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Abstract. The k-tuple domination problem, for a fixed positive integer
k, is to find a minimum sized vertex subset such that every vertex in
the graph is dominated by at least k vertices in this set. The k-tuple
domination is NP-hard even for chordal graphs. For the class of circular-
arc graphs, its complexity remains open for k ≥ 2. A 0, 1-matrix has
the consecutive 0’s property (C0P) for columns if there is a permutation
of its rows that places the 0’s consecutively in every column. Due to
A. Tucker, graphs whose augmented adjancency matrix has the C0P for
columns are circular-arc. In this work we study the k-tuple domination
problem on graphs G whose augmented adjacency matrix has the C0P
for columns, for 2 ≤ k ≤ |U |+ 3, where U is the set of universal vertices
of G. From an algorithmic point of view, this takes linear time.

Keywords: k-tuple dominating sets, stable sets, adjacency matrices,
linear time

1 Preliminaries, definitions and notation

In this work we consider finite simple graphs G, where V (G) and E(G) denote
its vertex and edge sets, respectively. G′ is a (vertex) induced subgraph of G and
write G′ ⊆ G, if E(G′) = {uv : uv ∈ E(G), {u, v} ⊆ V ′}, for some V ′ ⊆ V (G).
When neccesary, we use G[V ′] to denote G′. Given S ⊆ V (G), the induced
subgraph G[V (G) \ S] is denoted by G − S. For simplicity, we write G − v
instead of G− {v}, for v ∈ V (G).

The (closed) neighborhood of v ∈ V (G) is NG[v] = NG(v) ∪ {v}, where
NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The minimum degree of G is denoted by
δ(G) and is the minimum between the cardinalities of NG(v) for all v.

A vertex v ∈ V (G) is universal if NG[v] = V (G).
A clique in G is a subset of pairwise adjacent vertices in G.
A stable set in G is a subset of mutually nonadjacent vertices in G and the

cardinality of a stable set of maximum cardinality in G is denoted by α(G).
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A graph G is circular-arc if it has an intersection model consisting of arcs on
a circle, that is, if there is a one-to-one correspondence between the vertices of G
and a family of arcs on a circle such that two distinct vertices are adjacent in G
when the corresponding arcs intersect. A graph G is an interval graph if it has an
intersection model consisting of intervals on the real line, that is, if there exists
a family I of intervals on the real line and a one-to-one correspondence between
the vertices of G and the intervals of I such that two vertices are adjacent in G
when the corresponding intervals intersect. A proper interval graph is an interval
graph that has a proper interval model, that is, an intersection model in which
no interval contains another one. Circular-arc graphs constitute a superclass
of proper interval graphs and they are of interest to workers in coding theory
because of their relation to “circular” codes.

J denotes the square matrix whose entries are all 1’s and I the identity
matrix, both of appropriate sizes.

Associated with a graph G is the adjacency matrix M(G) defined with entry
mij = 1 if vertices vi and vj are adjacent, and mij = 0 otherwise. Note that
M(G) is symmetric and has 0′s on the main diagonal. The augmented adjacency
matrix or neighborhood matrix M∗(G) with entries m∗ij is defined as M∗(G) :=
M(G) + I, i.e. M(G) with 1′s added on the main diagonal.

A 0, 1-matrix has the consecutive 0’s property (C0P) for columns if there is
a permutation of its rows that places the 0’s consecutively in every column. This
property was presented by Tucker in [13].
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Fig. 1. A graph G with the C0P for columns and a circular-arc model for G.

Fulkerson and Gross [5] have described an efficient algorithm to test whether
a 0, 1-matrix has the C0P for columns and to obtain a desired row permutation
when one exists.

For a nonnegative integer k, D ⊆ V (G) is a k-tuple dominating set of G if
|NG[v]∩D| ≥ k, for every v ∈ V (G). Notice that G has k-tuple dominating sets if
and only if k ≤ δ(G)+1 and, if G has a k-tuple dominating set D, then |D| ≥ k.
When k ≤ δ(G) + 1, γ×k(G) denotes the cardinality of a k-tuple dominating set
of G of minimum size and γ×k(G) = +∞, when k > δ(G) + 1. γ×k(G) is called
the k-tuple dominating number of G. Observe that γ×1(G) = γ(G), the usual



M∗(G) =



1 1 1 1 0 0 1
1 1 1 0 0 0 1
1 1 1 0 1 1 1
1 0 0 1 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1
1 1 1 1 1 1 1


.

Fig. 2. The augmented adjacency matrix for graph G in Figure 1.

domination number. Besides, note that γ×0(G) = 0 for every graph G [8]. When
G is not connected, the k-tuple dominating number of G is defined as the sum
of k-tuple dominating numbers of its connected component.

For a graph G, a positive integer t and S ⊆ V (G) with t ≤ |S|, we say that
S t-dominates G if S is a t-tuple dominating set of G.

Corcerning computational complexity results, the decision problem (fixed k)
associated with this concept is NP-complete even for chordal graphs [4]. It is
natural then try to find subclasses of chordal graphs where these problems are
“tractable”.

Efficient algorithms for the problem corresponding to k = 1 (the usual domi-
nation problem) are alrealdy presented in [10] and [1] for any circular-arc graph.
Besides, among the known polynomial time solvable instances of the problem for
the case k = 2, proper interval graphs constitute the maximal subclass of chordal
graphs already studied [12]. Proper interval were characterized by Roberts [11]
as those graphs whose augmented adjacency matrices have the consecutive 1’s
property for columns (defined also by Tucker [13] in a similar way as the C0P
property).

With a different approach, polynomial algorithms were recently provided for
some variations of domination, say k-domination and total k-domination (for
fixed k) for proper interval graphs [2].

The slightly diference involved in k-domination, k-tuple domination and total
k-domination problems makes them useful in various applications, for example in
forming sets of representatives or in resource allocation in distributed computing
systems. However, the problems are all known to be NP-hard and also hard to
approximate [3].

In this work we study 2- and 3-tuple domination on the subclass of circular-
arc graphs that have the C0P for columns. Our results allow to solve the k-tuple
domination problem in this class for 2 ≤ k ≤ |U | + 3. In Sections 2 and 3, we
present some special properties on k-tuple domination for any positive integer
k. The study of the problem for k = 2 and k = 3 is developed in Section 4 and
further analysis for the general case is given in Section 5.



2 k-tuple dominating sets on graphs with universal
vertices

From the definition, it is clear that γ×k(G) ≥ k for every graph G and positive
integer k. Besides, it is remarkable that S ⊆ V (G) |S|-dominates G if and only
if each vertex of S is a universal vertex. Then,

Lemma 1. Let G be any graph, U the set of its universal vertices and k a
positive integer. Then γ×k(G) = k if and only if |U | ≥ k.

Notice that, when u is a universal vertex of G and D is a k-tuple dominating
set of G with u not in D, then by interchanging u with any vertex of D, we
obtain another k-tuple dominating set containing u. Formally,

Remark 1. If G is a graph and u a universal vertex of G, there exists a k-tuple
dominating set D of G such that u ∈ D.

From this remark, it is easy to prove the following relationship:

Proposition 1. Let G be a graph, u a universal vertex of G and k a positive
integer. Then

γ×k(G) = γ×(k−1)(G− u) + 1.

Proof. Let D be a k-tuple dominating set of G with |D| = γ×k(G).

If u ∈ D, then D − u is a (k − 1)-tuple dominating set of G − u, thus
γ×(k−1)(G − u) + 1 ≤ |D| = γ×k(G). If u /∈ D, from Remark 1 we can build a
k-tuple dominating set D′ of G with |D′| = γ×k(G) and u ∈ D′ and proceed as
above with D′ instead of D.

On the other side, let D be a minimum (k−1)-tuple dominating set of G−u.
It is clear that D ∪ {u} is a k-tuple dominating set of G since u is a universal
vertex. Then γ×k(G) ≤ |D ∪ {u}| = |D|+ 1 = γ×(k−1)(G− u) + 1 and the proof
is complete. ut

The above lemma can be generalized as follows:

Lemma 2. Let G be a graph, U the set of its universal vertices and k a positive
integer with |U | ≤ k − 1. Then

γ×k(G) = γ×(k−|U |)(G− U) + |U | .

It is clear from Lemmas 1 and 2 the following

Corollary 1. For a graph G and U 6= ∅ the set of its universal vertices, if
γ×i(G) can be found in polynomial time for i = 1, 2, 3, then γ×k(G) can be
found in polynomial time for every k with 1 ≤ k ≤ |U |+ 3.



3 k-tuple domination and C0P-graphs

Recall that a 0, 1-matrix has the C0P for columns if there is a permutation of
its rows that places the 0’s consecutively in every column. We introduce the
following definition:

Definition 1. A graph G whose augmented adjancency matrix, M∗(G), has the
C0P for columns is called a C0P-graph.

Remark 2. It is clear that if G is a COP-graph then G− U is a COP-graph.

Let G be a C0P-graph with its vertices indexed so that the 0’s occur consec-
utively in each column of M∗(G). Let C1 be the set of columns whose 0’s are
below the main diagonal, C2 the set of columns whose 0’s are above the main
diagonal, and U the set of columns without 0’s. Sets C1, C2 and U partition
V (G), G[C1] and G[C2] are cliques in G and U is the set of universal vertices of
G. We denote this partition by (C1, C2, U), or simply (C1, C2) when U = ∅. In
the later case, |C1| ≥ 2 and |C2| ≥ 2. Also for simplicity, we denote G1 := G[C1]
and G2 := G[C2].

From now on, G is a C0P-graph and (C1, C2, U) is the above mentioned
partition of V (G).

It is easy to prove the following upper bound on the size of a mimimun
k-tuple dominating set of a C0P-graph:

Lemma 3. Let G be a C0P-graph and k a positive integer. If |Ci| ≥ k for
i = 1, 2, then

γ×k(G) ≤ 2k.

Proof. Let Di ⊆ Ci with |Di| = k, for i = 1, 2 and consider the set D1∪D2. Take
v ∈ V (G). If v ∈ Ci, then Di ⊆ NG[v], thus |NG[v] ∩ (D1 ∪ D2)| ≥ |Di| = k,
for i = 1, 2. If v ∈ U , clearly NG[v] = C1 ∪ C2, thus |NG[v] ∩ (D1 ∪ D2)| =
|D1 ∪ D2| = 2k ≥ k. Thus D1 ∪ D2 is a k-tuple dominating set of G and the
upper bound follows. ut

Lemmas 2 and 3 allow us to restrict our study of C0P-graphs to those with
partition (C1, C2, U), where U = ∅ and C1 and C2 are nonempty sets. Under
these assumptions, we have k + 1 ≤ γk(G) ≤ 2k, for any C0P-graph G.

For a given C0P-graph G with partition (C1, C2), let us denote V (G) =
{v1, v2, · · · , vn}, C1 = {v1, v2, · · · , vr} and C2 = {vr+1, vr+2, · · · , vn}. Also let
us denote by M∗CiCj

, the submatrix of M∗(G) with rows indexed by Ci and
columns by Cj . Notice that M∗C1C1

= M∗C2C2
= J .
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Fig. 3. Augmented adjacency matrix M∗(G) of a C0P-graph G with U = ∅.

3.1 Construction of auxiliary interval graphs Hi

Let G be a C0P-graph and (C1, C2) the above mentioned partition of V (G).

We construct two interval graphs H1 and H2 with V (Hi) = Ci for i = 1, 2 in
the following way:

– for each vertex vi ∈ C1, define an interval Ii from [r + 1, n]N such that, if
the consecutive 0’s of column vi correspond to the vertices vp, ..., vp+s where
p ≥ r + 1 and p+ s ≤ n, then Ii = [p, p+ s]N.

– for each vertex vi ∈ C2, define an interval Ii from [1, r]N such that, if the
consecutive 0’s of column vi correspond to the vertices vp, ..., vp+s with p ≥ 1
and p+ s ≤ r, then Ii = [p, p+ s]N.

We will say that vertex vi is represented by the interval Ii, ∀i = 1, ..., n.

The two interval graphs H1 and H2 constructed as above have interval models
I1 = {I1, I2, ..., Ir} and I2 = {Ir+1, Ir+2, ..., In}, respectively.
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Fig. 4. Graphs H1 and H2 related to graph G of Figure 1.

Remark 3. For a C0P-graph with partition (C1, C2, U) with U 6= ∅, graphs H1

and H2 are defined as above from the subgraph G− U of G.



It is clear that given two intersecting intervals Ii and Ij of H1 for 1 ≤ i 6=
j ≤ p, there exists q with p + 1 ≤ q ≤ n such that m∗qi = m∗qj = 0. This means
that vqvi /∈ E(G) and vqvj /∈ E(G). In other words, given two non intersecting
intervals Ii and Ij of H1 for 1 ≤ i 6= j ≤ p, we have m∗qi = 1 or m∗qj = 1 for
all q with p + 1 ≤ q ≤ n. Therefore in each file of M∗C2C1

there exist at least
one 1 in the columns corresponding to vertex vi or vj and then vqvi ∈ E(G) or
vqvj ∈ E(G) for all q with p+ 1 ≤ q ≤ n.

In a similar way, the above argument clearly holds for the interval graph H2.

3.2 Stables sets of Hi and tuple dominating sets of G

We will denote by αi the stability number of the inteval graphs Hi constructed as
in the previous subsection, for i = 1, 2. Let us remark that the stability number
of an interval graph can be found in linear time [7].

The following fact easily follows:

Lemma 4. Let G be a C0P-graph with partition (C1, C2), S ⊆ Cj and t a
positive integer such that S t-dominates Gi for i 6= j. Then |S| ≥ t+ 1.

Proof. Since U = ∅, the proof easily follows from the fact that for each vertex
v ∈ Ci, there is a non adjacent vertex w ∈ Cj , for i 6= j and i = 1, 2. ut

It is straigthforward that any subset S ⊆ Ci |S|-dominates Gi, for each
i = 1, 2 and at most (|S| − 1)-dominates the whole graph G. When considering
stable sets of Hi, the interesting fact is the following, which will be the key of
the results in the next section:

Proposition 2. Let G be a C0P-graph with partition (C1, C2) and S ⊆ Ci, with
i = 1, 2. Then S (|S| − 1)-dominates Gj (i 6= j) if and only if S is a stable set
of Hi.

Proof. S is an (|S|−1)-tuple dominating set of Gj if and only if for every vertex
v ∈ Cj , |NGj

[v]∩S| ≥ |S|−1. In other words, S is an (|S|−1)-tuple dominating
set of Gj if and only if for each file of M∗CjCi

there exists at most one zero in the
columns corresponding to vertices in S. This is equivalent to say that the set of
intervals {It}t:vt∈S are pairwise non-adjacent, i.e S is a stable set of Hi.

ut

The relationship bewtween tuple dominating sets of G and stable sets of the
auxiliary interval graphs H1 and H2 allow us to solve the 2, 3-tuple domination
problems on C0P-graphs.

4 2- and 3-tuple domination for C0P-graphs

4.1 2-tuple domination

Theorem 1. Let G be a C0P -graph with partition (C1, C2, U) and graphs Hi

defined as in the previous section, for i = 1, 2.



1) If |U | = 1, then γ×2(G) = 3.
2) If |U | ≥ 2, then γ×2(G) = 2.
3) If |U | = 0 and α1 + α2 ≥ 3 then γ×2(G) = 3.
4) If |U | = 0 and α1 = α2 = 1 then γ×2(G) = 4.

Proof. 1) Follows from Proposition 1.
2) Follows from Lemma 1.
3) Suppose |U | = 0 and α1 +α2 ≥ 3 and let S1 and S2 be stable sets of H1 and

H2 respectively with |S1 ∪ S2| = 3. Clearly, Si |Si|-dominates Gi and also
(|Si| − 1)-dominates Gj for each i = 1, 2 and i 6= j. Thus S1 ∪S2 is a 2-tuple
dominating set of G and then γ×k(G) ≤ 3. But γ×k(G) > 2 from Lemma 1
and thus the result follows.

4) Suppose |U | = 0 and α1 = α2 = 1. Then |D ∩Cj | ≥ 2 for j = 1, 2 and every
2-tuple dominating set D of G. Thus γ×2(G) ≥ 4. The result then follows
from Lemma 3.

ut

Corollary 2. The 2-tuple domination problem can be solved in linear time on
C0P-graphs.

Proof. Follows from the fact that finding the stability number of an interval
graph is linear. ut

4.2 3-tuple domination

Theorem 2. Let G be a C0P -graph with partition (C1, C2, U) and graphs Hi

defined as in the previous section, for i = 1, 2.

i. If |U | = 1, then γ×3(G) = 4 if α1 + α2 ≥ 3, and γ×3(G) = 5 if α1 + α2 = 2.
ii. If |U | = 2, then γ×3(G) = 4.

iii. If |U | = 3, then γ×3(G) = 3.
iv. If |U | = 0 and α1 + α2 ≥ 4 then γ×3(G) = 4.
v. If |U | = 0 and α1 = α2 = 1 then γ×3(G) = 6.

vi. If |U | = 0 and α1 + α2 = 3 then γ×3(G) = 5.

Proof. i. Follows from Proposition 1 and items 3 and 4 of Theorem 1.
ii. Follows from Lemma 2.
iii. Follows from Lemma 1.

iv.) Suppose |U | = 0 and α1 + α2 ≥ 4 and let S1 and S2 be stable sets of H1

and H2 respectively, with |S1 ∪ S2| = 4. Clearly, Si |Si|-dominates Gi and
also (|Si| − 1)-dominates Gj for i 6= j and i = 1, 2. Thus S1 ∪ S2 is a 3-tuple
dominating set of G implying γ×3(G) ≤ 4. But γ×3(G) > 3 from Lemma 1
concluding γ×k(G) = 4.

v.) Suppose |U | = 0 and α1 = α2 = 1. Then |D ∩ Cj | ≥ 3 for j = 1, 2 for every
3-tuple dominating set D of G. Thus γ×2(G) ≥ 6. The result then holds from
Lemma 3 (when |Ci| ≥ 3; in other case the problem is infeasible).



vi.) Suppose w.l.o.g. that α1 = 1 ∧ α2 = 2. It is not difficult to see that it is
enough to consider the case |C1| ≥ 2 and |C2| ≥ 3 (in any other case, α1 = 1
together with |C2| = 2 imply the existence of a vertex w ∈ C2 not adjacent
to every v ∈ C1, leading to the infeasibility of the problem).

Let S1 and S2 be stable sets of H1 and H2 respectively where |Si| = αi for
i = 1, 2. Then S1 ∪ S2 2-dominates G. Take two vertices w1 ∈ C1 − S1 and
w2 ∈ C2 − S2, thus the set S1 ∪ S2 ∪ {w1, w2} is a 3-dominating set of G of
cardinality 5, implying γ×3(G) ≤ 5.

Now, since γ×3(G) ≥ 4 (U = ∅), it is enough to show that γ×k(G) 6= 4.
Suppose D is a minimum 3-tuple dominating set of G with |D| = 4 and
denote d1 = |D∩C1| and d2 = |D∩C2|. Consider ti = max {|N [x]∩Di| : x ∈
Cj}, for i = 1, 2, i 6= j. From Lemma 4, ti ≤ di−1 for i = 1, 2, and moreover,
t1+t2 ≥ 3 (otherwise, for each x ∈ V , |N [x]∩D| = |N [x]∩D1|+|N [x]∩D2| ≤
t1 + t2 < 3, contradiction). Then d1 + d2− 1 = 3 ≤ t1 + t2 ≤ d1 + d2− 2 = 2,
which leads to a contradiction. Thus, we have the desired equality.

ut

Corollary 3. The 3-tuple domination problem can be solved in linear time on
C0P-graphs.

Proof. Follows from the fact that finding the stability number of an interval
graph can be done in linear time. ut

Example 1. Recall graph G from Figure 1 and the auxiliary graphs H1 and H2

of Figure 3.1. The results exposed in this section can be applied approprietly in
order to calculate the values of γ×i(G) for i = 1, 2, 3, 4. Actually, since α1 = 2
and α2 = 1, we have:

γ×4(G) = γ×3(G− v7) + 1 = 5 + 1 = 6,

γ×3(G) = γ×2(G− v7) + 1 = 3 + 1 = 4,

γ×2(G) = γ×1(G− v7) + 1 = 2 + 1 = 3

and

γ×1(G) = 1.
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Fig. 5. Graph G− U , where G is the graph of Example 1 and U = {v7}.

5 Further analysis for any k

Some of the results in the previous section can be generalized in the following
way:

Proposition 3. Let G be a C0P -graph with partition (C1, C2) and graphs Hi

defined as in the previous section, for i = 1, 2.

1. if αi = 1 and D is a k-tuple dominating set D of G, then |D ∩Cj | ≥ k with
1 ≤ i 6= j ≤ 2;

2. if α1 + α2 = 2 then γ×k(G) = 2k;
3. if α1 + α2 > k then γ×k(G) = k + 1.
4. if α1 + α2 = k and |Ci| ≥ αi + 1 for i = 1, 2 then γ×k(G) = k + 2.

Proof. 1. W.l.o.g., asume i = 1. Then α1 = 1 implies that there exists j with
r + 1 ≤ j ≤ n such that m∗ji = 0 for all i with 1 ≤ i ≤ r. This means that
vertex vj (vj ∈ C2) is non adjacent to every vertex of C1, thus |D ∩C2| ≥ k
for each k-tuple dominating set D of G.

2. If α1 = 1 = α2, then previous item implies that any k-tuple dominating set
of G has at leat 2k vertices. Thus γ×k(G) ≥ 2k. The equality holds from
Lemma 3.

3. Let S1 and S2 be stable sets of H1 and H2 respectively, with |S1∪S2| = k+1.
Clearly, Si |Si|-dominates Gi and also (|Si|−1)-dominates Gj for i = 1, 2 and
i 6= j. Thus S1∪S2 is a k-tuple dominating set of G and then γ×k(G) ≤ k+1.
But γ×k(G) > k from Lemma 1 and then γ×k(G) = k + 1.

4. Let S1 and S2 be maximum stable sets of H1 and H2 respectively. It is clear
that S1 ∪S2 is a (α1 +α2− 1)-dominating set of G, i.e a (k− 1)-dominating
set of G. Take two vertices w1 ∈ C1 − S1 and w2 ∈ C2 − S2. Thus the set
S1 ∪ S2 ∪ {w1, w2} is a k-tuple dominating set of G of cardinality k + 2,
implying γ×k(G) ≤ k + 2.
Now, since γ×k(G) ≥ k + 1 (U = ∅), it suffies to show that γ×k(G) 6= k + 1.
Suppose D is a minimum k-tuple dominating set of G with |D| = k+ 1 and
denote d1 = |D∩C1| and d2 = |D∩C2|. Consider ti = max {|N [x]∩Di| : x ∈
Cj}, for i = 1, 2, i 6= j. From Lemma 4, ti ≤ di−1 for i = 1, 2, and moreover,
t1+t2 ≥ k (otherwise, for each x ∈ V , |N [x]∩D| = |N [x]∩D1|+|N [x]∩D2| ≤
t1 + t2 < k, a contradiction). Then d1 + d2 − 1 = k ≤ t1 + t2 ≤ d1 + d2 − 2,
whcih leads to a contradiction. Thus, we have the desired equality.

ut



6 Conclusions

In this work, we solved in linear time the k-tuple domination problem on a
subclass of circular-arc graphs, called C0P-graphs for 2 ≤ k ≤ |U |+ 3, where U
is the set of universal vertices of the input graph G. We think that —under a
suitable implementation— the thecniques used in this paper together with the
more general result in Theorem 3 can be further developed to solve the problem
for the remaining values of k, even for other subclasses or moreover, the whole
class of circular-arc graphs where the problems remain unsolved.
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