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AUTOMORPHISM GROUPS OF NILPOTENT LIE ALGEBRAS

ASSOCIATED TO CERTAIN GRAPHS

DEBRAJ CHAKRABARTI, MEERA MAINKAR, AND SAVANNAH SWIATLOWSKI

Abstract. We consider a family of 2-step nilpotent Lie algebras associated to

uniform complete graphs on odd number of vertices. We prove that the symmetry

group of such a graph is the holomorph of the additive cyclic group Zn. Moreover,

we prove that the (Lie) automorphism group of the corresponding nilpotent Lie

algebra contains the dihedral group of order 2n as a subgroup.

1. Introduction

Many classes of 2-step nilpotent Lie algebras associated with various types of graphs

have been studied recently from different points of view, see, e.g., [DM, DDM, GGI,

F, FJ, M, N, PS, PT, R, LW]. A 2-step nilpotent Lie algebra is a Lie algebra where

each 3-fold Lie bracket [X, [Y, Z]] of elements X, Y, Z of the Lie algebra is 0. The

3-dimensional Heisenberg Lie algebra is well-studied example of a 2-step nilpotent

Lie algebra. In [DM], the authors studied the automorphism group of a 2-step nilpo-

tent Lie algebra associated with a simple graph and then classified the graphs which

correspond to the 2-step nilpotent Anosov Lie algebras. These Lie algebras give rise

to interesting hyperbolic dynamics on nilmanifolds.

In this paper, we consider a similar problem for an interesting class of edge-colored

directed simple graphs Hn where n is an odd integer. We begin by considering the

underlying undirected edge-colored graph Gn of Hn. The example G5 occurred in

the recent paper [PS, Example 5.7], in connection with uniform Lie algebras. The

graphs Gn are remarkable for having a large amount of symmetry which can be

used for constructing other objects associated with it with nontrivial symmetry, e.g.
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Einstein solvmanifolds [D], infranilmanifolds etc. Interestingly, we found that, Gn

arises naturally when we consider the cyclic group Zn of n elements as a space on

which Zn acts by translations, i.e. as a torsor without a distinguished identity element.

In section 3 we will give the algebraic definition of Gn but now we introduce it

geometrically. For every odd integer n we construct the edge-colored simple graph

Gn by beginning with the complete graph on n vertices v1, . . . , vn and thinking of

these vertices as the vertices of a regular n-gon in the plane. We color the edges with

n colors c1, . . . cn in such a way that for every vertex vk the
n− 1

2
edges which are

perpendicular to the axis of symmetry of the n-gon passing through vk are colored

with the same color ck. Below we illustrate this for n = 5.

v1

v2

v3v4

v5

c4

c5

c1c1

c2

c3c3

c
4

c
5

c1c1

c
2

c3c3

In our first result, we compute explicitly the group of symmetries CPA(Gn) of Gn

preserving the coloring structure which we call the color permuting automorphisms,

see Definition 2.1.

Theorem 1.1. CPA(Gn) ∼= Zn ⋊ Aut(Zn).

Here Aut(Zn) is the group of group-automorphisms of the cyclic group Zn. The

semidirect product Zn ⋊ Aut(Zn) is known as the holomorph of Zn.

This result is interesting because the graph Gn is constructed out of the cyclic

group Zn and therefore the result expresses an aspect of the combinatorics of this

familiar object.
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As already mentioned, the real motivation for considering these graphs comes from

the theory of 2-step nilpotent Lie algebras. This idea goes back to [DM] for simple

graphs and has been extended by many authors [DM, DDM, GGI, F, FJ, M, N, PS,

PT, R, LW]. In [R, PS], with each directed edge-colored graph G, a 2-step nilpotent

Lie algebra NG was associated and its properties were studied. This construction is

recalled in Section 4.1 below. These Lie algebras can be thought as a quotient of the

2-step nilpotent Lie algebras associated with simple graphs as in [DM]. In order to

obtain a Lie algebra from an edge-colored graph, we will further need that the edges

are directed. We assign a certain natural orientation of the edges to Gn to obtain the

directed edge-colored simple graphs Hn in Section 4.7. We are interested in under-

standing the group Aut(NHn
) of Lie algebra automorphisms of the corresponding Lie

algebra NHn
. In the situation considered in [DM], each graph automorphism gives

rise to a Lie algebra automorphism of the corresponding 2-step nilpotent Lie algebra.

However, if we allow the repetition of the edge-colors, then only certain type of graph

automorphisms or symmetries can be extended to the automorphisms of the associ-

ated Lie algebra. We call those automorphisms as graph Lie automorphisms and we

denote the group of all such automorphisms of a graph G by GLA(G). We compute

explicitly the group GLA(Gn) and prove the following theorem.

Theorem 1.2. GLA(Hn) ∼= Dn, dihedral group of order 2n. Consequently Aut(NHn
)

contains a subgroup isomorphic to the dihedral group of order 2n.

If Hn is thought as above to be a regular n-gon in the plane along with all the

diagonals which are colored and directed in a certain way, then GLA(Hn) can be

thought of the Euclidean group of symmetries of this polygon, which is well-known

to be the dihedral group of order 2n.

The automorphism group of a nilpotent Lie algebra plays an important role in

studying certain Einstein homogeneous spaces and infranilmanifolds (see, e.g. [DD,

DV, LW]). It would be very interesting to find a complete description of the auto-

morphism group of NHn
.
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2. Edge-colored graphs and their Automorphisms

In this section we recall some definitions (see [PS] for example). Let (S,E) denote a

finite simple graph where S is the set of vertices and E is the set of edges. We denote

an edge by a 2-set {α, β}. Let C denote a finite set of colors. An edge-coloring is a

surjective function c : E → C . We call a graph G = (S,E, c : E → C ) an edge-colored

graph.

Recall that a bijection σ : S → S is a graph automorphism of (S,E) if the following

holds: For all α, β ∈ S, {σ(α), σ(β)} ∈ E if and only if {α, β} ∈ E. In this case, we

extend σ on the set E by defining σ({α, β}) = {σ(α), σ(β)}.

Definition 2.1. Let G = (S,E, c : E → C ) be an edge-colored graph. A graph

automorphism χ of (S,E) is called a color permuting automorphism of G if there

exists a permutation φ of the set of colors C such that φ ◦ c = c ◦ χ on E. The set of

all color permuting automorphisms form a group which we denote by CPA(G).

Example 2.2. Let C4 denote a cycle graph on 4 vertices where the vertex set S =

{α, β, γ, δ} and E = {{α, β}, {β, γ}, {γ, δ}, {α, δ}}. Let C = {1, 2}. We define the

edge-coloring c : E → C by

c ({α, β}) = c ({β, γ}) = 1

c ({γ, δ}) = c ({δ, α}) = 2.

α β

γδ

1

1

2

2

Let χ be the permutation of S given by χ = (α γ)(β δ), which is a graph automor-

phism of (S,E). Then the permutation of colors φ = (1 2) satisfies φ ◦ c = c ◦ χ on

E and hence χ is a color permuting automorphism of C4 with the above coloring c.
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Note that τ = (α β γ δ) is not a color permuting automorphism of C4 because

c ({τ(α), τ(β)}) = 1 6= c ({τ(β), τ(γ)}) .

It can be seen that CPA(C4) = {id, (α γ), (β δ), (α γ)(β δ)}. �

A uniform graph is a special type of an edge-colored graph.

Definition 2.3. We say that an edge-colored graph (S,E, c : E → C ) is a uniform

graph if it satisfies the following properties.

(1) No two edges incident on the same vertex have the same color, i.e. c({α, β}) 6=

c({α, γ}) if β 6= γ.

(2) Each color occurs the same number of times, i.e. |c−1({ci}| = |c−1({cj}| for

all ci, cj ∈ C .

Example 2.4. Consider the same uncolored graph (S,E) as in Example 2.2 and the

same set of colors C = {1, 2}. We define a new edge-coloring c : E → C by

c ({α, β}) = c ({γ, δ}) = 1

c ({β, γ}) = c ({δ, α}) = 2.

We can see that G = (S,E, c : E → C ) is a uniform graph and CPA(G) ∼= D8, the

dihedral group with 8 elements.

α β

γδ

1

2

1

2

The edge-colored graph in Example 2.2 is not uniform.
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3. A uniform graph associated to Zn

In this section we associate an edge-colored graph to a cyclic group of odd or-

der and compute its symmetries. We note however, that this construction and the

computation are very general and can be done for any abelian group of odd order.

Throughout we assume that n is an odd integer. We let Zn denote the cyclic group

of order n written additively and denote the elements of Zn as {0, . . . , n−1}. Let Gn

be an edge-colored graph where the underlying uncolored graph is a complete graph

with vertex set Zn and where the set of colors C is also Zn. We let the color of an

edge {i, j} be (i+ j) ∈ Zn where of course the addition + means addition modulo n

in Zn. More precisely, the edge-coloring in Gn is given by c : E → C is defined by

c({i, j}) = i+ j for all i, j ∈ Zn.

Proposition 3.1. The edge-colored graph Gn is a uniform graph.

Proof. Let i, j, k ∈ Zn be distinct. Then if c({i, j}) = c({i, k}), then i + j = i + k.

Hence j = k. This shows that no two edges incident on the same vertex have the

same color.

Consider the group homomorphism f : Zn → Zn defined by f(i) = i+ i = 2i. Since

n is odd, f is injective. For, if i ∈ Zn with 2i = 0, then the order of i is either 1 or 2

and divides the odd number n. Hence i = 0 and f is a group isomorphism.

For m ∈ Zn, we denote the set of all edges with color m by Am. Equivalently,

Am = {{i, j} : i, j ∈ Zn, m = i+ j, i 6= j}.

We will prove that |Am| =
n−1
2
. Since f is a bijection, there is a unique l ∈ Zn such

that 2l = m. Hence Am = {{i,m− i} : i ∈ Zn, i 6= l}. Note that for each i ∈ Zn, we

have {i,m − i} = {m− i, i}. Therefore, |Am| =
n−1
2
. In other words, the number of

edges with color m is constant for all m. This proves that the edge-colored graph Gn

is uniform. �
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3.2. Color Permuting Automorphism Group of Gn. In this section, we study

the structure of the color permuting automorphism group CPA(Gn) of the edge-

colored graph Gn and prove Theorem 1.1.

Definition 3.3. We call a bijection τ : Zn → Zn special if for all a, b, c, d ∈ Zn with

a 6= b, c 6= d, and a+ b = c+ d, we have τ(a) + τ(b) = τ(c) + τ(d).

We first observe the following.

Proposition 3.4. The following statements are equivalent for a bijection τ : Zn →

Zn.

(1) τ is special.

(2) For all a, b, c, d ∈ Zn with c 6= d, and a + b = c + d, we have τ(a) + τ(b) =

τ(c) + τ(d).

(3) For all a, b, c, d ∈ Zn with a− c = d− b, we have τ(a)− τ(c) = τ(d)− τ(b).

(4) τ ∈ CPA(Gn).

Proof. Assume (1). Let a, c, d ∈ Zn and assume that a+a = c+d. Let l = τ(c)+τ(d)

We will prove that τ(a)+ τ(a) = l. Let B = Zn \ {a}. If x ∈ B, then x 6= 2a−x as n

is odd, and x+ (2a− x) = c+ d. By our assumption (1), we have τ(x) + τ(2a− x) =

τ(c) + τ(d) = l. From this, we can conclude that τ(B) = {l − τ(2a − x) : x 6= a} =

Zn \ {l − τ(a)}. Since τ is a bijection, this implies that τ(a) = l − τ(a) and hence

τ(a) + τ(a) = l which proves (2).

Assume (2). Then the statement (3) is clear for elements a, b, c, d ∈ Zn with c 6= d.

The case a 6= b follows similarly. If a = b and c = d and a − c = d − b, then

a = b = c = d as n is odd. Hence τ(a)− τ(c) = τ(c)− τ(a) = 0. This proves (3).

It is clear that (3) =⇒ (1).

Assume (1). We define φ : Zn → Zn as φ(m) = σ(i) + σ(j) where m = i + j

and i 6= j. We note that φ is well-defined function because τ is special. Let l ∈ Zn.

We write l = a + b where a 6= b. Then φ(τ−1(a) + τ−1(b)) = a + b = l. Hence φ

is surjective and hence it is a bijection. Also the color of an edge {τ(i), τ(j)} is the
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same as φ(i + j), i.e. φ(color of the edge {i, j}). This proves that τ ∈ CPA(Gn).

Hence (1) =⇒ (4).

Suppose now τ ∈ CPA(Gn). Then there exists a permutation φ of Zn such that the

color of the edge {τ(a), τ(b)} is the same as φ(color of the edge {a, b}). Equivalently,

τ(a) + τ(b) = φ(a+ b). In particular, if a+ b = c+ d, then τ(a) + τ(b) = τ(c) + τ(d).

Hence τ is special. Hence (4) =⇒ (1). �

Next we define a notion of an affine bijection on an abelian group.

Definition 3.5. Let (A,+) denote an abelian group. A bijection f : A→ A is called

affine if there exists a group automorphism γf of A such that

f(a+ x) = γf(a) + f(x)

for all a, x ∈ A. We denote the set of all affine bijections on A by Aff(A).

It is not difficult to check that Aff(A) is a group under composition.

Proposition 3.6. Let f : Zn → Zn be a bijection. Then the following statements

are equivalent.

(1) f ∈ CPA(Gn).

(2) f is special.

(3) f ∈ Aff(Zn).

Proof. (1) ⇐⇒ (2) by Proposition 3.4.

Assume that f is special. We define γf : Zn → Zn by γf(a) = f(a) − f(0) for all

a ∈ Zn. First we prove that γf is a group homomorphism. Let i, j ∈ Zn. As f is

special, by Proposition 3.4, for all i, j ∈ Zn, we have f(i+ j)− f(j) = f(i)− f(0).
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Hence for all i, j ∈ Zn,

γf(i+ j) = f(i+ j)− f(0)

= f(i+ j)− f(j) + f(j)− f(0)

= f(i)− f(0) + f(j)− f(0)

= γf(i) + γf(j).

Suppose that γf(i) = 0. This implies that f(i)− f(0) = 0 =⇒ f(i) = f(0). As f

is one-to-one, i = 0. Hence ker γf = {0}. This proves that γf is a bijection and hence

a group automorphism of Zn.

Also for a, x ∈ Zn, we have f(a+x)−f(x) = f(a)−f(0) by Proposition 3.4. Hence

f(a+ x)− f(x) = γf(a) and f(a+ x) = γf(a) + f(x). This proves that f ∈ Aff(Zn)

and (2) =⇒ (3).

We will prove that (3) =⇒ (2). For, we assume that f ∈ Aff(Zn) and let

γf ∈ Aut(Zn) such that f(a + x) = γf(a) + f(x) for all a, x ∈ Zn. Let i, j, k, l ∈ Zn

with i− j = k − l. We will prove that f(i)− f(j) = f(k)− f(l).

f(i)− f(j) = f((i− j) + j)− f(j)

= γf(i− j)

= γf(k − l)

= f((k − l) + l)− f(l)

= f(k)− f(l).

By Proposition 3.4, f is special. �

Proposition 3.7. Aff(Zn) ∼= Zn ⋊ Aut(Zn).

Proof. We define φ : Aff(Zn) → Aut(Zn) by φ(f) = γf where γf ∈ Aut(Zn) such that

f(a + x) = γf(a) + f(x) for all a, x ∈ Zn. We note that if f ∈ Aff(Zn), then for all

x ∈ Zn, γf(x) = f(x) − f(0). We first prove that φ is a group homomorphism. Let
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f, g ∈ Aff(Zn). We need to prove γf◦g = γf ◦ γg. Let a ∈ Zn. Then

γf(γg(a)) = γf(g(a)− g(0))

= γf(g(a))− γf(g(0)) as γf ∈ Aut(Zn)

= f(g(a))− f(0)− (f(g(0))− f(0))

= f ◦ g(a)− f ◦ g(0)

= γf◦g(a).

This shows that φ(f ◦ g) = φ(f) ◦ φ(g) and hence φ is a group homomorphism.

It is clear that ker φ = {f ∈ Aff(Zn) : f(x) = x + f(0) for all x ∈ Zn}. Equiv-

alently, ker φ = {Ta : a ∈ Zn} where Ta : Zn → Zn is a translation by a given

by Ta(x) = x + a. For, if f ∈ kerφ, then f = Tf(0). Also given a ∈ Zn, we have

Ta ∈ Aff(Zn) as Ta(x + y) = x + y + a = x + Ta(y) and hence Ta ∈ ker φ. We note

that ker φ ∼= Zn.

If γ ∈ Aut(Zn), then γ(a + x) = γ(a) + γ(x) for all a, x ∈ Zn =⇒ γ ∈ Aff(Zn)

and φ(γ) = γ. Hence φ is surjective and φ ◦ ι = id where ι : Aut(Zn) → Aff(Zn) is

the inclusion and id : Aut(Zn) → Aut(Zn) is the identity map. This means that the

following exact sequence splits.

0 −→ Zn −→ Aff(Zn)
φ
−→ Aut(Zn) −→ 1

This proves that Aff(Zn) ∼= Zn ⋊Aut(Zn). �

Proof of Theorem 1.1. By Proposition 3.6, CPA(Gn) = Aff(Zn) and by Proposition

3.7, Aff(Zn) is isomorphic to Zn ⋊Aut(Zn). �

Remark 1. We note that CPA(Gn) acts transitively on the set of vertices Zn as all

rotations are the color permuting automorphisms of Gn. The stabilizer of 0 under

this action is precisely the automorphisms group of Zn, Aut(Zn). For if f ∈ CPA(Gn)

and f(0) = 0, then there exists γf ∈ Aut(Zn) such that f(a + x) = γf(a) + f(x) for

all a, x ∈ Zn. Then for a ∈ Zn, we have f(a) = f(a+0) = γf(a)+ f(0) = γf(a). This

shows that f = γf ∈ Aut(Zn).
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4. 2-step nilpotent Lie Algebras

4.1. Associating a Lie algebra with a graph. In this section we recall the con-

struction of a 2-step nilpotent Lie algebra associated with an edge-colored directed

graph (see [R] and also [PS]). Consider an edge-colored directed simple graph H =

(S,E, c : E → C ) where S is the set of vertices, E is the set of directed edges, and

c is a surjective edge-coloring function from the set of (directed) edges to the set of

colors C . We will denote a directed edge from α to β by an ordered pair (α, β). By

abuse of notation, we will denote the color of the directed edge (α, β) ∈ E, by simply

c(α, β) rather than the more accurate c ((α, β)).

We associate with H a 2-step nilpotent Lie algebra NH over R in the following way.

The underlying vector space of NH is V ⊕W where V is the R-vector space consisting

of formal R-linear combinations of elements of S (so that S is a basis of V ), and W is

the R-vector space consisting of formal R-linear combinations of elements of C . The

Lie bracket structure on NH is given by the following

(1) If (α, β) ∈ E and c(α, β) = Z, then [α, β] = −[β, α] = Z.

(2) If (α, β) /∈ E, then [α, β] = [β, α] = 0.

(3) [Y, Z] = 0 for all Y ∈ NH and Z ∈ W .

We say that NH is the 2-step nilpotent Lie algebra associated with the graph H .

Note that the derived Lie algebra [NH ,NH ] is the span of C and the dimension of

NH is |S|+ |C |.

The above construction is a generalization of the construction of 2-step nilpotent

Lie algebras associated with simple graphs as in [DM, M] where the edge-coloring c

is a bijection.

Example 4.2. Consider the following directed edge-colored graph H = (S,E, c :

E → C ), where S = {α, β, γ, δ}, E = {(α, β), (β, γ), (γ, δ), (δ, α)}, C = {Z1, Z2} and

edge-coloring c : E → C is given by

c(α, β) = c(γ, δ) = Z1,

c(β, γ) = c(α, δ) = Z2.
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α β

γδ

Z1

Z2

Z1

Z2

Then the associated 2-step nilpotent Lie algebra NH is of dimension 8. The only

non-zero Lie brackets among the basis vectors of NH are given by

[α, β] = [γ, δ] = Z1 = −[β, α] = −[δ, γ],

[β, γ] = [α, δ] = Z2 = −[γ, β] = −[δ, α].

4.3. Automorphism group. Recall that a linear isomorphism τ : N → N is called

a Lie automorphism of the Lie algebra N if for all X, Y ∈ N ,

τ [X, Y ] = [τ(X), τ(Y )].

The group of all automorphisms of the Lie algebra N is called the automorphism

group of N and is denoted by Aut(N ).

Given an edge-colored directed graph H = (S,E, c : E → C ), we will characterize

those graph automorphisms of the simple graph (S,E) which can be extended to Lie

automorphisms of the associated 2-step nilpotent Lie algebra NH .

Let H = (S,E, c : E → C ) be an edge-colored simple directed graph. Let Eu be

the collection of associated undirected edges;

Eu = {{α, β} : (α, β) ∈ E}.

We color the undirected edges by the same colors, i.e. we use the coloring cu : Eu → C

given by

cu({α, β}) = c(α, β) if (α, β) ∈ E.

The edge-colored undirected simple graph Hu = (S,Eu, cu : Eu → C ) will called

the underlying undirected graph of H .
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Let E− denote the set {(β, α) : (α, β) ∈ E} and C − denote the set {−Z ∈ W : Z ∈

C }. We extend the edge-coloring function c on E ∪ E− as follows: If c(α, β) = Z,

then we define c(β, α) by −Z.

Definition 4.4. Let H = (S,E, c : E → C ) be an edge-colored simple directed

graph. We say that a color permuting automorphism χ of the underlying undirected

graph Hu = (S,Eu, cu : Eu → C ) is a graph Lie automorphism of H if it induces a

permutation on C ∪ C −, i.e., if there exists a permutation φ of C ∪ C − such that

c(χ(α), χ(β)) = φ(c(α, β)) for all (α, β) ∈ E ∪ E−. We denote the group of all such

automorphisms by GLA(H).

Example 4.5. Consider the following directed edge-colored graph H and the as-

sociated 2-step nilpotent Lie algebra NH as in Example 4.2. The color permuting

α β

γδ

Z1

Z2

Z1

Z2

automorphism group of the underlying undirected graph Hu, CPA(Hu) ∼= D8 (see

Example 2.4). If χ = (α β)(γ δ), then we can see that χ ∈ CPA(Hu). Note that

C ∪ C − = {Z1, Z2,−Z1,−Z2}. We define a permutation φ of C ∪ C − as follows:

φ(Z1) = −Z1, φ(Z2) = Z2, φ(−Z1) = Z1, φ(−Z2) = −Z2.

Then c(χ(α), χ(β)) = c(β, α) = −Z1 = φ(Z1) = φ(c(α, β)). Similarly one can check

that c(χ(x), χ(y)) = φ(c(x, y)) for all (x, y) ∈ E ∪ E−. Hence χ ∈ GLA(H).

Now if σ = (αβ γ δ), then σ ∈ CPA(Hu). Note that σ /∈ GLA(H). This is

because c(σ(α), σ(β)) = c(β, γ) = Z2 and c(σ(γ), σ(δ)) = c(δ, α) = −Z2. However

c(α, β) = c(γ, δ) = Z1 and hence there is no permutation ψ of C ∪ C − such that

c(σ(α), σ(β)) = ψ(c(α, β)).

We now show that the elements of GLA(H) give rise to automorphisms of the

associated Lie algebra NH .
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Lemma 4.6. Let H = (S,E, c : E → C ) be an edge-colored simple directed graph.

If χ ∈ GLA(H), then χ can be uniquely extended to a Lie automorphism of NH .

Therefore, the group GLA(H) can be realized as a subgroup of Aut(NH).

Proof. Note that NH = V ⊕ W where V is the R-vector space with S as a basis

and W is the R-vector space with C as a basis. In order to extend χ to a Lie

automorphism of NH , we first extend χ linearly on V and then linearly on W by

defining χ(Z) = c(χ(α), χ(β)) if Z = c(α, β). We will denote the extended linear map

from NH to NH by χ as well. Now χ is well defined on NH because χ ∈ GLA(H) (see

Definition 4.4). It can be seen that χ is onto and hence it is a linear isomorphism.

If (α, β) ∈ E and c(α, β) = Z, then χ([α, β]) = χ(Z) = c(χ(α), χ(β)) = [χ(α), χ(β)]

by definition of the Lie bracket on NH . As χ is linear, we have χ([X1, X2]) =

[χ(X1), χ(X2)] for all X1, X2 ∈ V . Recall [Y, U ] = 0 for all Y ∈ NH and U ∈ W .

Using the linearity of χ again, we have

χ([X, Y ]) = [χ(X), χ(Y )]

for all X, Y ∈ NH and χ ∈ Aut(NH). The uniqueness of the extension is clear from

the definition of NH . �

4.7. The directed graph Hn. Throughout we assume that n is an odd integer. We

define the directed edge-colored graph Hn whose underlying undirected graph is Gn

as introduced in Section 3. We define the vertex set of Hn to be Zn = {0, 1, . . . , n−1}

and the directed edge set E as follows:

E =

{

(m+ i, m− i) : 0 ≤ m ≤ n− 1, 1 ≤ i ≤
n− 1

2

}

.

The set of colors C is denoted by {Zi : i ∈ Zn} and the edge-coloring c : E → C is

defined by c(i, j) = Zi+j for all (i, j) ∈ E.

Geometrically the orientation of edges of Hn can be visualized as follows. Note

that the underlying undirected graph (Hn)u is nothing but the graph Gn, which can

be pictured as a regular n-gon in the plane along with all possible diagonals. To

obtain Hn, we orient the n edges of the regular polygon clockwise and then orient the
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diagonals in such a way that the edges and diagonals which are parallel receive the

same orientation.

For example, the directed edge-colored graph G5 is as below.

0

1

23

4

Z1

Z3

Z0Z0

Z2

Z4Z4

Z
1

Z
3

Z0Z0

Z
2

Z4Z4

Figure 1. H5

4.8. Graph Lie automorphism group of Hn. First, note that GLA(Hn) acts

transitively on the set of vertices Zn. This is because rotations (or translations) are

the graph Lie automorphism. To see this, suppose that χ : Zn → Zn is given by

χ(i) = i+ k for all i ∈ Zn. We define a permutation φ on C by φ(Zl) = Zl+2k for all

l ∈ Zn. Then if 0 ≤ m ≤ n− 1 and 1 ≤ i ≤ n−1
2
, we have

c ◦ χ((m+ i, m− i) = c(m+ i+ 2k, m− i+ 2k)

= Z2m+4k

= φ(Z2m+2k)

= φ ◦ c((m+ i, m− i).

We can extend φ on C ∪ C − by defining φ(−Zl) = −Zl+2k. Hence χ ∈ GLA(Hn).
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Let Stab(0) denote the stabilizer of 0 under the action of GLA(Hn) on Zn, i.e. let

Stab(0) = {σ ∈ GLA(Hn) : σ(0) = 0}. Then by Orbit-stabilizer theorem, we have

(1) |GLA(Hn)| = n| Stab(0)|.

We will prove that Stab(0) = {± id}. In other words, we will prove that if id 6=

χ ∈ GLA(Hn) and χ(0) = 0, then χ is a reflection, i.e. χ(i) = n− i for all i ∈ Zn.

Let R = {1, . . . , n−1
2
} ⊂ Zn and L = {n+1

2
, . . . , n− 1} ⊂ Zn. Note that in Figure 1

for H5, R (resp. L) consists of the vertices to the right (resp. left) of the vertical line

through 0.

Lemma 4.9. If τ ∈ Aut(Zn) and τ 6= id, then τ(R) 6= R.

Proof. Let τ(1) = k. If k ∈ L, we are done as 1 ∈ R. Now we assume that k ∈ R,

i.e. we assume that 2 ≤ k ≤ n−1
2
. We claim that there exists q with 1 ≤ q ≤ n−1

2

such that n+1
2

≤ qk ≤ n − 1. In Z, we divide n − 1 by k. Let q ∈ N and r with

0 ≤ r ≤ k − 1 such that n − 1 = qk + r. Then q = n−1
k

− r
k
≤ n−1

k
≤ n−1

2
as k ≥ 2.

Hence q ≤ n−1
2
. Also n− 1 ≥ n− 1 − r > n−1

2
as r < n−1

2
. Hence n− 1 ≥ qk > n−1

2
.

This proves our claim.

As τ ∈ Aut(Zn) and τ(1) = k, we have τ(q) = qk. Hence τ(R) 6= R as q ∈ R and

qk ∈ L. �

Lemma 4.10. Suppose that χ ∈ GLA(Hn) with χ(0) = 0. If χ(k) ∈ R for some

k ∈ R, then χ(R) = R.

Proof. Assume that χ(k) = i ∈ R where k ∈ R. We note that χ is a color permuting

automorphism of the undirected edge-colored complete graph. By Remark 1, χ ∈

Aut(Zn). Hence χ(n − k) = n − i ∈ L. Assume that χ(j) ∈ L for some j ∈ R.

Then χ(n − j) ∈ R. Hence c ◦ χ((k, n − k) = c(i, n − i) = Z0 and c ◦ χ(j, n − j) =

c(χ(j), χ(n− j) = −Z0. We note that c(k, n− k) = c(j, n− j) as both k and j are in

R. This is a contradiction to our assumption that χ ∈ GLA(Hn). �

Proposition 4.11. If χ ∈ GLA(Hn) and χ(0) = 0, then χ2 = id.
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Proof. If χ ∈ GLA(Hn) and χ(0) = 0, then χ ∈ Aut(Zn) by Remark 1. By Lemma

4.9 and Lemma 4.10, we have χ(L) = R and χ(R) = L. We note that χ2 ∈ GLA(Hn)

and hence χ2(L) = χ(R) = L, χ2(R) = χ(L) = R. By Lemma 4.9, χ2 = id. �

As noted before, GLA(Hn) contains all n rotations. Also Proposition 4.11 implies

that the only non identity group automorphism which is a graph Lie automorphism

must be the reflection about 0. This proves Theorem 1.2.
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