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EISENSTEIN SERIES AND AN ASYMPTOTIC FOR THE K-BESSEL

FUNCTION

JIMMY TSENG

Abstract. We produce an estimate for the K-Bessel function Kr+it(y) with positive, real
argument y and of large complex order r + it where r is bounded and t = y sin θ for a fixed
parameter 0 ≤ θ ≤ π/2 or t = y coshµ for a fixed parameter µ > 0. In particular, we compute
the dominant term of the asymptotic expansion of Kr+it(y) as y → ∞. When t and y are
close (or equal), we also give a uniform estimate.

As an application of these estimates, we give bounds on the weight-zero (real-analytic)

Eisenstein series E
(j)
0 (z, r + it) for each inequivalent cusp κj when 1/2 ≤ r ≤ 3/2.
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1. Introduction

The K-Bessel function, Kr+it(y), (see 4.1 for the definition) appears in a number of ways
in mathematics such as in the Fourier expansion of Eisenstein series (for background on
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Eisenstein series, see [14] for example), and these series are important automorphic functions
(namely, functions invariant under a cofinite Fuchsian group) because they are eigenfunctions

of the non-Euclidean Laplacian (i.e. the operator D := y2
(

∂2

∂x2 + ∂2

∂y2

)
).1 In this paper, we

will produce bounds for Kr+it(y) in the novel case of positive, real argument y and of large
complex order r + it where r is bounded and t varies linearly with y in all possible ways. In
particular, we compute the dominant term of the asymptotic expansion of Kr+it(y) as y → ∞
for the two cases t = y sin θ for a fixed parameter 0 ≤ θ ≤ π/2 (Theorem 1.1) or t = y coshµ
for a fixed parameter µ > 0 (Theorem 1.3). (The case t < 0 is also handled as Remark 2.1
shows.) Note that, thus, our result is for y and t both approaching infinity. Except for the
case of θ = π/2, we prove Theorems 1.1 and 1.3 using Laplace’s method (see [17, Page 127,
Theorem 7.1] or [16] for example) in Section 2.

Theorems 1.1 and 1.3 are nonuniform results. In the case where t and y are nearly equal,
we will find that there are two relevant saddle points. When t/y approach 1, the two saddle
points coalesce and these results go to infinity. Consequently, a uniform result in this case
is highly desirable. We give such a uniform result (Theorems 1.5 and 1.6) in Section 3. The
uniform result is important not only for the completeness of the estimates for the K-Bessel
function but also for applications.

One such application for estimates on K-Bessel functions is the study of Eisenstein series.
As an application of our results, we will, in Section 5, give bounds on the weight-zero Eisenstein

series E
(j)
0 (z, r+ it) for each inequivalent cusp κj when 1/2 < r ≤ 3/2. (For the case r = 1/2,

we will use known estimates on theK-Bessel function, Kit(y), to give bounds on the Eisenstein

series, E
(j)
0 (z, 1/2+ it).) Already, our nonuniform results suffice to give bounds on the Fourier

coefficients of these Eisenstein series (Theorem 1.10) when 1/2 < r ≤ 3/2. However, to bound
the Eisenstein series themselves (Theorem 1.12), it is necessary, when 1/2 < r ≤ 3/2, to use
our uniform results.

1.1. Statement of results. Let ν := r + it. Our first two results (Theorems 1.1 and 1.3)
together give an asymptotic for Kν(y) for large order but bounded r (so |t| grows to infinity)
and positive, real argument y. There are two cases: y ≥ t ≥ 0 (Theorem 1.1) and 0 < y < t
(Theorem 1.3). When t < 0, see Remark 2.1.

We note that more terms of the asymptotic expansions found in Theorems 1.1, 1.3, 1.5, and 1.6
could be computed using the techniques in this paper; however, these computations quickly
become tedious and are omitted.

Theorem 1.1. Let M ≥ 0 and 0 ≤ θ ≤ π/2 be fixed real numbers. Let |r| ≤ M , 0 < y ∈ R,
and

t = y sin θ.(1.1)

Then

Kν(y) =





√
π

2y cos θe
−y(cos θ+θ sin θ)eirθ +O

(
y−3/2e−y(cos θ+θ sin θ)

)
if 0 ≤ θ < π

2

e−
π
2
y+iπ

2
ry−1/3 Γ( 1

3
)

2
2
3 3

1
6
+O

(
y−2/3e−

π
2
y+iπ

2
r
)

if θ = π
2

1Other names for the K-Bessel function also exist in the literature such as, for example, the Macdonald-
Bessel function, the modified Bessel function of the second kind and the modified Bessel function of the third
kind.
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as y → ∞. Here, the implied constants depend on θ and M for the case 0 ≤ θ < π
2 and on M

for the case θ = π
2 .

Remark 1.2. In the special case of purely imaginary order, our result agrees with standard
results. As examples, see [9, Page 87 (18)] and [5, (14)] for the case 0 < θ < π

2 and [21,
Pages 78, 247] and [5, (14)] for the case θ = π

2 . Also, note that the Γ in the statement of the
theorem refers to the gamma function.

Theorem 1.3. Let M ≥ 0 and µ > 0 be fixed real numbers. Let |r| ≤M , 0 < y ∈ R, and

t = y coshµ.(1.2)

Then

Kν(y) =

√
2π

y sinhµ
e−y π

2
cosh µ+ir π

2

[
cosh(rµ) sin

(π
4
− y (sinhµ− µ coshµ)

)

−i sinh(rµ) cos
(π
4
− y (sinhµ− µ cosh µ)

)]

+O
(
y−3/2e−y(π

2
coshµ+i(sinhµ−µ coshµ))

)

+O
(
y−3/2e−y(π

2
coshµ−i(sinhµ−µ coshµ))

)

as y → ∞. Here, the implied constants depend on µ and M .

Remark 1.4. Since y sinhµ =
√
t2 − y2 and µ = cosh−1

(
t
y

)
hold, our result, in the special

case of purely imaginary order, reduces to the standard result for purely imaginary order
(see [9, Page 88 (19)] for example), namely:

Kit(y) ∼
√
2π(t2 − y2)−

1
4 e−tπ

2 sin

(
π

4
− (t2 − y2)

1
2 + t cosh−1

(
t

y

))
,

as y → ∞.

Our next two results (Theorems 1.5 and 1.6) give a uniform asymptotic for Kν(y) for large
order but bounded r and positive, real argument y in the case where t and y are nearly
equal (or equal). Here, there are also two cases: y ≥ t ≥ 0 (Theorem 1.5) and 0 < y < t
(Theorem 1.6). When t < 0, see Remark 2.1. Note that Ai(·) is the Airy function.

Theorem 1.5. Let M ≥ 0 and 0 < θ ≤ π
2 be real numbers. Let |r| ≤M , 0 < y ∈ R, and

t = y sin θ.(1.3)

Then there exists a (small) θ0 > 0, which does not depend on t or y, such that, for all
π
2 − θ0 ≤ θ ≤ π

2 , we have

Kν(y) =
π
√
2

y1/3
e−y π

2
sin θ+ir π

2 cos
(
rθ − r

π

2

)( ζ

cos2 θ

)1/4

Ai
(
y2/3ζ

)

− iπ
√
2

y2/3
e−y π

2
sin θ+ir π

2 sin
(
rθ − r

π

2

)
ζ−1/2

(
ζ

cos2 θ

)1/4

Ai′
(
y2/3ζ

)

+O

(
Ai
(
y2/3ζ

)
e−y π

2
sin θ

y4/3

)
+O

(
Ai′
(
y2/3ζ

)
e−y π

2
sin θ

y5/3

)
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as y → ∞. Here ζ =
[
3
2

(
θ sin θ + cos θ − π

2 sin θ
)]2/3

is a nonnegative real number and the
implied constants depend on θ0 and M .

Theorem 1.6. Let M ≥ 0 and µ ≥ 0 be real numbers. Let |r| ≤M , 0 < y ∈ R, and

t = y coshµ.(1.4)

Then there exists a (small) µ0 > 0, which does not depend on t or y, such that, for all
0 ≤ µ ≤ µ0, we have

Kν(y) =
π
√
2

y1/3
e−y π

2
cosh µ+ir π

2 cosh (rµ)

(
ζ

− sinh2 µ

)1/4

Ai
(
y2/3ζ

)

− π
√
2

y2/3
e−y π

2
coshµ+ir π

2 sinh (rµ) ζ−1/2

(
ζ

− sinh2 µ

)1/4

Ai′
(
y2/3ζ

)

+O

(
Ai
(
y2/3ζ

)
e−y π

2
coshµ

y4/3

)
+O

(
Ai′
(
y2/3ζ

)
e−y π

2
coshµ

y5/3

)

as y → ∞. Here ζ = −
[
3
2 (µ coshµ− sinhµ)

]2/3
is a nonpositive real number and the implied

constants depend on µ0 and M .

Remark 1.7. We make a few observations.

(1) When r = 0, our result agrees with the standard result by Balogh [3]. To see this, let

us use ζ̃ to denote ζ from [3] to distinguish it from our use of ζ. For the first case,

letting θ̃ = θ − π/2, we note that sec−1(sec θ̃) = −θ̃ as θ̃ < 0, which yields via a short

computation that ζ = ζ̃ cos2/3 θ̃. As y cos θ̃ = t, the agreement follows. For the second
case, we note that sec−1(1/ cosh µ) = cos−1(cosh µ) = iµ, which yields the nonpositive

real number ζ = ζ̃ cosh2/3 µ and agreement.
(2) The expressions are defined when θ → π

2 and when µ→ 0 by Taylor approximation.

(3) When r 6= 0, there are order y−2/3 terms, unlike when r = 0.

We also give a result for small y, which will be applied in the computation of our bounds
for the Eisenstein series.

Proposition 1.8. For 3/2 ≥ r ≥ 1/2, |t| ≥ t0, and 0 < y < 1, we have

Kr−1/2+it(y) = O(y1/2−re−|t|π/2|t|r−1)

where the implied constant depends only t0 and is uniformly bounded for all large enough t0.

Remark 1.9. Here, t0 ≥ 1 is chosen to be a fixed large constant (large enough to use the first
term in the Stirling asymptotic series for the gamma function for the approximation in the
proof of the proposition below).

Let z := x + iy, s := r + it ∈ C. As an application of our above results, we compute
bounds on the Eisenstein series for large enough |t|. Let G := PSL2(R), Γ ⊂ G be a cofinite
Fuchsian group, and H be the upper-half plane model of the hyperbolic plane (i.e. with the
Poincare metric). The group G acts transitively on the left of H via Möbius transformations
and, moreover, these actions are orientation-preserving isometries. We assume that Γ\H has
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at least one cusp, that one of these cusps is located at ∞, and that the cusp κ1 := ∞ (called
the standard cusp) has stabilizer

Γ1 := Γ∞ :=

{(
1 b
0 1

) ∣∣∣∣ b ∈ Z

}

in Γ. As Γ∞ acts on the unit strip [0, 1] × (0,∞) to tesselate H, the quotient group Γ∞\Γ
tessellates the unit strip so as to agree with the tessellation of H given by Γ and we have a
canonical2 fundamental domain F that extends to infinity for the Γ∞\Γ action—to determine
F , let the real part of the points of F range between 0 and 1, inclusive of 0. Often we will
consider the topological closure F .

There are, in general, a finite number of inequivalent cusps {κj}qj=1 ⊂ R ∪ {∞}, and the

stabilizer in Γ of a cusp κj is a parabolic subgroup Γj (see, for example, [10, Chapter 6]
for the definition of inequivalent cusps). For each inequivalent cusp, we choose σj ∈ G such
that σj(κj) = ∞, namely taking the cusp κj into the standard cusp. (We always choose σ1
to be the identity.) Note that σj is not in Γ for any j ∈ {2, · · · , q}. By modifying σj for
j ∈ {2, · · · , q}, we can ensure that

σj(F ) ∩ {z ∈ H : y ≥ B} = [0, 1] × [B,∞)(1.5)

holds for all j ∈ {1, · · · , q} and for all B ≥ B0 > 1 (see [18, (2.2)] or [10, Page 268]). Here B0

is a fixed constant depending only on Γ. Let us denote the j-th cuspidal region in F by Cj,B:

Cj,B := σ−1
j ([0, 1] × [B,∞)) ⊂ F.

And define the bounded region of F by

FB := F −
q⋃

j=1

Cj,B.

There is an Eisenstein series E(j)(z, s) of weight 0 for each inequivalent cusp [10, Defini-
tion 3.5, page 280]:

E(j)(z, s) := E
(j)
0 (z, s) :=

∑

σ∈Γj\Γ
(Im(σjσz))

s E(z, s) := E(1)(z, s) := E
(1)
0 (z, s).

The Fourier expansion at the standard cusp is the following (see [15, Lemma 2.6] or [10,
Page 280] for example):

E
(j)
0 (z, r + it) = δj1y

r+it + ϕj1(r + it)y1−r−it(1.6)

+
∑

n 6=0

ψn,j(r + it)
√
yKr−1/2+it(2π|n|y)e2πinx

where ϕj1(r + it) is an element in the scattering matrix Φ(r + it) = (ϕjk(r + it)) (cf. [10,

Chapter 8]) and ψn,j(r + it) are the Fourier coefficients. Since E
(j)
0 (z, r + it) has no poles for

|t| ≥ 1 (see [14] and [18]), let cn := ψn,j(r + it).
We first give a bound on the Fourier coefficients of the Eisenstein series, the proof of which

only requires our nonuniform bounds on the K-Bessel function (Theorem 1.3 in particular).

2See [10, Chapter 6, Page 5] for the definition of canonical.
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Theorem 1.10. Let t0 ≥ B0 be a large constant. For N ≥ 1, 3/2 ≥ r > 1/2, and |t| ≥ t0,
we have

∑

1≤|n|≤N

|cn|2 = O
(
e|t|π(N + |t|)

){
ω(t) +

(
|t|+ N

|t|

)2r−1
}
,

where the implied constant depends only on the lattice subgroup Γ and t0.

Remark 1.11. Note that [18, Proposition 4.1] gives a bound for the case of r = 1
2 . Here, ω(t)

denotes the spectral majorant function whose properties are ω(−R) = ω(R) ≥ 1 and
∫ T

−T
ω(R) dR = O(T 2)(1.7)

as |T | → ∞ [10, Pages 161, 299, 315]. The implied constant depends only on the lattice
subgroup Γ.

Finally, we give a bound on the Eisenstein series themselves, the proof of which requires
our bounds on the Fourier coefficients and on the K-Bessel function. Note that our uniform
bound for the K-Bessel function is essential here.

Theorem 1.12. Let j ∈ {1, · · · , q}, t0 ≥ B0 be a large constant, |t| ≥ t0,
3
2 ≥ r ≥ 1

2 , y > 0,
and ε > 0. Then, we have

E
(j)
0 (z, r + it) =




δj1y
1/2+it +O(y1/2) +O

(
y−1/2−ε

√
ω(t)|t|1+ε

)
if r = 1

2 and 0 < y < 1

δj1y
r+it +O(y1−r) +O(y1−r)

((
|t|
y

)r+1/2
+ |t|

y

√
ω(t)

)
if 1 ≥ r > 1

2 and 0 < y < 1

δj1y
r+it +O(y1−r) +O

((
|t|
y

)2r−1/2
+
(
|t|
y

)r√
ω(t)

)
if 3

2 ≥ r > 1 and 0 < y < 1

δj1y
1/2+it +O(y1/2) +O

(
|t|1+ε

√
ω(t)

)
if r = 1

2 and 1 ≤ y ≤ |t|
2

δj1y
r+it +O(y1−r) +O

(
|t|r+1/2 + |t|

√
ω(t)

)
if 1 ≥ r > 1

2 and 1 ≤ y ≤ |t|
2

δj1y
r+it ++O(y1−r) +O

(
|t|2r−1/2 + |t|r

√
ω(t)

)
if 3

2 ≥ r > 1 and 1 ≤ y ≤ |t|
2

δj1y
1/2+it +O(y1/2) +O

(
e|t|

π
2
−2πy

)(
|t|−1/2+ε

√
ω(t)

)
if r = 1

2 and |t|
2 < y

δj1y
r+it +O(y1−r) +O

(
e|t|

π
2
−2πy

)(√
|t|+

√
ω(t)√
|t|

)
if 3

2 ≥ r > 1
2 and |t|

2 < y

where the implied constants depend only on the lattice subgroup Γ and t0.

Remark 1.13. For |t|
2 < y, we have an alternative formulation of the theorem:

E
(j)
0 (z, r + it) =



δj1y

1/2+it +O(y1/2) +O
(
e|t|

π
2
−2πy

)(
y−1|t|1/2+ε

√
ω(t)

)
if r = 1

2 and |t|
2 < y

δj1y
r+it +O(y1−r) +O

(
e|t|

π
2
−2πy

)(
y−1

(
|t|3/2 +

√
|t|ω(t)

))
if 3

2 ≥ r > 1
2 and |t|

2 < y

These bounds on the Eisenstein series give the following corollary:
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Corollary 1.14. Let j ∈ {1, · · · , q}, t0 ≥ B0 be a large constant, |t| ≥ t0 and 3
2 ≥ r ≥ 1

2 .

Then, as y → ∞, E
(j)
0 (z, r + it) decays exponentially (like y−1e−2πy) to the constant term of

its Fourier expansion at a cusp.

Proof. The result is immediate for the Fourier expansion at the standard cusp. For the Fourier
expansion at other cusps, the analog of Theorem 1.12 holds with analogous proof. This gives
the desired result. �

Remark 1.15. We now compare our bounds for the Eisenstein series with those of others.

(1) For r > 1 and t ∈ R, it can be shown that E
(j)
0 (z, r+ it) = δj1y

r+it+O(y1−r)+O((1+
y−r)e−2πy) where the later implied constant depends on t (and the lattice Γ) [12,
Corollary 3.5]. Our bound, however, makes the t dependance (for |t| ≥ t0) explicit.
Also, as y → ∞, our result gives faster decay (y−1e−2πy versus e−2πy) to the constant
term of the Fourier expansion.

(2) For r = 1/2, there has been some recent interest on bounds for the Eisenstein series.
In particular, the sup-norm problem for certain eigenfunctions has had much interest
(see [13, 4, 20] for example). Specifically, for Eisenstein series, there are recent re-
sults in [23, 11, 2] of which the most relevant for us is the result by Huang and Xu
(generalizing the earlier result of Young) for the modular group Γ = PSL2(Z) [11,
Theorem 1.1]:

E0(z, 1/2 + it) = y1/2+it +O(y1/2) +O(y−1/2 + t3/8+ε).

(As Γ = PSL2(Z) has only one cusp, we have dropped the superscript notation in
the Eisenstein series.) Note that the bound on the Eisenstein series given by Huang
and Xu does not decay exponentially to the constant term of its Fourier expansion as
y → ∞. Our bound, however, has this exponential decay.

1.2. Outline of paper. Section 2 is devoted to the proof of Theorems 1.1 and 1.3. Section 3
is the devoted to the prove of Theorems 1.5 and 1.6. Section 4 gives a proof of Proposition 1.8.
Finally, Section 5 gives a proof Theorems 1.10 and 1.12.

Acknowledgements. I would like to thank one of the referees for pointing me to Laplace’s
method and all of the referees for their comments.

2. Bounds for Kν(y) where Im(ν) large, Re(ν) bounded, and y is real and

positive

For background on asymptotic expansions, see [7] (especially Chapter 7) for example. The
saddle points and paths of steepest descent for the function Kit(y) (i.e. purely imaginary
order) have been obtained by N. M. Temme [19]. The saddle points and paths of steepest
descent for our function Kν(y) are the same as we now show. In addition, we give a proof of
the dominant behavior.

In this section (Section 2), let us set

ν := r + it
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where r, t ∈ R. An integral representation for Kν(z) (see [21, Page 182 (7)] for example) is

Kν(z) =
1

2

∫ ∞

−∞
e−z coshR−νR dR =

1

2

∫ ∞

−∞
e−z coshR+νR dR(2.1)

where z ∈ C\{0} such that | arg(z)| < π
2 . There are two cases: y ≥ t ≥ 0 and 0 < y ≤ t.

Remark 2.1. Note that if t < 0, then applying (2.1) allows us to be in one of these two cases.

2.1. First case: y ≥ t ≥ 0.

Proof of Theorem 1.1. Let us first consider the case 0 < θ < π/2. Using (2.1), we have

Kν(y) =
1

2

∫ ∞

−∞
e−yϕ(R)erR dR(2.2)

where
ϕ(R) := coshR− iR sin θ.

The saddle points (values of R for which ϕ′(R) = 0) are as follows [19] (see also [5, Sec-
tion 2.1] ):

Rk := i
(
(−1)kθ + kπ

)
, k ∈ Z.

Let us now write R = u+ iw and thus we have

Re(−ϕ(R)) =− coshu cosw − w sin θ

Im(−ϕ(R)) =− sinhu sinw + u sin θ

The path of steepest descent through the saddle point R0 = iθ is given by Im(−ϕ(R)) =
Im(−ϕ(R0)) and is the following curve [19]:

w = arcsin
(
sin θ

u

sinhu

)
, −∞ < u <∞.

We remark that w′(0) = 0 and that w′(u) is bounded over all −∞ < u <∞.
We will apply Laplace’s method, which can be found at [17, Page 127, Theorem 7.1].

Using (2.2), the path of steepest descent as the integration path used in Laplace’s method,
and R0 = iθ as the saddle point, we see that assumptions (i) – (iv) of Laplace’s method is
satisfied.

It remains to show that the final condition (v) is also satisfied. We know that the integration
path is a path of steepest descent because along it Im(ϕ(u + iw)) is constant and, when
u → ±∞, we have that Re(ϕ(u + iw)) → ∞. As R0 is the only saddle point lying on the
path of steepest descent, then R0 is a global minimum on the path (see [7, Page 66]). Thus,
condition (v) is satisfied and we may apply Laplace’s method to obtain the desired result.

The case θ = 0 is a simplification of the case 0 < θ < π/2.
Let us now consider the case θ = π/2 (or, equivalently, t = y). Apply [21, Page 78 (8) and

Page 247 (5)] to obtain

Kr+iy(y) ∼
1

2
πie

1
2
(r+iy)πi

(
− 2

3π
e

2
3
πi sin(π/3)

Γ(13 )(
1
6 iy
)1/3

)

as y → ∞. Simplifying gives the desired result for the case θ = π/2.
This gives the desired result in all cases.

�
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2.2. Second case: 0 < y < t. Let define the constant µ > 0 by t = y cosh µ and the function

ψ(u) := coshu cosw + w coshµ.

We start by finding the saddle points and a suitable path.
Using (2.1), we have

Kν(y) =
1

2

∫ ∞

−∞
e−yφ(R)erR dR(2.3)

where

φ(R) := coshR− iR coshµ.

The saddle points (values of R for which φ′(R) = 0) are as follows [19] (see also [5, Sec-
tion 2.1] ):

R±
k := ±µ+ i

(π
2
+ 2kπ

)
, k ∈ Z.

Let us now write R = u+ iw and thus we have

Re(−φ(R)) =− cosh u cosw − w coshµ = −ψ(u),
Im(−φ(R)) =− sinhu sinw + u cosh µ.

The paths of steepest descent/ascent through the saddle points R±
k is given by Im(−φ(R)) =

Im(−φ(R±
k )) and is the following family of curves [19]:

sinw = cosh µ
u

sinhu
± sinhµ− µ coshµ

sinhu
.

We use only the parts of these curves as shown in [19, Figure 3.3], which we will refer to as
the path of steepest descent. Notice that this path is the union of two branches L− ∪ L+,
separated by the imaginary axis, where

— L− runs from −∞ to 0 and from 0 to + i∞,

— L+ runs from + i∞ to 0 and from 0 to +∞.

What is important about this path is that, on both of the branches, the function yφ(R) has
constant imaginary part, namely

χ := Im(yφ(R+
0 )) :=y (sinhµ− µ coshµ)

=y sinhµ− t cosh−1

(
t

y

)
=
√
t2 − y2 − t cosh−1

(
t

y

)
,

χ− := Im(yφ(R−
0 )) =− χ

for L+ and L−, respectively.

Proof of Theorem 1.3. We will use Laplace’s method, which can be found at [17, Page 127,
Theorem 7.1].

Using (2.3), we note that the integral representation is the correct form to apply Laplace’s
method. We will use what we called the path of steepest descent as the path of integration;
see [19, Figure 3.3] for the graph. We split this path of integration into two parts, the first
from −∞ to i∞ and the second from i∞ to ∞. We apply Laplace’s method separately to the
two integration paths and, by the Cauchy-Goursat theorem, add the results together. Let us
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first consider the integration path from i∞ to ∞. We see that conditions (i) – (iv) of Laplace’s
method are satisfied.

It remains to show that the final condition (v) is also satisfied. We know that the integration
path is a path comprised of steepest descent/ascent pieces because along it Im(φ(u + iw)) is
constant and, when u→ ∞, we have that Re(φ(u+ iw)) → ∞. As R+

0 is a saddle point lying
on the path, then R+

0 is a local minimum on the path and, moreover, other local minima
occur at the other saddle points (see [7, Page 66]), which for us are R+

k where k ∈ N. Directly

computing, we see that Re(φ(R+
k ) > Re(φ(R+

0 ) for all k ∈ N. Hence, R+
0 gives the global

minimum. Thus, condition (v) is satisfied and we may apply Laplace’s method to obtain

e−yφ(R+
0 )Γ

(
1

2

)
a0√
y

as y → ∞ where φ(R) = coshR− iR cosh µ and

a0 =
erR

(2φ′′)1/2

evaluated at R+
0 . Computing, we have that the contribution from this part of the path of

integration to the dominant term is the following:
√
πerµ+ir π

2√
2iy sinhµ

e−y(π
2
coshµ+i(sinh µ−µ cosh µ)).

Likewise, for the other part of the path of integration, Laplace’s method gives
√
πe−rµ+ir π

2√
−2iy sinhµ

e−y(π
2
cosh µ−i(sinhµ−µ coshµ)).

Here the saddle point which gives the global minimum is R−
0 and the other saddle points R−

k
where k ∈ N are larger and can be ignored as before.

Adding these two parts together yields the desired dominant term of the asymptotic ex-
pansion for Kν(y). This gives the desired result.

�

3. Uniform bounds for Kν(y) where Im(ν) large, Re(ν) bounded, and y is real

and positive near coalescing saddle points

Already, when r = 0, C. Balogh computed a uniform asymptotic expansion which is valid
for all cases including the case of two nearby saddle points [3]. Balogh used a technique
involving differential equations, but it is not clear that such a technique will work when r is
no longer zero. We will use another technique, developed by C. Chester, B. Friedman, and
F. Ursell [6], which will yield the uniform dominant and next dominant terms for the case
where t and y are nearly equal (or equal) and r bounded.

3.1. First case: y ≥ t ≥ 0. We prove Theorem 1.5 in this section. Let

F (R) := F (R, θ) := − coshR+ iR sin θ.
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Then we have that

Kν(y) =
1

2

∫ ∞

−∞
eyF (R)erR dR.(3.1)

The path of steepest descent has been obtained by N. M. Temme [19, Figure 2.1] and the saddle
points (values of R for which F ′(R) = 0) that are relevant are R0 := iθ and R1 := i(π − θ).
Note that R0 and R1 are close in the complex plane when θ is close to π/2. The technique
used to estimate the K-Bessel function in Theorems 1.1 and 1.3 depends on the distance
between R0 and R1 and, hence, does not yield a uniform estimate.

To use the Chester-Friedman-Ursell technique, let us introduce

θ̃ = θ − π/2

S = 2−1/3 (iR+ π/2)

where 21/3(1 − cos θ̃) assumes the role of the parameter α from the Chester-Friedman-Ursell
technique (see [6, (3.2)]). Under the change of variable from R to S, the integral becomes

Kν(y) =

∫ i∞+2−4/3π

−i∞+2−4/3π

−i
22/3

eir(π/2−21/3S)eyF (iπ/2−i21/3S,θ̃+π/2) dS.(3.2)

and the relevant saddle points become

S0 = 2−1/3 (iR0 + π/2) = −2−1/3θ̃(3.3)

S1 = 2−1/3 (iR1 + π/2) = 2−1/3θ̃.

We will represent F (iπ/2 − i21/3S, θ̃ + π/2) by the cubic [6, (2.1)]

F (iπ/2 − i21/3S, θ̃ + π/2) =
1

3
u3 − ζ(θ̃)u+A(θ̃)(3.4)

where, under this representation, the saddle points correspond as follows:

S0 ↔ u = ζ
1
2 (θ̃)

S1 ↔ u = −ζ 1
2 (θ̃).

By substitution in (3.4), we have

F (iπ/2 − i21/3S0, θ̃ + π/2) = −2

3
ζ

3
2 (θ̃) +A(θ̃)

F (iπ/2 − i21/3S1, θ̃ + π/2) =
2

3
ζ

3
2 (θ̃) +A(θ̃),

which yields

A(θ̃) = −π
2
cos θ̃

ζ(θ̃) =

(
3

2

(
θ̃ cos θ̃ − sin θ̃

))2/3

.
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Here, we have taken the branch of ζ(θ̃) required by the Chester-Friedman-Ursell technique

(see the top of page 603 in [6]). (And thus ζ(θ̃) are positive real numbers.) Note that

ζ(θ̃) ∼ θ̃2

22/3
∼ 21/3(1− cos θ̃) as θ̃ → 0.

Locally, the representation is analytic in u which yields [6, (2.2)]

−i
22/3

eir(π/2−21/3S) dS

du
=

∞∑

m=0

pm(θ̃)(u2 − ζ)m +

∞∑

m=0

qm(θ̃)u(u2 − ζ)m.(3.5)

Note that −θ̃ ≥ 0. For small enough −θ̃ (independent of y and t) [6, Lemma], we have that
the dominant term of the asymptotic expansion of Kν(y) is [6, (5.2 – 5.4), Theorem 2]

2πieyA(θ̃)p0(θ̃)
Ai(y2/3ζ)

y1/3

and the next term is

−2πieyA(θ̃)q0(θ̃)
Ai′(y2/3ζ)

y2/3
.

We now compute p0(θ̃) and q0(θ̃). Taking first and second derivatives in (3.4), we have

21/3
(
cos θ̃ − cos(21/3S)

) dS

du
= u2 − ζ

22/3 sin(21/3S)

(
dS

du

)2

+ 21/3
(
cos θ̃ − cos(21/3S)

) d2S

du2
= 2u.

Substituting the two saddle points into the second derivative equation yields

(
dS

du

∣∣∣∣
u=ζ1/2

)2

=
21/3ζ1/2

sin(−θ̃)
=

(
dS

du

∣∣∣∣
u=−ζ1/2

)2

.

We now wish to determine the signs of square roots of these two expressions. The Chester-
Friedman-Ursell technique gives us that our representation is locally uniformly analytic in S

and θ̃, and thus we may take the limits S → 0 and θ̃ → 0 in either order in the first derivative
equation. Now we have that S = 0 ↔ u = 0 (see the top of page 605 in [6]). Taking first
S → 0, we conclude that

dS

du

∣∣∣∣
u=ζ1/2

=

√
21/3ζ1/2

sin(−θ̃)
=

dS

du

∣∣∣∣
u=−ζ1/2

for all −θ̃ small enough.
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Now plugging in the two saddle points into (3.5), we solve for p0(θ̃) and q0(θ̃):

p0(θ̃) =

−i
22/3

(
eir(π/2−21/3S0) + eir(π/2−21/3S1)

)√
21/3ζ1/2

sin(−θ̃)

2
=

−i√
2
eirπ/2 cos(rθ̃)

√
ζ1/2

sin(−θ̃)

q0(θ̃) =

−i
22/3

(
eir(π/2−21/3S0) − eir(π/2−21/3S1)

)√
21/3ζ1/2

sin(−θ̃)

2ζ1/2
=

1√
2
eirπ/2 sin(rθ̃)ζ−1/2

√
ζ1/2

sin(−θ̃)
.

Thus, the desired dominant term and the next dominant term, respectively, are

π
√
2

y1/3
e−y π

2
cos θ̃+ir π

2 cos(rθ̃)

√
ζ1/2

sin(−θ̃)
Ai(y2/3ζ)(3.6)

−iπ
√
2

y2/3
e−y π

2
cos θ̃+ir π

2 sin(rθ̃)ζ−1/2

√
ζ1/2

sin(−θ̃)
Ai′(y2/3ζ).

Finally, to finish the first case, we need to show that outside of a small enough neighborhood
of the two saddle points, the integral is negligible (see [6, Section 5]). It is a routine calculation
to see that, outside of the small enough neighborhood of the two saddle points, the integral
is on the order of e−tα̃ for some α̃ > π/2. This concludes the proof of the first case, namely
Theorem 1.5.

3.2. Second case: 0 < y < t. We prove Theorem 1.6 in this section. Let

G(R) := G(R,µ) := − coshR+ iR cosh µ.

Using (2.1), we have

Kν(y) =
1

2

∫ ∞

−∞
eyG(R)erR dR.(3.7)

The paths of steepest descent/ascent has been obtained by N. M. Temme [19], and the saddle
points that are relevant are R0 := µ+ iπ/2 and R1 := −µ+ iπ/2.

It is a routine calculation to see that, outside of a small enough neighborhood of the two
saddle points, the integral is on the order of e−tα̃ for some α̃ > π/2 and, thus, negligible.
To finish, we compute the dominant term and the next dominant term using the Chester-
Friedman-Ursell technique. Changing variables

θ̃ = −iµ
S = 2−1/3(iR + π/2),

in (3.7), we obtain (3.2) and the relevant saddle points become (3.3). Now we have essentially
transformed the second case into the first case. There are a few minor differences, which we

now state. When µ > 0, the parameter 21/3(1 − cos θ̃) is a negative real number, and thus

the Chester-Friedman-Ursell technique requires us to take the branch of ζ(θ̃) for which it is

a negative real number. Thus, ζ1/2

sin(−θ̃)
is a positive real number and the sign of

√
21/3ζ1/2

sin(−θ̃)
is
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determined in a similar way. Thus, we obtain the dominant and next dominant terms in (3.6).
This concludes the proof of the second case, namely Theorem 1.6.

4. Bounds for Kr−1/2+it(y) for 0 < y < 1 and 1/2 ≤ r ≤ 3/2

Finally, we give an estimate of Kr−1/2+it(y) for small positive real argument. Recall that
we pick t0 ≥ 1 to be a fixed large constant (large enough to use the first term in the Stirling
asymptotic series for the gamma function for the approximation below).

Proof of Proposition 1.8. Since we need only need a bound for small y, it suffices to adapt
the bound for purely imaginary order from [5, Section 3.1]. It is well-known (see [21, Page 78,
(6), Page 77, (2)] for example) that the K-Bessel function is defined as

Kν(z) :=
1

2
π
I−ν(z)− Iν(z)

sin(νπ)
(4.1)

where Iν(z) is the modified Bessel function of the first kind

Iν(z) :=

∞∑

m=0

(12z)
ν+2m

m!Γ(ν +m+ 1)
.

(The Γ here is the gamma function, not the lattice subgroup.)
We would like to bound Kr−1/2+it(y). An elementary identity gives a lower bound for

|sin (rπ − 1/2π + itπ)| =
∣∣∣∣
−1

2i

(
etπe−i(r−1/2)π − e−tπei(r−1/2)π

)∣∣∣∣ ≥
1

2
e|t|π − 1

2
(4.2)

for all t.
Taking the first term of the Stirling asymptotic series for the gamma function, we have

Γ(s) =
√
2πss−1/2e−seR(s)

where R(s) = o(|s|−1). Hence, we have

|m!Γ(r − 1/2+it+m+ 1)|
= 2πmm+1/2e−m|r + 1/2 +m+ it|r+me−t arg(r+1/2+m+it)e−r−1/2−meo(|r+1/2+m+it|−1)

≥ C|t|re−
|t|π
2

where the constant 0 < C depends only on t0. Note that, since r+1/2+m > 0, we have that
0 ≤ arg(r + 1/2 +m+ it) ≤ π/2 for t > 0 and −π/2 ≤ arg(r + 1/2 +m+ it) ≤ 0 for t < 0.
Likewise, we have

|m!Γ(−r + 1/2− it+m+ 1)| ≥ C|t|1−re−
|t|π
2 .

Now, for 0 < y < 2, we have that
∑∞

m=0(y/2)
2m ≤ 4/(4− y2). All of this now implies that

|Kr−1/2+it(y)| ≤ π

4
4−y2

(
(y2 )

r−1/2 + (y2 )
1/2−r

)
e|t|π/2

C min(|t|r ,|t|1−r)

e|t|π − 1
≤ C̃y1/2−re−|t|π/2|t|r−1,

where C̃ depends only on t0 and is uniformly bounded for all large enough t0. This is the
desired result.

�
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5. Eisenstein series

5.1. Bounds on the Fourier coefficients of Eisenstein series. Using our result on the
asymptotics of the K-Bessel function, we now give the proof of Theorem 1.10, namely a bound
for the sum of the cn.

Proof of Theorem 1.10. The proof is an adaption of the proof of [18, Proposition 4.1], which
is, itself, an adaption of [22, Proposition 5.1]. Let 0 < Y < H be given and define

J :=

∫

D

∣∣∣E(j)
0 (z, s)

∣∣∣
2 dx dy

y2
where D := (0, 1) × (Y,H).

Let B := max(B0,H, Y
−1). Since E

(j)
0 (z, s) is automorphic, we can apply exactly the same

proof as in [18, Proposition 4.1] to obtain

J ≤ O(1 + Y −1)

∫

FB

∣∣∣E(j)
0 (z, s)

∣∣∣
2 dx dy

y2
,

where, recall, FB is the bounded part (i.e. with cusps removed) of F . Let us define the
modified Eisenstein series in which we remove the zeroth term of the Fourier expansion:

E
(j)
0,B(z, s) :=

{
E

(j)
0 (z, s) if z ∈ FB

E
(j)
0 (z, s)− δjk (Im(σkz))

s − ϕjk(s) (Im(σkz))
1−s if z ∈ Ck,B.

By the Maass-Selberg relation [10, Page 301 (3.43), Page 281], we have
q∑

j=1

∫

FB

∣∣∣E(j)
0,B(z, s)

∣∣∣
2 dx dy

y2

=
1

2r − 1


qB2r−1 −B1−2r

q∑

j=1

q∑

j′=1

|ϕjj′(s)|2

+

q∑

j=1

Re

(
ϕjj(s)

B2it

it

)
.

Applying [10, Page 300 (3.38)] yields

J ≤ O(1 + Y −1)
(
B2r−1 + ω(t)

)
.

Substituting the Fourier expansion of the Eisenstein series (1.6) in the definition of J and
applying Parseval’s formula yields

J ≥
∑

n 6=0

|cn|2
∫ 2π|n|H

2π|n|Y
|Kr−1/2+it(y)|2

dy

y
.

Let Y = |t|/(8πN) and H = |t|/(4π). With this choice, we have

[|t|/4, |t|/2] ⊂ [2π|n|Y, 2π|n|H] whenever 1 ≤ |n| ≤ N,

and, hence,
∑

1≤|n|≤N

|cn|2 ≤ C−1J where C =

∫ |t|/2

|t|/4
|Kr−1/2+it(y)|2

dy

y
.

Theorem 1.3 now gives that

C−1 ≤ O(|t|e|t|π).
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Combining, we obtain the desired result:

∑

1≤|n|≤N

|cn|2 = O
(
e|t|π(N + |t|)

){
ω(|t|) +

(
|t|+ N

|t|

)2r−1
}
.

�

5.2. Bounds on Eisenstein series. We now give the proof of Theorem 1.12, namely a
bound for the Eisenstein series themselves. Recall that we defined s := r + it.

Lemma 5.1. Fix M > 0 and y0 > 0. Let |r| ≤M and y ≥ y0. Then

Kr+it(y) = O

(
e−y

√
y

)

where the constant depends only on M and y0.

Proof. When |R| > (24|r|y−1)1/3, we have that

h(R) := −yR
4

24
+ rR < 0,

and, thus, on the complement, the function h(R) is bounded by a constant N(M,y0) > 0.
Using the integral representation (2.1) for the K-Bessel function, we have

|Kr+it(y)| ≤
1

2

∫ ∞

−∞
e
−y

(
1+R2

2
+R4

24

)
+rR

dR ≤ eN

2

∫ ∞

−∞
e
−y

(
1+R2

2

)

dR.

The desired result now follows. �

The following lemma gives some bounds for the K-Bessel function that are convenient for
our proof of Theorem 1.12.

Lemma 5.2. Let |t| ≥ t0. We have

Kr−1/2+it(y) =





O
(
y1/2−re−|t|π

2 |t|r−1
)

if 0 < y < 1 and 3/2 ≥ r ≥ 1/2

O
(
e−|t|π

2 |t|r−5/6
)

if 1 ≤ y < π
2 |t| and 2/3 > r ≥ 1/2

O
(
e−|t|π

2 |t|r−1
)

if 1 ≤ y < π
2 |t| and 3/2 ≥ r ≥ 2/3

O
(
e−y
√
y

)
if y ≥ π

2 |t| and 3/2 ≥ r ≥ 1/2

where the implied constants depend on t0 in first, second, and third branches and has no
dependance in the fourth branch.

Proof. For 0 < y < 1, apply Proposition 1.8, and, for y ≥ π
2 |t|, apply Lemma 5.1.

Let us now consider |t| ≤ y < π
2 |t|. Let θ0 be as in Theorem 1.5. For the range |t|

sin(π/2−θ0)
≤

y < π
2 |t|, we apply Theorem 1.1 with the observation that −

√
x2 − 1 + arccos(1/x) < 0 for

π
2 > x > 1 to obtain

Kr−1/2+it(y) = O

(
e−|t|π

2

(y2 − |t|2)1/4

)
= O

(
e−|t|π

2

|t|1/2

)
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where the implied constant depends only on t0. Note that the conclusion of Theorem 1.1 is

uniform over all 0 < θ ≤ π/2 − θ1 for any π/2 > θ1 > 0. For the range |t| ≤ y ≤ |t|
sin(π/2−θ0)

,

we apply Theorem 1.5 to obtain

Kr−1/2+it(y) = O

(
e−|t|π

2

|t|1/3

)
(5.1)

where the implied constant depends only on t0.

Finally, let us consider 1 ≤ y ≤ |t|. Let µ0 be as in Theorem 1.6. For the range |t|
coshµ0

≤ y ≤
|t|, we apply Theorem 1.6 to also obtain (5.1) where, likewise, the implied constant depends

only on t0. For the range 1 ≤ y ≤ |t|
coshµ0

, we will apply Theorem 1.3 with two observations.

The first is that the conclusion

Kr+it(y) ∼
√

2π

y sinhµ
e−y π

2
coshµ+ir π

2

[
cosh(rµ) sin

(π
4
− y (sinhµ− µ coshµ)

)

−i sinh(rµ) cos
(π
4
− y (sinhµ− µ coshµ)

)]

is also valid as t→ ∞.
The second observation is that the conclusion of Theorem 1.3 is uniform over all positive

µ bounded away from 0, and, hence, is valid for y > 0 arbitrarily close to 0. Applying

Theorem 1.3 for the range 1 ≤ y ≤ |t|
coshµ0

yields

Kr−1/2+it(y) = O

(
e−|t|π

2 |t|r−1/2

√
|t|

)
= O

(
e−|t|π

2 |t|r−1
)

where the implied constant depends only on t0. This gives the desired result.
�

We also have the following bound, which we will use in the proof of Theorem 1.12.

Lemma 5.3. For 3/2 ≥ r ≥ 1/2, we have ϕjk(r + it) is uniformly bounded for |t| ≥ 1.

Proof. Apply [10, Page 301, (a)]. �

Following the proof scheme of [18, Proposition 4.2], we can now bound the Eisenstein series:

Proof of Theorem 1.12. We now give the proof for 3
2 ≥ r > 1

2 , leaving the proof for r = 1
2 to

the end. Consider three cases: 0 < y < 1, 1 ≤ y ≤ |t|
2 , and

|t|
2 < y.

The first case is 0 < y < 1. Let us consider the range 3
2 ≥ r > 1 first. By Lemmas 5.3

and 5.2, we obtain the following upper bound for (1.6):

O(y1−r) +O
(
y1−re−|t|π

2 |t|r−1
) ∞∑

n=1

(|cn|+ |c−n|) f(n)(5.2)

where

f(X) :=

{
1 if X < |t|

4y

e|t|
π
2
−2πXy if X ≥ |t|

4y

.



18 JIMMY TSENG

Now define

S(X) :=
∑

1≤|n|≤X

|cn|.

By the fact that f(X) is continuous and monotonically decreasing, that

∞∑

n=1

(|cn|+ |c−n|)

can be written as a telescoping sum, that S(X) is a function of bounded variation on any
closed interval, that S(1/2) = 0, and that f(X)S(X) → 0 as X → ∞ (which follows from The-
orem 1.10 and the Cauchy-Schwarz inequality), we can apply the definition of the Riemann-
Stieltjes integral to obtain the inequality and integration by parts to obtain the equality:

∞∑

n=1

(|cn|+ |c−n|) f(n) ≤
∫ ∞

1/2
f(X)dS(X) = −

∫ ∞

1/2
f ′(X)S(X)dX.(5.3)

To bound (5.3), it suffices to estimate S(X) for X ≥ |t|
4y using Theorem 1.10 and the

Cauchy-Schwarz inequality:

S(X) = O
(
e|t|

π
2

)(
Xr+1/2 +X

√
ω(t)

)
.

Using calculus, we obtain

∞∑

n=1

(|cn|+ |c−n|) f(n) ≤ O
(
e|t|

π
2

)(( |t|
y

)r+1/2

+
|t|
y

√
ω(t)

)
,

which yields the desired result for the range 3
2 ≥ r > 1.

For the desired result in the range 1 ≥ r > 1
2 , replace (5.2) with

O(y1−r) +O
(
y1−re−|t|π

2

) ∞∑

n=1

(|cn|+ |c−n|) f(n)

in the proof for the range 3
2 ≥ r > 1. This proves the first case 0 < y < 1.

The second case is 1 ≤ y ≤ |t|
2 . Replace (5.2) with




δj1y

r+it +O(y1−r) +O
(√

ye−|t|π
2

)∑∞
n=1 (|cn|+ |c−n|) f(n) if 1 ≥ r > 1

2

δj1y
r+it +O(1) +O

(√
ye−|t|π

2 |t|r−1
)∑∞

n=1 (|cn|+ |c−n|) f(n) if 3
2 ≥ r > 1

.

In the case 1 ≤ y ≤ |t|
2 , we have that

S(X) = O
(
e|t|

π
2
√
y
)(

Xr+1/2yr−1/2 +X
√
ω(t)

)
,

which yields
∞∑

n=1

(|cn|+ |c−n|) f(n) ≤ O
(
e|t|

π
2 y−1/2

)(
|t|r+1/2 + |t|

√
ω(t)

)

and the desired result for the second case 1 ≤ y ≤ |t|
2 .
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The third case is |t|
2 < y. For 3

2 ≥ r > 1
2 , replace (5.2) with

δj1y
r+it +O(y1−r) +O (1)

∞∑

n=1

(|cn|+ |c−n|) f(n)

and replace the previous f(X) with

f(X) =
e−2πXy

√
2πX

.

In the case that |t|
2 < y, we have that

S(X) = O
(
e|t|

π
2

)(
X2 +

√
|t|X 3

2 + γ(t)X + γ(t)
√

|t|X 1
2

)
,

where γ(t) :=
√
ω(t) + |t|. Then

∞∑

n=1

(|cn|+ |c−n|) f(n) ≤
∫ ∞

1
f(X)dS(X)

holds and the desired result for the third case |t|
2 < y now follows by calculus. This completes

the proof of the theorem for 3
2 ≥ r > 1

2 .

For r = 1
2 , the proof is analogous to that of 1 ≥ r > 1

2 , except we replace Theorem 1.10
with [18, Proposition 4.1], yielding, for every ε > 0, the following estimate for S(X):

S(X) = O
(
e|t|

π
2 |t|ε

√
ω(t)X

1
2
+ε
√
X + |t|

)
,

which holds for every X ≥ 1
2 . With this change, the proofs of the three cases (0 < y < 1,

1 ≤ y ≤ |t|
2 , and

|t|
2 < y) are analogous. This completes the proof of the theorem.

�
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[5] A. R. Booker, A. Strömbergsson, and H. Then, Bounds and algorithms for the K-Bessel function of

imaginary order. LMS J. Comput. Math. 16 (2013), 78–108.

[6] C. Chester, B. Friedman, and F. Ursell, An extension of the method of steepest descents. Proc. Cambridge
Philos. Soc. 53 (1957), 599–611.



20 JIMMY TSENG

[7] E. T. Copson, “Asymptotic expansions.” Reprint of the 1965 original. Cambridge Tracts in Mathematics,
55. Cambridge University Press, Cambridge, 2004.
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[9] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. “Higher transcendental functions.” Vol. II.
McGraw-Hill Book Company, Inc., New York, 1953.

[10] D. A. Hejhal, “The Selberg Trace Formula for PSL(2,R),” Vol. 2, Lecture Notes in Math. 1001, Springer,
Berlin, 1983.

[11] B. Huang and Z. Xu, Sup-norm bounds for Eisenstein series, Forum Math. 29 (2017), no. 6, 1355–1369.

[12] H. Iwaniec, “Spectral methods of automorphic forms,” second edition, Graduate Studies in Mathematics,
53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002.
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