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DERIVED CATEGORIES OF CENTRALLY-SYMMETRIC SMOOTH

TORIC FANO VARIETIES

MATTHEW R BALLARD, ALEXANDER DUNCAN, AND PATRICK K. MCFADDIN

Abstract. We exhibit full exceptional collections of vector bundles on any smooth, Fano
arithmetic toric variety whose split fan is centrally symmetric.
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1. Introduction

Exceptional collections provide the most atomic decomposition of the derived category
of coherent sheaves on a variety. They have rich ties to representation theory of finite-
dimensional algebras and their existence has strong structural implications for the motive of
a variety, both in the commutative and non-commutative settings [Orl05,Tab13]. However,
the following question is still very open:

Question 1.1. Which smooth projective varieties admit full exceptional collections?

In particular, even in cases where one knows that the answer to this question is positive,
techniques for constructing full exceptional collections can be highly idiosyncratic.

Toric varieties defined over algebraically-closed fields of characteristic zero provide an
important testing ground which informs our understanding of the existence and construction
of exceptional collections. Moving beyond to general fields and arithmetic toric varieties
[Dun16, ELFST14, MP97], one has the opportunity to further advance our grasp of the
general situation. Indeed, this presents a non-trivial challenge: it is not known whether all
smooth projective arithmetic toric varieties admit full exceptional collections. On the other
hand, base changing a field k to its separable closure ksep opens the door to many useful
tools and known results.

In [BDM17], the authors showed that a k-variety X (not required to be toric) admits
a full exceptional collection if and only if Xksep admits a full exceptional collection which
is Galois-stable, i.e., objects of the collection are permuted by the action of Gal(ksep/k).
Exhibiting a full exceptional collection over k therefore requires that one produce a collection
over ksep which is highly symmetric with respect to the Galois action. By considering the
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2 BALLARD, DUNCAN, AND MCFADDIN

class of toric varieties, one quickly recognizes that “most” full exceptional collections are
not Galois-stable. The Galois-stable collections are often the simplest, particularly due
to their large exceptional blocks (subcollections consisting of objects which are mutually
orthogonal). One may optimistically hope that the additional constraint of Galois-stability
makes the search for a positive answer to Question 1.1 more tractable in general.

In this paper, we study a particular highly-symmetric class of smooth projective varieties.
A polytope P ⊆ Rm is centrally symmetric if it satisfies −P = P . The smooth split toric
varieties X whose anti-canonical polytope is full-dimensional and centrally symmetric were
classified in [VK84]. It was shown in loc. cit. that any such variety, which we refer to as
centrally symmetric toric Fano varieties, is isomorphic to a product of projective lines and
generalized del Pezzo varieties Vn of dimension n = 2m.

The variety Vn is the (split) toric variety with rays given by

e0 = (−1,−1, · · · ,−1)
e1 = (1, 0, · · · , 0)
e2 = (0, 1, · · · , 0)

...
en = (0, 0, · · · , 1)

ē0 = (1, 1, · · · , 1)
ē1 = (−1, 0, · · · , 0)
ē2 = (0,−1, · · · , 0)

...
ēn = (0, 0, · · · ,−1)

and whose maximal cones are as follows (see [VK84, Proof of Thm. 5]). Each maximal cone
is generated by the rays in the set {ei}i∈A ∪ {ēi}i∈B where A and B are disjoint subsets of
{0, . . . , n}, each of cardinality n

2 . The number of maximal cones c(n) of Vn is

c(n) =
(n+ 1)!

(n2 )!
2

=
(2m+ 1)!

m!2
,

which coincides with the rank of Grothendieck group K0(Vn). Throughout, we let ∆ denote
the fan corresponding to Vn. Note that V2 is the del Pezzo surface dP6 of degree 6; and V4

is the variety (116) in the enumeration of [PN17] or (118) in the enumeration of [Bat99].
The variety Vn admits a natural (Sn+1×C2)-action, given by an action on the rays ei, ei.

The Sn+1-action permutes e0, . . . , en and ē0 . . . ē0 in the obvious way. The C2-action, whose
generator we refer to as the antipodal involution, is the antipodal map on the cocharacter
lattice, and interchanges ei and ēi for each index i.

The variety Vn is of importance in birational geometry due to its appearance in the
factorization of the standard Cremona transformation of Pn, and may be constructed in an
entirely geometric manner. First, take the blow-up of Pn at the collection of (n + 1) torus
fixed points, then flip the (strict transforms) of the lines through these points, then flip the
(strict transforms) of planes through these points, and so on, up to, but not including, the
half-dimensional linear subspaces. The resulting variety is Vn [Cas03, §3].

Notation 1.2. We let Yn denote the blowup of Pn at its (n+ 1) torus fixed points.

Since Vn and Yn are isomorphic in codimension 1, they have isomorphic Picard groups.
We let H,E0, . . . , En be a basis for Pic(Vn), given by the hyperplane and exceptional divisors
of Yn. The divisors corresponding to the rays ei, ei are then given by

[ei] = Ei, [ēi] = (H −

n∑

j=0

Ej) + Ei,
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where Sn+1 permutes the Ei leaving H fixed, and the antipodal involution is represented
by the matrix 



n 1 1 · · · 1
1− n 0 −1 · · · −1
1− n −1 0 · · · −1

...
...

...
. . .

...
1− n −1 −1 · · · 0




For each c ∈ Z and J ⊆ {0, . . . , n}, define

Fc,J := c

(
n∑

i=0

Ei −H

)
−
∑

j∈J

Ej .

Note that the antipodal involution takes Fc,J to F|J |−c,J .

Theorem 1.3. The set Fn of all bundles O(Fc,J) with

(1) |J | −
n

4
≤ c ≤

n

4
, or

(2)
n+ 2

4
≤ c ≤ |J | −

n+ 2

4
forms a full strong (Sn+1×C2)-stable exceptional collection of line bundles on Vn under any
ordering of the blocks such that |J | is (non-strictly) decreasing.

If the base field k is not algebraically closed, it is natural to require a more permissive
notion of exceptional collection as discussed in [BDM17]. Recall that a form of a k-variety
X is a k-variety X ′ such that there is an isomorphism XK

∼= X ′
K after base change to

some field extension K/k. Since any centrally symmetric toric Fano variety is a product
of projective lines and the varieties Vn, the descent result given in [BDM17, Lemma 3.11]
yields the following:

Corollary 1.4. Any form of a centrally symmetric toric Fano variety admits a full strong
exceptional collection consisting of vector bundles.

In [CT17, Theorem 6.6], Castravet and Tevelev exhibit a full strong Aut(∆)-stable ex-
ceptional collection for Vn, where ∆ denotes the fan associated to Vn. The authors of this
paper had independently discovered the same collection (up to a twist by a line bundle), as
discussed in [BDM17, §4.4]. This article fleshes out these ideas. A particular benefit is that
complexity in checking generation in [CT17] is lessened greatly by the methods here. In
particular, we make use of forbidden cones in showing exceptionality and grade-restriction
windows in showing fullness (i.e., that the collection generates the bounded derived category
D
b(Vn)). The distinct methods and perspective should be valuable in understanding more

general situations.

2. Examples

Let us explicitly describe the full exceptional collections in low-dimensional examples.
We remind the reader that we utilize the aforementioned basis of Pic(Yn), and E :=

∑
Ei.

Example 2.1 (Dimension 2). Applying the inequalities given in Theorem 1.3, we see that
F2 = {(0, 0), (1, 2), (1, 3), (2, 3)}. Each of these pairs gives an S3-orbit of bundles on V2.
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F2 S3-orbit
(0, 0) O
(1, 2) O(E1 −H),O(E2 −H),O(E3 −H)
(1, 3) O(−H)
(2, 3) O(E − 2H)

Notice that this is the exceptional collection on V2 = dP6 (the del Pezzo surface of degree 6)
which is the dual of that given in [Kin97, Prop. 6.2)(ii)]. This collection was also recovered
in [BSS11]. Recall that the antipodal involution acts on these orbits via (c, ℓ) 7→ (ℓ− c, ℓ),
so that (1, 3) 7→ (2, 3). We thus obtain (orthogonal) blocks given by the (S3 × C2)-orbits:

E0 O
E1 O(E1 −H),O(E2 −H),O(E3 −H)
E2 O(−H),O(E − 2H)

Example 2.2 (Dimension 4). The variety V4 is exactly (116) in the enumeration of [PN17]
or (118) in the enumeration of [Bat99]. Applying the inequalities given in Theorem 1.3,
we see that F4 = {(−1, 0), (0, 0), (1, 0), (0, 1), (1, 1), (1, 2), (2, 4), (2, 5), (3, 5)}. Each of these
pairs gives an S5-orbit of bundles on V4.

F4 S5-orbit
(−1, 0) O(−E +H)
(0, 0) O
(0, 1) O(−E1),O(−E2),O(−E3),O(−E4),O(−E5)
(1, 0) O(E −H)
(1, 1) O(E −H − E1),O(E −H − E2),O(E −H − E3),O(E −H − E4),O(E −H − E5)
(1, 2) O(E −H − E1 − E2),O(E −H −E1 − E3),O(E −H − E1 − E4),O(E −H − E1 − E5),

O(E −H − E2 − E3),O(E −H −E2 − E4),O(E −H − E2 − E5),
O(E −H − E3 − E4),O(E −H −E3 − E5),O(E −H − E4 − E5)

(2, 4) O(E − 2H + E1),O(E − 2H + E2),O(E − 2H + E3),O(E − 2H + E4),O(E − 2H + E5)
(2, 5) O(E − 2H)
(3, 5) O(2E − 3H)

The antipodal involution acts on these orbits via (−1, 0) ↔ (1, 0), (0, 1) ↔ (1, 1), and
(2, 5) ↔ (3, 5), leaving the others fixed. We thus obtain (orthogonal) blocks Ei given by the
(S5 × C2)-orbits:

E0 O
E1 O(−E +H),O(E −H)
E2 O(−E1),O(−E2),O(−E3),O(−E4),O(−E5),O(E −H − E1)

O(E −H − E2),O(E −H − E3),O(E −H − E4),O(E −H − E5)
E3 O(E −H − E1 −E2),O(E −H − E1 − E3),O(E −H − E1 − E4),

O(E −H − E1 −E5),O(E −H − E2 − E3),O(E −H − E2 − E4),
O(E −H − E2 −E5)O(E −H − E3 − E4),O(E −H − E3 − E5),
O(E −H − E4 −E5)

E4 O(E − 2H + E1),O(E − 2H + E2),O(E − 2H + E3),
O(E − 2H + E4),O(E − 2H + E5)

E5 O(E − 2H),O(2E − 3H)
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3. Exceptionality via forbidden cones

We begin by recalling definitions of exceptional objects and collections. We then apply the
theory of forbidden cones, put forth by Borisov and Hua [BH09], to show that the collection
described above is exceptional and stable under the action of the group Sn+1 × C2. For a
k-scheme X, we let D

b(X) = D
b(cohX) denote the bounded derived category of coherent

sheaves on X. It is a k-linear triangulated category.

Definition 3.1. Let T be a k-linear triangulated category. An object E in T is exceptional
if the following conditions hold:

(1) EndT(E) is a division k-algebra.
(2) Extn

T
(E,E) := HomT(E,E[n]) = 0 for n 6= 0.

A totally ordered set E = {E1, ..., Es} of exceptional objects in T is an exceptional collection
if Extn

T
(Ei, Ej) = 0 for all integers n whenever i > j. An exceptional collection is full if

it generates T, i.e., the smallest thick subcategory of T containing E is all of Db(X). An
exceptional collection is strong if Extn

T
(Ei, Ej) = 0 whenever n 6= 0. An exceptional block is

an exceptional collection E = {E1, ..., Es} such that Extn
T
(Ei, Ej) = 0 for every n whenever

i 6= j.

Definition 3.2. LetX be a scheme with an action of a group G. Any element g ∈ G induces
a functor g∗ : Db(X) → D

b(X). A G-stable exceptional collection on X is an exceptional
collection E = {E1, ..., Es} of objects in D

b(X) such that for all g ∈ G and 1 ≤ i ≤ s there
exists E ∈ E such that g∗Ei ≃ E.

Let us now investigate exceptionality of the collection Fn described in Theorem 1.3. It
will be useful for our calculations to consider a larger collection of bundles grouped into
Sn+1-orbits. Conceptually, this gives a nice picture of (orbits of objects in) this collection
as shown in Figures 1a, 1b, 2a, and 2b. Suppose ℓ, k are nonnegative integers such that
k + ℓ ≤ n+ 1. Let F (c, k, ℓ) be the Sn+1-orbit of the divisor

c

(
n∑

i=0

Ei −H

)
+

k−1∑

i=0

Ei −

k+ℓ−1∑

i=k

Ei .

Notice that when k = 0, the set F (c, k, ℓ) is just the Sn+1-orbit of the divisor Fc,J , where
J is any subset of {0, 1, . . . , n} of cardinality ℓ. Also note that F (c, k, ℓ) is not necessarily
stable under the antipodal involution, and in the case k = 0, the antipodal involution takes
F (c, 0, ℓ) to F (ℓ− c, 0, ℓ).

Theorem 3.3. Let Fn ⊆ Z2 be the set of (c, ℓ) where 0 ≤ ℓ ≤ n + 1 satisfying one of the
following two conditions:

(1) ℓ− n
4 ≤ c ≤ n

4 , or

(2) n+2
4 ≤ c ≤ ℓ− n+2

4 .

Then the collection of line bundles O(D) for all D in F (c, 0, ℓ) for all (c, ℓ) in Fn coincides
with the set Fn and forms an (Sn+1 × C2)-stable exceptional collection under any ordering
of the blocks such that ℓ is (non-strictly) decreasing.

The fact that the collection described above coincides with Fn given in Theorem 1.3 is
obvious. The remainder of this subsection is devoted to proving the above theorem.
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c

ℓ

1a: The set F2

c

ℓ

1b: The set F4

Lemma 3.4 (Exceptionality of objects). Suppose k ≤ ℓ. Then, for all non-trivial D in
F (c, k, ℓ), the line bundle O(D) is acyclic if

−
n

2
+ ℓ ≤ c ≤

n

2
− k if ℓ ≤

n

2

1 ≤ c ≤ ℓ− k − 1 if ℓ >
n

2
.

Proof. Recall from Borisov-Hua [BH09] that given a subset I ⊆ ∆(1) which has non-trivial
reduced homology in the simplicial complex of ∆, we obtain a forbidden cone in Pic(X)
given by

FI =
∑

ρ∈I

(−1− rρ)[Dρ] +
∑

ρ/∈I

rρ[Dρ],

where the rρ are non-negative real numbers. A line bundle is acyclic if it does not lie in any
forbidden cone (but not conversely, in general).

Let us use the basis {
Ω =

(
n∑

i=0

Ei −H

)
, E0, . . . , En

}

for Pic(Vn), and let β be a divisor class in F (c, k, l). Let b♮ be the coefficient of Ω in β and
bi the coefficient of Ei in β. Thus b♮ = c and the other coefficients are in {−1, 0, 1}. Let
L,N,K denote the subset of {0, . . . , n} corresponding to the number of −1’s ,0’s, and 1’s,
respectively. Note that k = |K|, ℓ = |L| and |N | = n+ 1− ℓ− k.

In this basis, ei 7→ Ei and ēi 7→ Ei − Ω. Let us compute the possible coefficients bi in a
forbidden cone with indexing set I. We use the notation ri for rei and r̄i for rēi . For each
i ∈ {0, . . . , n}, we have the following table:

⊆ I bi b♮
∅ ri + r̄i −r̄i
{ei} −1− ri + r̄i −r̄i
{ēi} −1 + ri − r̄i 1 + r̄i

{ei, ēi} −2− ri − r̄i 1 + r̄i

where the b♮ column really just records the contribution from ei and ēi.
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c

ℓ

2a: The set F6

c

ℓ

2b: The set F8

Note that if both ei and ēi are contained in I then the corresponding forbidden cone FI

has bi ≤ −2. No divisor of Fn lies in a forbidden cone FI where I contains both ei and ēi.
Thus, if our bundle is not acyclic it must be contained in a forbidden cone corresponding
to I where ei and ēi do not both appear. Note that the values of ri are irrelevant for b♮.
With this in mind, we determine the possible values of the contributions to b♮ given a fixed
value of bi. They are:

bi ⊆ I r̄i b♮
1 ∅ [0, 1] [−1, 0]

{ei} [2,∞) (−∞,−2]
{ēi} [0,∞) [1,∞)

0 ∅ {0} {0}
{ei} [1,∞) (−∞,−1]
{ēi} [0,∞) [1,∞)

−1 ∅ ∅ ∅

{ei} [0,∞) (−∞, 0]
{ēi} [0,∞) [1,∞)

Recall that a primitive collection is a minimal subset C of the set of rays ∆(1) such
that C is not contained in any cone of ∆. In [Efi14, Lem. 4.4], Efimov shows that every
(nonempty) indexing set for a forbidden cone is a union of primitive collections. Recall that
the maximal cones of ∆ contain a set of rays of the form {ei}i∈A ∪ {ēi}i∈B where A and
B are disjoint subsets of {0, . . . , n}, each of cardinality n

2 . Thus the primitive collections
are of the form {ei, ēi}, {ei}i∈S and {ēi}i∈S where S is a subset of {0, . . . , n} of cardinality
≥ n

2 + 1.
Above we saw that β does not lie in any forbidden cone whose indexing set contains

{ei, ēi} for any i. Thus we may assume that either I = {ei}i∈S or I = {ēi}i∈S where S is a
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subset of {0, . . . , n} of cardinality ≥ n
2 + 1 or S is empty. Note that we may assume L ⊆ S

since there is no way to produce negative bi for i ∈ L \ S. We get contributions to b♮ for
each element of various subsets as follows:

I = {ei}i∈S I = {ēi}i∈S
L (−∞, 0] [1,∞)

K ∩ S (−∞,−2] [1,∞)
K \ S [−1, 0] [−1, 0]
N ∩ S (−∞,−1] [1,∞)
N \ S {0} {0}

First, let us assume I = ∅, i.e., the corresponding forbidden cone is the effective cone.
Here S = ∅. To be forbidden, we require L = ∅. Our standing assumption is that k ≤ ℓ
so K = ∅ as well. It follows that b♮ = 0, and the trivial line bundle is the only one of the
form F (c, k, ℓ) lying in the effective cone.

Now, we assume that I = {ei}i∈S . We see that

b♮ ≤ −2|K ∩ S| − |N ∩ S|.

We want to select S to forbid as much as possible. If ℓ > n
2 then we may select S = L and

we forbid c ≤ 0. If ℓ ≤ n
2 then, since k ≤ ℓ, the weakest bound is obtained by selecting

S such that |N ∩ S| = n
2 + 1 − ℓ where we forbid c ≤ −n

2 + ℓ − 1. Indeed, to maximize
−2|K ∩ S| − |N ∩ S|, we take S to have minimal size: |S| = n

2 + 1. Since L ⊆ S, we have
|S \ L| = n

2 + 1 − ℓ. Note that |N | = n + 1 − k − ℓ and |N | − |S \ L| = n
2 + k > 0. Thus,

the maximum occurs when |N ∩ S| = |S \ L| = n
2 + 1− ℓ.

Now we assume that I = {ēi}i∈S . We see that

b♮ ≥ |L|+ |K ∩ S| − |K \ S|+ |N ∩ S|.

Or, since L ⊆ S, we have b♮ ≥ |S| − |K \ S|. Again, we want to select S so as to forbid as
much as possible. If ℓ ≤ n

2 then since k ≤ ℓ, we may select |S| = n
2 +1 of minimal size, and

K∩S = ∅. Thus we forbid c ≥ n
2 +1−k. If ℓ > n

2 then we may select S = L so K ∩S = ∅.
Thus we forbid c ≥ ℓ− k.

We have checked all possible forbidden cones and the statement of the theorem describes
precisely those bundles which are left over. �

In order to build an exceptional collection, we will need to compute Ext-groups. Since we
are only using line bundles, it suffices to show that line bundles corresponding to differences
of divisors are acyclic. Thus, we need the following:

Lemma 3.5. If L1 ∈ F (c1, 0, ℓ1) and L2 ∈ F (c2, 0, ℓ2), then L1−L2 ∈ F (c1−c2, ℓ2−i, ℓ1−i)
for an integer i satisfying

• i ≥ 0,
• i ≤ ℓ1,
• i ≤ ℓ2, and
• i ≥ ℓ1 + ℓ2 − n− 1.

Proof. The line bundle L1 has the form

c1




n∑

j=0

Ej −H


−

∑

j∈J1

Ej
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for some subset J1 ⊆ {0, . . . , n} of size ℓ1. Similarly, there is a subset J2 of size ℓ2. Their
difference is given by

(c1 − c2)




n∑

j=0

Ej −H


+

∑

j∈J2\J1

Ej −
∑

j∈J1\J2

Ej .

Note that if i = |J1 ∩ J2|, then |J2 \ J1| = ℓ2 − i and |J1 \ J2| = ℓ1 − i. The inequalities for i
in the statement of the theorem are obtained by noting that |J1 ∩J2|, |J1 \J2|, and |J2 \J1|
must be non-negative and that |J1 ∪ J2| ≤ n+ 1. �

Proof of Theorem 3.3. We show that for any two pairs (c1, ℓ1), (c2, ℓ2) ∈ Fn with ℓ1 ≥ ℓ2,
and for any L1 ∈ F (c1, 0, ℓ1) and L2 ∈ F (c2, 0, ℓ2), the bundle O(L′) is acyclic for L′ :=
L1 − L2 unless L1 = L2. This will suffice to prove the theorem. Indeed, taking ℓ1 = ℓ2 and
c1 = c2 shows that each Sn+1-orbit is internally orthogonal, taking ℓ1 = ℓ2 and c2 = ℓ1 − c1
establishes that the whole (Sn+1 ×C2)-orbit is orthogonal, and the orbits ordered as in the
statement of the theorem thus form an exceptional collection.

By Lemma 3.5 we know L′ ∈ F (c1 − c2, ℓ2 − i, ℓ1 − i) for some i. We will consider 3
distinct cases.

• Case 1: ℓ1, ℓ2 ≤ n
2 . For j = 1, 2, we have ℓj −

n
4 ≤ cj ≤ n

4 . Adding the inequality
for j = 1 with the negation of the inequality for j = 2, it follows that

ℓ1 −
n

2
≤ c1 − c2 ≤

n

2
− ℓ2 .

Thus, for any non-negative i, we have

−
n

2
+ (ℓ1 − i) ≤ c1 − c2 ≤

n

2
− (ℓ2 − i).

We conclude that, regardless of i, the line bundle L′ is acyclic by Lemma 3.4.
• Case 2: ℓ1, ℓ2 > n

2 . For j = 1, 2 we have n+2
4 ≤ cj ≤ ℓj −

n+2
4 . Adding n+2

4 , we

obtain n
2 + 1 ≤ cj +

n+2
4 ≤ ℓj . Thus

−ℓ2 +
n

2
+ 1 ≤ c1 − c2 ≤ ℓ1 −

n

2
− 1 .

Since ℓj >
n
2 , we have that ℓ1+ ℓ2 ≥ n+1. We may assume ℓ1+ ℓ2−n− 1 ≤ i from

Lemma 3.5. Rearranging, we have ℓ1 − i ≤ n+ 1− ℓ2 ≤
n
2 . We also obtain

−
n

2
+ (ℓ1 − i) ≤ c1 − c2 ≤

n

2
− (ℓ2 − i)

using ℓ1 + ℓ2 − n− 1 ≤ i and conclude that L′ is acyclic once again.
• Case 3: ℓ1 >

n
2 but ℓ2 ≤

n
2 . Now

n+2
4 ≤ c1 ≤ ℓ1 −

n+2
4 and ℓ2 −

n
4 ≤ c2 ≤

n
4 , so

1

2
≤ c1 − c2 ≤ (ℓ1 − ℓ2)−

1

2
.

In fact, we have 1 ≤ c1−c2 ≤ (ℓ1−ℓ2)−1, since c1, c2, ℓ1, ℓ2 are integers. If ℓ1−i > n
2 ,

then the conditions of Lemma 3.4 are satisfied. Otherwise, ℓ1 − i − n
2 ≤ 0, and so

using ℓ1 ≥ ℓ2 we have

ℓ1 − i−
n

2
≤ c1 − c2 ≤

n

2
− (ℓ2 − i)

to again satisfy the conditions of Lemma 3.4.

�
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4. Generation via windows

It remains to prove that the collection Fn is full, i.e., that it generates the category
Db(Vn). To do so, we utilize a particular run of the Minimal Model Program (MMP) for
Vn. The endpoint of this run is Pn, and the birational map Pn

99K Vn is described above
(blow up the torus invariants points of Pn and then inductively flip the linear subspaces
of dimension d < m, where n = 2m). To understand how the derived category is affected
under such modifications, it will be advantageous to present the process as a variation of
GIT quotients of the spectrum of the Cox ring of the blow up of Pn using [BFK17,Bal17].

We begin by recalling the relevant pieces of the theory of windows and associated semi-
orthognal decompositions and apply these tools to the case of toric varieties given by GIT
quotients in this section. We provide an application to the centrally symmetric toric Fano
varieties described above in Section 5.

Let us recall some definitions and results of [BFK17, Bal17] in the context of a toric
action. We establish some notation and conventions to be used throughout the remainder
of the paper. Simple flips, blow-ups/downs, and fiber space contractions can be described
as moving between chambers in the GKZ fan of a projective toric variety.

We let W := Ar = Spec k[x1, . . . , xr] be a vector space and let G be a subtorus of
Gr

m ⊆ GL(W ). We use λ : Gm → G to denote a one-parameter subgroup (or cocharacter)
of G and χ : G → Gm to denote a character of G. The abelian group of characters of G is

denoted by Ĝ.
Recall that the semi-stable locus associated to the G-equivariant line bundle O(χ) is

W ss(χ) = {w ∈ W | ∃f ∈ H0(W,O(nχ))G with n > 0 and f(w) 6= 0}.

Note that the unstable locus (i.e., the complement of W ss(χ)) is given by the following
vanishing locus:

W us(χ) = Z(f | f ∈ H0(W,O(nχ))G, n > 0).

Since

W ss(χ) = W ss(mχ)

for m > 0, we can naturally extend the definition of semi-stable loci to fractional characters

ĜQ.
We write

W//χG := [W ss(χ)/G],

where the right-hand side is the usual quotient stack. If this stack is represented by a
scheme, this definition agrees with Mumford’s GIT quotient [BFK17, Prop. 2.1.7]. Let

CG(W ) =
{
χ ∈ Ĝ | ∃f ∈ k[x1, . . . , xr] with f 6= 0 and

f(g · x) = χ(g)nf(x) for some n > 0} .

The group CG(W ) ⊗Z R ⊆ ĜR admits a fan structure where the interiors of the cones
are exactly the subsets of equal semi-stable locus, see e.g. [BFK17, Prop. 4.1.3]. Assuming
that W//χG is a simplicial and semi-projective toric variety, CG(W ) is the effective cone of
W//χG. In this situation it also coincides with the pseudo-effective cone [CLS11, Lemma
15.1.8]. We denote this fan by ΣGKZ. This is called the GKZ (or GIT or secondary) fan
associated to the action of G on W .
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A chamber in ΣGKZ is an interior of a maximal cone. A chamber is a boundary chamber
if its closure intersects the closure of the complement of CG(X)R. The empty chamber is
the complement of CG(X)R. A wall is the relative interior of the intersection of the closures
of two adjacent chambers.

The fan ΣGKZ parametrizes the birational models of the usual (scheme-theoretic) GIT
quotients that arise via GIT quotients for characters in chambers. Our interest is how the
derived category is affected by varying our linearization across walls in ΣGKZ.

For a one-parameter subgroup λ, we get a linear function

λ̂ : Ĝ → End(Gm) ∼= Z

χ 7→ χ ◦ λ.

Each wall in ΣGKZ is the interior of a full-dimensional cone inside the hyperplane given by

the vanishing of some λ̂. Denote the wall by Σ0
λ. We let Σ±

λ be the two adjacent chambers

lying in the half-spaces ±λ̂R > 0, respectively. Given xi, let wtλ(xi) denote λ(a) where xi
has grading a ∈ Ĝ.

µλ := λ̂
(
ω[W/G]

)
= −

d∑

i=1

wtλ(xi),

where ω[W/G] is the canonical sheaf of [W/G]. Without loss of generality, we will assume
that µλ ≤ 0.

Choose characters χ± ∈ Σ±
λ and χ0 ∈ Σ0

λ. Set

X+
λ := W//χ+G

X−
λ := W//χ−G

X0
λ := W//χ0G.

Denote the following vanishing loci as

W+
λ := Z(xi | wtλ(xi) < 0)

W−
λ := Z(xi | wtλ(xi) > 0)

W 0
λ := Z(xi | wtλ(xi) 6= 0).

These are, respectively, the contracting, repelling, and fixed loci of the Gm-action on W

induced by λ. Note that W±
λ is unstable for χ if ±λ̂(χ) < 0.

Finally, set

Z+
λ :=

[(
W+

λ ∩W ss(χ+)
)
/G
]

Z−
λ :=

[(
W−

λ ∩W ss(χ−)
)
/G
]

Z0
λ :=

[(
W 0

λ ∩W ss(χ0)
)
/G
]
.

These induce the following wall-crossing diagram
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X−
λ X+

λ

Z−
λ Z+

λX0
λ

Z0
λ

i− i+

j− j+

π− π+i0

The maps j± are induced by the inclusions W ss(χ±) ⊆ W ss(χ0) and i±, i0 are induced
by base changing the inclusions of W±

λ ,W 0
λ ⊆ W . The maps π± are obtained from the

projections W±
λ → W 0

λ .

Remark 4.1. The wall-crossing diagram is not necessarily commutative.

Passing to the respective good moduli spaces [Alp13], the wall-crossing diagram yields a
flip, blow-up/down, or fiber space contraction diagram of the usual projective toric varieties.
The stacks Z±

λ become the exceptional loci. See Theorem 15.3.13 of [CLS11] in the case of
a flip.

The vector space W 0
λ carries a trivial Gm-action. Thus, any quasi-coherent sheaf E on

Z0
λ decomposes as

E =
⊕

a∈Z

Ea

corresponding to the local splitting of the associated Z-graded module into homogeneous
summands.

Definition 4.2. We let Ea be the a-th λ-weight space of E . We set

wtλ(E) := {a ∈ Z | Ea 6= 0}.

Note that wtλ(O(χ)) = {λ̂(χ)}; or by a slight abuse of notation, wtλ(O(χ)) = λ̂(χ). For
any I ⊆ Z, let Cλ(I) denote the full subcategory of Db(Z0

λ) consisting of objects E with the
weights of its cohomology sheaves in I,

wtλ(H
∗E) ⊆ I.

We set Cλ(a) := Cλ({a}).
The I-window associated to λ, denoted =

W
=
λ,I , is the full subcategory of Db(X0

λ) consisting

of objects E whose derived restriction
(
i0
)∗

E lies in Cλ(I).

Lemma 4.3. Suppose that λ̂ is primitive: if nv = λ̂ for v ∈ Ĝ and n ∈ Z>0 then v = λ̂.
For any a ∈ Z, there is an equivalence

D
b(Z0,rig

λ ) ∼= Cλ(a).

Moreover, in this case, the rigidification of Z0
λ with respect to Gm is given by

Z0,rig
λ

∼=
[(
W 0

λ ∩W ss(χ0)
)
/(G/λ(Gm))

]
.
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Proof. The second statement is [ACV03, Section 5.1.3]. Note that we can split G ∼=

G/λ(Gm)× λ(Gm) since λ̂ is primitive. Given the second statement, if we tensor an object

E of Db(Z0,rig
λ ) with OSpec k(a) we get an object of Cλ(a). This is the inverse to tensoring

with O(−a) and pushing down via Z0
λ → Z0,rig

λ . �

Some subsets of Z will be important. We set

t±λ := λ̂
(
ω[W∓

λ
/G]|[W/G]

)
= −

∑

±wtλ(xi)>0

wtλ(xi)

and

I±d,λ := [d± t±λ , d− 1].

Note that µλ = t+λ + t−λ . Windows allow us to lift derived categories.

Proposition 4.4 (Fundamental Theorem of Windows I, Cor. 2.23 [Bal17], see also [HL15]).
The functors (

j±
)∗

|=W=

λ,I
±
d

: =W=
λ,I±

d,λ

→ D
b(X±

λ )

are equivalences.

Definition 4.5. Since =
W

=
λ,I±

d,λ

is a full subcategory of Db(X0
λ), we may define

Q±
d : Db(X±

λ ) → D
b(X0

λ)

as the inverse to (j±)
∗
|=W=

λ,I
±
d,λ

followed by inclusion. We also define

Φd :=
(
j−
)∗

◦Q+
d

Ψd :=
(
j+
)∗

◦Q−
d .

Remark 4.6. Note that (j±)
∗
◦Q±

d
∼= 1

Db(X±
λ
), so that Q±

d is a right inverse to (j±)
∗
.

The following describes how the derived categories change when passing through a wall.

Theorem 4.7 (Fundamental Theorem of Windows II, Thm. 2.29 [Bal17]). For any d ∈ Z,
there is a semi-orthogonal decomposition

D
b(X+

λ ) =
〈
Cλ(d+ t+λ ),Cλ(d+ 1 + t+λ ), . . . ,Cλ(d− 1− t−λ ),D

b(X−
λ )
〉

where the explicit fully-faithful functors are given by

Υ+
a := i+∗ ◦

(
π+
)∗

: Cλ(a) → D
b(X+

λ )

and

Φd : Db(X−
λ ) → D

b(X+
λ ).

Moreover,

Ψd : Db(X+
λ ) → D

b(X−
λ )

is the right adjoint (projection) functor to Φd.
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Example 4.8. It is instructive to consider the case whereW = Spec(k[x1, x2]) and G = Gm

with Ĝ = Z such that x1, x2 have degree 1. Here we take λ̂ = id, χ+ = 1, χ− = −1 and
χ0 = 0. We find that ω[W/G] = −2, µλ = −2, t+ = −2 and t− = 0. We find X+

λ = P1,

X−
λ = ∅, X0

λ = [W/G]. Then Z+
λ = P1, Z−

λ
∼= ∅ and Z0

λ
∼= BG. The First Fundamental

Theorem of Windows tells us that Db(X+
λ ) = 〈OP1(d−2),OP1(d−1)〉, D

b(X−
λ ) = 0 for any

d. The result is also compatible with the Second Fundamental Theorem of Windows.

The following lemma allows us to track the action of Ψd for particular objects.

Lemma 4.9. If E = (j+)
∗
F and wtλ(F ) ⊆ I+d,λ, then Ψd(E) = (j−)

∗
F . In particular, if

λ̂(χ) ∈ I+d,λ, then

Ψd

(
OX+

λ
(χ)
)
= OX−

λ
(χ).

Proof. Note that Q+
d sends any object A of Db(X+

λ ) to the unique object B in D
b(X0

λ) such

that (j+)
∗
B = A and

(
i0
)∗

B lies in Cλ,I+
d,λ

. Clearly, by assumption, F satisfies both of

these conditions for E. Hence

Ψd(E) =
(
j−
)∗

Q+
d E =

(
j−
)∗

F.

�

We provide a technical lemma before applying the above framework to generalized del
Pezzo varieties.

Lemma 4.10. Let T be a triangulated category with a given semiorthogonal decomposition
T = 〈A,B〉, and let Ψ : T → B be the right adjoint to the inclusion B ⊆ T. Assume there is
an object F ∈ T such that F generates A and Ψ(F ) generates B. Then F generates T.

Proof. For any object C ∈ T, we have a distinguished triangle Cb → C → Ca, functorial in
C, where Ca ∈ A and Cb ∈ B. Given generators A of A and B of B, the object ιA(A)⊕ιB(B)
generates T, where ιA and ιB are the inclusions of A and B in T. The object F has associated
triangle Fb → F → Fa. Since F generates A, it generates Fa. We can thus generate Fb

from F using the distinguished triangle above. Furthermore Fa generates A. Note that
Fb = ιB(Ψ(F )), so since Ψ(F ) generates B, it follows that Fb generates B. Since Fa

generates A and Fb generates B, it follows that F generates T. �

5. Application of windows to del Pezzo varieties

Recall that Yn denotes the blow-up of Pn at the (n + 1) torus-invariant points. It is a
toric variety with torus T = Gn

m. The spectrum of the Cox ring of Yn is isomorphic to
A2n+2. Choosing a basis for DivT (Yn) consisting of



ē0 :=


H −

∑

i 6=0

Ei


 , . . . , ēn :=


H −

∑

i 6=n

Ei


 , e0 := E0, . . . , en := En





where Ei is the exceptional divisor for the i-th point and H is the hyperplane class, the
action of the Picard torus G ∼= Gn+2

m on W := A2n+2 gives a Pic(Yn) ∼= Zn+2-grading to
the polynomial ring k[x0, . . . , xn, y0, . . . , yn] where we have correspondences xi ↔ ēi and
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yi ↔ ei. Since we have a Pic(Yn)-grading, we can and will identify characters of G with
elements of Pic(Yn). The weight matrix in the basis H,E0, . . . , En is given by

γ :=




1 1 · · · 1 0 0 · · · 0 0
0 −1 · · · −1 1 0 · · · 0 0

−1 0 · · · −1 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

−1 −1 · · · −1 0 0 · · · 1 0
−1 −1 · · · 0 0 0 · · · 0 1




.

For brevity, we set E :=
∑n

i=0 Ei.

Lemma 5.1. There is an isomorphism

Vn
∼= W//−KG

where −K = (n+1)H−(n−1)E is the anticanonical divisor. There is also an isomorphism

Yn
∼= W//H−tEG

where 0 < t ≪ 1.

Proof. We first treat the presentation of Vn as a GIT quotient by comparing the description
of the associated polytope given in [VK84, p. 234] with that given in [CLS11, §14.2]. Note
that the polytope for −K is centrally-symmetric. In [VK84], the authors use the polytope
P = Conv(±fi | 0 ≤ i ≤ n) where

f0 = (−1,−1, · · · ,−1)
f1 = (1, 0, · · · , 0)
f2 = (0, 1, · · · , 0)

...
fn = (0, 0, · · · , 1)

in N = Zn. Let P∨ = (m | ±mi ≥ −1 for all 1 ≤ i ≤ n and ±
∑

mi ≥ −1) be its dual
polytope in M = N∨. Turning to the GIT presentation, we have the usual short exact
sequence for a toric variety X with fan ∆:

0 → M → Z∆(1) → Pic(X∆) → 0.

Let T be the torus of the toric variety X∆. Note that M = T̂ and Pic(X∆) = Ĝ, the
character groups of T and G. This sequence may be identified with

0 → Zn ∼= ker(γ)
δ
−→ Z2n+2 γ

−→ Zn+2 → 0

where δ is the inclusion. The matrix defining γ is the weight matrix given above. It is clear
that the kernel of γ is given by

ker(γ) =



(α, β) |

∑
αi = 0 and βj −

∑

i 6=j

αi = 0



 ,

where α = (α0, ..., αn) and β = (β0, ..., βn). We have an isomorphism Zn → ker(γ) via

(α1, ..., αn) 7→
(∑

αi, α2, ..., αn+1,−α2, ...,−αn+1

)
.
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Dualizing, we have δ(m) = (〈m, ν1〉, ..., 〈m, ν2n+2〉) for some ν1, ..., ν2n+2 ∈ M∨ = N .
These are precisely the elements of Σ(1). Thus, the dual matrix is given by




1 0 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1
−1 −1 · · · −1
1 1 · · · 1

−1 0 · · · 0
0 −1 · · · 0
...

... · · ·
...

0 0 · · · −1




=




Id

−1 −1 −1 · · · −1
1 1 1 · · · 1

−Id




As shown in [CLS11, §14.2], the polytope of A2n+2//−KG is given by

Conv((α2, ..., αn+1) | −
∑

αi ≥ −1, α1 ≥ −1,
∑

αi ≥ −1,−αi ≥ −1)

This is precisely the polytope P∨ described above, and the claimed GIT description of Vn

is verified.
For the presentation of Yn as a GIT quotient, we note that H − tE is ample as a line

bundle on Yn. Thus, taking the quotient of W relative to H − tE produces a variety on
which H − tE (viewed as a bundle on this quotient) is ample, so these descriptions yield
isomorphic varieties. �

Knowing that Vn and Yn occur as GIT quotients via linearizations in different chambers
of the secondary fan, we analyze the wall-crossing behavior. Let us begin by identifying the
walls. Consider the following cocharacters: for any subset J ⊆ {0, 1, . . . , n}, define

λ̂J : Pic(Yn) → Z

H 7→ 1− |J |

Ej 7→

{
−1 if j ∈ J

0 if j /∈ J

We denote the corresponding cocharacters by λJ : Gm → G. Note that for Fc,L = c(E −
H)−

∑
i∈L Ei, we have

λ̂J(Fc,L) = c(−|J | − (1− |J |)) + |L ∩ J | = |L ∩ J | − c.

Lemma 5.2. The walls in the GIT fan are precisely those given by λ̂J = 0 for J ⊆
{0, . . . , n}.

Proof. Walls in the GIT fan correspond to circuits in the set ∆(1) of one-cones [CLS11, §15.3,
p. 751]. Recall that a circuit in ∆(1) is given by a linearly dependent set of ray generators
such that each proper subset is linearly independent [CLS11, p. 751]. There are two ways
to obtain such a collection. The first is to choose one of ei or ei for each 0 ≤ i ≤ n since
ei = −ei in N . In other words, for any subset J ⊆ {0, . . . , n}, we take ei for i 6∈ J and ei
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for i ∈ J . Note that we have the following primitive relation amongst the elements of this
circuit: ∑

i∈Jc

ei −
∑

i∈J

ei = 0.

This is exactly the image of λ̂J . The other way to obtain a circuit is to take {ei, ei} for any

i ∈ {0, ..., n}. This is the image of λ̂[∞,i], which is defined via H 7→ 1 and Ej 7→ δij . �

Corollary 5.3. The GIT quotient for the chamber with wtλJ
(χ) < 0 for |J | > 0 and

wtλ∅
(χ) > 0 is isomorphic to Pn.

Proof. We find it useful to the use the involution of G = Gn+2
m given by

(β, α0, . . . , αn) 7→ (β−1, βα0, . . . , βαn) =: (γ, δ0, . . . , δn).

After applying this involution, the weight matrix becomes



−1 −1 · · · −1 −1 0 0 · · · 0 0
1 0 · · · 0 0 1 0 · · · 0 0
0 1 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 0 · · · 1 0
0 0 · · · 0 1 0 0 · · · 0 1




Next we check that if y0 = 0, then the point is unstable for χ. It suffices to exhibit a
one-parameter subgroup λ of G such that

lim
α→0

α · (x0, x1, . . . , xn, 0, y1, . . . , yn)

exists and wtλ(χ) > 0. We can use λ−1
{0} which, by assumption, satisfies wtλ−1

{0}
(χ) > 0 on

the chamber. Appealing to Sn+1-symmetry, we see that to be semi-stable it is necessary
that yi 6= 0 for all i. Consider the subgroup H = {(1, δ0, . . . , δn)} ⊆ G. The H-invariant
subring of k[x0, . . . , xn, y

±1
0 , . . . , y±1

n ] is k[x0y
−1
0 , . . . , xny

−1
n ] and it carries a Gm-action from

γ which has such that wtλ(xiy
−1
i ) = −1. Thus,

[(
An+1 ×Gn+1

m

)
/G
]
∼=
[
An+1/Gm

]
.

Passing to the semi-stable locus gives Pn. �

The geometric manifestation of Lemma 5.2 is exactly the description relating Pn and Vn

via flips and then a blow-down to Pn. When crossing a wall (in the K-positive direction)

corresponding to (n+1)
2 ≥ |J | ≥ 2, we flip the contracting locus of λJ for the repelling

locus of λJ . When crossing a wall for J with |J | = 1, we blow down the corresponding
exceptional divisor. Finally, when J = ∅, we contract Pn down to a point. Each of these
exceptional/flipping loci are quotients of linear subspaces of W .

Remark 5.4. To get a sense of ΣGKZ, consider the plane spanned by E and H. This is

presented in Figure 3. Note that the walls determined by λ̂J for equal |J | coincide. Here

λ̂[a] denotes the intersection of λ̂J with span{E,H} when a = |J |, and λ̂[∞] denotes the

intersection of λ̂[∞,i] (as defined in the proof of Lemma 5.2) with span{E,H}.
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λ̂∅

λ̂[1]

λ̂[m]

λ̂[m−1]

λ̂[2]

λ̂[n]

λ̂[∞]

. .
.

. .
.

H − tE

Yn

−K

Vn

H + tE

Pn

∅

∅

Figure 3. Portion of ΣGKZ generated by E and H, and walls relating Pn,
Yn, and Vn and their linearizations.

Notice that the anti-canonical divisor −K lies on the ray emanating from the origin and

passing through (−(n− 1), n+1). Taking absolute values of the slopes of λ̂[m], λ̂[m−1], and
the line passing through −K, the inequalities

2m2 +m− 1 ≤ 2m2 +m
⇒ 2m2 + 2m−m− 1 ≤ 2m2 +m
⇒ (2m− 1)(m+ 1) ≤ 2m2 +m
⇒ m+1

m ≤ 2m+1
2m−1 = n+1

n−1

show that −K lies above λ̂[m]. Similarly, the inequalities

2m2 −m− 1 ≤ 2m2 −m
⇒ 2m2 − 2m+m− 1 ≤ 2m2 −m
⇒ (2m+ 1)(m− 1) ≤ 2m2 −m
⇒ n+1

n−1 = 2m+1
2m−1 ≤ m

m−1

show that −K lies below λ̂[m−1].

We need to identify the contracting and repelling loci associated to each λJ . The following
result verifies the above claim that these loci are linear subspaces of W .

Lemma 5.5. On W , the ideal of the contracting locus W+
J := W+

λJ
is (yj | j ∈ J), and

the ideal of the repelling locus W−
J := W−

λJ
is (xi | i 6∈ J). The ideal of the fixed locus

W 0
J := W 0

λJ
is (xi, yj | i 6∈ J, j ∈ J).

Proof. This is obvious from the definitions. �
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In light of Theorem 4.7, we also record t± and µ for each J .

Lemma 5.6. Let t±J := t±λJ
and µJ := µ(λJ) for J ⊆ {0, ..., n}. We have the following:

• t+J = λ̂
(
ω[W−

J
/G]|[W/G]

)
= −|Jc|,

• t−J = λ̂
(
ω[W+

J
/G]|[W/G]

)
= |J |.

Hence, µJ := t+J + t−J = |J | − |Jc| = 2|J | − n− 1.

Proof. This follows from

λ̂J(ei) =

{
−1 if j ∈ J

0 if j /∈ J

and

λ̂J(ēi) =

{
0 if j ∈ J

1 if j /∈ J.

�

The following lemma is the key observation in proving that Fn generates Db(Vn). Given
a set J ⊆ {0, . . . , n}, we denote the Koszul complex associated to the set {yi | i ∈ J} by
K(J).

Lemma 5.7. Let J ⊆ {0, . . . , n} with |J | ≤ n
2 . Let w be an integral point in the interval

[
3n

4
+ |J | − n,

3n + 2

4
− |J |

]
=

[
3n+ 4

4
− |Jc|, |Jc| −

n+ 2

4

]
.

• If w ≤ n
4 , the components of the tensor product K(J)⊗O(w(E −H)) lie in Fn.

• If w ≥ (n+2)
4 , the components of the tensor product K(J)⊗O(w(E−H)−

∑
i∈Jc Ei)

lie in Fn.

Proof. Using the action of Sn+1, we may assume that J = {0, 1, . . . , |J | − 1}. Each com-
ponent of the Koszul complex K(J) is given by O(−

∑
i∈LEi) for some L ⊆ J . Assume

w ≤ n
4 and note that the tensor product O(−

∑
i∈LEi)⊗O(w(E −H)) is precisely the line

bundle O(Fw,L). Thus, it suffices to check that (w, ℓ) ∈ Fn whenever 0 ≤ ℓ ≤ |J | and

3n

4
+ |J | − n ≤ w ≤

3n+ 2

4
− |J |.

Simplifying the first inequality yields |J | − n
4 ≤ w. Using the assumption that w ≤ n

4
together with the fact that |L| ≤ |J |, we have

|L| −
n

4
≤ |J | −

n

4
≤ w ≤

n

4
.

Thus, O(Fw,L) ∈ Fn by definition. Assume that w ≥ n+2
4 and note the tensor product

O(−
∑

i∈LEi) ⊗ O(w(E − H) −
∑

i∈Jc Ei) is the line bundle Fw,L∪Jc . Thus, we need to
check that (w, ℓ+ |Jc|) ∈ Fn whenever 0 ≤ ℓ ≤ |J | and

3n

4
+ |J | − n ≤ w ≤

3n+ 2

4
− |J |.

Note that
3n+ 2

4
− |J | = |Jc| −

n+ 2

4
.
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Using the assumption that w ≥ n+2
4 , we obtain

n+ 2

4
≤ w ≤ |Jc| −

n+ 2

4
≤ ℓ+ |Jc| −

n+ 2

4
.

So Fw,L∪Jc ∈ Fn by definition. �

Corollary 5.8. Let U ⊆ W be any G-stable open subset of W . The smallest full triangulated
subcategory of Db

G(U) ∼= D
b([U/G]) containing the line bundles in Fn also contains, for each

J ⊆ {0, . . . , n} with |J | ≤ n
2 and each integer w in the interval

[
3n+4
4 − |Jc|, |Jc| − n+2

4

]
,

the objects OU∩W+
λJ

(w(E − H)) when w ≤ n
4 and OU∩W+

λJ

(w(E − H) −
∑

i∈Jc Ei) when

w ≥ (n+2)
4 .

Proof. The Koszul complex K(J) is quasi-isomorphic to OW+
λJ

. Lemma 5.7 shows that

K(J) ⊗ O(w(E − H)) is a complex consisting of objects of Fn when w ≤ n
4 and K(J) ⊗

O(w(E −H) −
∑

i∈Jc Ei) is a complex consisting of objects of Fn. Thus, we can generate

OW+
λJ

(w(E −H)) for w ≤ n
4 and OW+

λJ

(w(E −H) −
∑

i∈Jc Ei) for w ≥ n+2
4 in D

b

G(W ) ∼=

D
b([W/G]). Since restriction to U is exact, the analogous statement on U holds. �

Let us set up some notation to handle the full run of the MMP.

Notation 5.9. For any set S, let P (ℓ, S) = {J ⊆ S | |J | = ℓ}. If S = {0, . . . ,m}, let
P (ℓ, S) be denoted P (ℓ,m). We view P (ℓ,m) as an ordered set using the lexicographic
order and denote its elements by J1, . . . , J(mℓ )

. This induces a total ordering on the full

power set where the minimal element is ∅. For each J , we let Σ+
J and Σ−

J be the following
chambers in the GIT fan:

Σ+
J = {χ ∈ ΣGKZ | λ̂J ′(χ) > 0 for J ′ ≤ J and λ̂J ′(χ) < 0 for J ′ > J}

Σ−
J = {χ ∈ ΣGKZ | λ̂J ′(χ) > 0 for J ′ < J and λ̂J ′(χ) < 0 for J ′ ≥ J}.

We let X±
J be a GIT quotient for a linearization in Σ±

J , and X0
J the GIT quotient corre-

sponding to the generic linearization in the wall for J [CLS11, Def. 14.3.13]. The sequence
of birational maps given by crossing walls according to this ordering begins at Vn and
terminates at Pn.

As described in Section 4, passing through the wall corresponding to J yields a diagram
where we replace the subscripts λJ with J for brevity:

X−
J X+

J

Z−
J Z+

JX0
J

Z0
J

i− i+

j− j+

π− π+i0
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Lemma 5.10. We have isomorphisms

Z+
J

∼= P|Jc|−1

Z−
J

∼= P|J |−1

Z0,rig
J

∼= Speck.

Moreover, these induce isomorphisms of sheaves O(D)|Z±
J

∼= OZ±
J
(±λ̂J(D)) for any divisor

D on X±
J .

Proof. We handle the (+) claims. The statements for the (−) side are proven completely
analogously.

On W , the ideal (yj | j ∈ J) defines the contracting locus W+
J , so that functions on W+

J

are given by k[x0, . . . , xn]⊗k k[yi | i 6∈ J ]. Assume that yi = 0 for some point p ∈ W+
J and

some l 6∈ J . Then λJ∪{l} destabilizes p: λ̂J∪{l} is negative on this chamber and p lies in the
contracting locus of λJ∪{l}, since λJ∪{l} has positive weights on k[x0, . . . , xn] ⊗k k[yi | j 6∈
J ∪ {l}].

Assume that xj = 0 for j ∈ J for some point p ∈ W+
J . Then λJλ

−1
J\{j} destabilizes p. The

weights xl for l 6= j and yi for i 6∈ J are non-negative. The chamber Σ+
J lies in the positive

half-spaces for both λ̂J and λ̂J\{j}. But λ̂J = 0 intersects the closure of Σ+
J . Thus, Σ

+
J lies

in the negative half-space associated to λJλ
−1
J\{j}.

Additionally, λ−1
J destabilizes any point with all xi = 0 for all i 6∈ J .

We have determined that we have a G-equivariant open immersion

W+
J ∩W ss(χ+) ⊂

(
A|Jc| \ {0}

)
×Gn+1

m .

The Hilbert-Mumford numerical criterion says that W us(χ+) is the union of the contracting

loci for one-parameter subgroups λ with λ̂(χ+) < 0, ie

W us(χ+) =
⋃

λ̂(χ+)<0

W+
λ .

We recall the subgroup H from the proof of Corollary 5.8. Since the subgroup generated
by δi for all i acts by multiplication on the torus factor, there is no contracting locus for
one-parameter subgroups. Thus, we may pass directly to the invariant theory quotient by
H and then subsequently consider the GIT quotient by G/H.

Taking the quotient by H yields the subring k[xiy
−1
i | i 6∈ J ]. Note that λJ has weight

1 on each xiy
−1
i for i 6∈ J and induces an isomorphism G/H ∼= Gm. Thus, the above

immersion is an equality and Z+
J

∼= P|Jc|−1, where λJ induces the standard action on A|Jc|.
Turning to the fixed locus, one can argue as above to conclude that

W 0
J ∩W ss(χ0) ∼= Gn+1

m

with trivial λJ -action. So we have Z0
J

∼= BGm. It then follows from Lemma 4.3 that

Z0,rig
J = Spec k. �

Notation 5.11. Following the identification in Lemma 5.10, we will write OZ+
J
(a) for the

sheaf corresponding to O(a) on P|Jc|−1.
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Let us now apply the above framework to our situation. For each J ⊆ {0, 1, . . . , n} we
can apply Theorem 4.7 to the wall crossing at λJ .

Proposition 5.12. Let J ⊆ {0, 1, . . . , n} with |J | ≤ n
2 . For any d ∈ Z, there is a semi-

orthogonal decomposition

D
b(X+

J ) =
〈
OZ+

J
(d− |Jc|), . . . ,OZ+

J
(d− 1− |J |),Db(X−

J )
〉
,

and if λ̂J(χ) ∈ [d− |Jc|, d− 1] = I+d,J , then Ψd(OX+
J
(χ)) = OX−

J
(χ).

Proof. This follows from Theorem 4.7 and Lemma 4.9 as soon as we identify Cλ(i) with
〈OP|Jc|−1(i)〉. But Lemmas 4.3 and 5.10 give this identification. �

We next record an elementary statement for use momentarily.

Lemma 5.13. Let n be an even integer. Then
⌈
n+ 2

4

⌉
− 1 =

⌊n
4

⌋
.

Proof. We write n = 2m and treat the cases where m is even or odd. If m = 2l, then
⌈
n+ 2

4

⌉
− 1 =

⌈
l +

1

2

⌉
− 1 = l − 1 +

⌈
1

2

⌉
= l

and ⌊n
4

⌋
= l.

If m = 2l + 1, then ⌈
n+ 2

4

⌉
− 1 = l

and ⌊n
4

⌋
=

⌊
l +

1

2

⌋
= l.

�

We now turn to generating the wall contributions.

Lemma 5.14. The values of λ̂J on Fn lie in the interval
[⌈

n+ 2

4

⌉
− |Jc|,

⌈
n+ 2

4

⌉
− 1

]
= I+⌈(n+2)/4⌉,J .

Proof. We first note that
n+ 2

4
− |Jc| = |J | −

3n + 2

4
.

Recall that for c ∈ Z and L ⊆ {0, . . . , n}, we have Fc,L = c(E −H) −
∑

j∈LEj . We use

the fact that λ̂J(Fc,L) = |L∩ J | − c. We check the above claim using the defining equations
of Fn.

Let (c, L) satisfy |L| − n
4 ≤ c ≤ n

4 and let |J | ≤ n
2 . Clearly, |L| − c ≥ |L ∩ J | − c ≥ −c.

Using our defining equation, we have n
4 ≥ |L| − c. Combining these inequalities yields

n
4 ≥ |L| − c ≥ |L ∩ J | − c, giving the claimed upper bound on |L ∩ J | − c.
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To get the lower bound, we use |L ∩ J | − c ≥ −c and c ≤ n
4 , so that |L ∩ J | − c ≥ −n

4 .

But n
4 < n

4 + 1
2 = n+2

4 = 3n−2n+2
4 = 3n+2

4 − 2n
4 . Since |J | ≤ n

2 , we have

|L ∩ J | − c ≥ −
n

4
> |J | −

3n+ 2

4
.

We now show the claim holds when the second defining equation of Fn is satisfied. Assume
(c, L) satisfies n+2

4 ≤ c ≤ |L| − n+2
4 . We have

c− |L ∩ J | ≥ c− |J |

≥
n+ 2

4
− |J |

≥
n+ 2

4
−

n

2

=
n+ 2− 2n

4

=
−n+ 2

4

≥ −
n

4
.

For the claimed lower bound, we have

|L| − |L ∩ J | = |L ∩ Jc|

≤ |Jc|

= n+ 1− |J |

=
3n+ 2

4
+

n+ 2

4
− |J |.

Subtracting n+2
4 from the first and last terms gives

c− |L ∩ J | ≤ |L| −
n+ 2

4
− |L ∩ J | ≤

3n + 2

4
− |J |.

We have shown the weights are in the set
[
n+ 2

4
− |Jc|,

n

4

]
∩ Z.

This equals [⌈
n+ 2

4

⌉
− |Jc|,

⌊n
4

⌋]
∩ Z.

Appealing to Lemma 5.13 shows that
[⌈

n+ 2

4

⌉
− |Jc|,

⌊n
4

⌋]
=

[⌈
n+ 2

4

⌉
− |Jc|,

⌈
n+ 2

4

⌉
− 1

]
.

�

Lemma 5.15. The collection Fn, viewed as line bundles on X+
J , generates the sheaves

OZ+
J

(⌈
n+ 2

4

⌉
− |Jc|

)
, . . . ,OZ+

J

(⌈
n+ 2

4

⌉
− 1− |J |

)
.
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Proof. Assume that w lies in
[
3n+ 4

4
− |Jc|, |Jc| −

n+ 2

4

]
∩ Z.

Let U be a G-stable open subset of W . From Corollary 5.8, if w ≤ n
4 , then the collection

Fn generates OU∩W+
J
(w(E − H)). If w ≥ (n+2)

4 , then Fn generates OU∩W+
J
(w(E − H) −

∑
i∈Jc Ei). We take U = W ss(χ+) and recall that Z+

J is
[
U ∩W+

J /G
]
.

Thus, Fn generates OZ+
J
(w(E − H)) for w ≤ n

4 and OZ+
J
(w(E − H) −

∑
i∈Jc Ei) for

w ≥ (n+2)
4 . The weights with respect to λJ are

λ̂J (w(E −H)) = −w + |J ∩∅| = −w

λ̂J

(
w(E −H)−

∑

i∈Jc

Ei

)
= −w + |J ∩ Jc| = −w.

Applying Lemma 5.10 and using the λJ -weight computations, when

w ∈

[
3n+ 4

4
− |Jc|, |Jc| −

n+ 2

4

]
∩ Z

the collection Fn will generate OZ+
J
(a) for

a ∈

[
n+ 2

4
− |Jc|, |Jc| −

3n+ 4

4

]
∩ Z.

Note that

|Jc| −
3n+ 4

4
=

n

4
− |J |.

Thus, the collection Fn will generate OZ+
J
(a) for

a ∈

[
n+ 2

4
− |Jc|,

n

4
− |J |

]
∩ Z.

Appealing to Lemma 5.13 gives the desired statement. �

Finally, we can easily handle the generation result for Fn.

Theorem 5.16. The collection Fn generates the category D
b(Vn).

Proof. Set

d :=

⌈
n+ 2

4

⌉
.

Using Proposition 5.12, we have a semi-orthogonal decomposition

D
b(X+

J ) =

〈
OZ+

J

(⌈
n+ 2

4

⌉
− |Jc|

)
, . . . ,OZ+

J

(⌈
n+ 2

4

⌉
− 1− |J |

)
,Db(X−

J )

〉
.

By Lemma 5.14, the collection Fn, viewed as line bundles, generates the components

OZ+
J

(⌈
n+ 2

4

⌉
− |Jc|

)
, . . . ,OZ+

J

(⌈
n+ 2

4

⌉
− 1− |J |

)
.

To show that Fn generates D
b(Vn), we work via (downward) induction on the lexico-

graphic ordering given above on J ⊆ {0, . . . , n} with |J | ≤ n
2 . Using Lemma 4.10 and the
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semi-orthogonal decomposition above, we see that Fn generates D
b(X+

J ) if Ψ⌈(n+2)/4⌉(Fn)

generates Db(X−
J ).

Using the second statement of Proposition 5.12 and weights of Fn computed in Lemma 5.14,
we see that Ψ⌈(n+2)/4⌉(Fn) = Fn (recall we are identifying these elements with their corre-

sponding line bundles). Thus, we reduce to the base case of the induction: X−
∅ = ∅. Since

D
b(X−

∅ ) = 0, the statement here is trivial. �
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