/N inherits the
hypotheses. Clearly we can assume 1 6= G, since N = G implies the result trivially.
Note that for X ∈ {A,B}, it holds H ∩X 6 H ∩X and, as H ∩X ∈ Hallπ (X), then
H ∩X = H ∩X. Thus H is prefactorised as in Lemma 2.7. Also H is non-abelian, G
is a core-factorisation, and the class size condition is clearly inherited by quotients of G,
so G satisfies the assumptions.

By induction either H ∩ X 6 ZZZ(H) or H ∩ X 6 CCCG(F ) for all X ∈ {A,B}. If
H ∩X 6 ZZZ(H), then [H ∩X,H] 6 N ∩H = 1 and H ∩X 6 ZZZ(H), a contradiction with
Step 2. Therefore we necessarily have [H∩X,F ] 6 N 6 F , so H∩X normalises F . Since
this is valid for all X ∈ {A,B}, we get that F is normal in G. If x ∈ (H ∩ A) r ZZZ(H),
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then the fact that
∣

∣xG
∣

∣ is a π-number implies that x ∈ CCCH(F ). As H ∩ A is generated
by the elements in (H ∩A)rZZZ(H), then H ∩A centralises F , as wanted.

Step 4: Conclusion.

Since G = AB is a core-factorisation, we can choose a minimal normal subgroup N
of G which is covered by some X ∈ {A,B}. Moreover, N is a π-group by the previous
step. We consider G := G/N . If H is abelian, then 1 6= H ′ 6 N 6 H ∩ X 6 H, so
H ∩ X is normal in H, which cannot happen because of Step 2. Thus, G inherits the
hypotheses, and so G satisfies the thesis by induction on |G|.

Now if H ∩X 6 ZZZ(H), then [H ∩X,H ∩ Y ] 6 N 6 H ∩X, so H ∩X is normal in
H, a contradiction again with Step 2. Therefore, both H ∩A and H ∩B centralise F ,
and it follows that H centralises F . Hence FN normal in G, and for all g ∈ G there is
some n ∈ N such that F g = Fn.

Next we claim that N = (ZZZ(H)∩N)CCCN (F ). If N 6 ZZZ(H) then the claim is clear. If
N 
 ZZZ(H), then we can take m ∈ N rZZZ(H) and by assumptions m ∈ CCCN (F )n for some
n ∈ N . Hence N = ∪n∈N [(ZZZ(H) ∩N)CCCN (F )]n and so N = (ZZZ(H) ∩N)CCCN (F ).

Consequently, since each element x ∈ (H ∩A)rZZZ(H) lies in CCCH(F )n for some n ∈ N
and N = (ZZZ(H) ∩N)CCCN (F ), it follows x ∈ CCCH(F ). Thus H ∩A = 〈(H ∩A)rZZZ(H)〉 6
CCCH(F ).

Finally, we can argue analogously with H ∩B in case that H ∩B 
 ZZZ(H). The result
is now proved.

Example 4.5. In contrast to Lemma 4.2, which relaxes the π-separability assumption
in [6, Supplement to Theorem 1], we show that this condition is necessary in Theorem
4.4: Let G = A×B be the direct product of A = J4 a Janko group and B = C3 a cyclic
group of order 3, and let π = {3}. Note that this is clearly a core-factorisation, and G is
not 3-separable. Moreover, if we take P ∈ Syl3 (G) such that P = (P ∩A)(P ∩B) with
P ∩A ∈ Syl3 (A) and B = P ∩B ∈ Syl3 (B), then P is non-abelian and all the elements
x ∈ ((P ∩A)∪ (P ∩B))rZZZ(P ) = (P ∩A)rZZZ(P ) have

∣

∣xG
∣

∣ not divisible by 3. However,
neither P ∩A is central in P nor P ∩A centralises every Hall 3′-subgroup of G.

Example 4.6. The following example shows that in Theorem 4.4 we cannot affirm that
G is π-decomposable, in contrast to Lemma 4.2: Let A be a dihedral group of order 8
and let B be a dihedral group of order 10, and consider π = {2}. Then G = A × B
satisfies the hypotheses in Theorem 4.4 but clearly it is not 2-decomposable.

As a consequence, we obtain the next result.

Theorem B. Let G = AB be a core-factorisation, and suppose that G is π-separable.
Let H = (H ∩A)(H ∩B) be a Hall π-subgroup of G such that H ∩X ∈ Hallπ (X) for all
X ∈ {A,B}. Then the next assertions are pairwise equivalent:

(1) Every element in (H ∩ A) ∪ (H ∩ B) has G-class size either a π-number or a
π′-number.

(2) For each X ∈ {A,B}, it follows that either H ∩ X 6 CCCH(F ) for every F ∈
Hallπ′ (G) or H ∩X 6 ZZZ(H).
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In addition:

(a) H ∩X 6 ZZZ(H) if and only if all
∣

∣xG
∣

∣ are π′-numbers for x ∈ H ∩X. In this case
the π-length of X is at most 1.

(b) H ∩X 6 CCCH(F ) for every F ∈ Hallπ′ (G) if and only if all
∣

∣xG
∣

∣ are π-numbers for
x ∈ H ∩X. In this case X is π-decomposable.

Proof. The implication (2) ⇒ (1) is clear. Let us prove (1) ⇒ (2). We may
suppose that H is non-abelian. We work by induction on the order of G, and we first
claim OOOπ′(G) 6= 1. Otherwise OOOπ(G) is self-centralising in G. If x ∈ (H ∩A) ∪ (H ∩B),
then

∣

∣xG
∣

∣ is either a π-number or a π′-number. In the first case x ∈ OOOπ(G) because
of Lemma 3.3, and in the second case x ∈ CCCG(OOOπ(G)) 6 OOOπ(G). Since this is valid
for every element x ∈ (H ∩ A) ∪ (H ∩ B), it follows that OOOπ(G) = H is prefactorised.
Thus, for each X ∈ {A,B} the elements x ∈ OOOπ(G) ∩ X with

∣

∣xG
∣

∣ a π′-number lie in
ZZZ(OOOπ(G)). So any

∣

∣xG
∣

∣ is a π-number for the elements x ∈ ((H ∩A)∪ (H ∩B))rZZZ(H).
Applying Theorem 4.4 we obtain for each X ∈ {A,B} that either H ∩ X 6 ZZZ(H) or
H ∩X = OOOπ(G) ∩X 6 CCCG(F ) for every π′-Hall subgroup F of G, as desired. It follows
then OOOπ′(G) 6= 1.

Now, by induction, we get that G := G/OOOπ′(G) satisfies the thesis. Let X ∈ {A,B},
so we have either H ∩X = H ∩ X 6 ZZZ(H) or H ∩X = H ∩ X 6 CCCG(F ) for any
F ∈ Hallπ′ (G). The first case leads to [H ∩X,H] 6 H ∩OOOπ′(G) = 1, so H ∩X 6 ZZZ(H)
and we are done. Hence, let us suppose H ∩X 6 CCCG(F ) and H ∩X 
 ZZZ(H). Now if
∣

∣xG
∣

∣ is a π′-number for some x ∈ (H ∩X)rZZZ(H), then |xG| so is too. But x ∈ H ∩X 6

CCCG(F ), and we get that x is central in G. In particular, [H, 〈x〉] 6 OOOπ′(G) ∩ H = 1,
so x ∈ ZZZ(H), a contradiction. Thus, any

∣

∣xG
∣

∣ is a π-number for the elements x ∈
((H ∩ A) ∪ (H ∩ B)) r ZZZ(H), so the thesis follows as an application again of Theorem
4.4. This completes the proof of (1) ⇒ (2).

Next we prove (a). For the first claim, certainly only the sufficient condition is in
doubt. So let us suppose that all

∣

∣xG
∣

∣ are π′-numbers for x ∈ H ∩ X. By (2), either
H ∩ X 6 ZZZ(H) or H ∩ X 6 CCCH(F ) for every F ∈ Hallπ′ (G). In the first case we are
done, and in the second case it follows that any element in H ∩ X is central in G, so
H∩X 6 ZZZ(H) also. Moreover, the last assertion follows from the fact that X has abelian
Hall π-subgroups.

Finally we prove (b). Again, it is enough to show in the first claim the sufficient
condition. Let us suppose that all

∣

∣xG
∣

∣ are π-numbers for x ∈ H ∩ X. If the case
H ∩X 6 ZZZ(H) in (2) holds, then H ∩X is central in G and we are done. So H ∩X 6

CCCH(F ) for every F ∈ Hallπ′ (G). Further, the last assertion can be deduced from the
fact that H ∩X centralises a prefactorised Hall π′-subgroup F of G as in Lemma 2.7, so
H ∩X 6 CCCX(F ∩X) where F ∩X ∈ Hallπ′ (X).

When G = A = B in the previous result, the corollary below follows.

Corollary C. Let G be a π-separable group. Then the following statements are pairwise
equivalent:

13



(1) Each π-element x ∈ G has class size either a π-number or a π′-number.

(2) Either G is π-decomposable or it has abelian Hall π-subgroups and its π-length is
at most 1.

(3) For every π-element x ∈ G, either all
∣

∣xG
∣

∣ are π-numbers or they are all π′-
numbers.

In [8, Theorem 4] (see the next theorem, which is a little reformulation) Dolfi char-
acterised the so-called class-π-separable groups, i.e. groups all of whose class sizes are
either π-numbers or π′-numbers.

Theorem 4.7. A group G is class-π-separable if and only if, up to abelian direct factors,
one of the following two cases happens:

(1) G is either a π-group or a π′-group.

(2) Up to interchanging π and π′, G = HL with H ∈ Hallπ (G), L ∈ Hallπ′ (G),
L E G, both H and L are abelian, and G/OOOπ(G) is a Frobenius group. Indeed,
OOOπ(G) = ZZZ(G), the set of the class sizes of G is {1, |H/OOOπ(G)| , |L|}, and G is
soluble.

Motivated by Dolfi’s result, we introduce the following factorised-group version of
the concept of class-π-separability.

Definition 4.8. Let G = AB be the product of two subgroups A and B. We say that
G = AB is a class-π-separable factorisation whenever

∣

∣xG
∣

∣ is either a π-number or
a π′-number for every element x ∈ A ∪B.

Certainly, G = AB is a class-π-separable factorisation if and only if it is a class-
π′-separable factorisation. Besides, any central product of two class-π-separable groups
provides a class-π-separable factorisation.

We cannot assert in a class-π-separable factorisation G = AB, a priori, that both
A and B are class-π-separable groups. This is because, for x ∈ A, there is no relation
in general between the sets π(

∣

∣xA
∣

∣) and π(
∣

∣xG
∣

∣). Nevertheless, under the additional
assumption of being a core-factorisation, we determine in Theorem D that this phe-
nomenon actually occurs. To prove that fact we need firstly some preparation. The next
result generalises Lemma 3.3.

Lemma 4.9. Let G be a π-separable group. If
∣

∣xG
∣

∣ is a π-number for some x ∈ G, then
(〈xG〉)′ is a π-group. In particular, x ∈ OOOπ,π′(G).

Indeed, if π consists of a single prime q, then the same statement is valid even if G
is not q-separable.

Proof. The first claim is exactly [4, Theorem C] (see also [6, Lemma J(k)]), whilst
the second assertion is [6, Lemma 3].

There are easy examples which illustrates that the first claim is not true when the
π-separability hypothesis is removed ([4]).

The following well-known result is due to Itô.
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Lemma 4.10. [12, Proposition 5.1] Let G be a group. Suppose that p and q are distinct
primes that divide two different conjugacy class sizes of G, but there is no g ∈ G with
pq dividing

∣

∣gG
∣

∣. Then G is either p-nilpotent or q-nilpotent.

In relation to Theorem B, when we consider all the elements in the factors (not just
those of order a π-number), we obtain the proposition below. Actually, this generalises
[8, Lemma 6].

Proposition 4.11. Let G = AB be the product of the subgroups A and B, and assume
that G = AB is both a core-factorisation and a class-π-separable factorisation. Then G
is π-separable.

Proof. Since G = AB is a core-factorisation, there exists a chief series 1 = N0 E

N1 E · · · E Nn−1 E Nn = G with each chief factor covered by either A or B. In fact,
we can refine that series in order to get a composition series whose factors are covered
by either A or B. Thus, for each 1 ≤ i ≤ n, there exist subgroups Tj such that
Ni−1 = T0 E T1 E T2 E · · · E Tm = Ni and Tj/Tj−1 is simple for every 1 ≤ j ≤ m.
We claim that each of these Tj/Tj−1 is either a π-group or a π′-group, and so G will
be π-separable. Note that Tj/Tj−1 is isomorphic to (Tj/Ni−1)/(Tj−1/Ni−1). Moreover
Tj/Ni−1 is subnormal in Ni/Ni−1, which is normal in G/Ni−1 and it is covered by either
A or B, as G/Ni−1 = (ANi−1/Ni−1)(BNi−1/Ni−1) is a core-factorisation. Then all the
class sizes of Ni/Ni−1, and so all the class sizes of Tj/Tj−1, are either π-numbers or
π′-numbers. If there are two primes p ∈ π and q ∈ π′ that divide two different class
sizes of Tj/Tj−1, as pq does not divide any class size of Tj/Tj−1, applying Lemma 4.10
we get that the simple group Tj/Tj−1 has either a normal p-complement or a normal
q-complement. We deduce that either p or q does not divide the order of Tj/Tj−1, a
contradiction. Thus, we may assume that each prime q ∈ π′ does not divide any class
size of Tj/Tj−1, so it has a central Sylow q-subgroup. It follows that q /∈ π(Tj/Tj−1) for
every q ∈ π′, so Tj/Tj−1 is a π-group and G is π-separable.

We are now ready to prove Theorem D. We will use mainly Theorem B and some of
Dolfi’s techniques in [8].

Theorem D. Let G = AB be the product of the subgroups A and B, and assume that
G = AB is both a core-factorisation and a class-π-separable factorisation. Then, up to
abelian direct factors, one of the following two possibilities holds for any X ∈ {A,B}:

(1) X is either a π-group or a π′-group.

(2) Up to interchanging π and π′, X = XπXπ′ where Xπ ∈ Hallπ (X) and Xπ′ ∈
Hallπ′ (X), Xπ′ EX, both Xπ and Xπ′ are abelian, and X/OOOπ(X) is a Frobenius
group. Indeed, OOOπ(X) = ZZZ(X), the class sizes of X are {1, |Xπ/OOOπ(X)| , |Xπ′ |},
and X is soluble.

In particular, both A and B are class-π-separable groups.
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Proof. Observe that G is π-separable by Proposition 4.11. Take H = (H ∩A)(H ∩
B) ∈ Hallπ (G) and F = (F ∩ A)(F ∩ B) ∈ Hallπ′ (G) with H ∩ X ∈ Hallπ (X) and
F ∩ X ∈ Hallπ′ (X) for all X ∈ {A,B} as in Lemma 2.7. Set Xπ := H ∩ X and
Xπ′ := F ∩X. Certainly, X = XπXπ′ . Let us analyse the structure of any X ∈ {A,B}.
We may assume that X has no abelian direct factors. We proceed in five steps.

Step 1: Let σ ∈ {π, π′}. If every G-class size of elements in X is a σ-number, then
X is a σ-group.

Applying Theorem B for the elements in Xσ and in Xσ′ , we deduce X = Xσ ×Xσ′

with Xσ′ abelian. Then Xσ′ is an abelian direct factor of X, so Xσ′ = 1 and X is a
σ-group, as wanted.

In particular, we may assume in the sequel that X is nor a π-group nor a π′-group, and
that there exist x, y ∈ X such that π(

∣

∣xG
∣

∣) contains a prime in π and π(
∣

∣yG
∣

∣) contains
a prime in π′, respectively.

Step 2: X has both abelian Hall π-subgroups and Hall π′-subgroups.

In virtue of Theorem B, we get that either every element in Xπ has G-class size a
π-number or every element in Xπ has G-class size a π′-number. In the first case we get
X = Xπ × Xπ′ and, as we are assuming that Xπ′ 6= 1, it cannot be an abelian direct
factor, so necessarily there is a non-trivial element y ∈ Xπ′ with

∣

∣yG
∣

∣ a π′-number.
Hence, for any x ∈ Xπ r ZZZ(Xπ) we get that

∣

∣(xy)G
∣

∣ is neither a π-number nor a π′-
number, a contradiction. Hence all

∣

∣xG
∣

∣ are π′-numbers for the elements x ∈ Xπ and
analogously all

∣

∣yG
∣

∣ are π-numbers for the elements y ∈ Xπ′ . Now Theorem B (a) yields
that X has abelian Hall π-subgroups and Hall π′-subgroups, as wanted.

Note that our class size assumptions imply X = CCCX(OOOπ(G)) ∪CCCX(OOOπ′(G)), so we may
assume [X,OOOπ(G)] = 1 in the remainder of the proof.

Step 3: Xπ′ is normal in X. In particular, X is soluble.

Denoting G := G/OOOπ(G), in virtue of Lemma 4.9 it follows Xπ′ 6 OOOπ′(G) ∩ X 6

OOOπ′(X). Since Xπ′ ∈ Hallπ′ (X), we get Xπ′ = OOOπ′(X), and then Xπ′OOOπ(G) is normalised
by X. Now for any x ∈ X, we deduce that Xx

π′ 6 (Xπ′OOOπ(G))x = Xπ′OOOπ(G), so there
exists some n ∈ OOOπ(G) such that Xx

π′ = Xn
π′ . As [X,OOOπ(G)] = 1, then Xπ′ EX, and X

is soluble.

Step 4: OOOπ(X) = ZZZ(X).

SinceXπ′ is abelian and normal inX, by coprime action, we deduceXπ′ = [Xπ′ ,Xπ]×
CCCXπ′

(Xπ). Note that CCCXπ′
(Xπ) 6 ZZZ(X), so CCCXπ′

(Xπ) is an abelian direct factor of X
and we may assume CCCXπ′

(Xπ) = 1. Hence Xπ′ ∩ ZZZ(X) = 1 and ZZZ(X) 6 OOOπ(X). The
other inclusion is clear because Xπ′ is normal in X and Xπ is abelian.

Step 5: X/OOOπ(X) is a Frobenius group. In particular, the set of class sizes of X is
{1, |Xπ/OOOπ(X)| , |Xπ′ |}.

Set X̃ := X/OOOπ(X). We claim that X̃π acts fixed-point-freely on X̃π′ . Take 1 6=
ỹ ∈ X̃π′ and x̃ ∈ X̃π such that [ỹ, x̃] = 1. Then [y, x] ∈ OOOπ(X) and it is a π′-element
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since Xπ′ E X. Now xy = yx and both
∣

∣xG
∣

∣ and 1 6=
∣

∣yG
∣

∣ divides
∣

∣(xy)G
∣

∣. It follows
necessarily that x ∈ ZZZ(G) ∩X 6 ZZZ(X) = OOOπ(X) so x̃ = 1 and we are done.

Finally, note that OOOπ(X) = ZZZ(X) implies ZZZ(X) ∩X ′ 6 ZZZ(X) ∩Xπ′ = 1. This fact
leads to CCCX(g)/ZZZ(X) = CCCX/ZZZ(X)(gZZZ(X)) for all g ∈ X, so the class sizes of X and
X/ZZZ(X) coincides. Since X/ZZZ(X) is a Frobenius group, then the set of class sizes of X
is {1, |Xπ/OOOπ(X)| , |Xπ′ |}.

To conclude, from the described structure of X, we get that X is a class-π-separable
group.

Observe that [8, Theorem 4] (Theorem 4.7 above) is now a direct consequence of the
previous theorem when G = A = B.

Example 4.12. A core-factorisation of two class-π-separable groups might not be a
class-π-separable factorisation: Let M be the direct product of a non-abelian group of
order 21 and a cyclic group of order 5. Consider the action of a cyclic group N of
order 2 on M , in such way that N acts trivially on the elements of order 3. If we take
π := {3, 7}, A ∈ Hallπ (G) and B ∈ Hallπ′ (G), then G = AB is a core-factorisation since
G is π-separable (indeed it is soluble). Certainly, G = AB is not a class-π-separable
factorisation, although A and B are class-π-separable groups.

The next example illustrates that we cannot expect to obtain in a class-π-separable
factorisation, for instance, either that the Hall π- and π′-subgroups of G are abelian or
that G is soluble.

Example 4.13. Let A be an alternating group of degree 5 and B the semidirect product
of a cyclic group of order 29 acted on by a cyclic group of order 7. Consider G = A×B,
and π = {2, 3, 5}. Clearly, every element in A ∪B has class size equal to a π-number or
a π′-number, but G is not soluble. Moreover, neither the Hall π-subgroup nor the Hall
π′-subgroup of G is abelian.

To conclude, inspired by [4], we concentrate on factorised groups whose π-elements
in the factors have conjugacy class lengths equal to prime powers. Indeed, in [10] we
analysed products of groups where, for a given prime p, the p-elements in the factors
have prime power class sizes.

Proposition 4.14. [10, Theorems A and B] Let G = AB be the product of the subgroups
A and B, and let P ∈ Sylp (G). Assume that

∣

∣gG
∣

∣ is equal to a prime power for each
p-element g ∈ A ∪B. Then we have:

(1) PFFF(G) is normal in G.

(2) There exist unique primes q and r such that
∣

∣xG
∣

∣ is a q-number for every p-element
x ∈ A, and

∣

∣yG
∣

∣ is an r-number for every p-element y ∈ B, respectively. (Eventu-
ally, p ∈ {q, r} or q = r.)

Then, we will use the above proposition for the primes p ∈ π, joint with the next
significant lemma and also some stated results in previous sections in order to prove
Theorem E below.
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Lemma 4.15. Let G be a group, and let x, y ∈ GrZZZ(G) be π-elements such that
∣

∣xG
∣

∣

and
∣

∣yG
∣

∣ are two distinct prime powers, and assume that
∣

∣(xy)G
∣

∣ is also a prime power.
Then 〈x, y〉G 6 OOOπ(G), and

∣

∣(xy)G
∣

∣ = max{
∣

∣xG
∣

∣ ,
∣

∣yG
∣

∣} is a power of a prime q ∈ π. In
particular, if Hallπ (G) 6= ∅, then a Hall π-subgroup of G is non-abelian.

Proof. It is enough to mimic the proof of [6, Lemma 4] with π instead of p.

Theorem E. Let G = AB be a core-factorisation. Suppose that
∣

∣xG
∣

∣ is a prime power
for every π-element x ∈ A∪B. Then G is π-separable of π-length at most 1. Moreover,
for each X ∈ {A,B}, one of the following two possibilities holds:

(1) All
∣

∣xG
∣

∣ are powers of a fixed prime q for every π-element x ∈ X. In addition:

(a) If q /∈ π, then X has an abelian Hall π-subgroup Xπ. In this case XπOOOq(G)
is normalised by X.

(b) If q ∈ π, then X is π-decomposable with nilpotent Hall π-subgroup Xπ and
the Sylow subgroups of Xπ are all abelian except possibly for the prime q.

(2) All
∣

∣xG
∣

∣ are powers of two distinct fixed primes q and r, both in π, for every π-
element x ∈ X. In this case, X is π-decomposable, and the Hall π-subgroup Xπ of
X satisfies that Xπ/ZZZ(Xπ) is a Frobenius group with abelian kernel and complement
of orders a q-power and an r-power, respectively.

Proof. First of all, we prove the assertion on the π-separability of G. Applying
Proposition 4.14 (1) for each prime p ∈ π, we can affirm that G/FFF(G) has a normal Sylow
p-subgroup. Therefore, G is p-separable with p-length at most 1 for each prime p ∈ π
and, in particular, it is π-separable with π-length at most 1. Henceforth, we can take
with H = (H ∩A)(H ∩B) ∈ Hallπ (G) with H ∩A ∈ Hallπ (A) and H ∩B ∈ Hallπ (B).

Next we assume that every
∣

∣xG
∣

∣ is a power of a fixed prime q for the π-elements in
H ∩X, as in case (1). If q /∈ π, then we obtain that X has an abelian Hall π-subgroup
Xπ := H ∩X in virtue of Theorem B (a). Let us prove that XπOOOq(G) is normalised by
X. Let us denote by bars the quotients over OOOq(G). Thus, Lemma 4.9 applied to each
element x ∈ Xπ yields that Xπ 6 OOOq′(G)∩X 6 OOOq′(X). Since q /∈ π andXπ ∈ Hallπ (X),
then Xπ = OOOq′(X). Now clearly XπOOOq(G) is normalised by X, as wanted in (a).

If q ∈ π, then Theorem B (b) provides that X = Xπ × OOOπ′(X), so it remains to
show that Xπ is nilpotent with abelian Sylow subgroups, except possibly for the prime
q. Recall that G is p-separable for every prime p ∈ π. Hence, Theorem B (b) applied for
the prime q gives X = Xq ×OOOq′(X), so Xπ = Xq ×OOOσ(X) where σ := πr {q}. Finally,
OOOσ(X) is abelian in virtue again of Theorem B (a) applied for σ, and (b) is proved.

From now on, we assume that (1) does not hold and we demonstrate case (2) in three
steps.

Step 1: At most two different primes appear as divisors of the class sizes of the
π-elements in X.

Assuming the contrary, there exists three non-central π-elements in X, say x1, x2 and
x3, such that their G-class sizes are equal to powers of three different primes, say p1, p2
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and p3, respectively. All the xi decompose as product of commuting prime power order
(π-)elements, so Proposition 4.14 (2) joint with this last fact allow us to suppose that
the orders of the xi are coprime prime powers. Hence, from now on we assume that xi is
a qi-element with

∣

∣xGi
∣

∣ equal to a pi-power, for each i ∈ {1, 2, 3}. Since either p1 6= q2 or
p1 6= q3, we may assume the first case and so there exists g ∈ G such that Qg 6 CCCG(x1),
where Q = (Q∩A)(Q∩B) ∈ Sylq2 (G), Q∩A ∈ Sylq2 (A) and Q∩B ∈ Sylq2 (B). We may

suppose x2 ∈ Q∩X by Remark 3.2, and so we get xg2 ∈ CCCG(x1). But (
∣

∣xG1
∣

∣ ,
∣

∣xG2
∣

∣) = 1, so
G = CCCG(x1)CCCG(x2) and we obtain x2 ∈ CCCG(x1). Now x1x2 = x2x1 ∈ X is a π-element,
and it follows that

∣

∣(x1x2)
G
∣

∣ is divisible by both p1 and p2, a contradiction.

Step 2: Assuming that all
∣

∣xG
∣

∣ are powers of two distinct fixed primes q and r for
every π-element x ∈ X, we claim that {q, r} ⊆ π.

Let x and y be π-elements in X such that
∣

∣xG
∣

∣ is a non-trivial q-power and
∣

∣yG
∣

∣ is
a non-trivial r-power. Again by Remark 3.2, we can assume without loss of generality
that x, y ∈ H ∩X. Hence xy ∈ H ∩X and

∣

∣(xy)G
∣

∣ is a prime power also. Thus, in virtue
of Lemma 4.15 we have that the prime which corresponds to the largest class size lies
in π. So let us suppose that the largest one is

∣

∣xG
∣

∣, that is, q ∈ π. If r /∈ π, then there
exists g ∈ G such that xg ∈ Hg 6 CCCG(y). Also G = CCCG(x)CCCG(y), so xy = yx ∈ H ∩X
and we conclude that

∣

∣(xy)G
∣

∣ is divisible by both q and r, a contradiction.

Step 3: X is π-decomposable, and the Hall π-subgroup Xπ of X satisfies that
Xπ/ZZZ(Xπ) is a Frobenius group with abelian kernel and complement of orders a q-power
and an r-power, respectively.

Since we are assuming that all
∣

∣xG
∣

∣ are powers of two distinct fixed primes q and r,
both in π, for every π-element x ∈ X, then by Theorem B we get that Xπ centralises
every Hall π′-subgroup of G. Indeed it is π-decomposable. For proving the remaining
assertion, we distinguish two cases on the class sizes of the π-elements in Y , where
{X,Y } = {A,B}: either they are powers of a prime in π or in π′. In the second case,
by Theorem B we obtain Yπ := H ∩ Y 6 ZZZ(H) 6 CCCH(Xπ). As Xπ centralises every
Hall π′-subgroup of G, it follows that Xπ is normal in G. Then all the Xπ-class sizes
of elements in Xπ are either q-powers or r-powers, and Theorem 4.7 yields the desired
structure of Xπ/ZZZ(Xπ). In the other case, Yπ also centralises every Hall π′-subgroup of
G, so H = XπYπ is normal in G. We deduce that the class sizes in H of all elements
in Xπ ∪ Yπ are either q-powers or r-powers. But we may affirm that H = XπXπ′ is a
core-factorisation in virtue of Lemma 2.7, so Theorem D applied to H completes the
proof of (2).

The main result of [4] now can be retrieved from the above theorem (see the corollary
below). It is significant to notice that our proof, however, uses different tools.

Corollary 4.16. Let G be a group for which every
∣

∣xG
∣

∣ is a prime power for the π-
element x ∈ G. Then one of the following possibilities occurs.

(a) All
∣

∣xG
∣

∣ are powers of a fixed prime q. Moreover,
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(1) q /∈ π if and only if G has an abelian Hall π-subgroup H. In this case,
HOOOq(G)EG.

(2) q ∈ π if and only if G is π-decomposable with nilpotent Hall π-subgroup H,
and the Sylow subgroups of H are all abelian except possibly for the prime q.

(b) All
∣

∣xG
∣

∣ are powers of two distinct primes, say q and r. This happens if and
only if {q, r} ⊆ π, G is π-decomposable, and the Hall π-subgroup H of G satisfies
that H/ZZZ(H) is a Frobenius group with abelian kernel and complement of orders a
q-power and an r-power, respectively.

Furthermore, in all cases, G has π-length at most 1.

The reader might think about the possibility of obtaining in Theorem E extra infor-
mation about the π-structure of the whole group G. Nevertheless, in a factorised group,
several different cases may occur with the primes appearing as class sizes of π-elements
in the factors, so the π-structure is quite unrestricted:

Example 4.17. Let A be a symmetric group of degree 3 and B the semidirect product
of a cyclic group of order 5 acting on a cyclic group of order 6. Consider G = A × B,
and π = {2, 3}. Clearly, the hypotheses in Theorem E are satisfied, but neither the Hall
π-subgroup of G is abelian (as in case (1)(a)) nor G is π-decomposable (case (2)).
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[12] N. Itô : On finite groups with given conjugate types, I. Nagoya Math. J. 6 (1953)
17–28.

[13] G. Navarro and P. H. Tiep : Abelian Sylow subgroups in a finite group. J.
Algebra 398 (2014) 519-526.

[14] X.H. Zhao, X.Y. Guo and J.Y. Shi : On the conjugacy class sizes of prime
power order π-elements. South. Asian Bull. Math. 35 (2011) 735–740.

21

https://doi.org/10.1007/s10231-018-0765-5

	1 Introduction
	2 On core-factorisations
	3 On conjugacy class sizes of prime power order pi-elements
	4 On conjugacy class sizes of pi-elements
	References

