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Abstract

Let k,n > 2 be integers. A generalized Fermat curve of type (k,n) is a com-
pact Riemann surface S that admits a subgroup of conformal automorphisms
H < Aut(S) isomorphic to Z}, such that the quotient surface S/H is biholo-
morphic to the Riemann sphere C and has n + 1 branch points, each one of
order k. There exists a good algebraic model for these objects, which makes
them easier to study. Using tools from algebraic topology and integration
theory on Riemann surfaces, we find a set of generators for the first homology
group of a generalized Fermat curve. Finally, with this information, we find
a set of generators for the period lattice of the associated Jacobian variety.
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1. Introduction

The Jacobian variety JS of a compact Riemann surface S of genus g is
isomorphic to a complex torus of dimension g, i.e., a quotient C9/A, where
A C €Y is the period lattice ( A = Z?9 ) of S that depends on the analytical
and algebraic-topological structure of S. The importance of JS is due to
Torelli’s theorem, which states that the principally polarized abelian variety
JS determines the Riemann surface S up to biholomorphism.

Thus, if the Jacobian variety is in the form C9/A, the period lattice
A with the corresponding polarization determines S. However, to find an
explicit form for the period lattice of a particular compact Riemann surface
is a difficult task and there is no standard method to do it.

Email address: yerko.torresn@gmail.com (Yerko Torres-Nova)

Preprint submitted to Pure and Applied Algebra April 29, 2020



We restrict attention to an interesting family of compact Riemann sur-
faces called generalized Fermat curves of type (k,n), where k,n > 2 are
integers. In [2] it was noticed that such a Riemann surface can be described
as a suitable fiber product of (n — 1) classical Fermat curves of degree k.
In this paper we find a generating set for the period lattice of a generalized
Fermat curve, based on the work of Rohrlich [1] who found a generating set
for the period lattice of the classical Fermat curve of degree k > 4.

2. Preliminaries

2.1. The Jacobian variety

Let S be a compact Riemann surface of genus g > 0. Its first homology
group Hy(S,7Z) is a free Abelian group of rank 2¢g, and the complex vector
space H"?(S) of its holomorphic 1-forms has dimension g. There is a natural
Z-linear injective map

7 H\(S,Z) — (H"°(9))*

Y () () 1= / .

where (H'°(S))* is the dual space of H'Y(S). The image 7(H,(S,Z)) is a
lattice in (H'°(9))*, and the quotient g-dimensional torus

JS = (H"(8))"/r(H(S, Z))

is called the Jacobian variety of S. It is a fact that JS admits a principal
polarization defined by the Hermitian form on H°(S) given by

(wl,wQ) —>/w1/\w_2.

If {wi,...,w,} is a basis for H(S), then we have the isomorphism
(H(S))* = €9 and if {v,..., 7} is a finite generating set for H,(S,Z)
(need not be a basis), then we can see 7(H;(S,Z)) as the lattice A in C9
generated by the collection

Ci—(/wl,/wg,...,/wg>, 1§z§m
Vi Yi Yi

The lattice generated by the C;‘s is called the period lattice of S, and in the
case where m is the rank 2¢ of H,(S,Z), we can find the Riemann matrix of
S, which allows us to study JS as a polarized Abelian variety.
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2.2, Generalized Fermat curves

Let k,n > 2 be integers. A compact Riemann surface S is called a
generalized Fermat curve of type (k,n) if it admits a subgroup of conformal
automorphisms H < Aut(S) that is isomorphic to Z} (where Zy = Z/kZ),
such that the quotient surface S/H is biholomorphic to the Riemann sphere
C and has n+1 branch points, each one of order k. In this case the subgroup
H is called a generalized Fermat group of type (k,n), and the pair (S, H)
is called a generalized Fermat pair of type (k,n). As a consequence of the
Riemann-Hurwitz formula given in Corollary 1.2 of [6] or Proposition 1.2 of
[7], the genus gy, of a generalized Fermat curve of type (k,n) is

24k (= 1)(k—1) —2)
Gk = 5 .

We say that two generalized Fermat pairs (S, Hy) and (S2, Ha) are holo-
morphically equivalent if there exists a biholomorphism f : S; — S; such
that fH,f~! = H,.

Remark 1. Note that generalized Fermat curves of type (k,1) are just cyclic
covers of degree k of C with two branch points, which are all of genus 0.
From [5] we know that the Fermat curve of degree k > 2 given by

{[z0, 21, 20] € P’C : 2f 4 2% + 2% = 0}

has a subgroup of conformal automorphisms isomorphic to Z2, where the quo-
tient surface is biholomorphic to the Riemann sphere with three branch points
00,0,1. Thus the classical Fermat curves are generalized Fermat curves of

type (k,2).

Remark 2. The non-hyperbolic case, i.e., when gr, < 1, are given by
(k,n) € {(2,2),(2,3),(3,2)}, or k= 1. See [2] for explicit examples.

Let (S, H) be a generalized Fermat pair of type (k,n) and, up to a Moe-
bius transformation, let {00, 0, 1, A1, A2, ..., A,_o} be the branch points of the
quotient S/H. Let us consider the following fiber product of n — 1 classical



Fermat curves:

( ok + b + 2b = 0 )
Mk +ab+28 =0
CeMy s Ang) =4 Neag+af+af = 0 % cprc, (1)
| Anozg +af+ay = 0

Since the values \; are pairwise different and each one is different from 0
and 1, the algebraic curve Ci(Aq, ..., A\,_2) is a non-singular projective alge-
braic curve, hence a compact Riemann surface.

Y

On Ci(A1,...; Ap—2) we have the abelian group Hy = Z7 of conformal
automorphisms generated by the maps

ai([xﬂa' o 7xn]) = [:U07 T 7371'717C/€xi7xi+17' te 7xn]7 L= Oa ey 1,

2mi/k

where (, = e . Let us consider the holomorphic map of degree k™

A

T Ok()\l,...,)\n,Q) — C
k
[IOJ"' 7xn] = = (%) )

with the property m o a; = w for each ¢ = 1,... ,n. So 7 induces a biholo-
morphism

7o Ce(M, o da2)/Hy — C
Hop = m(p).

Furthermore, the map 7 has n + 1 branch points given by
{OO7 O, 1, )\1, >\2, oeey )\n_g}.

It follows that Ci(Aq,..., A\n—2) is a generalized Fermat curve of type (k,n)
with generalized Fermat group Hj, whose standard generators are aq, ... ,a,
and ap = (a1az . ..a,)"'. Using the above notation, the following result was
proved in [2].

Theorem 1. The generalized Fermat pairs (S, H) and (Cx(Ay, ..., \n—2), Hp)
are holomorphically equivalent.



On Ci(A1, ..., An_2) we have the following meromorphic maps

A

T, .
y; = x_g (A, s Ae) = C, j=1,...,n.

We consider the set [, of tuples (o, ... , ;) such that
n
o e€l, 0<agy....,p,<k—1 0<a SZOQ—Q,
i=2

and define the meromorphic form

yfél dy

= e o
y2 o .. nn

for each (o, ..., an) € Ix,. The paper [3] proved the following.
Theorem 2. With the above notation, the following holds:

,,,,, an 18 holomorphic for every (ay, ... ,ay) € Iip.

2. #]k,n = Gkn-
3. The collection

is a basis for the space HY(Cy(A1, ..., \n_2)) of holomorphic 1-forms.
For simplicity, in the rest of this paper we write C}, instead of Ci(Aq, ..., An_2).

2.3. The logarithm symbol on the punctured plane

Let R C C a finite subset with 0 € R and |R| > 2. The elements of R
are denoted by r;, with 1 <4 < |R|. Then we consider a universal covering
of C — R given by

p:U—C-—R.

Since p is holomorphic, we have the family of holomorphic functions p; =
p—r; with 1 < i < |R|. The function p; does not vanish on U, so there exists
a determination of logp; on U such that

exp(log p;) = p;.
Let Deck(p) be the group of covering transformations of p. Then for every

¢ € Deck(p) the function

u = = (logpi(6(u)) — logpi(u)



on U is identically an integer. This integer is independent of the choice of
log p;, and we denote it by L(p;, ¢). It is not difficult to see that the symbol
L(p;, ) satisfies

for every ¢, 1 € Deck(p). Furthermore, we observe the following.

Lemma 1. Let z; : U — C be the kth root of p; defined by

. 1
T; = exp (% logpi) .

Then for every ¢ € Deck(p) we have
Fio¢= CkL(pz‘@)ini.

Recall that Deck(p) is isomorphic to the fundamental group 7 (C — R),
which is a free group generated by |R| elements, each one homotopic to
a circle with center r; and index one. Then we consider the generators
¢1, ..., o|r € Deck(p) associated with each generator of m(C — R), and for
any u € U we have the equality

1 #5(w) 5
L i Pj) — 5 dl i — Oijs
(pis &5) = 5 L og p; = i
where 0;; is the usual Kronecker delta.

For general aspects of the logarithm symbol on Riemann surfaces, see [4].

3. Generating set for the period lattice of Cy ,,

Consider the generalized Fermat curve of type (k,n) given by Equation
(1) and the set of n + 1 branch points R U {oo}, where

R:{Tl:O,T’QI)\Ozl,Tg:)\l,... ,TnIAn,Q}.



3.1. A finite generating set for Hy(Cy, Z)

Associated with R, we have the universal covering p : U — C — R. We
have the set of functions

phh = =P
pi = p—r; for2<i<n.
There exists a kth root z; of p;, which by Lemma 1 satisfies
Giod= C]cL(pi7¢)5i3i

for each ¢ € Deck(p). From Equation (2) we have the surjective homomor-
phism

U Deck(p) = Zg,  W(¢) = (L(p1,¢);- -, L(pn, ¢)) mod k,
so it is not difficult to deduce the following fact.
Lemma 2. The subgroup of Deck(p) which leaves each &; invariant is
Deck(p)y := Ker(V).

Now we consider the punctured Riemann surface Cj,,, = Ci,, — 7 (R U
{o0}). We now prove the following result.

Lemma 3. The map
q: U— Ol,f,nv UHQ(U) = [17:%1(1’6)7 ai‘n(u)]
is a universal covering of Cy,, , with Deck(q) = Deck(p).

Proof. Since r; + @ + 2% = N\ o —p+ (p—1r;) = 0 for i > 2, we have
q(U) C Cy,,- Let a € €}, and assume a = [1, ay, ..., a,], with a; # 0 for every

i. If ¢(u) = a, then Z;(u) = a; for each i. In particular &;(u)* = —p(u) = at.

Since p is surjective, there exists u € U such that p(u) = —a¥, and hence

#1(u) = ¢J'a; for some integer j;. Since a¥ = —ak —r; for 1 < i < n and
57?(“) =p(u) — \iy = —af — :af, 1<i1<n,

we have #;(u) = (J'a; with an integer j; for each i. Now we choose ¢ €
Deck(p) such that

L(ps, ¢) = —Ji
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for every i, we get q(¢(u)) = a, and therefore ¢ is surjective. Now ¢ is a
covering map because every a € C}, has an evenly covered neighborhood
since p is a covering map. Finally, if u,v € ¢ '(a) with a € Ch.n» then
v = ¢(u) for some ¢ € Deck(p). Now, as

~ A L 1, o L s -
g(u) = [1, 21 (u), .., o (w)] = [1,FP D2 (), .., GFP 20 (0)] = (),
we have ¢ € Deck(p)g. O
From the previous two lemmas, we have

Lemma 4. The map ¥ gives an isomorphism
Deck(p)/ Deck(q) = Z.
We denote by ¢4, ... , ¢, the n generators of Deck(p) with
L(pi, ¢j) =65, 1<i,j<n.
Lemma 5. Deck(q) is generated by
¢F for each 1 <i<n and [Deck(p), Deck(p)],

where [Deck(p), Deck(p)] is the commutator subgroup of Deck(p).

Proof. Since Deck(p)/ Deck(q) is Abelian, we have that [Deck(p), Deck(p)] <
Deck(q). We also know that the free generators ¢, ..., ¢, of Deck(p) corre-
spond to the canonical basis of Z? by ¥, hence ¥(¢¥) = 0 for each i. If
K < Deck(p) is the subgroup generated by each ¢* and [Deck(p), Deck(p)],
then we have

Deck(p)/K = Z}.

So we must have Deck(q) = K. O
Recall that 7 (C} ,,) = Deck(q) by Lemma 3, so we have

Theorem 3. The first homology group of Cy ., namely

n’

Deck(q)
[Deck(q), Deck(q)]’

Hl(CI::,m Z) =

1s generated by the classes of the elements

Fo1<i<n

7
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and

n n -1
<H ¢Zd> [¢]7 ¢l] (H ¢fld> y
d=1 d=1
with integers 1 < j <l <nand0<g; <k —1.

Proof. Since Deck(q) is generated by ¢F and [Deck(p), Deck(p)], it is gener-
ated by
F,o1<i<n,

and
Vb, oy,

with 7 € Deck(p) and 1 < j <1 < n. We have Deck(p)/ Deck(q) = Z}, so
{T15=; &7 Yo<gu<k—1 is a set of representatives such that every v € Deck(p)
lies in Deck(q)p for precisely one p from this set.
Choosing the representative p € {[[,_; % o<gy<k—1, we have v = op with
o € Deck(q), and

ey, ey = olples, dlp~)o ™

as a product of elements in Deck(q). Quotienting by [Deck(q), Deck(q)] the
product commutes, and the o’s cancel. O

Since the inclusion map ¢ : C} ,, < Cj, induces a surjective homomor-
phism between the homology groups, we have

Corollary 1. The images of the generating set of Hi(Cy,,,,Z) under the
homomorphism induced by the inclusion v : Cy , < Cy,, forms a generating

set for Hi(Cyn,Z).

We summarize the maps used in the following diagram.

U

|

o v
p Ck,n Ckzn

X X

C - RU{oo}—-C



3.2. Computing periods

Let ¢ € Deck(p) and fix u € U. We denote by l; a curve from u to ¢(u)
on U. So a generating set for Hy(Cy,,7Z) are the homology classes of the
curves ¢ o ¢(ly) for each ¢ of the form

i (H ¢§d> (65, ] (H cbfzd)

for1<i<n,1<j<l<n,and 0 < gg <k — 1. Thus, to find an explicit
generating set for the period lattice of Cj, we need to calculate

(u)
/ eal,...,an = / q*eal,...,an = / q*eal,...,an'
toqol lg u

Lemma 6. We have the following relations between the induced pullbacks of
the generators of H"°(Cy.,):

. A ddy
T Oar...0n = M7 (3)
+1 L 7¢ - n— L 7¢
¢*q*9a1,... ay = ]gal )L(p1,9) Zd,z agL(pg )adq*eoq,...,ana (4)

for each ¢ € Deck(p). In particular, q*0,,... o, is an eigenvector for each

¢* € Deck(p).

n

Proof. The first result follows from the observation that z; = y; o ¢ for each
1. The second follows from Lemma 1 in Section 2.3. O

We denote by M; the value (aq + 1)L(p1, ¢i) — > n_y @aL(pa, ¢3). We
observe that

o a+1 i=1
Ml—{—a“_l QSZSTL

Moreover, since U is a simply connected domain, we have for ¢, € Deck(p)
and w € H'O(U) the relation

pot(u) #(u) P(u)
/ W= / w+ / O w.
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Lemma 7. For each ¢f with i € {1,...,n} we have

/ 0a17”~7an = O
LOquqﬁf

Proof. 1If M; is non zero, then from Equation (4) of Lemma 6 we obtain

o
*
/ 0(11 ..... an — / q eoq ..... an
togol U

o

In the case where M; = 0, the differential form 6,, ., is holomorphic on
the interior of the loop ¢ o g oy, so that the integral vanishes. O

We conclude that the homology class of each ¢f is null in H(C},,,Z),
which reduces the problem to computing the integrals over

<ﬁ ¢Zd> (65, &] (ﬁ ¢cgzd) :

d=1 d=1

Lemma 8. For each o = p[¢;, ¢ilp~" with p = [[}_, ¢3* we have

> =1 9aMa
/ 6a17~--,an = Ck: ! 6&1,...,an~
10qol LOqu[¢j7¢l]

Proof. From Lemma 6 and the observation that [¢;,¢;] € Deck(q) leaves
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q*0a, ..., invariant, it follows that

ploj,oilp™ u
ES
/ eal,...,an _/ q eal,...,an
10qol & u

plos,d1lp~tu
= / q*0a1,...,an
o

o~ u
[¢j7¢l]p71u
=/1 PG O, an
p—lu
(65, ¢1lp L u
7L: g M
— kz:d 19d d/ 1 q*eal’m’an
p~lu

n [#5,01]u [p5.B1]p™  u
- kZdZI ngd / +/ q*e&l,...,an
p~lu [6.61]u

Lemma 9. For each j,l € {1,...,n} we have

M, eiu
/ 9041,...,an = (1 - Sk l)/ q*eal,...,an
LOqOZ[¢j’¢l] U
dru
M; %
- (1 - Ck J)/ q 0041,...,om-
u

Proof. Again from Lemma 6 we have the relations

[¢5,¢1]u bju bipid; o u
/ q*eal,...,an = / q*eal,...,an + / q*eal,,..,an
u u Pju

pju Gy g
_ / b+ [ 0o 0
u u

bru v, [O05
= [ G q Os,... an
u u
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and

G5 o dru $167 ¢
/ q*eoq,...,ozn = / q*eoq,...,an + / q*gal,..,,an
u U Pru

d1u ¢ o
:/ q*9a1,~~~,an+/ D14 Oas.... o
u u

Pru ¢ o tu
* Ml J *
= q eal,...,an + Ck q eal,.‘.,an-
i u

Doing the same for the integral from u to ¢j’1¢[1u and observing that

¢f1u qﬁ;lu
—1\* % —M; %
/ (¢J 1) q 90&1,...,04,” = <k ! / q 9041,...,O¢n7
u u

¢j_1u dju
* M; *
/ q eal,...,an - _Ck ! / q eal,.‘.,cxn
u u

o ' o dru
* _ 1 *
/ q 9041,...,04,1 - T Sk / q 9&1,..,,an7
u u

Finally we reduced the problem to computing

and

the result follows.

diu
/ @ Oa...q, forl<i<n.
Lemma 10. Fiz u € U and let zp = p(u) € C\ R with
R = {Tl :O,T’Q == 1,7‘3 :)\1,... , T :)\n_g}.

Then for each i € {1,...,n} we have

diu 1 | r . n
[ 0 == 1= @ [ ) [ = )
u 20

t=2

where the choice of the branch is determined by the preimage u of zg.
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Proof. Since —2% = p, making a change of variable w = —2% we obtain

diu 1 o n
/u q*eal,...,an = _E/ (—w)%_l H(w _ rt)_at/kdw,

Vi t=2

where ; is the projection by p of the curve from u to ¢;(u), i.e., 7; is an
element of m(C — R, zp) that surrounds r; with index 1 . Choose sy € [0, 1)
such that zp = |zp]€*™™°, and consider the circle with center 0 and radius
¢ > 0 given by B.(s) = ee?™(5750) Let 3 be the line from 2y to z. € B N 2, 0.
Thus 7, is homotopic to S + . — €™ 3, where the factor €™ is due to the
continuation of the argument through the critic line (—o0,0], as we see in
Figure 1.

Figure 1

Then

p1u Ze
k / s, = (1 — (1) / (—w)

SASE

For small e the maps (ee?™(s+s0) — \,)=@/k are continuous on [0,1], thus

n

a1k+1—1 H(w o rt)_at/kdw

t=2

a1k+171 H(w o rt)fat/kdw

t=2




n

bounded. So there exists a positive constant C' independent of € such that
a1k+171 H(w . rt)fat/kdw
t=2

[ =)
Be
1 27i(ay+1)(s+sg)
a1+l e E

27(—e) " F ; H;L:Q(eeQm(erso) — N\ )eu/k ds

< 27TEQITHC.
Since o‘lkﬂ, —a;/k are larger than —1 for each i > 2, in the limit ¢ — 0 we
obtain
d1u 1 o+l 0 oy b1 n
/ q*eal,...,an = _%/ (—U)) 1k -t H(U) — Tt)_at/kdw.
u 20 t=2
For ~; with ¢ > 2 we apply an analogous argument. O]

Remark 3. For the integral

/ (—w) e H(w — )" *dw,
20

t=2

the convergence is given by the fact that o‘lkﬂ, —aj/k are larger than —1 for

each j, so the maps |w — rj]Mj/k with © # j are well defined, continuous and
bounded when zy is in a neighborhood of r;.

Theorem 4. Let
R: {7“1 :O,’I“z = 1,T3 = )\1,... s Th = )\n—Z}
be the set of branch points of (Cy.., Hy) distinct of co. If we denote

W (R, &)(w) := (—w) ™ ' [J(w — )"
=2
for each d = (o, ...,ay) € Iy, then the period lattice A = 7(H,(Cp, Z)) is
generated by the period vectors

M; M,
n 1_ J 1_ l Tl
(?“ngd( 2 >k( k )/ W(R,o?)dw>
" G€ljn

J

for each generator pld;, ¢i)p~t € Hi(Chp, Z) with p=T]}_, ¢ and 0 < g4 <
k—1.
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Proof. From Lemmas 9 and 10 we obtain

[¢J=¢l]u
/ q O, an

_ _(1 - C}i‘/lj)(l - ]i\/[l) /Tl(_w) a1k+1_1 ﬁ(w o ’f’t>_at/kdw.

k J t=2

Thus by Lemma 8 for each generator o = plo;, ¢ulp~" € Hi(Cyn,Z) with
p =11, &% we have

/ Oas.....m
1oqoly

”gddl_Mj 1— ¢ "
kzd:l My ( Ck )k( k )/T (—w)

n

a1k7171 H(w o Tt)fat/kdw

J t=2

withl <j<l<nand0<gy<k—1 O

Remark 4. In the case of the classical Fermat curves Cyo with R = {r =
0,ry = 1}, the integrals to compute are

ay+1

1/ —1d .
) 2w jermartt [ S8 gyl
o (w— 1)t 0

where n = (—1)Y*. If we consider the Beta function

B(z,y) = /0 11 —t)V"!,  Re(x), Re(y) > 0,

then

@ 1
/1 (—w) Lt —Ldw _ —nal_aQHB a;+1 1_ Qy
0 (w - 1)0‘1/’g ko k)’

which yields a result similar to that of Rohrlich in [1] for the standard Fermat
curve X* +Y* = ZF. In the case of the generalized Fermat curve we need to
compute

cx1+1_

/Al (—w) F tdw
N (w— 1)e2/k(w — \y)os/k oo (W — Apy_g)@n /%’

which we can view as a natural generalization of the Beta function.
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