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Abstract

Let k, n ≥ 2 be integers. A generalized Fermat curve of type (k, n) is a com-
pact Riemann surface S that admits a subgroup of conformal automorphisms
H ≤ Aut(S) isomorphic to Znk , such that the quotient surface S/H is biholo-

morphic to the Riemann sphere Ĉ and has n+ 1 branch points, each one of
order k. There exists a good algebraic model for these objects, which makes
them easier to study. Using tools from algebraic topology and integration
theory on Riemann surfaces, we find a set of generators for the first homology
group of a generalized Fermat curve. Finally, with this information, we find
a set of generators for the period lattice of the associated Jacobian variety.
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1. Introduction

The Jacobian variety JS of a compact Riemann surface S of genus g is
isomorphic to a complex torus of dimension g, i.e., a quotient Cg/Λ, where
Λ ⊂ Cg is the period lattice ( Λ ∼= Z2g ) of S that depends on the analytical
and algebraic-topological structure of S. The importance of JS is due to
Torelli’s theorem, which states that the principally polarized abelian variety
JS determines the Riemann surface S up to biholomorphism.

Thus, if the Jacobian variety is in the form Cg/Λ, the period lattice
Λ with the corresponding polarization determines S. However, to find an
explicit form for the period lattice of a particular compact Riemann surface
is a difficult task and there is no standard method to do it.
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We restrict attention to an interesting family of compact Riemann sur-
faces called generalized Fermat curves of type (k, n), where k, n ≥ 2 are
integers. In [2] it was noticed that such a Riemann surface can be described
as a suitable fiber product of (n − 1) classical Fermat curves of degree k.
In this paper we find a generating set for the period lattice of a generalized
Fermat curve, based on the work of Rohrlich [1] who found a generating set
for the period lattice of the classical Fermat curve of degree k ≥ 4.

2. Preliminaries

2.1. The Jacobian variety

Let S be a compact Riemann surface of genus g ≥ 0. Its first homology
group H1(S,Z) is a free Abelian group of rank 2g, and the complex vector
space H1,0(S) of its holomorphic 1-forms has dimension g. There is a natural
Z-linear injective map

τ : H1(S,Z) ↪→ (H1,0(S))∗

γ 7→ τ(γ)(·) :=

∫
γ

·,

where (H1,0(S))∗ is the dual space of H1,0(S). The image τ(H1(S,Z)) is a
lattice in (H1,0(S))∗, and the quotient g-dimensional torus

JS := (H1,0(S))∗/τ(H1(S,Z))

is called the Jacobian variety of S. It is a fact that JS admits a principal
polarization defined by the Hermitian form on H1,0(S) given by

(ω1, ω2)→
∫
ω1 ∧ ω2.

If {ω1, . . . , ωg} is a basis for H1,0(S), then we have the isomorphism
(H1,0(S))∗ ∼= Cg, and if {γ1, ..., γm} is a finite generating set for H1(S,Z)
(need not be a basis), then we can see τ(H1(S,Z)) as the lattice Λ in Cg

generated by the collection

Ci =

(∫
γi

ω1,

∫
γi

ω2, . . . ,

∫
γi

ωg

)
, 1 ≤ i ≤ m.

The lattice generated by the Ci‘s is called the period lattice of S, and in the
case where m is the rank 2g of H1(S,Z), we can find the Riemann matrix of
S, which allows us to study JS as a polarized Abelian variety.
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2.2. Generalized Fermat curves

Let k, n ≥ 2 be integers. A compact Riemann surface S is called a
generalized Fermat curve of type (k, n) if it admits a subgroup of conformal
automorphisms H ≤ Aut(S) that is isomorphic to Znk (where Zk = Z/kZ),
such that the quotient surface S/H is biholomorphic to the Riemann sphere
Ĉ and has n+1 branch points, each one of order k. In this case the subgroup
H is called a generalized Fermat group of type (k, n), and the pair (S,H)
is called a generalized Fermat pair of type (k, n). As a consequence of the
Riemann-Hurwitz formula given in Corollary 1.2 of [6] or Proposition 1.2 of
[7], the genus gk,n of a generalized Fermat curve of type (k, n) is

gk,n =
2 + kn−1((n− 1)(k − 1)− 2)

2
.

We say that two generalized Fermat pairs (S1, H1) and (S2, H2) are holo-
morphically equivalent if there exists a biholomorphism f : S1 → S2 such
that fH1f

−1 = H2.

Remark 1. Note that generalized Fermat curves of type (k, 1) are just cyclic
covers of degree k of Ĉ with two branch points, which are all of genus 0.
From [5] we know that the Fermat curve of degree k ≥ 2 given by

{[x0, x1, x2] ∈ P2C : xk0 + xk1 + xk2 = 0}

has a subgroup of conformal automorphisms isomorphic to Z2
k, where the quo-

tient surface is biholomorphic to the Riemann sphere with three branch points
∞, 0, 1. Thus the classical Fermat curves are generalized Fermat curves of
type (k, 2).

Remark 2. The non-hyperbolic case, i.e., when gk,n ≤ 1, are given by
(k, n) ∈ {(2, 2), (2, 3), (3, 2)}, or k = 1. See [2] for explicit examples.

Let (S,H) be a generalized Fermat pair of type (k, n) and, up to a Moe-
bius transformation, let {∞, 0, 1, λ1, λ2, ..., λn−2} be the branch points of the
quotient S/H. Let us consider the following fiber product of n− 1 classical
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Fermat curves:

Ck(λ1, ..., λn−2) :=



xk0 + xk1 + xk2 = 0
λ1x

k
0 + xk1 + xk3 = 0

λ2x
k
0 + xk1 + xk4 = 0

...
...

...
λn−2x

k
0 + xk1 + xkn = 0


⊂ PnC. (1)

Since the values λi are pairwise different and each one is different from 0
and 1, the algebraic curve Ck(λ1, ..., λn−2) is a non-singular projective alge-
braic curve, hence a compact Riemann surface.

On Ck(λ1, ..., λn−2) we have the abelian group H0
∼= Znk of conformal

automorphisms generated by the maps

ai([x0, · · · , xn]) = [x0, · · · , xi−1, ζkxi, xi+1, · · · , xn], i = 0, ..., n,

where ζk = e2πi/k. Let us consider the holomorphic map of degree kn

π : Ck(λ1, ..., λn−2) → Ĉ

[x0, · · · , xn] 7→ −
(
x1
x0

)k
,

with the property π ◦ ai = π for each i = 1, . . . , n. So π induces a biholo-
morphism

π̂ : Ck(λ1, ..., λn−2)/H0 → Ĉ
H0p 7→ π(p).

Furthermore, the map π has n+ 1 branch points given by

{∞, 0, 1, λ1, λ2, ..., λn−2}.

It follows that Ck(λ1, ..., λn−2) is a generalized Fermat curve of type (k, n)
with generalized Fermat group H0, whose standard generators are a1, . . . , an
and a0 = (a1a2 . . . an)−1. Using the above notation, the following result was
proved in [2].

Theorem 1. The generalized Fermat pairs (S,H) and (Ck(λ1, ..., λn−2), H0)
are holomorphically equivalent.
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On Ck(λ1, ..., λn−2) we have the following meromorphic maps

yj =
xj
x0

: Ck(λ1, ..., λn−2)→ Ĉ, j = 1, ..., n.

We consider the set Ik,n of tuples (α1, . . . , αn) such that

αi ∈ Z, 0 ≤ α2, . . . , αn ≤ k − 1, 0 ≤ α1 ≤
n∑
i=2

αi − 2,

and define the meromorphic form

θα1,...,αn :=
yα1
1 dy1

yα2
2 . . . yαnn

,

for each (α1, . . . , αn) ∈ Ik,n.The paper [3] proved the following.

Theorem 2. With the above notation, the following holds:

1. θα1,...,αn is holomorphic for every (α1, . . . , αn) ∈ Ik,n.

2. #Ik,n = gk,n.

3. The collection
{θα1,...,αn}(α1,...,αn)∈Ik,n

is a basis for the space H1,0(Ck(λ1, ..., λn−2)) of holomorphic 1-forms.

For simplicity, in the rest of this paper we write Ck,n instead of Ck(λ1, ..., λn−2).

2.3. The logarithm symbol on the punctured plane

Let R ⊂ C a finite subset with 0 ∈ R and |R| ≥ 2. The elements of R
are denoted by ri, with 1 ≤ i ≤ |R|. Then we consider a universal covering
of C−R given by

p : U → C−R.
Since p is holomorphic, we have the family of holomorphic functions pi =

p−ri with 1 ≤ i ≤ |R|. The function pi does not vanish on U , so there exists
a determination of log pi on U such that

exp(log pi) = pi.

Let Deck(p) be the group of covering transformations of p. Then for every
φ ∈ Deck(p) the function

u→ 1

2πi
(log pi(φ(u))− log pi(u))

5



on U is identically an integer. This integer is independent of the choice of
log pi, and we denote it by L(pi, φ). It is not difficult to see that the symbol
L(pi, ·) satisfies

L(pi, φ ◦ ψ) = L(pi, φ) + L(pi, ψ), (2)

for every φ, ψ ∈ Deck(p). Furthermore, we observe the following.

Lemma 1. Let x̂i : U → C be the kth root of pi defined by

x̂i = exp

(
1

k
log pi

)
.

Then for every φ ∈ Deck(p) we have

x̂i ◦ φ = ζ
L(pi,φ)
k x̂i.

Recall that Deck(p) is isomorphic to the fundamental group π1(C − R),
which is a free group generated by |R| elements, each one homotopic to
a circle with center ri and index one. Then we consider the generators
φ1, ..., φ|R| ∈ Deck(p) associated with each generator of π1(C − R), and for
any u ∈ U we have the equality

L(pi, φj) =
1

2πi

∫ φj(u)

u

d log pi = δij,

where δij is the usual Kronecker delta.

For general aspects of the logarithm symbol on Riemann surfaces, see [4].

3. Generating set for the period lattice of Ck,n

Consider the generalized Fermat curve of type (k, n) given by Equation
(1) and the set of n+ 1 branch points R ∪ {∞}, where

R = {r1 = 0, r2 = λ0 = 1, r3 = λ1, . . . , rn = λn−2}.
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3.1. A finite generating set for H1(Ck,n,Z)

Associated with R, we have the universal covering p : U → C − R. We
have the set of functions{

p1 = −p
pi = p− ri for 2 ≤ i ≤ n.

There exists a kth root x̂i of pi, which by Lemma 1 satisfies

x̂i ◦ φ = ζ
L(pi,φ)
k x̂i

for each φ ∈ Deck(p). From Equation (2) we have the surjective homomor-
phism

Ψ : Deck(p)→ Znk , Ψ(φ) = (L(p1, φ), . . . , L(pn, φ)) mod k,

so it is not difficult to deduce the following fact.

Lemma 2. The subgroup of Deck(p) which leaves each x̂i invariant is

Deck(p)k := Ker(Ψ).

Now we consider the punctured Riemann surface C ′k.n = Ck,n − π−1(R ∪
{∞}). We now prove the following result.

Lemma 3. The map

q : U → C ′k,n, u 7→ q(u) = [1, x̂1(u), · · · , x̂n(u)]

is a universal covering of C ′k,n, with Deck(q) = Deck(p)k.

Proof. Since ri + x̂k1 + x̂ki = λi−2 − p + (p − ri) = 0 for i ≥ 2, we have
q(U) ⊂ C ′k,n. Let a ∈ C ′k,n and assume a = [1, a1, ..., an], with ai 6= 0 for every

i. If q(u) = a, then x̂i(u) = ai for each i. In particular x̂1(u)k = −p(u) = ak1.
Since p is surjective, there exists u ∈ U such that p(u) = −ak1, and hence
x̂1(u) = ζj1k a1 for some integer j1. Since aki = −ak1 − ri for 1 < i ≤ n and

x̂ki (u) = p(u)− λi−2 = −ak1 − ri = aki , 1 < i ≤ n,

we have x̂i(u) = ζjik ai with an integer ji for each i. Now we choose φ ∈
Deck(p) such that

L(pi, φ) = −ji

7



for every i, we get q(φ(u)) = a, and therefore q is surjective. Now q is a
covering map because every a ∈ C ′k,n has an evenly covered neighborhood
since p is a covering map. Finally, if u, v ∈ q−1(a) with a ∈ C ′k,n, then
v = φ(u) for some φ ∈ Deck(p). Now, as

q(u) = [1, x̂1(u), ..., x̂n(u)] = [1, ζ
L(p1,φ)
k x̂1(u), ..., ζ

L(pn,φ)
k x̂n(u)] = q(v),

we have φ ∈ Deck(p)k.

From the previous two lemmas, we have

Lemma 4. The map Ψ gives an isomorphism

Deck(p)/Deck(q) ∼= Znk .

We denote by φ1, . . . , φn the n generators of Deck(p) with

L(pi, φj) = δij, 1 ≤ i, j ≤ n.

Lemma 5. Deck(q) is generated by

φki for each 1 ≤ i ≤ n and [Deck(p),Deck(p)],

where [Deck(p),Deck(p)] is the commutator subgroup of Deck(p).

Proof. Since Deck(p)/Deck(q) is Abelian, we have that [Deck(p),Deck(p)] E
Deck(q). We also know that the free generators φ1, ..., φn of Deck(p) corre-
spond to the canonical basis of Znk by Ψ, hence Ψ(φki ) = 0 for each i. If
K ≤ Deck(p) is the subgroup generated by each φki and [Deck(p),Deck(p)],
then we have

Deck(p)/K ∼= Znk .

So we must have Deck(q) = K.

Recall that π1(C
′
k,n) = Deck(q) by Lemma 3, so we have

Theorem 3. The first homology group of C ′k,n, namely

H1(C
′
k,n,Z) ∼=

Deck(q)

[Deck(q),Deck(q)]
,

is generated by the classes of the elements

φki , 1 ≤ i ≤ n

8



and (
n∏
d=1

φgdd

)
[φj, φl]

(
n∏
d=1

φgdd

)−1
,

with integers 1 ≤ j < l ≤ n and 0 ≤ gd ≤ k − 1.

Proof. Since Deck(q) is generated by φki and [Deck(p),Deck(p)], it is gener-
ated by

φki , 1 ≤ i ≤ n,

and
γ[φj, φl]γ

−1,

with γ ∈ Deck(p) and 1 ≤ j < l ≤ n. We have Deck(p)/Deck(q) = Znk , so
{
∏n

d=1 φ
gd
d }0≤gd≤k−1 is a set of representatives such that every γ ∈ Deck(p)

lies in Deck(q)ρ for precisely one ρ from this set.
Choosing the representative ρ ∈ {

∏n
d=1 φ

gd
d }0≤gd≤k−1, we have γ = σρ with

σ ∈ Deck(q), and
γ[φj, φl]γ

−1 = σ(ρ[φj, φl]ρ
−1)σ−1

as a product of elements in Deck(q). Quotienting by [Deck(q),Deck(q)] the
product commutes, and the σ’s cancel.

Since the inclusion map ι : C ′k,n ↪→ Ck,n induces a surjective homomor-
phism between the homology groups, we have

Corollary 1. The images of the generating set of H1(C
′
k,n,Z) under the

homomorphism induced by the inclusion ι : C ′k,n ↪→ Ck,n forms a generating
set for H1(Ck,n,Z).

We summarize the maps used in the following diagram.

U

p

��

q

��
C ′k,n

π
��

� � ι // Ck,n

π
��

Ĉ−R ∪ {∞} � � // Ĉ

9



3.2. Computing periods

Let φ ∈ Deck(p) and fix u ∈ U . We denote by lφ a curve from u to φ(u)
on U . So a generating set for H1(Ck,n,Z) are the homology classes of the
curves ι ◦ q(lφ) for each φ of the form

φki ,

(
n∏
d=1

φgdd

)
[φj, φl]

(
n∏
d=1

φgdd

)−1
for 1 ≤ i ≤ n, 1 ≤ j < l ≤ n, and 0 ≤ gd ≤ k − 1. Thus, to find an explicit
generating set for the period lattice of Ck,n we need to calculate∫

ι◦q◦lφ
θα1,... ,αn =

∫
lφ

q∗θα1,... ,αn =

∫ φ(u)

u

q∗θα1,... ,αn .

Lemma 6. We have the following relations between the induced pullbacks of
the generators of H1,0(Ck,n):

q∗θα1,... ,αn =
x̂α1
1 dx̂1

x̂α2
2 · · · x̂αnn

, (3)

φ∗q∗θα1,... ,αn = ζ
(α1+1)L(p1,φ)−

∑n
d=2 αdL(pd,φ)αd

k q∗θα1,... ,αn , (4)

for each φ ∈ Deck(p). In particular, q∗θα1,... ,αn is an eigenvector for each
φ∗ ∈ Deck(p).

Proof. The first result follows from the observation that x̂i = yi ◦ q for each
i. The second follows from Lemma 1 in Section 2.3.

We denote by Mi the value (α1 + 1)L(p1, φi) −
∑n

d=2 αdL(pd, φi). We
observe that

Mi =

{
α1 + 1 i = 1
−αi+1 2 ≤ i ≤ n.

Moreover, since U is a simply connected domain, we have for φ, ψ ∈ Deck(p)
and ω ∈ H1,0(U) the relation∫ φ◦ψ(u)

u

ω =

∫ φ(u)

u

ω +

∫ ψ(u)

u

φ∗ω.
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Lemma 7. For each φki with i ∈ {1, ..., n} we have∫
ι◦q◦l

φk
i

θα1,...,αn = 0.

Proof. If Mi is non zero, then from Equation (4) of Lemma 6 we obtain∫
ι◦q◦l

φk
i

θα1,...,αn =

∫ φki u

u

q∗θα1,...,αn

=
k∑

m=1

∫ φiu

u

(φm−1i )∗q∗θα1,... ,αn

=

∫ φiu

u

q∗θα1,... ,αn

k∑
m=1

ζ
(m−1)Mi

k

= 0.

In the case where Mi = 0, the differential form θα1,...,αn is holomorphic on
the interior of the loop ι ◦ q ◦ lφki , so that the integral vanishes.

We conclude that the homology class of each φki is null in H(Ck,n,Z),
which reduces the problem to computing the integrals over(

n∏
d=1

φgdd

)
[φj, φl]

(
n∏
d=1

φgdd

)−1
.

Lemma 8. For each σ = ρ[φj, φl]ρ
−1 with ρ =

∏n
d=1 φ

gd
d we have∫

ι◦q◦lσ
θα1,... ,αn = ζ

∑n
d=1 gdMd

k

∫
ι◦q◦l[φj,φl]

θα1,... ,αn .

Proof. From Lemma 6 and the observation that [φj, φl] ∈ Deck(q) leaves

11



q∗θα1,... ,αn invariant, it follows that∫
ι◦q◦lσ

θα1,... ,αn =

∫ ρ[φj ,φl]ρ
−1u

u

q∗θα1,... ,αn

=

∫ ρ[φj ,φl]ρ
−1u

ρρ−1u

q∗θα1,... ,αn

=

∫ [φj ,φl]ρ
−1u

ρ−1u

ρ∗q∗θα1,... ,αn

= ζ
∑n
d=1 gdMd

k

∫ [φj ,φl]ρ
−1u

ρ−1u

q∗θα1,... ,αn

= ζ
∑n
d=1 gdMd

k

(∫ [φj ,φl]u

ρ−1u

+

∫ [φj ,φl]ρ
−1u

[φj ,φl]u

)
q∗θα1,... ,αn

= ζ
∑n
d=1 gdMd

k

∫ [φj ,φl]u

u

q∗θα1,... ,αn .

Lemma 9. For each j, l ∈ {1, ..., n} we have∫
ι◦q◦l[φj,φl]

θα1,... ,αn = (1− ζMl
k )

∫ φju

u

q∗θα1,... ,αn

− (1− ζMj

k )

∫ φlu

u

q∗θα1,... ,αn .

Proof. Again from Lemma 6 we have the relations∫ [φj ,φl]u

u

q∗θα1,... ,αn =

∫ φju

u

q∗θα1,... ,αn +

∫ φjφlφ
−1
j φ−1

l u

φju

q∗θα1,... ,αn

=

∫ φju

u

q∗θα1,... ,αn +

∫ φlφ
−1
j φ−1

l u

u

φ∗jq
∗θα1,... ,αn

=

∫ φju

u

q∗θα1,... ,αn + ζ
Mj

k

∫ φlφ
−1
j φ−1

l u

u

q∗θα1,... ,αn

12



and ∫ φlφ
−1
j φ−1

l u

u

q∗θα1,... ,αn =

∫ φlu

u

q∗θα1,... ,αn +

∫ φlφ
−1
j φ−1

l u

φlu

q∗θα1,... ,αn

=

∫ φlu

u

q∗θα1,... ,αn +

∫ φ−1
j φ−1

l u

u

φ∗l q
∗θα1,... ,αn

=

∫ φlu

u

q∗θα1,... ,αn + ζMl
k

∫ φ−1
j φ−1

l u

u

q∗θα1,... ,αn .

Doing the same for the integral from u to φ−1j φ−1l u and observing that∫ φ−1
l u

u

(φ−1j )∗q∗θα1,... ,αn = ζ
−Mj

k

∫ φ−1
l u

u

q∗θα1,... ,αn ,

∫ φ−1
j u

u

q∗θα1,... ,αn = −ζMj

k

∫ φju

u

q∗θα1,... ,αn

and ∫ φ−1
l u

u

q∗θα1,... ,αn = −ζMl
k

∫ φlu

u

q∗θα1,... ,αn ,

the result follows.

Finally we reduced the problem to computing∫ φiu

u

q∗θα1,... ,αn for 1 ≤ i ≤ n.

Lemma 10. Fix u ∈ U and let z0 = p(u) ∈ C \R with

R = {r1 = 0, r2 = 1, r3 = λ1, . . . , rn = λn−2}.

Then for each i ∈ {1, ..., n} we have∫ φiu

u

q∗θα1,... ,αn = −1

k
(1− ζMi

k )

∫ ri

z0

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw,

where the choice of the branch is determined by the preimage u of z0.

13



Proof. Since −x̂k1 = p, making a change of variable w = −x̂k1 we obtain∫ φiu

u

q∗θα1,... ,αn = −1

k

∫
γi

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw,

where γi is the projection by p of the curve from u to φi(u), i.e., γi is an
element of π1(C− R, z0) that surrounds ri with index 1 . Choose s0 ∈ [0, 1)
such that z0 = |z0|e2πis0 , and consider the circle with center 0 and radius
ε > 0 given by βε(s) = εe2πi(s+s0). Let β be the line from z0 to zε ∈ βε ∩ z0, 0.
Thus γ1 is homotopic to β + βε − e2πiβ, where the factor e2πi is due to the
continuation of the argument through the critic line (−∞, 0], as we see in
Figure 1.

Figure 1

Then

−k
∫ φ1u

u

q∗θα1,... ,αn = (1− ζα1+1
k )

∫ zε

z0

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw

+

∫
βε

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw.

For small ε the maps (εe2πi(s+s0) − λt)
−αt/k are continuous on [0, 1], thus
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bounded. So there exists a positive constant C independent of ε such that∣∣∣∣∣
∫
βε

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw

∣∣∣∣∣
=

∣∣∣∣∣2π(−ε)
α1+1
k

∫ 1

0

e
2πi(α1+1)(s+s0)

k∏n
t=2(εe

2πi(s+s0) − λt)αt/k
ds

∣∣∣∣∣
≤ 2πε

α1+1
k C.

Since α1+1
k
,−αi/k are larger than −1 for each i ≥ 2, in the limit ε → 0 we

obtain∫ φ1u

u

q∗θα1,... ,αn = −(1− ζα1+1
k )

k

∫ 0

z0

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw.

For γi with i ≥ 2 we apply an analogous argument.

Remark 3. For the integral∫ ri

z0

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw,

the convergence is given by the fact that α1+1
k
,−αj/k are larger than −1 for

each j, so the maps |w − rj|Mj/k with i 6= j are well defined, continuous and
bounded when z0 is in a neighborhood of ri.

Theorem 4. Let

R = {r1 = 0, r2 = 1, r3 = λ1, . . . , rn = λn−2}

be the set of branch points of (Ck,n, H0) distinct of ∞. If we denote

W (R, ~α)(w) := (−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/k

for each ~α = (α1, ..., αn) ∈ Ik,n, then the period lattice Λ ∼= τ(H1(Ck,n,Z)) is
generated by the period vectors(

ζ
∑n
d=1 gdMd

k

(1− ζMj

k )(1− ζMl
k )

k

∫ rl

rj

W (R, ~α)dw

)
~α∈Ik,n

for each generator ρ[φj, φl]ρ
−1 ∈ H1(Ck,n,Z) with ρ =

∏n
d=1 φ

gd
d and 0 ≤ gd ≤

k − 1.
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Proof. From Lemmas 9 and 10 we obtain

∫ [φj ,φl]u

u

q∗θα1,... ,αn

= −(1− ζMj

k )(1− ζMl
k )

k

∫ rl

rj

(−w)
α1+1
k
−1

n∏
t=2

(w − rt)−αt/kdw.

Thus by Lemma 8 for each generator σ = ρ[φj, φl]ρ
−1 ∈ H1(Ck,n,Z) with

ρ =
∏n

d=1 φ
gd
d we have

∫
ι◦q◦lσ

θα1,... ,αn

= −ζ
∑n
d=1 gdMd

k

(1− ζMj

k )(1− ζMl
k )

k

∫ rl

rj

(−w)
α1−1
k
−1

n∏
t=2

(w − rt)−αt/kdw

with 1 ≤ j < l ≤ n and 0 ≤ gd ≤ k − 1.

Remark 4. In the case of the classical Fermat curves Ck,2 with R = {r1 =
0, r2 = 1}, the integrals to compute are∫ 1

0

(−w)
α1+1
k
−1dw

(w − 1)α2/k
= −ηα1−α2+1

∫ 1

0

w
α1+1
k
−1(1− w)−α2/kdw,

where η = (−1)1/k. If we consider the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1, Re(x),Re(y) > 0,

then ∫ 1

0

(−w)
α1+1
k
−1dw

(w − 1)α1/k
= −ηα1−α2+1B

(
α1 + 1

k
, 1− α2

k

)
,

which yields a result similar to that of Rohrlich in [1] for the standard Fermat
curve Xk + Y k = Zk. In the case of the generalized Fermat curve we need to
compute ∫ λl

λj

(−w)
α1+1
k
−1dw

(w − 1)α2/k(w − λ1)α3/k · · · (w − λn−2)αn/k
,

which we can view as a natural generalization of the Beta function.
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