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Abstract

For a positive integer M and a real base q ∈ (1,M + 1], let Uq denote the set of
numbers having a unique expansion in base q over the alphabet {0, 1, . . . ,M}, and
let Uq denote the corresponding set of sequences in {0, 1, . . . ,M}N. Komornik et
al. [Adv. Math. 305 (2017), 165–196] showed recently that the Hausdorff dimension of
Uq is given by h(Uq)/ log q, where h(Uq) denotes the topological entropy of Uq. They
furthermore showed that the function H : q 7→ h(Uq) is continuous, nondecreasing and
locally constant almost everywhere. The plateaus of H were characterized by Alcaraz
Barrera et al. [Trans. Amer. Math. Soc., 371 (2019), 3209–3258]. In this article we
reinterpret the results of Alcaraz Barrera et al. by introducing a notion of composition
of fundamental words, and use this to obtain new information about the structure of
the function H . This method furthermore leads to a more streamlined proof of their
main theorem.

AMS 2010 subject classification: 11A63 (primary), 37B10, 37B40, 68R15 (sec-
ondary)

Key words and phrases: Beta-expansion, univoque set, topological entropy, entropy
plateau, transitive subshift, composition of fundamental words.

1 Introduction

In recent years, there has been a great deal of interest in expansions of numbers in non-
integer bases. Specifically, fix an integer M ≥ 1, and for q ∈ (1,M+1], consider expressions
of the form

x =
∞∑

i=1

xi
qi

=: πq(x1x2 . . . ), (1.1)

where xi ∈ {0, 1, . . . ,M} for each i. The sequence (xi) is called a q-expansion of x; it
exists if and only if x ∈ Jq,M := [0,M/(q − 1)]. Such non-integer base expansions were
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introduced by Rényi [20] and studied further by Parry [19]. The subject seemed to be
largely forgotten for about 30 years, until Erdős and others [8, 9, 10] breathed new life
into it. These authors were interested in the set Uq of numbers in Jq,M having a unique
q-expansion, and in particular, in the set

U := {q ∈ (1,M + 1] : 1 ∈ Uq}.

Erdős, Joó and Komornik [10] showed for the case M = 1 that Uq contains only the two
endpoints 0 and 1/(q − 1) when 1 < q ≤ qG := (1 +

√
5)/2. Komornik and Loreti [14, 15]

found the smallest element of U , which is now called the Komornik-Loreti constant and
which we denote by qKL; see below. Later, Glendinning and Sidorov [12] showed that Uq

is countably infinite for qG < q < qKL; uncountable but of zero Hausdorff dimension for
q = qKL; and of positive Hausdorff dimension for q > qKL. These results were generalized
to larger alphabets by Baker [6] and Kong, Li and Dekking [17]. Kong and Li [16] further
examined the Hausdorff dimension of Uq, and more recently, Komornik, Kong and Li [13]
showed that this dimension is related to the topological entropy of the symbolic univoque
set

Uq := {(xi) ∈ ΩM : πq((xi)) ∈ Uq},
where ΩM := {0, 1, . . . ,M}N. Namely,

dimH Uq =
h(Uq)

log q
. (1.2)

Here the topological entropy of any subset X ⊂ ΩM is defined by

h(X) := lim
n→∞

log #Bn(X)

n
,

assuming the limit exists, where Bn(X) denotes the set of all length n prefixes of sequences
from X, and “log” denotes the natural logarithm. (Since we will be considering different
values of M simultaneously, the “neutral” base e logarithm is used to avoid confusion.)
Note that the limit always exists when X is invariant under the left shift map σ, since the
map n 7→ #Bn(X) is then submultiplicative. This is the case, in particular, for Uq.

Komornik, Kong and Li proved furthermore that the function

H : q 7→ h(Uq)

is a devil’s staircase. That is, H is continuous, nondecreasing, and locally constant almost
everywhere, and maps (1,M + 1] onto a nontrivial interval. Recently, the present author
and Kong [4] discovered a gap in their proof, and gave a completely different demonstration
of their results. Kong and Li [16] identified intervals on which H is constant; their work was
extended by Alcaraz Barrera et al. [2], who determined the entropy plateaus of H; that is,
the maximal intervals of constancy of H. (This had already been done for the case M = 1
by Alcaraz-Barrera [1], who considered general symmetric subshifts of {0, 1}N and proved
transitivity results and ergodic properties.) These entropy plateaus have since played an
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important role in the study of non-integer base expansions (e.g. [3, 5]). In this paper we
detail the main results of [2], and develop a new approach which not only presents these
results in a new light, but also simplifies some of the proofs and provides new information
on the nature of the entropy plateaus.

Before proceeding, we define some important notation. Let σ : ΩM → ΩM denote the
left shift map, defined by σ(d1d2 . . . ) := (d2d3 . . . ). Throughout the paper we will use the
lexicographical ordering between sequences and words: For two sequences (ci), (di) ∈ ΩM

we write (ci) ≺ (di) or (di) ≻ (ci) if there exists n ∈ N such that c1 . . . cn−1 = d1 . . . dn−1

and cn < dn. Furthermore, we write (ci) 4 (di) if (ci) ≺ (di) or (ci) = (di). Similarly, for
two words c and d we say c ≺ d or d ≻ c if c0∞ ≺ d0∞.

Let α(q) = (αi(q)) ∈ ΩM denote the quasi-greedy q-expansion of 1; that is, the lexico-
graphically largest q-expansion of 1 not ending with 0∞. The following useful characteri-
zation was proved in [7, Proposition 2.3]:

Lemma 1.1. The map q 7→ α(q) is strictly increasing and bijective from (1,M + 1] to the
set of sequences (ai) ∈ ΩM not ending with 0∞ and satisfying

σn((ai)) 4 (ai) ∀n ≥ 0.

Let (τi)
∞
i=1 = 1101 0011 00101101 . . . be the (shifted) Thue-Morse sequence, defined by

τi := si mod 2, where si is the sum of the digits in the binary representation of i. Recall
from [15] that the Komornik-Loreti constant qKL = qKL(M) satisfies α(qKL) = (λi), where
for each i ≥ 1,

λi = λi(M) :=

{
k + τi − τi−1 if M = 2k,

k + τi if M = 2k + 1.
(1.3)

For a word c1 . . . ck with ck < M , we write c1 . . . c
+
k := c1 . . . ck−1(ck + 1). Likewise,

for a word c1 . . . ck with ck > 0, we write c1 . . . c
−
k := c1 . . . ck−1(ck − 1). For any word

c1 . . . ck, its reflection is the word c1 . . . ck := (M−c1) . . . (M−ck). For an infinite sequence
(ci) ∈ ΩM , we similarly define (ci)i := (M − ci)i. Using this notation, we define special
bases q′n = q′n(M) by

α(q′n) =

{
λ1 . . . λ2n−1

(
λ1 . . . λ2n−1

+)∞
if M is even,

λ1 . . . λ2n
(
λ1 . . . λ2n

+)∞
if M is odd.

We denote q′1 also by qT ; it is called the transitive base in [2]. It can be deduced from
Lemma 1.1 that q′n is well defined; see [2, Lemma 4.3] for the details. Finally, we define a
special base qG (called a generalized golden ratio in [6]) by

α(qG) =

{
k∞ if M = 2k,(
(k + 1)k

)∞
if M = 2k + 1.

(1.4)

When M = 1, we obtain qG = (1 +
√
5)/2 as before. Let

V :=
{
(ci) ∈ ΩM : (ci) 4 σn((ci)) 4 (ci) ∀n ≥ 0

}
.
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In [2], irreducible sequences in ΩM were defined as follows:

Definition 1.2 ([2]). A sequence (ai) ∈ V is irreducible if for every j ∈ N the following
implication holds:

[
aj > 0 and (a1 . . . a

−
j )

∞ ∈ V
]

=⇒ a1 . . . aj(a1 . . . aj
+)∞ ≺ (ai). (1.5)

A sequence (ai) ∈ V is ∗-irreducible if there exists n ∈ N such that α(q′n+1) 4 (ai) ≺ α(q′n),
and (1.5) holds for every j > 2n if M is even, or for every j > 2n+1 if M is odd.

Definition 1.3 ([2]). An interval [pL, pR] ⊂ (qKL,M + 1] is irreducible (∗-irreducible) if
α(pL) is irreducible (∗-irreducible) and there is a word a1 . . . am with am < M such that

α(pL) = (a1 . . . am)∞, and α(pR) = a1 . . . a
+
m(a1 . . . am)∞.

Definition 1.4. An interval [pL, pR] is a plateau of H, or entropy plateau, if [pL, pR] is a
maximal interval (in the partial order of set inclusion) on which H is positive and constant.

The main result of [2] is:

Theorem 1.5. An interval [pL, pR] ⊂ (qKL,M + 1] is an entropy plateau if and only if
it is either irreducible or ∗-irreducible. Moreover, the irreducible entropy plateaus lie in
(qT ,M + 1], and the ∗-irreducible entropy plateaus lie in (qKL, qT ).

In this paper we present some new ideas that further illuminate the nature of the entropy
plateaus, and in the process simplify the proof of Theorem 1.5. The paper is organized as
follows. First, in Section 2, we introduce a family of intervals of which the entropy plateaus
form a special subfamily. Each of these intervals is generated by a specific word a1 . . . am,
which we call fundamental. We then define a notion of composition of fundamental words
which allows us to put a semigroup structure on the set of all fundamental words in the
special but important case M = 1. This notion of composition yields a natural algebraic
interpretation of the concepts of irreducible and ∗-irreducible intervals. We use it in Section
3 to uncover a direct connection between the ∗-irreducible intervals (for any M) and the
irreducible intervals for M = 1. This will provide new information about the behavior
of the entropy function H on the interval (qKL, qT ]. In particular, we derive the part of
Theorem 1.5 concerning ∗-irreducible plateaus in a very conceptual way from the part of
the theorem concerning irreducible plateaus. For completeness, we include in Section 4 a
more streamlined proof of the latter.

2 Composition of fundamental words

This section borrows ideas and results from the paper [5] by the author and Kong. The
interested reader is referred to that paper for the proofs.
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Definition 2.1. A word a = a1 . . . am ∈ {0, 1, . . . ,M}m with m ≥ 2 is fundamental if

a1 . . . am−i 4 ai+1 . . . am ≺ a1 . . . am−i ∀ 1 ≤ i < m.

When M ≥ 2, the “word” a1 ∈ {0, 1, . . . ,M} is fundamental if a1 ≤ a1 < M .

An important observation is that a∞ ∈ V for any fundamental word a. Note also that
a fundamental word cannot end in the digit M .

Remark 2.2. There is a (near) one-to-one correspondence between fundamental words and
the primitive words defined in [2]: a word a is fundamental if and only if a+ is primitive
(with the exception of fundamental words of length 1).

Let FM denote the set of all fundamental words with alphabet {0, 1, . . . ,M}. For each
a ∈ FM , there is by Lemma 1.1 a unique interval Ja = [qL(a), qR(a)] such that

α(qL(a)) = a∞, α(qR(a)) = a+(a)∞. (2.1)

We call Ja a fundamental interval generated by the word a. Observe for any a ∈ FM that

a+ ≺ a 4 a ≺ a+. (2.2)

The middle inequality is not always strict: a = a in the exceptional but important case
that M is even and a = a1 = M/2.

Figure 1 shows a directed graph G = (V,E) with edge set E = {e0, e1, . . . , e4} and with
two edge labelings. In the figure, a denotes a fundamental word. In view of (2.2), the
labeled graph Ga = (G,La) with labeling La : E → La :=

{
a,a+,a,a+

}
is right-resolving,

i.e. the out-going edges from the same vertex in Ga have different labels. Let Xa be the
set of infinite sequences generated by the automata Ga = (G,La), beginning at the “Start”
vertex (cf. [18]). We emphasize that each digit d in La is a block of length |a|, and any

sequence in Xa is an infinite concatenation of blocks from La. We also let Xfin
a denote the

set of all finite prefixes of sequences in Xa whose length is a multiple of |a|.
Likewise, the labeled graph G∗ = (G,L∗) with labeling L∗ : E → {0, 1} is right-

resolving. Let X∗ ⊂ {0, 1}N be the set of all infinite sequences generated by the automata
G∗, and note that X∗ = {(xi) ∈ {0, 1}N : x1 = 1}. Thus, for each q ∈ (1, 2] the quasi-greedy
expansion α∗(q) of 1 in base q is an element of X∗, so that α∗(q) is the sequence of labels
on an infinite path generated by the automata G∗. Since the labeling L∗ is right-resolving,
this path is unique.

For a given word a ∈ FM , we define a map Φa : Xa → X∗ as follows. Given a sequence
(di) ∈ Xa of blocks from La, there is a unique infinite path ei1ei2 . . . in G with i1 = 0 such
that La(ei1ei2 . . . ) = d1d2 . . . . Define Φa((di)) by

Φa(d1d2 . . . ) := L∗(ei1ei2 . . . ).

Similarly, for any finite word d1 . . .dk starting with d1 = a+ generated by the labeling La

along a path ei1 . . . eik with i1 = 0, we define Φa(d1 . . .dk) := L∗(ei1 . . . eik). Likewise, for
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A B

Start

e0 : a+ / 1

e4 : a / 1

e1 : a+ / 0

e2 : a / 0

e3 : a+ / 1

Figure 1: The labeled graph Ga = (G,La) with labeling La : E → La :=
{
a,a+,a,a+

}
,

and the labeled graph G∗ = (G,L∗) with labeling L∗ : E → {0, 1}.

a word d1 . . .dk starting with d1 = a+ generated by the labeling La along a path ei1 . . . eik
(necessarily with i1 = 1), we define Φa(d1 . . .dk) in the same way. When a 6= a, we can
also define Φa(d1 . . .dk) for words d1 . . .dk starting with d1 = a or a in the same way.
However, we leave Φa(d1 . . .dk) undefined for such words when a = a; the reason is that
in this case, the edges e2 and e4 have the same label under La, but different labels under
L∗, causing some ambiguity.

Remark 2.3. The definition of Φa slightly generalizes the definition of the maps ΦJ in-
troduced in [5, Section 3]. But our definitions here require a bit more care due to the
possibility that a = a. Nonetheless, since the graph Ga is right-resolving even then, all of
the proofs from [5, Section 3] go through in the same way. We therefore omit them here.

Remark 2.4. As pointed out by a referee, the map Φa is somewhat reminiscent of the
renormalization of kneading invariants of Lorenz maps in [11], though the author did not
see a direct connection.

Lemma 2.5. If c ∈ Xfin
a is fundamental, then Φa(c) is fundamental.

Proof. This follows as in the proof of [5, Lemma 3.7].

Going forward, superscript ∗ indicates that the alphabet {0, 1} is intended, i.e. M = 1.
In [5, Proposition 3.5] it is shown that Φa : Xa → X∗ is a strictly increasing bijection.

Let
V := {q ∈ (1,M + 1] : α(q) ∈ V},

and V ∗ := V when M = 1. By [5, Proposition 3.4], α(q) ∈ Xa for q ∈ (qL(a), qR(a)] ∩ V ,
where qL(a) and qR(a) were defined in (2.1). Hence, Φa induces a map

Φ̂a : (qL(a), qR(a)] ∩ V → V
∗, q 7→ (α∗)−1 ◦ Φa ◦ α(q).

The map Φ̂a is an increasing homeomorphism; see [5, Proposition 3.8].
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Definition 2.6. For a ∈ FM and b ∈ F1 we define the composition a ◦ b by

a ◦ b := Φ−1
a (b).

Note that this is well defined since b is a prefix of a sequence in X∗. The composition
a ◦ b should not be confused with the concatenation ab. Indeed, |a ◦ b| = |a||b|, whereas
|ab| = |a| + |b|. Observe that the composition of two words in FM is not defined when
M ≥ 2.

Example 2.7. Let M = 1 and take a = 10, b = 110. Then:

1. a ◦ b = Φ−1
a (110) = a+aa+ = 110100;

2. b ◦ a = Φ−1
b

(10) = b+b+ = 111000.

Example 2.8. Let M = 2 and take a = 1,b = 1110. Then a ∈ F2, b ∈ F1, and
a ◦ b = a+a2a+ = 2110.

Lemma 2.9. If a ∈ FM and b ∈ F1, then a ◦ b ∈ FM .

Proof. Let a = a1 . . . am, b = b1 . . . bn, and put c := c1 . . . cmn = a ◦ b. We must verify
that

c1 . . . cmn−i 4 ci+1 . . . cmn ≺ c1 . . . cmn−i ∀ 1 ≤ i < mn. (2.3)

Since a ∈ FM , by Definition 2.1 it follows that

a1 . . . a
+
m ≺ ai+1 . . . a

+
ma1 . . . ai ≺ a1 . . . a

+
m

and
a1 . . . a

+
m ≺ ai+1 . . . ama1 . . . ai ≺ a1 . . . a

+
m

for all 1 ≤ i < m. Note that we can write c = d1 . . .dn, where di ∈
{
a,a+,a,a+

}
for

each i. Since the block a+ can only be followed by a or a+ and the block a can only be
followed by a or a+, it follows from the above inequalities that (2.3) holds whenever i is
not a multiple of m. So it remains to verify that

d1 . . .dn−j 4 dj+1 . . .dn ≺ d1 . . .dn−j ∀ 1 ≤ j < n. (2.4)

But this follows from the admissibility of b, which implies

b1 . . . bn−j 4 bj+1 . . . bn ≺ b1 . . . bn−j ∀ 1 ≤ j < n.

For instance, since d1 = a+, the second inequality in (2.4) is obvious if dj+1 ≺ a+, so let
us assume dj+1 = a+. Then dj+1 . . .dn is a prefix of a sequence in Xa, so, since Φa is
strictly increasing on Xa,

dj+1 . . .dn = Φ−1
a (bj+1 . . . bn) ≺ Φ−1

a (b1 . . . bn−j) = d1 . . .dn−j.

The first inequality in (2.4) follows similarly, by taking reflections.
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In view of the last lemma, the interval Ja◦b = [qL(a ◦ b), qR(a ◦ b)] is well defined, and
it is easy to see that Ja◦b ⊂ Ja.

Lemma 2.10. For a ∈ FM and b ∈ F1, we have

Φa◦b = Φb ◦Φa|Xa◦b
, Φ̂a◦b = Φ̂b ◦ Φ̂a|α−1(Xa◦b),

and as a result,
Φ−1
a◦b = Φ−1

a ◦Φ−1
b

, Φ̂−1
a◦b = Φ̂−1

a ◦ Φ̂−1
b

.

Proof. If c ∈ Xfin
a is fundamental, then

Φa(c
+) =

(
Φa(c)

)+
, Φa(c) = Φa(c), Φa

(
c+

)
= Φa(c+),

as can be seen quickly from the definition of Φa. In particular, setting c = a ◦ b, we have

Φa(a ◦ b) = Φa(Φ
−1
a (b)) = b,

Φa

(
(a ◦ b)+

)
=

(
Φa(a ◦ b)

)+
= b+,

Φa

(
a ◦ b

)
= Φa(a ◦ b) = b,

Φa

(
(a ◦ b)+

)
= Φa

(
(a ◦ b)+

)
= b+.

(2.5)

Now let d be one of the blocks a ◦ b, (a ◦ b)+,a ◦ b or (a ◦ b)+. Since b ∈ F1, we have
b 6= b so all four labels in Lb := {b,b+,b,b+} are distinct. By the four identities above,
Φa(d) ∈ Lb, and therefore Φb(Φa(d)) is well defined. Note that Φa◦b(d) = 1 if and only
if d = (a ◦ b)+ or a ◦ b. Recalling the definition of Φb and the identities (2.5), it follows
that Φa◦b(d) = Φb(Φa(d)). This implies that Φa◦b = Φb ◦ Φa|Xa◦b

. The corresponding
identity for Φ̂a◦b follows since

Φ̂b ◦ Φ̂a|α−1(Xa◦b) =
(
(α∗)−1 ◦Φb ◦ α∗

)
◦
(
(α∗)−1 ◦ Φa|Xa◦b

◦ α
)

= (α∗)−1 ◦
(
Φb ◦ Φa|Xa◦b

)
◦ α

= (α∗)−1 ◦ Φa◦b ◦ α = Φ̂a◦b.

The identities for the inverse maps are a direct consequence of the ones already proved,
noting that the composition Φ−1

a ◦ Φ−1
b

is well defined since Φ−1
b

: X∗ → Xb ⊂ X∗ and
Φ−1
a : X∗ → Xa.

Proposition 2.11. The set F1 with the operation ◦ is a non-Abelian semigroup. That is,

(i) If a,b ∈ F1, then a ◦ b ∈ F1.

(ii) For any three words a,b, c ∈ F1, (a ◦ b) ◦ c = a ◦ (b ◦ c).
Proof. That F1 is closed under ◦ is the content of Lemma 2.9. Associativity follows from
Lemma 2.10, since

(a ◦ b) ◦ c = Φ−1
a◦b(c) = Φ−1

a (Φ−1
b

(c)) = Φ−1
a (b ◦ c) = a ◦ (b ◦ c).

That (F1, ◦) is non-Abelian can be seen from Example 2.7.
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Remark 2.12. Note by Lemma 2.10 that the maps a 7→ Φ−1
a and a 7→ Φ̂−1

a are semigroup
homomorphisms when M = 1.

Lemma 2.13. Let a and b be distinct fundamental words in FM such that Jb ⊂ Ja. Then
there is a word c ∈ F1 such that b = a ◦ c.

Proof. By [5, Lemma 3.2], b is a prefix of a sequence in Xa, so we can take c = Φa(b).
Then c ∈ F1 by Lemma 2.5, and a ◦ c = Φ−1

a (c) = b.

Definition 2.14. The unit lift is the word u = uM defined as follows:

u = uM =

{
k if M = 2k,

(k + 1)k if M = 2k + 1.

Observe that u ∈ FM and Ju = [qG, qT ].

Definition 2.15. Let a ∈ FM .

(i) Say a is irreducible if there do not exist c ∈ FM and d ∈ F1 such that a = c ◦ d.

(ii) Say a is n-irreducible if a = u ◦ (10)◦(n−1) ◦ b for some irreducible word b ∈ F1.

(iii) Say a is ∗-irreducible if a is n-irreducible for some n ∈ N.

Here (10)◦k means the k-fold composition of 10 with itself.

Definition 2.16. Call the interval Ja irreducible (n-irreducible, ∗-irreducible) if a is irre-
ducible (n-irreducible, ∗-irreducible).

Proposition 2.17. Let a ∈ FM . Then a has a unique decomposition into irreducible
words. That is, there is a unique k ∈ N and a unique k-tuple (c1, . . . , ck) with c1 ∈ FM ,
c2, . . . , ck ∈ F1, and each ci irreducible, such that a = c1 ◦ c2 ◦ · · · ◦ ck.

Proof. The existence of such a decomposition follows directly from Definition 2.15(i).
Uniqueness follows from the fact that Ja◦b ⊂ Ja, plus induction, since Lemma 2.13 implies
that any two distinct irreducible intervals are disjoint.

Lemma 2.18. Let q ∈ [qG,M + 1]. The sequence α(q) is irreducible if and only if q 6∈
(qL, qR] for any fundamental interval [qL, qR].

Proof. Write α(q) = a1a2 . . . . Assume first that α(q) is irreducible, and suppose q ∈
(qL(b), qR(b)] for some fundamental word b = b1 . . . bj . Then

(b1 . . . bj)
∞ = α(qL(b)) ≺ α(q) 4 α(qR(b)) = b1 . . . b

+
j (b1 . . . bj)

∞. (2.6)

So α(q) begins with b1 . . . b
+
j , i.e. a1 . . . aj = b1 . . . b

+
j . But then a1 . . . a

−
j = b1 . . . bj and so

(a1 . . . a
−
j )

∞ ∈ V. In view of (2.6), this contradicts (1.5).
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Conversely, suppose q 6∈ (qL, qR] for any fundamental interval [qL, qR]. We first verify
that α(q) ∈ V. Either q = qG and α(q) ∈ V by (1.4); or else q > qT > qKL. In the second
case, q ∈ U , because each connected component of (qKL,M + 1]\U is contained in the
interior of a fundamental interval (see [16]). But U ⊂ V , so q ∈ V and hence α(q) ∈ V.

Now let j ∈ N be such that (a1 . . . a
−
j )

∞ ∈ V. Consider the fundamental interval
[qL, qR] given by

α(qL) = (a1 . . . a
−
j )

∞, α(qR) = a1 . . . aj(a1 . . . aj
+)∞.

Note that q > qL since α(q) ≻ α(qL), so by our hypothesis, q > qR and so α(q) ≻ α(qR).
But this is equivalent to the consequent of (1.5). Hence, α(q) is irreducible.

Proposition 2.19. Let a ∈ FM . Then a∞ is irreducible (in the sense of Definition 1.2)
if and only if a is irreducible (in the sense of Definition 2.15).

Proof. Let q be the base with α(q) = a∞; then q is the left endpoint of Ja. Suppose
first that a is irreducible. Then by Lemma 2.13, Ja is a maximal fundamental interval, so
there is no fundamental interval [qL, qR] such that q ∈ (qL, qR]. Hence, by Lemma 2.18,
a∞ = α(q) is irreducible.

Conversely, suppose a∞ is irreducible. By Lemma 2.18, there is no fundamental interval
[qL, qR] such that q ∈ (qL, qR]. Hence Ja is a maximal fundamental interval. This implies
a is irreducible.

Remark 2.20. Proposition 2.19 provides a natural algebraic interpretation of the notion of
“irreducible” from Definition 1.2: a∞ is irreducible if and only if a can not be written as
the composition of two or more fundamental words.

3 Irreducible intervals and entropy plateaus

Now if we set an := uM ◦ (10)◦(n−1) for n ∈ N, then an ∈ FM and the interval Jan =
[qL(an), qR(an)] has right endpoint qR(an) = q′n. Note that q′n ց qKL, and an → (λi).
Also set q′0 := M + 1, and define the intervals

In := (q′n+1, q
′
n], n = 0, 1, 2, . . . ,

so
⋃∞

n=0 In = (qKL,M + 1], with the union disjoint. When M = 1 we write I∗n := In.
Before stating the first lemma of this section, we recall that Ju = [qG, qT ], that

qG < qKL < · · · < q′n+1 < q′n < · · · < q′2 < q′1 = qT ,

and all these bases belong to V .

Lemma 3.1. (i) Φ̂u is increasing and maps [qG, qT ] ∩ V bijectively onto V ∗.

(ii) Φ̂u(qKL) = q∗KL.
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(iii) Φ̂u(In+1 ∩ V ) = I∗n ∩ V ∗ for all n ≥ 0.

Proof. The proof of (i) is the same as the proof of [5, Proposition 3.5]. For (ii) we must
verify that Φu((λi)) = (τi). Consider first the case when M is even. We prove (ii) for
M = 2; the proof for other even values of M is the same modulo a renaming of the digits.
We will show inductively that

Φu(λ1 . . . λ2k) = τ1 . . . τ2k , for all k ≥ 1, (3.1)

where u = 1 and λi := λi(2). For k = 1, we get Φu(λ1λ2) = Φu(21) = Φu(u
+u) = 11 =

τ1τ2. Assuming (3.1) holds for some arbitrary k ∈ N, we use the relationship

λ2k+1 . . . λ2k+1 = λ1 . . . λ2k
+

to obtain

Φu(λ1 . . . λ2k+1) = Φu(λ1 . . . λ2k)Φu(λ2k+1 . . . λ2k+1)

= Φu(λ1 . . . λ2k)Φu(λ1 . . . λ2k
+
)

= Φu(λ1 . . . λ2k)Φu(λ1 . . . λ2k)
+

= τ1 . . . τ2kτ1 . . . τ2k
+

= τ1 . . . τ2k+1 .

Here the first equality is justified by the fact that λ2k+1 = λ1 = 0 = u+, so the expressions
on the right side are well defined.

Consider next the case when M is odd. We prove (ii) for M = 1; the proof for other
odd values of M is the same modulo a renaming of the digits. Here we must prove that
Φu((τi)) = (τi), where u = 10. We do this by induction, by showing that

Φu(τ1 . . . τ2k) = τ1 . . . τ2k−1 , for all k ≥ 1. (3.2)

Note first that Φu(τ1τ2) = Φu(u
+) = 1 = τ1, so (3.2) holds for k = 1. The induction step

proceeds essentially the same way as for the case M = 2 above, so we omit the details.
To prove (iii), it is sufficient to show that Φ̂u(q

′
n+1(M)) = q′n(1) for all n ≥ 0. This

means that for even M we have to show

Φu

(
λ1 . . . λ2n

(
λ1 . . . λ2n

+)∞)
= τ1 . . . τ2n(τ1 . . . τ2n

+)∞ ∀n ∈ N,

and for odd M we have to show

Φu

(
λ1 . . . λ2n+1

(
λ1 . . . λ2n+1

+)∞)
= τ1 . . . τ2n(τ1 . . . τ2n

+)∞ ∀n ∈ N.

These equations follow in the same way as in the proof of (ii) above.

Proposition 3.2. All irreducible intervals, except [qG, qT ], lie in I0 = (qT ,M + 1]. All
n-irreducible intervals, except the one with right endpoint q′n+1, lie in In, for n ∈ N.
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Proof. This follows directly from Definition 2.15 and Lemma 3.1.

Having established the action of the map Φ̂u, we now turn to investigate the entropy
function H : q 7→ h(Uq). We recall the following lexicographical characterization of Uq

(see [7]): (di) ∈ Uq if and only if (di) ∈ ΩM satisfies

dn+1dn+2 . . . ≺ α(q) if dn < M,

dn+1dn+2 . . . ≻ α(q) if dn > 0.
(3.3)

Motivated by this characterization, we define the simpler set

Ũq :=
{
(di) ∈ ΩM : α(q) ≺ σn((di)) ≺ α(q) ∀n ≥ 0

}
.

Note that h(Uq) = h(Ũq) (see [13]). Write H∗(q) := h(U∗
q), and let

cM :=

{
1 if M is even,
1
2 if M is odd.

Proposition 3.3. Let q ∈ (qG, qT ] ∩ V , and put q̂ := Φ̂u(q). Then

(i) Φu

({
(xi) ∈ Ũq : x1 . . . x|u| = u+

})
=

{
(yi) ∈ Ũ∗

q̂ : y1 = 1
}
.

(ii) H(q) = cMH∗(q̂).

Proof. Statement (i) is a special case of [5, Proposition 3.8(iii)]; (ii) will follow from (i)
once we show that

h(Ũ∗
q̂) = h

({
(yi) ∈ Ũ∗

q̂ : y1 = 1
})

(3.4)

and
h(Ũq) = h

({
(xi) ∈ Ũq : x1 . . . x|u| = u+

})
, (3.5)

using that Φu is a |u|-block map.
The set

{
(yi) ∈ Ũ∗

q̂ : y1 = 1
}
and its reflection,

{
(yi) ∈ Ũ∗

q̂ : y1 = 0
}
, together make up

Ũ∗
q̂ . This gives (3.4).
The proof of (3.5) is slightly more involved. Assume first that M is odd, and without

loss of generality suppose M = 1. Then u+ = 11. Let Akl :=
{
(xi) ∈ Ũq : x1x2 = kl

}
for

k, l = 0, 1. Since Ũq = A11 ∪A10 ∪A01 ∪A00, it follows by symmetry that

#Bn(Ũq) = 2#Bn(A11) + 2#Bn(A10).

Every sequence in A10 is either (10)∞, or of the form (10)jx1x2 . . . with (xi) ∈ A11, or of
the form (10)j1x1x2 . . . with (xi) ∈ A00, for some j ≥ 0. Hence

#Bn(A10) ≤
n−1∑

j=0

#Bj(A11) ≤ n#Bn(A11),
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so that #Bn(A11) ≤ #Bn(Ũq) ≤ (2n+2)#Bn(A11). Taking logarithms, dividing by n and

letting n → ∞, it follows that h(A11) = h(Ũq), proving (3.5).
If M is even, then |u| = 1 and the proof of (3.5) is basically the same as that of (3.4),

since any sequence in Ũq begins with either u or u.

Applying Proposition 3.3 repeatedly, we obtain Lemma 5.4 of [2]:

Corollary 3.4. For each n ∈ N we have

H(q′n) =
cM log 2

2n−1
.

In particular, H(qT ) = cM log 2.

Corollary 3.5. Let q ∈ [qG, qT ] ∩ V , and put q̂ := Φ̂u(q). Then

dimH Uq = cM
log q̂

log q
dimH U∗

q̂ .

Proof. This follows at once from Proposition 3.3 and (1.2).

Lemma 3.6. (i) The union of all irreducible intervals is dense in I0 = [qT ,M + 1].

(ii) For each n ∈ N, the union of all n-irreducible intervals is dense in In.

Proof. (i). Recall from [16] that (qKL,M + 1]\U =
⋃
(p0, q0), where each interval (p0, q0)

is of the form (qL(a), qc(a)) for some fundamental word a. Here qc(a) := Φ̂−1
a (q∗KL) ∈

Ja is the de Vries-Komornik number associated with Ja. Furthermore, U has Lebesgue
measure zero. Hence the intervals (p0, q0) are dense in (qKL,M +1]. But then the intervals
Ja = [qL(a), qR(a)] are certainly dense in (qKL,M + 1]. Since the irreducible intervals are
the maximal fundamental intervals in (qG,M + 1], it follows that their union is dense in
(qT ,M + 1].

(ii). By the same reasoning as above, the fundamental intervals inside In are dense in
In. Since the n-irreducible intervals in In are the maximal fundamental intervals in In, the
result follows.

Theorem 3.7. (i) The plateaus of H in (qT ,M +1] are exactly the irreducible intervals
that lie inside (qKL,M + 1].

(ii) The plateaus of H in In are exactly the n-irreducible intervals that lie inside (qKL,M+
1], for each n ∈ N.

Proof. Statement (i) is proved in [2, Section 5.1], but see also Section 4 below. We show
how (ii) follows from (i) and the ideas in this article. We proceed by induction. First, if
we take 0-irreducible to mean irreducible, statement (ii) holds for n = 0 by part (i). Now
let k ∈ N, and suppose (ii) holds for all n < k. Let J = [qL, qR] be a k-irreducible interval
in (qKL,M + 1]. Then J ⊂ Ik by Proposition 3.2. Put q̂L := Φ̂u(qL) and q̂R := Φ̂u(qR).
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Then Ĵ := [q̂L, q̂R] is a (k − 1)-irreducible interval which lies inside Ik−1 by Lemma 3.1,
so it is an entropy plateau by the induction hypothesis. In particular, H∗(q̂R) = H∗(q̂L).
Then Proposition 3.3 implies that H(qR) = H(qL), hence H is constant on J . Next, take
a point r > qR. Then by Lemma 3.6(ii), there is a k-irreducible interval J ′ = [q′L, q

′
R] with

qR < q′L < r. Let q̂′L := Φ̂u(q
′
L) and q̂′R := Φ̂u(q

′
R). Then Ĵ ′ := [q̂′L, q̂

′
R] is an entropy plateau

to the right of Ĵ , so H∗(q̂′L) > H∗(q̂R). Hence, by Proposition 3.3 again, H(q′L) > H(qR).
Thus H(r) > H(qR). In the same way, we can show that H(p) < H(qL) for every p < qL.
Therefore, J is an entropy plateau.

Vice versa, every entropy plateau in In must be an n-irreducible interval, because the
n-irreducible intervals are dense in In.

Proposition 3.3 gives new information about the entropy plateaus: Take M = 1 for the
moment. Then for any entropy plateau in In (with n ≥ 1) there is a corresponding entropy
plateau in In−1 with twice the entropy. Vice versa, for any entropy plateau in In−1 there is
a corresponding entropy plateau in In with half the entropy. The graph of H on In looks
much like a smaller version of the graph of H on In−1, contracted vertically by a factor 2
but badly distorted horizontally, as the map Φ̂u is far from being linear.

By contrast, when M ≥ 2 the graph of H : q 7→ h(Uq) over In for n ≥ 1 looks more
like a smaller copy of the graph of H∗ : q 7→ h(U∗

q) over (q
∗
T , 2], rather than a smaller copy

of the graph of H itself over (qT ,M + 1]. In fact, when M is even, the values of H on the
entropy plateaus of Uq in In are precisely the same as the values of H∗ on the entropy
plateaus of U∗

q in I∗n−1, for each n ≥ 1. When M is odd, they are half that big.
It also follows from Proposition 3.3 that the values of the functionsHM : q 7→ h(Uq(M))

for q ∈ (qT (M),M +1] and M ≥ 1 completely determine the entropy of Uq for any M and
any q ∈ (1,M + 1].

4 A shorter proof for irreducible plateaus

In this section we give a more streamlined proof of Theorem 3.7(i). We first introduce the
sets

Vq := {(xi) ∈ ΩM : α(q) 4 σn((xi)) 4 α(q) for all n ≥ 0}.

Note that Ũq ⊂ Vq. The point is that, while Ũq need not be a subshift of ΩM , Vq always

is. Moreover, Vq\Ũq is countable, and h(Ũq) = h(Vq) (see [4, Proposition 2.6]).
The key is to prove that for any irreducible interval [qL, qR] in [qT ,M +1], the subshift

VqL is transitive. Recall that a subshift X of ΩM is (topologically) transitive if, for any
two words u, v ∈ B∗(X), there is a word w ∈ B∗(X) such that uwv ∈ B∗(X). Here B∗(X)
denotes the set of all finite words occurring in sequences from X, including the empty word.
We begin by proving the following crucial fact, which is Proposition 3.17 in [2].

Proposition 4.1. Let q ∈ (qT ,M + 1]. If α(q) is irreducible, then Vq is a transitive
subshift.
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Lemma 4.2. Let q > qT be such that α(q) = a1a2 . . . is irreducible, and assume a1 = M .
Then there is a strictly increasing sequence (mj) of positive integers such that for each j,
a1 . . . a

−
mj

is fundamental. Moreover, the sequence (mj) can be chosen so that mj+1 ≤ 2mj

for every j, and

m1 =

{
2, if M = 1,

1, if M ≥ 2.

Proof. When M = 1, q > qT implies that a1a2 = 11, and 10 is fundamental so we can take
m1 = 2. When M ≥ 2, the assumption a1 = M implies that a−1 is fundamental, so we can
take m1 = 1.

We now proceed by induction. Suppose m1, . . . ,mj have been constructed satisfying
the required properties. In particular, a1 . . . a

−
mj

is fundamental. Let u = a1 . . . am, where

m := mj. Since (ai) is irreducible, (ai) < uu+ ≻ uu. Let k := min{i > m : ai > ai−m},
so m < k ≤ 2m. It is easy to see using Definition 2.1 and Lemma 1.1 that a1 . . . a

−
k is

fundamental. Thus, we can set mj+1 = k.

The next lemma is a restatement of [2, Lemma 3.13].

Lemma 4.3. Let u = a1 . . . am be a word such that u− is fundamental. Suppose for some
i we have am−i+1 . . . a

−
m = a1 . . . ai. Then i ≤ m/2.

Lemma 4.4. Let q > qT and suppose α(q) = a1a2 . . . is irreducible, where a1 = M . Then
there does not exist a word b such that α(q) begins with bb. Hence, for each m ∈ N,

a1 . . . a2m ≻ a1 . . . ama1 . . . am.

Proof. If α(q) begins with bb, then in order for α(q) ∈ V we must have α(q) =
(
bb

)∞
.

This means bb is fundamental, which implies b− is fundamental. (Since q > qT , the
possible exception M = b = 1 is ruled out.) But then bb = b− ◦ (10), contradicting that
α(q) is irreducible in view of Proposition 2.19.

Proof of Proposition 4.1. It was shown in [13] that Vq is a subshift of ΩM for every q ∈
(1,M+1]. Fix q ∈ (qT ,M+1] such that α(q) is irreducible. Write α(q) = a1a2 . . . . We may
assume that a1 = M , as otherwise sequences from Vq use only the digits 1, 2, . . . ,M − 1,
and we are effectively in the case of a smaller alphabet.

Let (mj) be the sequence given by Lemma 4.2. We will show by induction that

(∗) for each j ∈ N and for each word v ∈ B∗(Vq), there is a word w ∈ B∗(Vq)
such that a1 . . . a

−
mj

wv ∈ B∗(Vq).

This suffices to prove transitivity, for the following reason: Suppose u = u1 . . . uk is an
arbitrary word in B∗(Vq). If

a1 . . . ak−i ≺ ui+1 . . . uk ≺ a1 . . . ak−i for all 0 ≤ i < k,
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then u and v can be concatenated: uv ∈ B∗(Vq). Otherwise, let i0 be the smallest i such
that ui+1 . . . uk = a1 . . . ak−i or a1 . . . ak−i. Then the above inequalities hold for all i < i0.
We may assume by symmetry that ui0+1 . . . uk = a1 . . . ak−i0 . Then ui0+1 . . . uk can be
extended to a word of the form a1 . . . a

−
mj

for some sufficiently large j. By (∗), this word
can be connected to any v ∈ B∗(Vq). Hence the original word u can be connected to any
v ∈ B∗(Vq).

We now proceed to prove (∗). Take first j = 1. If M = 1, then m1 = 2 and u := a1a
−
2 =

10. If v begins with 1, then uv ∈ B∗(Vq); otherwise, u1v ∈ B∗(Vq). If, on the other hand,
M ≥ 2, then u := a−1 satisfies a1 < u < a1 (since a1 = M), and hence uv ∈ B∗(Vq). This
finishes the basis for the induction.

Next, let k ≥ 2 and suppose (∗) has been proven for all j < k, so a1 . . . a
−
mj

can be

connected to any word v, for all j < k. Consider u := a1 . . . a
−
mk

. If there is no l < mk such
that

amk−l+1 . . . a
−
mk

= a1 . . . al,

then u and v can be connected directly: uv ∈ B∗(Vq). Otherwise, let l0 be the largest such
l. Note by Lemma 4.3 that l0 ≤ mk/2, and hence by Lemma 4.2 that l0 ≤ mk−1.

If M = 1 and l0 = 1, then we can connect u and v very easily. Namely, if v begins
with 1, then uv ∈ B∗(Vq); whereas otherwise u1v ∈ B∗(Vq). So we can assume that either
M ≥ 2 or l0 ≥ 2. We claim that a1 . . . a

−
l0

is fundamental. To see this, note first that

ai+1 . . . a
−
l0
≺ ai+1 . . . al0 4 a1 . . . al0−i for 1 ≤ i < l0 by Lemma 2.19. We must verify that

ai+1 . . . a
−
l0
< a1 . . . al0−i, 1 ≤ i < l0. (4.1)

Since a1 . . . a
−
mk

is fundamental, we have that

ai+1 . . . al0al0+1 . . . a
−
mk

< a1 . . . amk−i,

whence ai+1 . . . al0 < a1 . . . al0−i. Suppose equality holds. Then

a1 . . . al0−i = ai+1 . . . al0 = amk−l0+i+1 . . . a
−
mk

,

contradicting the admissiblity of a1 . . . a
−
mk

. Thus, we have (4.1).
It now follows that (a1 . . . a

−
l0
)∞ ∈ V. Since (ai) is irreducible, this implies

(ai) ≻ a1 . . . al0
(
a1 . . . al0

+
)∞

.

Hence, there is an integer r ≥ 0 and a block C of length l0 with C ≻ a1 . . . al0
+ such that

(ai) begins with a1 . . . al0
(
a1 . . . al0

+
)r
C. Consider now the word

ũ := a1 . . . a
−
mk

(
a1 . . . a

−
l0

)r+1
,

which is an extension of u. Note that |ũ| = mk + l0(r+ 1) =: n. It is clear from Definition
2.1 that ũi+1 . . . ũn ≺ a1 . . . an−i for each 0 ≤ i < n. We only need to show that

ũi+1 . . . ũn ≻ a1 . . . an−i (4.2)
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for all i < n − l0; the induction hypothesis will then imply that ũ can be connected to
any word v, since l0 ≤ mk−1 so a1 . . . a

−
l0

can be connected to any word v. We break the
verification of (4.2) in two cases:

(a) i < mk. Suppose ai+1 . . . a
−
mk

= a1 . . . amk−i (otherwise we are done). Thenmk−i ≤
l0 by the definition of l0. If mk − i = l0, then by the choice of r,

ũi+1 . . . ũn = a1 . . . al0
(
a1 . . . al0

+
)r+1

≺ a1 . . . al0
(
a1 . . . al0

+
)r
C

= a1 . . . an−i,

so (4.2) holds. Assume therefore that mk − i < l0. Then

ũi+1 . . . ũ2mk−i = a1 . . . amk−i a1 . . . amk−i ≺ a1 . . . a2mk−i

by Lemma 4.4, and again we obtain (4.2).

(b) mk ≤ i < n− l0. (Observe this case only happens if r ≥ 1.) Write i = mk + tl0 + j
where t ∈ {0, 1, . . . , r − 1} and 0 ≤ j < l0. Then ũi+1 . . . ũn begins with aj+1 . . . al0

+, and
is followed by at least one block a1 . . . al0

+. Suppose aj+1 . . . al0
+ = a1 . . . al0−j (otherwise

we are done). We argue that j cannot be zero, in other words, that a1 . . . al0
+ ≺ a1 . . . al0 .

This is clear if l0 ≥ 2 since a1 < a1; whereas if l0 = 1 we have M ≥ 2 by our earlier
assumption, so a1

+ = M
+
= 0+ = 1 < M = a1.

Thus, j ≥ 1. But then ũi+1 . . . ũn begins with a1 . . . al0−ja1 . . . al0−j, which is smaller
than a1 . . . a2(l0−j) by Lemma 4.4.

Since we verified (4.2) for all i < n− l0, the proof is complete.

Remark 4.5. The definition of l0 in the above proof is closely related to the reflection
recurrence word introduced in [2]. Alcaraz Barrera et al. [2] use the reflection recurrence to
directly construct the connecting word w between u and v. Their technique is very similar
to ours. However, we prefer the above approach using induction, which allows us to keep
technicalities to a minimum and bring the main ideas of the proof into better focus.

From here, the proof goes essentially as in [2, Section 5.1]. We present it here with a
few more simplifications.

Proposition 4.6. Let [pL, pR] be an irreducible interval in (qKL,M + 1]. Then H(pR) =
H(pL).

Proof. It is sufficient to show that H(pR) ≤ H(pL). Note that h(Vq) = h(Uq) for all q, so
H(q) = h(Vq).

Let [pL, pR] be generated by a fundamental word a of length m, so α(pL) = a∞. We
argue first that

H(pL) ≥
log 2

m
. (4.3)
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Since [pL, pR] is irreducible and pL > qKL, we have in fact that pL > qT , and so H(pL) ≥
H(qT ) ≥ (log 2)/2 by Corollary 3.4. This gives (4.3) when m ≥ 2. On the other hand,
if m = 1, then we must have M ≥ 3 and a = a1 > a1, since pL > qT . This implies
{a1, a1}N ⊂ VpL , so H(pL) ≥ log 2 which gives (4.3) for m = 1.

Let h(VpL) = log λ. Fix ε > 0. By the definition of h(VpL), there is a constant C1

such that
#Bn(VpL) ≤ C1(λ+ ε)n ∀n ≥ 0. (4.4)

(Alcaraz Barrera et al. use the Perron-Frobenius theorem here, but this is not necessary.)
On the other hand, if (xi) ∈ VpR\VpL , then there is an index j such that xj+1 . . . xj+m =
a1 . . . am or a1 . . . am. This implies that σj((xi)) ∈ Xa (see [5, Lemma 3.2]). From the
definition of Xa it follows that there is constant C2 such that

#Bn(Xa) ≤ C22
n/m ∀n ≥ 0. (4.5)

(In fact, one may take C2 = 2.) By (4.3), λ ≥ 21/m. We thus obtain, using (4.4) and (4.5),

#Bn(VpR) ≤
n∑

j=0

#Bj(VpL)#Bn−j(Xa) ≤ C1C2

n∑

j=0

(λ+ ε)j2(n−j)/m

≤ C1C2

n∑

j=0

(λ+ ε)n = C1C2(n+ 1)(λ+ ε)n.

Hence, H(pR) = h(VpR) ≤ log(λ+ ε). Letting ε → 0 completes the proof.

We now complete the proof of Theorem 3.7(i). First, let [pL, pR] be an irreducible
interval in (qKL,M + 1]. By Proposition 4.6, H is constant on [pL, pR]. By Lemma 3.6,
the irreducible intervals are dense in (qT ,M + 1]. Since irreducible intervals are mutually
disjoint, this means that for every ε > 0 there is an irreducible interval [qL, qR] such that
pR < qL < pR + ε. Recall that VqL is a subshift of finite type, and by Proposition 4.1,
it is transitive. Furthermore, VpL is a proper subshift of VqL . Thus, by [18, Corollary
4.4.9], H(pL) < H(qL). It follows that H(pR+ ε) ≥ H(qL) > H(pR). By similar reasoning,
H(pL − ε) < H(pL) for every ε > 0. Hence, [pL, pR] is an entropy plateau.

Vice versa, every entropy plateau in (qT ,M+1] must be an irreducible interval, because
the irreducible intervals are dense in (qT ,M + 1]. This completes the proof.
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