
ar
X

iv
:1

81
2.

09
39

4v
2 

 [
m

at
h.

N
T

] 
 1

1 
Ja

n 
20

19

HOPF-GALOIS MODULE STRUCTURE OF TAMELY RAMIFIED

RADICAL EXTENSIONS OF PRIME DEGREE

PAUL J. TRUMAN

Abstract. Let K be a number field and let L/K be a tamely ramified radical extension of

prime degree p. If K contains a primitive pth root of unity then L/K is a cyclic Kummer

extension; in this case the group algebra K[G] (with G = Gal(L/K)) gives the unique Hopf-

Galois structure on L/K, the ring of algebraic integers OL is locally free over OK [G] by

Noether’s theorem, and Gómez Ayala has determined a criterion for OL to be a free OK [G]-

module. If K does not contain a primitive pth root of unity then L/K is a separable, but non-

normal, extension, which again admits a unique Hopf-Galois structure. Under the assumption

that p is unramified in K, we show that OL is locally free over its associated order in this

Hopf-Galois structure and determine a criterion for it to be free. We find that the conditions

that appear in this criterion are identical to those appearing in Gómez Ayala’s criterion for the

normal case.

1. Introduction

In classical Galois module theory we consider a finite Galois extension L/K of local or global

fields with Galois group G and study the structure of each fractional ideal B of L as a module

over its associated order AK[G](B) ⊂ K[G], with particular emphasis on the case B = OL, the

ring of algebraic integers (or valuation ring) of L. Hopf-Galois module theory generalizes this

situation: a Hopf-Galois structure on an extension of fields L/K consists of a K-Hopf algebra

H together with a certain K-linear action of H on L (see [5, Definition 2.7] for the precise

definition). If L/K is an extension of local or global fields and H gives a Hopf-Galois structure

on L/K then we can study the structure of each fractional ideal B of L as a module over its

associated order AH(B) ⊂ H . These techniques have applications to Galois extensions L/K:

in this case the group algebra K[G] (with G = Gal(L/K)) gives a Hopf-Galois structure on

L/K, and any further Hopf-Galois structures admitted by the extension provide alternative

contexts in which we can study each fractional ideal (see [3], for example). However, the ap-

plication of Hopf-Galois theory to extensions which are not Galois is particularly interesting,

since it provides descriptions of rings of algebraic integers and/or fractional ideals in situations

where classical techniques do not apply. For example, Hopf-Galois theory has recently been

used by Koch [15] to study the structure of fractional ideals in a totally ramified purely insep-

arable extension of local fields of prime power degree, and by Elder [7] to address the same

questions for a separable, but non-normal, ramified extension of local fields of prime degree.

In this paper we study the Hopf-Galois module structure of the ring of algebraic integers in

a tamely ramified non-normal radical extension of number fields of prime degree. These are

the first results concerning the Hopf-Galois module structure of rings of algebraic integers in

non-normal extensions of global fields.

Let K be a number field, p a prime number, and ζ ∈ C a primitive pth root of unity. Let
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L = K(ω) with ωp ∈ K − Kp. If ζ ∈ K then L/K is a cyclic Kummer extension, and the

group algebra K[G] (with G = Gal(L/K)) gives a Hopf-Galois structure on L/K. If L/K is at

most tamely ramified (henceforth, “tame”) then Noether’s theorem [8, Theorem 3] implies that

AK[G](OL) = OK [G] and that OL is a locally free OK [G]-module (of rank one), and Gómez

Ayala [10] has determined a criterion for OL to be a free OK [G]-module. By Byott’s unique-

ness theorem [2, Theorem 1] the Hopf-Galois structure given by K[G] is the only Hopf-Galois

structure admitted by the extension, and so we have nothing to add to these results. If ζ 6∈ K

then L/K is a separable, but non-normal, extension. Results of Childs [4, Section 2] and Kohl

[16, Theorem 3.3] imply that L/K also admits a unique Hopf-Galois structure in this case. We

show that if L/K is tame and p is unramified in K then OL is a locally free module (of rank

one) over its associated order in this Hopf-Galois structure and determine a criterion for OL to

be free. Interestingly, we find that the conditions that appear in this criterion are identical to

those that appear in Gómez Ayala’s criterion for the normal case.

The paper is organized as follows. In section 2 we summarize Gómez Ayala’s work on the

case in which L/K is normal; thereafter we assume that L/K is non-normal. From section 3

onward we assume that p is unramified in K; under this assumption we establish a criterion

for L/K to be tame (proposition 3.3), and determine an integral basis of OL,p = OK,p ⊗OK
OL

over OK,p for each prime ideal p of OK in this case (propositions 3.4 and 3.5). In section 4 we

study the unique Hopf-Galois structure admitted by L/K; in particular, we show that the Hopf

algebra H giving this Hopf-Galois structure is isomorphic to Kp as a K-algebra (proposition

4.3) and give a simple formula for its action on L (proposition 4.4). In section 5 we show

that OL is locally free over its associated order A = AH(OL) (theorem 5.1), and for each p we

determine an explicit generator of OL,p over Ap. Given that OL is a locally free A-module, a

result of Bley and Johnston [1, Proposition 2.1] relates the structure of OL as an A-module

to the structure of MOL as an M-module, where M denotes the unique maximal order in H ;

we use this result, along with an idélic description of the locally free class group Cl(M), to

derive a criterion for for OL to be a free A-module (theorem 5.5), and show that the conditions

appearing in this criterion are identical to those appearing in Gómez Ayala’s criterion for the

normal case. Finally, in section 6 we discuss a unified approach to the normal and non-normal

cases.

2. Gómez Ayala’s Criterion

We retain the notation established in the introduction: K is a number field, p a prime

number, ζ a primitive pth root of unity, and L/K is an extension of the form L = K(ω) with

ωp ∈ K − Kp. In this section we assume that ζ ∈ K; the extension L/K is then a cyclic

Kummer extension and the group algebra K[G] (with G = Gal(L/K)) gives the unique Hopf-

Galois structure on L/K. We also suppose that L/K is tame. By Noether’s theorem we then

have that AK[G](OL) = OK [G] and OL is a locally free OK [G]-module. Gómez Ayala [10] has

determined a criterion for OL to be a free OK [G]-module; we summarize his result using some

notation and terminology from [6]. Each ideal a of OK has a unique decomposition of the form

a =
∏

i≥1

aii,

where the ai are pairwise coprime squarefree ideals of OF . (We have ai = OK for i sufficiently

large, so the product above is finite.) We call the ideal ai the i-part of a, and note that it is the

product of the prime ideals p of OK such that vp(a) = i. Next we define the ideals associated
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to a by

bj =
∏

i≥1

a
⌊ij/p⌋
i for 0 ≤ j ≤ p− 1,

where ⌊x⌋ denotes the largest integer not exceeding x. We remark that an alternative expression

for the bj is

bj =
∏

p

p⌊vp(a
j)/p⌋ =

∏

p

prp(a
j) for 0 ≤ j ≤ p− 1,

where the product is taken over the prime ideals p of OK , and rp(a
j) = ⌊vp(a

j)/p⌋.

Gómez Ayala’s result is that OL is a free OK [G]-module if and only if there exists an ele-

ment β ∈ OL such that

(1) L = K(β),

(2) b = βp ∈ OK ,

(3) the ideals bj associated to bOK are principal with generators bj such that

p−1∑

j=0

βj

bj
≡ 0 (mod pOL).

Furthermore, in this case the element

1

p

p−1∑

j=0

βj

bj

is a free generator of OL as an OK [G]-module.

Several authors have studied generalizations or variants of this result. Ichimura [14] proved

that if p is unramified in K and L/K is a tamely ramified Galois extension of degree p then

L has a normal integral basis if the Kummer extension L(ζ)/K(ζ) has a normal integral basis.

Ichimura also studied the case in which L/K is a cyclic Kummer extension of arbitrary degree

[13], and a criterion for the existence of a normal integral basis in this case was given by Del

Corso and Rossi [6].

3. Tame radical extensions of prime degree

Henceforth we suppose that ζ 6∈ K, and write F = K(ζ). The extension L/K is then

separable but non-normal. In fact, we impose the stronger hypothesis that p is unramified in

K. We record some consequences of this assumption:

Lemma 3.1. Suppose that p is unramified in K. Then:

(1) F/K has degree p− 1;

(2) each prime ideal p of OK lying above p is totally ramified in F/K;

(3) the set {1, ζ, . . . , ζp−2} is an integral basis of OF over OK .

Proof. Let p be a prime ideal of K lying above p. Since p in unramified in K the polynomial

f(x) = xp−1 + xp−2 + · · ·+ x + 1 is an Eisenstein polynomial over Kp and has ζ as a root, so

Kp(ζ)/Kp has degree p − 1 and is totally ramified, by [9, Theorem 24]. Therefore F/K has

degree p− 1 and p is totally ramified in F/K. We also have from [9, Theorem 24] that the set

{1, ζ, . . . , ζp−2} is an OK,p-basis of OF,p. Since d({1, ζ, . . . , ζp−2}) = ±pp−2, this set is actually

an integral basis of OF,p over OK,p for all prime ideals p of OK , and therefore an integral basis

of OF over OK . �
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The Galois closure of L/K is E = K(ζ, ω), and E/F is a Galois extension of degree p. In

this section we use well known results concerning ramification and local integral bases in E/F

to establish a criterion for L/K to be tame and to determine local integral bases in this case.

E

Galois, degree p − 1

③③
③③
③③
③③
③③
③③

Galois, degree p

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

L = K(ω)

degree p
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
F = K(ζ)

Galois, degree p− 1
③③
③③
③③
③③
③③
③

K

Proposition 3.2. L/K is tame if and only if E/F is tame.

Proof. The extension F/K is tame since it is Galois of degree p − 1 and is ramified only at

prime ideal lying above p; similarly E/L is tame. If L/K is tame then since E/L is tame we

have that E/K is tame, and so E/F is tame. Conversely, if E/F is tame then since F/K is

tame we have that E/K is tame, and so L/K is tame. �

Proposition 3.3. L/K is tame if and only if there exists α ∈ OL such that

(1) L = K(α);

(2) αp ≡ 1 (mod p2OK).

Proof. Suppose first that there exists α ∈ OL with the properties stated in the proposition.

Then (since (ζ − 1)p−1OF = pOF ) we have E = F (α) with αp ≡ 1 (mod (ζ − 1)pOF ) and so

by [5, Propositions (24.2) and (24.4)] each prime ideal q of OF lying above p is unramified in

E. Since E/F is a Galois extension of degree p this implies that E/F is tame, and so L/K is

tame by proposition 3.2.

Conversely, suppose that L/K is tame. Then by proposition 3.2 E/F is tame, and so by [5,

Propositions (24.2) and (24.4)] for each prime ideal q of OF lying above p there exists βq ∈ OE,q

such that Eq = Fq(βq) and βp
q ≡ 1 (mod (ζ − 1)pOF,q). By the Chinese Remainder Theorem

there exists β ∈ OE such that E = F (β) and βp ≡ 1 (mod (ζ − 1)pOF ). Let α = NE/L(β);

then L = K(α) and αp ≡ 1 (mod (ζ − 1)pOF ). But α
p ∈ OF ∩OL = OK , so (again using the

fact that (ζ − 1)p−1OF = pOF ) we have αp ≡ 1 (mod p2OK).

�

Henceforth we shall suppose that L/K is tame and that L = K(α) with a = αp ≡ 1

(mod p2OK). We now determine integral bases of OL,p over OK,p for each prime ideal p of OK .

Proposition 3.4. Let p be a prime ideal of OK that does not lie above p, and let πp be a

uniformizer of Kp. For x ∈ K let rp(x) =

⌊
vp(x)

p

⌋
. Then an integral basis of OL,p over OK,p

is given by {
αj

π
rp(aj)
p

∣∣∣∣∣ j = 0, 1, . . . , p− 1

}
.

Proof. The ramification indices of p in F/K and E/K depend only on p, because F/K and

E/K are Galois extensions. Let q be a prime ideal of OF that lies above p. Then we have

ep(E/K) = eq(E/F )ep(F/K), but ep(F/K) = 1 since p does not lie above p, and eq(E/F ) = 1
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or p, since E/F is a Galois extension of degree p. Hence ep(E/K) = 1 or p. Now let P be a

prime ideal of OL lying above p. Then P is unramified in E/L, since E = L(ζ) and P does not

lie above p. Therefore p is either unramified or totally ramified in L/K, according to whether

q is unramified or totally ramified in E/F . By [12, Theorem 118], q is unramified in E/F if

p | vq(a), and totally ramified if p ∤ vq(a). Since p is unramified in F/K we conclude that p is

unramified in L/K if p | vp(a), and totally ramified if p ∤ vp(a).

If p | vp(a) then for each prime ideal P of OL lying above p and each j = 0, 1, . . . , p − 1

we have rp(a
j) = vP(α

j), so vP

(
αj/π

rp(aj )
p

)
= 0 (since vP(πp) = 1). Therefore the discriminant

of the set in the proposition lies in O×
K,p, and so this set is an OK,p-basis of OL,p.

If p ∤ vp(a) then let P be the unique prime ideal of OL that lies above p; we then have

vP(πp) = p and vP(α) = vp(a), so for each j = 0, 1, . . . , p− 1

vP

(
αj

π
rp(aj)
p

)
= vp(a

j)− prp(a
j).

Therefore for each j = 0, 1, . . . , p − 1 the set in the proposition contains exactly one element

whose valuation at P is equal to j, and so this set is an OK,p-basis of OL,P = OL,p. �

Proposition 3.5. Let p be a prime ideal of OK that lies above p. Then an integral basis of

OL,p over OK,p is given by
{
1, α, . . . , αp−2,

1

p

(
1 + α + · · ·+ αp−1

)}
.

Proof. Let q be the unique prime ideal of OF that lies above p. By [5, Proposition 24.4] an

OF,q-basis of OE,q is given by
{(

α− 1

ζ − 1

)j
∣∣∣∣∣ j = 0, 1, . . . , p− 1

}
.

Since vq(p) = p− 1, it follows that an OF,q-basis of OE,q is given by
{
(α− 1)j

p
(ζ − 1)p−1−j

∣∣∣∣ j = 0, 1, . . . , p− 1

}

and (using lemma 3.1) that an OK,p-basis of OE,p is given by
{
(α− 1)j

p
ζ i(ζ − 1)p−1−j

∣∣∣∣
i = 0, 1, . . . , p− 2

j = 0, 1, . . . , p− 1

}
.

Since E/L is tamely ramified, we have OL = TrE/L(OE), and so OL,p is spanned over OK,p by

the images of the elements of this set under the map Tr = TrE/L. Since [F : K] = p − 1 by

lemma 3.1, we have

Tr(ζr) =

{
p− 1 if r ≡ 0 (mod p)

−1 otherwise.
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Now for i, j = 0, 1, . . . p− 2 we have

Tr

(
(α− 1)j

p
ζ i(1− ζ)p−1−j

)
=

(α− 1)j

p

p−1−j∑

k=0

(
p− 1− j

k

)
Tr
(
ζ i(−ζ)k

)

=
(α− 1)j

p

(
(−1)p−i

(
p− 1− j

p− i

)
p−

p−1−j∑

k=0

(
p− 1− j

k

)
(−1)k

)

= (−1)p−i

(
p− 1− j

p− i

)
(α− 1)j ,

where we interpret the binomial coefficient
(
p−1−j
p−i

)
as zero if p− i > p−1−j. The OK,p-span of

these elements is equal to the OK,p-span of 1, α, . . . , αp−2. For i = 0, 1, . . . , p− 2 and j = p− 1

we have

Tr

(
(α− 1)p−1

p
ζ i
)

=

{
(α− 1)p−1 − (α−1)p−1

p
if i = 0

− (α−1)p−1

p
otherwise.

Therefore (α−1)p−1

p
∈ OL,p and, using the fact that

(
p−1
k

)
≡ (−1)k (mod p), we have

1
p
(1 + α + · · ·+ αp−1) ∈ OL,p. Therefore the set in the proposition spans OL,p over OK,p.

Since this set is clearly linearly independent over OK,p, it forms an OK,p-basis of OL,p. �

4. The Hopf-Galois structure on a radical extension of prime degree

As discussed in the introduction, the extension L/K admits a unique Hopf-Galois structure.

This fact is established in, for example, [4, Section 2] or [16, Theorem 3.3], but we give a self

contained proof in our case for the convenience of the reader. We also establish some properties

of this Hopf-Galois structure, which will be useful in what follows.

We rewrite the Galois closure of L/K as E = K(α, ζ); we then have Gal(E/K) = 〈σ, τ〉,

where σ(α) = ζα, σ(ζ) = ζ , τ(α) = α, and τ(ζ) = ζd for some primitive root d modulo p.

We have σp = τ p−1 = 1 and τστ−1 = σd. Let G = Gal(E/K), G′ = 〈τ〉, and let X denote

the left coset space G/G′. By a theorem of Greither and Pareigis ([11, Theorem 2.1] or [5,

Theorem 6.8]), the Hopf-Galois structures on L/K are in bijective correspondence with regular

subgroups of Perm(X) that are normalized by the image of G under the left translation map

λ : G → Perm(X). Since |X| = p, any such subgroup must be cyclic of order p. We shall re-

formulate the problem via Byott’s translation theorem ([2, Proposition 1] or [5, Theorem 7.3]):

let M = 〈µ〉 be an abstract group of order p, and recall that the holomorph of M is the group

Hol(M) ∼= M⋊Aut(M); the appropriate subgroups of Perm(X) are then in bijective correspon-

dence with equivalence classes of embeddings β : G →֒ Hol(M) such that β(G′) = Stab(1M),

modulo conjugation by elements of Aut(M).

Proposition 4.1. The extension L/K admits exactly one Hopf-Galois structure.

Proof. Let θ ∈ Aut(M) be defined by θ(µ) = µd; it is then easy to see that β : G → Hol(M)

defined by

β(σ) = (µ, 1) and β(τ) = (1, θ)

is an embedding β : G →֒ Hol(M) such that β(G′) = Stab(1M). If β ′ is another such embedding

then since (M, 1) is the unique Sylow p-subgroup of Hol(M) we have β ′(σ) = µi for some integer

i. Similarly, since β ′(τ)[1M ] = 1M and τ has order p−1 we have β ′(τ) = (1, θj) for some integer
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j coprime to p− 1. Now we have

β ′(τστ−1) = β ′(σd) = (µid, 1),

but also

β ′(τστ−1) = (1, θj)(µi, 1)(1, θ−j) = (µijd, 1).

Hence j = 1. Now let ϕ ∈ Aut(M) be defined by ϕ(µ) = µi. Then

β ′(σ) = (µi, 1) = ϕ(µ, 1)ϕ−1 = ϕβ(σ)ϕ−1,

and (since Aut(M) is abelian)

β ′(τ) = (1, θ) = ϕ(1, θ)ϕ−1 = ϕβ(τ)ϕ−1.

Therefore β ′ and β are conjugate by an element of Aut(M), so there is exactly one equivalence

class of suitable embeddings β : G →֒ Hol(M), and so exactly one Hopf-Galois structure on

L/K. �

By using elements of the proof of Byott’s translation theorem, we can determine the regular

subgroup of Perm(X) that corresponds to the unique Hopf-Galois structure on L/K:

Proposition 4.2. Let η ∈ Perm(X) be defined by η(σi) = σi−1. Then N = 〈η〉 is the regular

subgroup of Perm(X) that corresponds to the unique Hopf-Galois structure on L/K.

Proof. Let β : G → Hol(M) be defined by

β(σ) = (µ, 1) and β(τ) = (1, θ),

as in proposition 4.1. From β we obtain a bijection b : X → M defined by b(σi) = β(σi)[1M ] =

µi, where σi = σiG′. The map β̂ : M → Perm(X) defined by β̂(µ) = b−1λM(µ)b (where λM

denotes the left regular representation of M) is then an embedding of M into Perm(X) whose

image is regular and normalized by λ(G), and β̂(M) is the regular subgroup of Perm(X) that

corresponds to β. We have:

β̂(µ)[σi] = b−1[λM(µ)b[σi]]

= b−1[λM(µ)µi]

= b−1[µi+1]

= σi+1

= η−1(σi),

and so β̂(M) = N . �

The theorem of Greither and Pareigis also asserts that the Hopf algebra giving the Hopf-

Galois structure corresponding toN isH = E[N ]G, where G acts on E as Galois automorphisms

and on N by conjugation via λ, viz. gη = λ(g)ηλ(g)−1 for all g ∈ G.

Proposition 4.3. We have H ∼= Kp as K-algebras.

Proof. Since ζ ∈ E the group algebra E[N ] has an E-basis of mutually orthogonal idempotents

ei =
1

p

p−1∑

k=0

ζ−ikηk for i = 0, 1, . . . , p− 1,

and so E[N ] ∼= Ep as E-algebras. It is easy to verify that ση = η and τη = ηd; it follows that

each idempotent ei is fixed by each element of G, and so lies in E[N ]G = H . Therefore H has

a K-basis of mutually orthogonal idempotents, and so H ∼= Kp as K-algebras. �
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Finally, the theorem of Greither and Pareigis implies that the action of H on L is given by
(

p−1∑

k=0

ckη
k

)
· x =

p−1∑

k=0

ckη
−k[1G](x) =

p−1∑

k=0

ckσ
k(x) for all x ∈ L.

Proposition 4.4. For i, j = 0, 1, . . . , p− 1 we have ei · ω
j = δi,jω

j.

Proof. For i, j = 0, 1, . . . , p− 1 we have

ei · ω
j =

(
1

p

p−1∑

k=0

ζ−ikηk

)
· ωj

=
1

p

p−1∑

k=0

ζ−ikσkωj

=
1

p

p−1∑

k=0

ζ−ikζjkωj

=
1

p

p−1∑

k=0

ζk(j−i)ωj

= δi,jω
j.

�

5. Hopf-Galois module structure

In this section we show that OL is locally free over its associated order A in H , and determine

a criterion for it to be free. We have previously studied the Hopf-Galois module structure of

fractional ideals in tame extensions of local or global fields (see [17], [18], or [19], for example),

and some of our results could be applied here: for example [17, Proposition 5.6] implies that

OL,p is a free Ap-module for each prime ideal p of OK that does not lie above p. However,

our existing results do not apply to the prime ideals lying above p in our current situation, or

construct explicit generators, which we shall require in what follows. Therefore the following

proposition is necessary:

Theorem 5.1. We have A = OE [N ]G, and OL is a locally free A-module. For each prime ideal

p of OK, a free generator of OL,p as an Ap-module is given by

xp =





1

p

p−1∑

j=0

αj if p | pOK

1

p

p−1∑

j=0

αj

π
rp(aj)
p

otherwise.

Proof. By [17, Proposition 2.5] we have OE [N ]G ⊆ A. On the other hand, note that for

i = 0, 1, . . . , p− 1 we have pei ∈ OE [N ]G. We shall show that for each prime ideal p of OK the

set {xp, pe1 · xp, . . . , pep−1 · xp} (with xp as defined in the proposition) is an OK,p-basis of OL,p.

This will imply that OL is a locally free OE [N ]G-module, and hence that A = OE [N ]G. Recall

from proposition 4.4 that for i, j = 0, 1, . . . , p− 1 we have ei ·α
j = δi,jα

j . If p lies above p then

we have

1 · xp = xp

pei · xp = αi for i = 1, 2, . . . , p− 1 .
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Referring to proposition 3.5 we see that OL,p is a free OE,p[N ]G-module with generator xp. If

p does not lie above p then we have

1 · xp = xp

pei · xp =
αi

π
rp(ai)
p

for i = 1, 2, . . . , p− 1 .

Referring to proposition 3.4 and recalling that p ∈ O×
K,p in this case, we see as above that OL,p

is a free OE,p[N ]G-module with generator xp. Therefore OL is a locally free OE [N ]G-module,

so A = OE [N ]G. �

To establish a criterion for OL to be a free A-module, we use a result of Bley and Johnston

[1, Proposition 2.1]. The K-algebra H contains a unique maximal OK-order M, which is

the preimage of Op
K under the isomorphism H ∼= Kp constructed in proposition 4.3. Let MOL

denote the smallest M-submodule of L that contains OL. Then the result of Bley and Johnston

implies that OL is a free A-module if and only if

• OL is a locally free A-module;

• MOL is a free M-module, and MOL = M · x for some x ∈ OL.

Furthermore, in this case the element x ∈ OL is a free generator of OL as an A-module.

We have shown in theorem 5.1 that OL is a locally free A-module, and so we now focus our

attention on the M-module MOL. We shall first establish a criterion for MOL to be a free

M-module, and then turn to the question of when it has a free generator lying in OL. Certainly

MOL is a locally free M-module, and (MOL)p = Mp · xp (with xp as defined in theorem 5.1)

for each prime ideal p of OK . The M-module MOL therefore defines a class in the locally free

class group Cl(M). Since H is commutative it satisfies the Eichler condition, and so MOL is a

free M-module if and only if its class in Cl(M) is trivial. The fact that H is commutative also

implies that there is an isomorphism

Cl(M) ∼=
J(H)

H×U(M)
,

where J(H) denotes the idéle group of H , H× denotes the subgroup of principal idéles, and

U(M) is the subgroup of unit idéles of M. Using the explicit generators determined in theorem

5.1, we can identify the idéle whose coset corresponds to the class of MOL in Cl(M):

Proposition 5.2. The class of MOL in Cl(M) corresponds to the coset of the idéle (hp)p,

where

hp =





1 if p | pOK
p−1∑

j=0

ej

π
rp(aj)
p

otherwise

Proof. Let x =
1

p

p−1∑

j=0

αj. Then x is a free generator of L as an H-module since by proposition

4.4 we have ei · x = (1/p)αi for each i, and {1, α, . . . , αp−1} is a K-basis of L. Therefore the

class of OL in Cl(M) corresponds to the idele (hp)p, where for each prime p of OK the element

hp ∈ Hp is defined by hp · x = xp and xp is defined as in theorem 5.1. The result follows

immediately. �
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Since H ∼= Kp and M ∼= O
p
K , we have isomorphisms

J(H)

H×U(M)
∼=

(
J(K)

K×U(OK)

)p

∼= Cl(OK)
p,

where Cl(OK) is the ideal class group of OK . Explicitly, if (hp)p ∈ J(H) then, writing

hp =

p−1∑

j=0

zj,pej with zj,p ∈ Kp for each p, the idéle (hp)p is then mapped to the tuple of classes

of ideals (
∏

p

pvp(z0,p),
∏

p

pvp(z1,p), . . . ,
∏

p

pvp(zp−1,p)

)
.

Using this, we obtain a criterion for MOL to be a free M-module in terms of certain ideals

of OK being principal. Recall from section 2 that the ideals associated to aOK are

bj =
∏

p

prp(a
j) for 0 ≤ j ≤ p− 1,

where rp(a
j) = ⌊vp(a

j)/p⌋.

Proposition 5.3. The M-module MOL is free if and only if bj is principal for all

j = 0, 1, . . . , p− 1.

Proof. As discussed above, MOL is a free M module if and only if it has trivial class in Cl(M),

the class of MOL in Cl(M) corresponds to the class of the idéle (hp)p defined in proposition

5.2, and this idéle corresponds to the tuple of classes of ideals

∏

p|a

p−rp(a0),
∏

p|a

p−rp(a1), . . . ,
∏

p|a

p−rp(ap−1)


 =

(
b−1
0 , b−1

1 , . . . , b−1
p−1

)
.

Therefore MOL is a free M-module if and only if bj is principal for all j = 0, 1, . . . , p− 1. �

Next we turn to the question of when MOL has a free generator lying in OL:

Proposition 5.4. The M-module MOL has a free generator lying in OL if and only if the

ideals bj associated to aOK are principal, with generators a0, a1, . . . , ap−1 ∈ OK such that

1

p

p−1∑

j=0

αj

aj
∈ OL.

Proof. By proposition 5.3 MOL is a free M module if and only if bj is principal for all j =

0, 1, . . . , p−1. Suppose that each ideal bj is principal, say bj = bjOK for each j = 0, 1, . . . , p−1.

Then a free generator of MOL over M is given by

x =
1

p

p−1∑

j=0

αj

bj
,

and the set of free generators for MOL as an M-module is precisely the set {z · x | z ∈ M×}.

Recalling that we have M ∼= Op
K and eiα

j = δi,jα
j for i, j = 0, 1, . . . , p − 1, we see that an

element y′ ∈ L is a free generator for MOL as an M-module if and only if it has the form

x′ =
1

p

p−1∑

j=0

ujα
j

bj
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with uj ∈ O×
K for j = 0, 1, . . . , p − 1. Therefore MOL has a free generator lying in OL if and

only if there are elements u0, u1, . . . , up−1 ∈ O×
K such that the corresponding element x′ lies in

OL. Writing aj = u−1
j bj for each j, this is equivalent to the existence of elements aj as in the

proposition. �

By combining the results of this section we obtain a criterion for OL to be a free A-module:

Theorem 5.5. The ring of algebraic integers OL is a free A-module if and only if there exists

β ∈ OL such that

(1) L = K(β);

(2) b = βp ∈ OK;

(3) the ideals associated to bOK are principal with generators bj such that

p−1∑

j=0

βj

bj
≡ 0 (mod pOL).

Furthermore, in this case the element

1

p

p−1∑

j=0

βj

bj

is a free generator of OL as an A-module.

Proof. If OL is a free A-module then by the result of Bley and Johnston MOL = M · x for

some x ∈ OL. Therefore by proposition 5.4 the ideals associated to aOK are principal, with

generators a0, a1, . . . , ap−1 ∈ OK such that

1

p

p−1∑

j=0

αj

aj
∈ OL,

and so the element β = α ∈ OL satisfies (1),(2), and (3). Conversely, suppose that β ∈ OL

satisfies (1),(2), and (3). We follow the argument of [6, Remark 1]. Since L = K(β), we have

β = αℓc for some ℓ = 1, 2, . . . , p−1 and c ∈ K. Let t be the inverse of ℓ modulo p, and for each

j = 0, 1, . . . , p− 1 let

aj = bjtc
−jta−⌊ljt/p⌋ ∈ OL,

where jt denotes the principal remainder of jt modulo p. Then the elements aj generate that

ideals associated to aOK , and there is an equality of sets

{1, β/b1, . . . , β
p−1/bp−1} = {1, α/a1, . . . , α

p−1/ap−1}.

Therefore
p−1∑

j=0

αj

aj
=

p−1∑

j=0

βj

bj
≡ 0 (mod pOL),

so by proposition 5.4 we have MOL = M · x for some x ∈ OL, and so by the result of Bley and

Johnston OL is a free A-module. �

Finally, we observe that the conditions appearing in this criterion are identical to those

appearing in Gómez Ayala’s criterion, as summarized in section 2.

6. A uniform approach to the normal and non-normal cases

We have seen that a radical extension of number fields L/K of degree p admits a unique

Hopf-Galois structure: that given by H = K[G] (with G = Gal(L/K)) if L/K is normal, and
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that given by H = E[N ]G (with E the Galois closure of L/K, G = Gal(E/K), and N as

in proposition 4.2) if L/K is non-normal. In either case we have H ∼= Kp as K-algebras: in

the normal case because K contains a primitive pth root of unity; in the non-normal case by

proposition 4.3. Writing L = K(α) for some α ∈ L such that αp ∈ K and renumbering if

necessary, the orthogonal idempotents in H then act by ei ·α
j = δi,jα

j for i, j = 0, 1, . . . , p− 1.

This uniformity in the K-algebra structure of H and its action on L has implications for

questions of integral module structure.

Suppose that L/K is tame. Assuming that p is unramified in K in the non-normal case,

we can then choose α such that αp ≡ 1 (mod (ζ − 1)pOK) if L/K is normal and αp ≡ 1

(mod p2OK) if L/K is non-normal (proposition 3.3). In either case, the ring of algebraic

integers OL is locally free over its associated order in H : in the normal case by Noether’s

theorem and in the non-normal case by theorem 5.1. Moreover, the local generators of OL,p

over Ap are the same in both cases: for a prime ideal p of OK not lying above p the orthogonal

idempotents in Hp form an OK,p-basis of Ap in both cases, so the appropriate parts of the proof

of theorem 5.1 apply equally well to the normal and non-normal case. For p lying above p a

small modification to the argument of theorem 5.1 shows that the element xp defined there is

also a free generator of OL,p over Ap in the normal case. (Alternatively, since in the normal

case Ap is a local Hopf order for such p, we could deduce this from the Childs-Hurley criterion:

see [5, Theorem 14.7].)

Given that OL is a locally free A-module in both case, the result of Bley and Johnston [1,

Proposition 2.1] implies that it is a free A-module if and only if MOL is a free M-module with

a generator lying in OL (where M denotes the unique maximal order in H). But we have

M ∼= Op
K via orthogonal idempotents in both cases, and for each p the element xp defined in

theorem 5.1 is a free generator of (MOL)p as an Mp-module. Therefore all of the arguments in

section 5 involving the idélic description of Cl(M) and the idéle corresponding to the class of

MOL apply equally well in both cases, which explains why the criterion we obtained in theorem

5.5 is identical to that obtained by Gómez Ayala.
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