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ENTROPY OF TOURNAMENT DIGRAPHS

DAVID E. BROWN, ERIC CULVER, BRYCE FREDERICKSON, SIDNEY TATE,
AND BRENT J. THOMAS

Abstract. The Rényi α-entropy Hα of complete antisymmetric directed graphs (i.e., tour-

naments) is explored. We optimize Hα when α = 2 and 3, and find that as α increases Hα’s
sensitivity to what we refer to as ‘regularity’ increases as well. A regular tournament on
n vertices is one with each vertex having out-degree n−1

2
, but there is a lot of diversity in

terms of structure among the regular tournaments; for example, a regular tournament may be
such that each vertex’s out-set induces a regular tournament (a doubly-regular tournament)
or a transitive tournament (a rotational tournament). As α increases, on the set of regular
tournaments, Hα has maximum value on doubly regular tournaments and minimum value on
rotational tournaments. The more ‘regular’, the higher the entropy. We show, however, that
H2 and H3 are maximized, among all tournaments on any number of vertices by any regular
tournament. We also provide a calculation that is equivalent to the von Neumann entropy,
but may be applied to any directed or undirected graph and shows that the von Neumann
entropy is a measure of how quickly a random walk on the graph or directed graph settles.

1. Introduction

We present results about an entropy function applied to directed graphs, in particular to
orientations of complete graphs — also known as tournaments. While there is a fair amount
of recent research focusing on entropy applied to undirected graphs, there is not as much ap-
plied to directed graphs in spite of the fact that many real-world networks such as citation,
communication, financial and neural are best modeled with directed graphs.

All graphs are finite and simple. The degree of vertex v in an undirected graph G will be
denoted degG(v) (subscripts omitted if the context allows), we write V (G) for the vertex set
of graph G, E(G) for the adjacency relation of G, and we write xy ∈ E(G) to indicate that
vertices x, y ∈ V (G) are adjacent in G. If G is a directed graph we will use A(G) to denote the
adjacency relation since we may refer to elements of A(G) as arcs, and write x → y ∈ A(G)
or x → y in G to denote the arc from x to y in G; x is the tail of arc x → y and y is the
head. For a directed graph G and x ∈ V (G), the set N+

G (x) = {y ∈ V (G) : x → y ∈ A(G)}
is called the out-set of x in G (subscript omitted in appropriate contexts). The nonnegative
integer |N+

G (x)| is the out-degree or score of vertex x in directed graph G and will be denoted

d+G(v) (subscript omitted if context allows). We use M(i, j) to denote entry (i, j) of matrix M ,
spec(M) to denote the spectrum of M (the multiset of eigenvalues of M), and tr(M) to denote
the trace of M (tr(M) =

∑

iM(i, i)). Other notation defined as needed.
The entropy of an undirected graph has been defined in many ways, with many motivations,

but the starting point for our investigation is the classical Shannon entropy that, with a sleight
of hand, is applied to the spectrum of a matrix representing the graph’s structure. Many other
functions intended to represent the entropy of undirected graphs that are in contradistinction to
those we explore are surveyed in [6]. The Shannon entropy of a discrete probability distribution
~p = (p1, . . . , pn) is

(1) S(~p) =
∑

pi∈~p

pi log2
1

pi
,

and S(~p) is intended to be a measure of the information content in messages transmitted over a
channel in which bit i occurs with probability pi. In the field of quantum information theory the
von Neumann entropy is used heavily; see [9] and of course [13]. The von Neumann entropy of
a quantum state of a physical system is defined in terms of the eigenvalues of the density matrix
associated to the physical system. The density matrix is Hermitian, positive semi-definite, and
has unit trace. Hence the spectrum of the density matrix has the characteristics of a discrete
probability distribution; and thereby the entropy of the physical system is defined to be the
Shannon entropy of the spectrum of the density matrix. Suppose G is an undirected graph
with V (G) = {v1, . . . , vn}. The Laplacian of G, denoted LG, is the matrix with non-diagonal
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entry (i, j) = −1 if vivj ∈ E(G), 0 otherwise, and diagonal entry (i, i) equal to the degree of
vertex vi. Alternatively, we think of the Laplacian LG as DG −AG, where AG is the adjacency
matrix of G (AG(i, j) = 1 if vivj ∈ E(G) and 0 otherwise), and DG is the degree matrix of
G (DG(i, i) = degG(vi) and DG(i, j) = 0 if i 6= j). In this paper, we define the normalized
Laplacian matrix of G, by LG = 1

tr(LG)LG. Note that LG is symmetric, positive semi-definite,

and has unit trace; therefore LG may be thought of as the density matrix of a physical system
with G its representation as an undirected graph. The von Neumann entropy of graph G,
denoted H(G), is the von Neumann entropy of G’s normalized Laplacian:

(2) H(G) =
∑

λ∈spec(LG)

λ log2
1

λ
,

where 0 log2
1
0 is conventionally taken to be 0.

The entropy of an undirected graph has been defined to be the von Neumann entropy of its
normalized Laplacian by many authors and for many reasons, see [1, 3, 4, 5, 14]. For example
the von Neumann entropy’s interpretation when applied to a graph is studied in [5], it is studied
as a measure of network regularity in [10], in the context of representing quantum information
in [2], and in [4] its connection to graph parameters among other things is studied. The variety
of applications and interpretations in the aforementioned references, at least to some extent,
substantiates saying that it is not clear what entropy of a graph, in particular its von Neumann
entropy, is telling us. This paper is a contribution to that conversation in the context of directed
graphs.

A directed graph’s Laplacian, however, is not necessarily symmetric or positive semi-definite;
consequently we cannot simply treat its spectrum as a discrete probability distribution. But,
in this paper, we come to the entropy of a directed graph via a function developed by Rényi in
[11] to generalize Shannon’s entropy:

(3) Hα(~p) =
1

1− α
log2





∑

pi∈~p

pαi



 ,

where ~p is a discrete probability distribution as in the Shannon entropy, α > 0 and α 6= 1.
Suppose Γ is a directed graph with V (Γ) = {v1, . . . , vn}; the Laplacian of Γ, LΓ, is constructed
the same way as is the Laplacian of an undirected graph:

LΓ(i, j) =







d+(vi) if i = j
−1 if vi → vj ∈ A
0 if vi → vj 6∈ A

.

We define, for directed graph Γ with normalized Laplacian LΓ whose spectrum is ΛΓ, its Rényi
α-entropy to be Hα(Γ) = Hα(ΛΓ). Note that S(~p) = limα→1 Hα(~p) (see [11]) but we focus on
positive integer values of α greater than 1; doing this makes moot the inconvenient characteristics
of the spectrum of a directed graph’s Laplacian and also allows us to use combinatorial arguments
to compute entropy. To wit, suppose Γ is a directed graph whose normalized Laplacian is
L = 1

tr(D−A) (D −A), where A is Γ’s adjacency matrix, D the diagonal matrix with out-degrees

of vertices of Γ as its diagonal entries, and L its Laplacian; then using the various properties of
the trace function∗ and focusing on the argument of the logarithm, we have

∑

λ∈ΛΓ

λ2 = tr
(

L
2
)

= tr

(

(

1

tr(D −A)
(D −A)

)2
)

= tr(D −A)−2
(

tr(D2)− tr(AD) − tr(DA) + tr(A2)
)

.

Noting that Aα records the number of walks of length α between vertices, we see that the
computation of Hα(Γ) will involve Γ’s out-degree raised to powers and the number of walks of
length α from vertices to themselves.

A directed graph T with |V (T )| = n is an n-tournament if for each pair of vertices x, y ∈ V (T )
we have either x → y ∈ A(T ) or y → x ∈ A(T ); in other terms, an n-tournament is an orientation
of the complete graph on n vertices. Note that if M is the adjacency matrix of an n-tournament,

∗Recall the trace is linear, and that for any square matrix M , tr(M) =
∑

i
M(i, i) =

∑
λ∈spec(M) λ. Also, if

λ is an eigenvalue of M , then λk is an eigenvalue of Mk and so tr(Mk) =
∑

λ∈spec(M) λ
k , and tr(AB) = tr(BA)

for (in particular) square matrices A and B.
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then M +M t = Jn − In, where Jn is the n × n matrix all of whose entries equal 1, and In is
the n× n identity matrix.

Now suppose Γ is an n-tournament, then the trace of its Laplacian is
(

n
2

)

, and there are no

walks of length 2 from any vertex to itself and so in the computation of tr
(

L
α
)

, with α an

integer greater than or equal to 2, terms such as tr
(

Dα−2A2
)

, tr
(

ADα−2A
)

, and tr
(

A2Dα−2
)

equate to zero.
More generally, we have the following result we will use in the sequel and which follows from

the same properties of the trace used above and those of tournaments.

Lemma 1. Suppose L = g(D − A) is the normalized Laplacian of an n-tournament (so g =
(

n
2

)−1
), and let Λ = spec(L), then

∑

λ∈Λ

λ3 = tr
(

g3(D −A)3
)

= g3
(

tr
(

D3
)

− tr
(

A3
))

,

and
∑

λ∈Λ

λ4 = tr
(

g4(D −A)4
)

= g4
(

tr
(

D4
)

− tr
(

DA3
)

− tr
(

A3D
)

+ tr
(

A4
))

.

An n-tournament is regular if the score of each vertex is n−1
2 . The number of 3-cycles in a

labeled n-tournament T with V (T ) = {v1, . . . , vn} is obtained via

(

n

3

)

−
∑

1≤i≤n

(

d+(vi)

2

)

(4)

and this number is maximized when T is regular (and n is necessarily odd).
On the other hand an n-tournament T has no cycles if and only if it T transitive: T is

transitive if, for all x, y, z ∈ V (T ), x → y and y → z implies x → z. Also, an n-tournament is
transitive if and only if its vertices can be labeled v0, v1, . . . , vn−1 so that d+(vi) = i; that is, its
score sequence is (0, 1, 2, . . . , n − 1). There is one transitive n-tournament up to isomorphism
for each integer n ≥ 1. In contrast, up to isomorphism, there are 1,123 and 1,495,297 regular
11-tournaments and regular 13-tournaments, respectively. We will show that for α = 2, 3 and
n > 4, the transitive and regular n-tournaments yield minimum and maximum Rényi α-entropy,
respectively. But this is reductive in the case of regular n-tournaments, for n > 5; the Rényi
α-entropy distinguishes among regular tournaments and gives a continuum of ‘regularity’ – for
lack of a better term. If n is odd, then for α = 2 and α = 3, Hα(T ) is minimum on the set of
n-tournaments if and only if T is transitive; Hα(T ) is maximum if and only if T is regular.

1.1. Small Tournaments. Let Tn denote the set of all n-tournaments up to isomorphism. In
the hope of shedding light on what the Rényi entropy is telling us, and to foreshadow sequel
sections, we examine the Rényi entropy’s behavior on T4, T5, and T3.

Up to isomorphism there are 4 distinct 4-tournaments. The score sequence of an n-tournament
on vertices v1, . . . , vn is the list (s1, . . . , sn) with, relabeling if necessary, si = d+(vi) and s1 ≤
s2 ≤ · · · ≤ sn. The 4-tournament TS4 in Figure 1 represents the isomorphism class of all 4-
tournaments with score sequence (1, 1, 2, 2). The other isomorphism classes of 4-tournaments
are determined by their score sequences (this is the case only for n-tournaments with n ≤ 4); the
other 4-tournament score sequences are (0, 2, 2, 2), (1, 1, 1, 3), and (0, 1, 2, 3), which have TK4,
TO4, and TT4, respectively, as their associated tournaments.

v1

v2 v3

v4
TS4 TK4 TO4 TT4

Figure 1. All 4-tournaments
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By Lemma 1

H2(TS4) = − log2
(

tr(LT )
2
)

= − log2

(

tr

(

1

36
(D −A)2

))

= − log2

(

1

36

(

tr(D2)− 2tr(DA) + tr(A2)
)

)

,

and since no vertex of a tournament has a walk of length 2 from itself to itself, the trace of
its adjacency matrix squared is zero. Also, tr(DA) = tr(AD) = 0. Therefore, H2(TS4) =

− log2
(

tr(D2)/36
)

= − log2

(

∑

1≤i≤4(d
+(vi))

2/36
)

= − log2
((

12 + 12 + 22 + 22
)

/36
)

. Indeed,

for any n-tournament T on vertices v1, . . . , vn,

H2(T ) = − log2





(

n

2

)−2
∑

1≤i≤n

d+(vi)
2



 .

With α = 3, the calculation is

H3(T ) = − log2





(

n

2

)−3
∑

1≤i≤n

d+(vi)
3 −

∑

1≤i≤n

c3(i, i)



 ,

where c3(i, j) is the number of walks of length 3 from vi to vj .
The table at (5) displays essentially H2 and H3 for all 4-tournaments; in fact

∑

λ∈spec(LT ) λ
α,

for α = 2, 3 and each T ∈ T4 are displayed.

(5)

∑

λ2
∑

λ3

TS4 10 12
TK4 12 21
TO4 12 27
TT4 14 36

Though both H2 and H3 are functions only of the score sequence, H3 seems to quantify
something more than H2 does, and distinguishes each tournament in T4.

We now explore T5. There are 12 distinct 5-tournaments up to isomorphism and 9 distinct
score sequences. The score sequences (1, 2, 2, 2, 3) and (1, 1, 2, 3, 3) have 3 and 2 distinct tour-
naments associated with them, see Figure 2 and Figure 3.

UR1 UR2 UR3

Figure 2. Non-isomorphic 5-tournaments with score sequence (1, 2, 2, 2, 3).
Arcs not depicted are directed downward.

Table 6 shows the Rényi α-entropy values for all the 5-tournaments, for α = 2, 3, 4. Actually,
again, what is shown is

∑

λ∈spec(LT ) λ
α, α = 2, 3, 4, and T ∈ T5. We use T~s to denote the

(unique in this case) tournament corresponding to the score sequence ~s. TT5 is the transitive
5-tournament, R5 is the 5-tournament with score sequence (2, 2, 2, 2, 2).
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U1 U2

Figure 3. Non-isomorphic 5-tournaments with score sequence (1, 1, 2, 3, 3).
Arcs not depicted are directed downward.

(6)

∑

λ2
∑

λ3
∑

λ4

R5 20 25 −20
UR1 22 40 46
UR2 22 40 46
UR3 22 40 50
U1 24 55 116
U2 24 55 120

T(0,2,2,3,3) (“E”) 26 76 258
T(1,1,2,2,4) (“D”) 26 64 138
T(1,1,1,3,4) (“C”) 28 79 208
T(0,2,2,2,4) (“B”) 28 85 280
T(0,1,3,3,3) (“A”) 28 91 328

TT5 30 100 354

Notice that as α increases the number of distinct entropy values increases. Consider the partial
order induced by the Rényi entropy, where T1 <α T2 if Hα(T1) < Hα(T2). Figure 4 shows the
Hasse diagrams for the orders <i, for i = 2, 3, 4. We see fewer incomparabilities as α increases,
but <i is not necessarily a refinement of <i−1. For example, C <2 E, C <3 E, but E <4 C.

TT5

A B C

D E

U1 U2

UR1 UR2 UR3

R5

TT5

A

B

C

D

E

U1 U2

UR1 UR2 UR3

R5

TT5

A
B

C
D

E

U1

U2

UR1 UR2

UR3

R5

Figure 4. Hasse diagrams of the partial orders determined by H2, H3, and H4.

We now compare the Rényi α-entropy of the two distinct 3-tournaments as a function of α
– in what remains of this section α is not necessarily an integer. We treat this case last (out
of n = 3, 4, 5) because it is a bit different, but the results are consistent with the over arching
claims we make about the Rényi α-entropy: that it is a measure of how regular a tournament
is; the higher the entropy value, the more regular the tournament is. Moreover, and this will
not be shown until the penultimate section there is more to ‘regular tournaments’ than score
sequences.
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C3 TT3

Figure 5. The 3-tournament which is a cycle (left) and the transitive 3-
tournament (right)

With C3 denoting the 3-tournament that is a cycle,

L(C3) =





1
3 − 1

3 0
0 1

3 − 1
3

− 1
3 0 1

3



 has spectrum

{

0,
1

2
±

√
3

6
i

}

, so

Hα(C3) =
1

1− α
log2

(

2

(

1√
3

)α

cos
(π

6
α
)

)

=
1− α log2

√
3

1− α
+ log2

(

cos
1

1−α

(π

6
α
))

.

Now consider the domain for which this function gives a real-valued entropy. If the cosine
evaluates to 0, as is the case for α = 3, then Hα is not defined, and we see a vertical asymptote
as α → 3. If the cosine value is negative, then the value of Sα is real only if α is of the form
2p/(2q + 1) with p, q ∈ Z.

As far as end behavior, Hα has no limit as α approaches infinity, but it does have a lower
bound. We note that Hα has local minima at or near 12k, with k ∈ Z

+. Then

H12k(C3) =
1− 12k log2

√
3

1− 12k
+

1

1− 12k
log2 (cos(2πk))

=
1− 12k log2

√
3

1− 12k
.

As k → ∞, the first term tends to 0, and

lim
k→∞

H12k(C3) = log2
√
3 ≈ 0.7925.

With TT3 denoting the transitive 3-tournament, we see that all eigenvalues are real, and the
entropy is more well-behaved.

L(TT3) =





2
3 − 1

3 − 1
3

0 1
3 − 1

3
0 0 0



 has spectrum

{

0,
1

3
,
2

3

}

, so

Hα(TT3) =
1

1− α
log2

((

1

3

)α

+

(

2

3

)α)

.
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This function is continuous on (1,∞), and we can evaluate limα→∞ Hα(T ) by applying L’Hôpital’s
Rule (when the base is not specified ‘log’ is the natural logarithm):

lim
α→∞

Hα(TT3) = lim
α→∞

log2
((

1
3

)α
+
(

2
3

)α)

1− α

= lim
α→∞

1
log 2

(log 1
3
)( 1

3
)α+(log 2

3
)( 2

3
)α

( 1
3 )

α
+( 2

3 )
α

−1

= lim
α→∞

1

log 2

(log 3)(13 )
α + (log 3

2 )(
2
3 )

α

(

1
3

)α
+
(

2
3

)α

= lim
α→∞

1

log 2

log 3 + (log 3
2 )2

α

1 + 2α

= lim
u→∞

1

log 2

log 3 + (log 3
2 )u

1 + u

=
log 3

2

log 2

= log2 3− 1

≈ 0.5850.

2. Rényi 2- and 3-entropy: Min, Max, and What’s in Between

We focus on H2 and H3 on Tn in this section. The results give a strong indication that the
Rényi α-entropy is a measurement of how regular a tournament is, similar to [10]. On the other
hand, in [7] Landau defined, for an n-tournament T with score sequence (s1, . . . , sn), what he

called the hierarchy score h(T ) = 12
n3−n

∑n
i=1

(

si − n−1
2

)2
; this was Landau’s measurement of

how close T is to the transitive tournament. It is straightforward to transform H2(T ) into h(T )
and vice-versa, given Proposition 1; hence H2 is equivalent to Landau’s hierarchy. We also
enumerate the distinct H2- and h-classes, and it can then be seen that H2 and h distinguish
tournament structure less than the score sequence does. The same goes for H3. But this is not
so for Hα with α > 3; indeed, H4 distinguishes between some n-tournaments with the same
score sequence for n ≥ 4.

Lemma 1 together with equation 4 yields the following proposition.

Proposition 1. Suppose T is a tournament on vertices {v1, . . . , vn} with d+(vi) = si. Then

∑

λ∈ΛT

λ2 =

(

n

2

)−2 n
∑

i=1

s2i

and if c3(T ) is the number of 3-cycles in T , then

∑

λ∈ΛT

λ3 =

(

n

2

)−3
(

n
∑

i=1

s3i − 3c3(T )

)

=

(

n

2

)−3
(

n
∑

i=1

s3i − 3

(

n

3

)

+ 3
n
∑

i=1

(

si
2

)

)

.

Define the function fk on Tn by fk(T ) =
∑

λ∈ΛT
λk.

Theorem 1. On Tn, f2 and f3 are minimized by regular tournaments when n is odd and by
nearly-regular tournaments when n is even.

Proof. Consider a tournament T on vertices with score sequence (s1, . . . , sn). Suppose si+2 ≤ sj
for some i, j. If j → i, then construct a new tournament T ′ by reversing the arc so that i → j.
Otherwise, if i → j ∈ A(T ), consider the tournament T̂ induced on {i, j} ∪N+(j). Note that j

is a king in T̂ , so there is a path P of length 2 from j to i, say P = (j, u, i). Construct T ′ by

reversing the arcs on P so that i → u and u → j are arcs of T̂ . This reversal lowers the score
of j by 1 and increases the score of i by 1, the score of u is unchanged. So, in either case, the
score sequence of T ′ is s1, . . . si + 1, . . . , sj − 1, . . . sn. It is not difficult to show that

(7) s2i + s2j > (si + 1)2 + (sj − 1)2.

Let (s′1, . . . s
′
n) be the score sequence of T ′, E = spec(LT ), and E′ = spec(L

′

T ). Notice that
sk = s′k for k 6= i and k 6= j. Also s′i = si + 1 and s′j = sj − 1. By Theorem 1,

∑

λ∈E λ2 =
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(

n
2

)−2∑n
i=1 s

2
i and

∑

λ∈E′ λ2 =
(

n
2

)−2∑n
i=1(s

′
i)

2. These equalities together with equation 7

imply that
∑

λ∈E λ2 >
∑

λ∈E′ λ2. Repeatedly applying the construction above until there are
no scores that differ by at least 2 results in a regular tournament when n is odd and a nearly-
regular tournament when n is even. (I don’t think we need this sentence:) After each step the
sum of the squares of the eigenvalues of the resulting tournament is decreased.

Now consider
∑

λ∈E′ λ3, and T and T ′ are as above with score sequences (s1, . . . , sn) and
(s′1, . . . , s

′
n), respectively. By Proposition 1, we have

∑

λ∈E′

λ3 =

(

n

2

)−3
(

n
∑

i=1

s3i − 3

(

n

3

)

+ 3

n
∑

i=1

(

si
2

)

)

.

Consider the part of the sum affected by the algorithm: (s′i)
3 + (s′j)

3 + 3
(

s′i
2

)

+ 3
(

s′j
2

)

. Using

si+2 ≤ sj (and hence sj ≥ 2), s′i = si+1, and sj−1 = s′j , the relationship (s′i)
3+(sj)

3+3
(

s′i
2

)

+

3
(

s′j
2

)

< s3i +s3j+3
(

si
2

)

+3
(

sj
2

)

may be obtained. Since
(

n
2

)−3
is constant for fixed n as is 3

(

n
3

)

, the

expression for the Rényi 3-entropy will be maximized for small values of
∑n

i=1 s
3
i − 3

∑n
i=1

(

si
2

)

.
Thus, by changing the scores of T to create a tournament T ′ in which s′j = sj−1 and s′i = si+1,

we see that H3(T
′) > H3(T ). It follows that the tournament with maximum Rényi 3-entropy

will have scores as close to equal as possible. This is achieved by any regular tournament if n is
odd, and any nearly-regular tournament if n is even. �

Corollary 1. The Rényi 2- and Rényi 3-entropy are maximized by regular n-tournaments when
n is odd, otherwise by nearly-regular n-tournaments.

To find the tournaments which minimize the Rényi entropy, we use the following algorithm.
Let T0 be a tournament that is not transitive and therefore has a repeated score in its score
sequence. For i ≥ 1, obtain Ti from Ti−1 by reversing the arc between any pair of vertices with
the same score, say sm. Then, if Ti−1 has score sequence (s1, . . . , sm, . . . , sm, . . . , sn), then Ti will
have score sequence (s1, . . . , sm−1, . . . , sm+1, . . . , sn). Note that (sm−1)2+(sm+1)2 = 2s2m+2.
Since there are a finite number of n-tournaments and each step increases the value of f2 by 2, the
algorithm is guaranteed to terminate. This happens Ti has no repeated scores, which is possible
only if Ti has score sequence (0, 1, 2, . . . , n− 1); that is, Ti is the transitive n-tournament.

Theorem 2. Among all tournaments on n vertices, the Rényi 2- and 3-entropy are minimized
by the transitive tournament.

Proof. Let T0 be any tournament on n vertices. Apply the algorithm described above until
the transitive tournament TTn is reached. We already established that f2 strictly increases
throughout the algorithm, so H2(T0) > H2(TTn).

It remains to show that f3 does the same. By Proposition 1, we have

f3(Ti)− f3(Ti−1) =

(

(sm − 1)3 + 3

(

sm − 1

2

)

+ (sm + 1)3 + 3

(

sm + 1

2

))

− 2

(

s3m + 3

(

sm
2

))

= (sm + 1)3 + (sm − 1)3 − 2s3m + 3

[(

sm + 1

2

)

−
(

sm
2

)

+

(

sm − 1

2

)

−
(

sm
2

)]

= 6sm + 3

[(

sm
1

)

−
(

sm − 1

1

)]

= 6sm + 3

≥ 9.

Indeed, the value of f3 increases by at least 9 with each step. Therefore, the transitive tourna-
ment maximizes f3 and minimizes H3. �

The next and final result in this section gives precisely the number of distinct values of H2

on Tn.
Theorem 3. For tournaments on n vertices, the number of distinct values of the H2 is

{

1
4

(

n+1
3

)

+ 1 if n is odd,

2
(n

2
+1
3

)

+ 1 if n is even.

Proof. Using again the algorithm described above with T0 (nearly-)regular and maximizing f2,
we take advantage of the fact that each step increases the value of f2 by 2 until the transitive
n-tournament is reached and f2 is minimized.



ENTROPY OF TOURNAMENT DIGRAPHS 9

Since the sum of the scores of any T ∈ Tn is
(

n
2

)

, there are an even number of odd scores

when
(

n
2

)

is even and an odd number of odd scores when
(

n
2

)

is odd. Therefore, the sum of

the squares of the scores has the same parity as
(

n
2

)

. Hence the algorithm produces all possible
values of f2.

Now we count the number of values generated by counting the odd or even numbers be-
tween minimal and maximal values of f2. For a transitive tournament, the score sequence is
(0, 1, 2, . . . , n− 1), which gives maximum value

n−1
∑

i=0

i2 =
n(n− 1

2 )(n− 1)

3
.

If n is odd, a regular tournament gives minimum value
n
∑

i=1

s2i = n

(

n− 1

2

)2

=
n(n− 1)2

4
The number of distinct values for odd n is then

1

2

(

n(n− 1
2 )(n− 1)

3
− n(n− 1)2

4

)

+ 1 =
n(n− 1)

24

(

4

(

n− 1

2

)

− 3(n− 1)

)

+ 1

=
n(n− 1)(n+ 1)

24
+ 1

=
1

4

(

n+ 1

3

)

+ 1.

If n is even, a nearly-regular tournament has n
2 vertices with score n

2 − 1 and n
2 vertices with

score n
2 , so

n
∑

i=1

s2i =
n

2

(n

2
− 1
)2

+
n

2

(n

2

)2

=
n
(

(n− 2)2 + n2
)

8

=
n(n2 − 2n+ 2)

4
.

Therefore, the number of distinct values for even n is

1

2

(

n(n− 1
2 )(n− 1)

3
− n(n2 − 2n+ 2)

4

)

+ 1

=
n

24

(

4

(

n− 1

2

)

(n− 1)− 3(n2 − 2n+ 2)

)

+ 1

=
n(n2 − 4)

24
+ 1

=
n
2 (

n
2 − 1)(n2 + 1)

3
+ 1

= 2

(

n
2 + 1

3

)

+ 1.

�

Let hα
n be the number of distinct values for Hα over Tn, and Sn denote the number of distinct

score sequences of n-tournaments in Tn. The table below shows h2
n and Sn up to n = 10. Sn is

sequence A000571 in the OEIS [12].

(8)
n 2 3 4 5 6 7 8 9 10
Sn 1 2 4 9 22 59 167 490 1486
h2
n 1 2 3 6 9 15 21 31 41

We have observed that, as α increases, hα
n/Sn increases and we make the following conjecture.

Conjecture 1. For α sufficiently large, lim
n→∞

hα
n

Sn

> 1.
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3. Rényi 4-entropy

In this section we focus on α = 4 and regular n-tournaments for n > 5. Recall that the
out-set of a vertex v is the set of vertices at the heads of arcs whose tail is at v.

For any n there is up to isomorphism a unique transitive tournament on n vertices, but the
case is different for regular tournaments. For example there are 1, 3, 15, 1223, and 1, 495, 297
regular n-tournaments for n = 5, 7, 9, 11, and 13, respectively. Let Rn denote the set of regular
tournaments in Tn. The results of the previous section showed that regular and nearly-regular
tournaments maximize the Rényi α-entropy for α = 2 and α = 3. If α > 3, what can be said
about Hα(T )? What we have seen experimentally is that Hα(T ) is among the largest values of
Hα on Tn if T ∈ Rn; that is, if T ∈ Rn and T ′ ∈ Tn \Rn, then Hα(T

′) < Hα(T ). What we have
proved is that H4 partitions Rn, and it is this effect we explore presently. For example, there
are three regular 7-tournaments, QR7, B, and R7 drawn in Figure 6, and H4 gives a distinct
value to each:

H4(R7) < H4(B) < H4(QR7).

0

1

2

34

5

6

0

1

2

34

5

6

0

1

2

34

5

6

QR7 B R7

Figure 6. The regular 7-tournaments

The regular 7-tournaments QR7 and R7 are distinguishable in several ways; for example, the
out-set of every vertex in QR7 induces the 3-tournament C3 of Figure 5, while every out-set of
R7 induces TT3 of Figure 5. QR7 and R7 are examples of two classes of tournaments that will be
of interest in this section. For the next two definitions, suppose the n-tournaments have vertex
set {0, 1, 2, . . . , n−1}. Let S ⊂ {0, 1, 2, . . . , n−1} with |S| = n−1

2 and i− j 6= 0 modulo n for all
i, j ∈ S. An n-tournament T is rotational with symbol S, if i → j in T if and only if j− i ∈ S. A
doubly regular n-tournament T is a regular tournament with the additional property that for any
two vertices x, y ∈ V (T ), |N+(x) ∩N+(y)| = k; necessarily n = 4k + 3. Equivalently a doubly-
regular (4k+3)-tournament is a regular tournament in which the out-set of each vertex induces
a regular (2k + 1)-tournament. QR7 is doubly regular and is the rotational 7-tournament with
symbol {1, 2, 4}, the nonzero quadratic residues modulo 7. R7 is the rotational 7-tournament
with symbol {1, 2, 3}. We also indentify the following class of tournaments. A quasi doubly
regular tournament on 4k + 1 vertices is a regular tournament with score of each vertex equal
to 2k and, for any pair of vertices x and y, |N+(x) ∩N+(y)| ∈ {k − 1, k}.

For simplicity, and since the log function is an artifact of what was desired out of an entropy
function (see [11]), we focus on the power sums of the eigenvalues, and define, for a tournament
or any directed or undirected graph T ,

H∗
α(T ) = −fα(T ) = −

∑

λ∈spec(L(T ))

λα.

Note that minimizing H∗
α maximizes Hα when Hα is defined.

We first show that H∗
4 (T ) is minimum on Rn if and only if T is quasi doubly regular or

doubly regular if n = 4k + 1 or n = 4k + 3, respectively. We’ll use the following lemma which
counts the number of distinct subtournaments isomorphic to TS4 of Figure 1.

Let T be an n-tournament and define:

• c3(T ) to be the number of subtournaments isomorphic to C3 of Figure 5;
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• c4(T ) to be the number of subtournaments of T isomorphic to TS4 of Figure 1 – the
strongly connected† 4-tournament;

• t4(T ) to be the number of subtournaments of T isomorphic to TT4 of Figure 1 – the
transitive 4-tournament.

We note that the following lemma addresses a problem similar to that in [8] their Proposition
1.1).

Lemma 2. Let T be an n-tournament on n vertices, and c3, c4, and t4 defined as above; then

c4(T ) = t4(T )−
n− 3

4

((

n

3

)

− 4c3(T )

)

.

Proof. Consider the four 4-tournaments up to isomorphism:

(1) TS4: The strong 4-tournament;
(2) TT4: The transitive 4-tournament;
(3) TO4: The tournament with score sequence (1, 1, 1, 3);
(4) TK4: The tournament with score sequence (0, 2, 2, 2).

It is quickly verified that

c3(C4) = 2, c3(T4) = 0, c3(TK4) = 1, c3(TO4) = 1.

Now let T be any n-tournament. Since each 3-cycle (subtournament isomorphic to C3) belongs
to exactly n− 3 subtournaments of T on 4 vertices, we have

(9) (n− 3)c3(T ) = 2c4(T ) + to4(T ) + tk4(T ),

where to4(T ) and tk4(T ) are the number of TO4’s and TK4’s in T . Furthermore, the total
number of subtournaments of T on 4 vertices is equal to

(10) c4(T ) + t4(T ) + to4(T ) + tk4(T ) =

(

n

4

)

.

Combining equations (2) and (3), we obtain

c4(T ) = t4(T )−
(

n

4

)

+ (n− 3)c3(T )

= t4(T )−
n− 3

4

((

n

3

)

− 4c3(T )

)

.

�

Lemma 3. For regular tournaments, H∗
4 (T ) is maximized where t4(T ) is minimized, and vice

versa.

Proof. Let T = (V,A) be a regular tournament on n = 2m + 1 vertices. First note that for
α ∈ Z with α ≥ 2, we have H∗

α(T ) = −tr(L̄(T )α). Furthermore, since T is regular, we have

L̄(T ) =
1
(

n
2

) (mI −M).

Therefore, by the linearity of the trace and using Lemma 2, we can express H∗
4 in terms of t4(T ),

noting that TS4 is the only tournament on 4 vertices with a walk of length 4 from a vertex to
itself.

H∗
4 (T ) = −

(

n

2

)−4

Tr
(

m4I − 4m2M + 6m2M2 − 4mM3 +M4
)

= −
(

n

2

)−4
(

m4n− 12mc3(T ) + 4c4(T )
)

= −
(

n

2

)−4(

m4n− 12mc3(T ) + 4t4(T )− (n− 3)

((

n

3

)

− 4c3(T )

))

.

Note that n, m and c3 are all constant for regular tournaments on n vertices. �

We next identify the regular tournament which minimizes H4 on Rn; it is a rotational tour-
nament. A rotational tournament is distinguished by its symbol S, and we call the rotational
tournament with symbol S =

{

1, 2, . . . , n−1
2

}

the consecutive rotational n-tournament.

†A digraph is strongly connected if between any pair of vertices x and y there is a path from x to y and a
path from y to x.
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Theorem 4. On R2m+1, H4(T ) is minimum if and only if T is isomorphic to the consecutive
rotational tournament.

Proof. Let T be a regular tournament on n = 2m+1 vertices. By Lemma 3, we look to maximize
t4(T ). Since each vertex has score m, each vertex is the source of at most

(

m
3

)

TT4’s, and this
value is achieved if and only if the outset of that vertex is transitive. If each of the vertices in T
have this property, then the maximum value n

(

m
3

)

of t4(T ) is achieved. For each odd n, there is
only one such tournament up to isomorphism, namely the consecutive rotational tournament.

To see this, let N+(x) be transitive for each x ∈ V (T ), and relabel the vertices the following
way in Zn. Choose a vertex to label 0. Label the source of N+(0) by 1, the source of N+(0) ∩
N+(1) by 2, and so on until N+(0) consists of {1, 2, . . . ,m}. Then m is beaten by 0, . . . ,m− 1,
so m must beat all of the remaining vertices, with N+(m) transitive. Label the source of N+(m)
by m + 1, the source of N+(m) ∩N+(m + 1) by m + 2, and so on until all of the vertices are
labeled 0, . . . , n−1. Now m beats m+1, . . . , n−1, 0, so 2, . . . ,m must beat m+1. Then 1 beats
2, . . . ,m+1, so m+2, . . . , n−1, 0 must beat 1. This means that m+2 beats m+3, . . . n−1, 0, 1,
so 2, . . . ,m + 1 must beat m + 2. Continuing in this fashion, we see that for vertices x and y,
x → y if and only if y − x ∈ {1, 2, . . . ,m}, so T is isomorphic to the consecutive rotational
n-tournament. �

We now find the argument maximum of H4 on Rn.

Theorem 5. A (4k + 3)-tournament T achieves the maximum value of H4 on R4k+3 if and
only if T is doubly regular. A (4k + 1)-tournament T achieves the maximum value of H4 on
R4k+1 if and only if T is quasi doubly regular.

Proof. Let T be a regular tournament on n = 2m+1 vertices. Now we look to minimize t4(T ).
Consider a vertex x ∈ V (T ) and the corresponding subtournament T ′ on the m vertices in
N+(x). The number of transitive triples in T ′ is given by

t3(T
′) =

∑

y∈N+(x)

(|N+(x) ∩N+(y)|
2

)

=
1

2

∑

y∈N+(x)

(

|N+(x) ∩N+(y)| − m− 1

2

)2

+
(m− 2)

2

∑

y∈N+(x)

|N+(x) ∩N+(y)| − 1

2

∑

y∈N+(x)

(

m− 1

2

)2

=
1

2





∑

y∈N+(x)

(

|N+(x) ∩N+(y)| − m− 1

2

)2

+ (m− 2)

(

m

2

)

−m

(

m− 1

2

)2


 .

If n ≡ 3 (mod 4) and n = 4k + 3, then

t3(T
′) ≥ 1

2

(

(m− 2)

(

m

2

)

−m

(

m− 1

2

)2
)

=
m

2

(

(2k − 1)k − k2
)

= m
2k2 − k − k2

2

= m

(

k

2

)

,

with equality if and only if |N+(x)∩N+(y)| = m−1
2 = k for each y ∈ N+(x). Now, since t3(T

′)
is also the number of T4s in T in which x is the source, it follows that

t4(T ) ≥ nm

(

k

2

)

,

with equality if and only if T is doubly regular.
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If n ≡ 1 (mod 4) and n = 4k + 1, then

t3(T
′) ≥ 1

2

(

m

(

1

2

)2

+ (m− 2)

(

m

2

)

−m

(

m− 1

2

)2
)

=
m

2

(

1

4
+ (2k − 2)

2k − 1

2
−
(

k − 1

2

)2
)

= k
(

(k − 1)(2k − 1)− k2 + k
)

= k(k − 1)2,

with equality if and only if
∣

∣N+(x) ∩N+(y)| − m−1
2

∣

∣ = 1
2 for each y ∈ N+(x). Therefore,

t4(T ) ≥ nk(k − 1)2,

with equality if and only if T is quasi doubly regular. �

From this, we obtain the tight bounds for regular tournaments

−n(n− 1)
(

3n3 − 17n2 + n− 3
)

48
≤
(

n

4

)4

H∗
4 (T ) ≤ −n2(n− 1)(n2 − 6n+ 1)

16
for n ≡ 3(mod 4);

−n(n− 1)
(

3n3 − 17n2 + n− 3
)

48
≤
(

n

4

)4

H∗
4 (T ) ≤ −n(n− 1)2(n2 − 5n− 4)

16
for n ≡ 1(mod 4).

Since Hα depends entirely on the spectrum, we know that as α increases there is no parti-
tioning of Rn via Hα beyond the spectrum-level. The next result shows that all doubly regular
n-tournaments have the same spectrum.

Theorem 6. For any doubly regular tournament T on n = 2m+ 1 = 4k + 3 vertices,

spec(L̄(T )) =

{

0,
1

n− 1

(

1± i√
n

)(m)
}

,

where (m) in superscript denotes that the eigenvalue has multiplicity m.

Proof. Let A be the adjacency matrix of a doubly-regular tournament T on n = 2m+1 = 4k+3
vertices. Then AAt = mI + k(J − I) and A+At = J − I, where I is the identity matrix and J
is the all-ones matrix. Then

(A− λI)(A − λI)t = AAt − λ(A+At) + λ2I

= mI + k(J − I)− λ(J − I) + λ2I

= (k − λ)J + (m− k + λ+ λ2)I.

Since spec(J) = {n, 0(n−1)}, we have

spec((A− λI)(A− λI)t) = {n(k − λ) +m− k + λ+ λ2, (m− k + λ+ λ2)(n−1)}.
Therefore,

|A− λI|2 = |(A− λI)(A− λI)t|
= (n(k − λ) +m− k + λ+ λ2)(m− k + λ+ λ2)n−1

= (m2 − 2mλ+ λ2)(k + 1 + λ+ λ2)n−1

=
(

(m− λ)(k + 1 + λ+ λ2)m
)2

.

Therefore, since n is odd,

|A− λI| = (m− λ)(k + 1 + λ+ λ2)m

and

spec(A) =

{

m,

(

−1

2
± i

√
n

2

)(m)
}

.

Finally, if L̄ is the normalized Laplacian matrix of T , then L̄ and A are related by

L̄ =
2

n(n− 1)
(mI −A),
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so

spec(L̄) =

{

2

n(n− 1)
(m−m),

2

n(n− 1)

(

m+
1

2
± i

√
n

2

)(m)
}

=

{

0,
1

n− 1

(

1± i√
n

)(m)
}

.

�

Corollary 2. For integer α > 4, Hα is maximized on R4k+3 via doubly regular tournaments.

4. Von Neumann Entropy and Random Walks

We believe we have a compelling argument that, as far as directed graphs are concerned, the
Rényi entropy entropy calculation quantifies the regularity of the directed graph. Entropy is
apparently sensitive to local regularity vis-á-vis the refinement of the Rényi ordering we observe
on the set of regular tournaments with highest entropy being associated to doubly-regular tour-
naments, tournaments that are regular and locally regular. But this is either saying nothing,
given that ‘regularity’ has not been precisely defined, or we are simply defining ‘regularity’ as
the extent to which entropy is high relative to other directed graphs.

In this section we more precisely describe what the von Neumann entropy calculation is
quantifying in graphs and directed graphs. First we establish a lemma about the magnitudes of
the eigenvalues of the scaled Laplacian. Let L and L be the Laplacian and normalized Laplacian
of some loopless directed graph Γ on the set of n vertices {v1, . . . , vn}, {λ1, . . . , λn} the multiset
of eigenvalues of L, and let d+i = d+Γ (vi) denote the out-degree of vertex vi in Γ.

The next lemma is established to the end of supporting the following extension of the von
Neumann entropy to a directed or undirected graph: Suppose L is the Laplacian of a (di)graph
Γ normalized as in this paper, then the von Neumannn entropy of Γ is

S(~λ) =
1

log 2



tr(L)−
∞
∑

j=2

tr(L
j
)

j(j − 1)



 .

Lemma 4. Regarding Γ, L, L, and {λ1, . . . , λn} as described above: |λk − 1| ≤ 1 for 1 ≤ k ≤ n.

Proof. Consider the family F of matrices of the form

M = (I − SL)
t

with S =











1
s1

0 · · · 0

0 1
s2

0
...

. . .
...

0 0 · · · 1
sn











,

where d+i ≤ si 6= 0 for all i.
Since the row sums of L are all zero, and S scales each row of L individually, the same is

true of the rows of SL. Therefore, the row sums of M t, and consequently the column sums of
M , equal 1.

Furthermore, note that all elements of M are between 0 and 1. On the diagonal, the kth

element is 1− d+k /sk. Off the diagonal, each element is either 0 or 1/sk for some sk. Hence M
is a Markov matrix, which guarantees that each of its eigenvalues has modulus at most 1.

Notice in particular that L is of the form SL with s1 = s2 = · · · = sn =
∑n

i=1 d
+
i . Now

suppose that λ is an eigenvalue of L. Then λ is also an eigenvalue of L
t
, so 1−λ is an eigenvalue

of M = I − L
t
= (I − L)t, where M ∈ F . This means that 1− λ has modulus at most 1. �

Recall that the function

f(λ) =

{

λ log2
1
λ

if λ 6= 0
0 if λ = 0

can be expanded as the power sum

f(λ) =
1

log 2



(1− λ) −
∞
∑

j=2

(1 − λ)j

j(j − 1)



 for |λ− 1| ≤ 1.
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By Lemma 4 the eigenvalues of the scaled Laplacian matrix are all within the radius of
convergence of f and the von Neumann entropy can be expressed as

S(~λ) =

n
∑

k=1

f(λk)

=

n
∑

k=1

1

log 2



(1 − λk)−
∞
∑

j=2

(1 − λk)
j

j(j − 1)





=
1

log 2





n
∑

k=1

(1− λk)−
∞
∑

j=2

1

j(j − 1)

n
∑

k=1

(1− λk)
j



 .

Also, by Lemma 4, we know that {1 − λk}nk=1 is the spectrum of the Markov matrix M =
(I − L̄Γ)

t. Therefore, for j ≥ 1,

n
∑

k=1

(1 − λk)
j = tr(M j),

and since limj→∞ tr(M j) = 1, because M is a Markov matrix, we can write

S(~λ) =
1

log 2



tr(M)−
∞
∑

j=2

tr(M j)

j(j − 1)



 .

Let g denote the sum
∑

d+i of out-degrees of vertices of Γ. Let wj(vk) be a random walk of
length j starting at vertex vk, where at each step, the walk has a probability of 1/g of moving
to each vertex in its out-set. Then entry l, k of matrix M j is the probability that wj(vk) ends
at vl, and

tr(M j) =

n
∑

k=1

P (wj(vk) ends at vk).

Therefore, the von Neumann entropy can be expressed as

S(~λ) =
1

log 2



n− 1−
n
∑

k=1

∞
∑

j=2

P (wj(vk) ends at vk)

j(j − 1)



 .

In this sense, the von Neumann entropy is a measure of how quickly a random walk will move
away from its initial state and settle in to its limiting state.

Also, this viewpoint allows us to place general bounds on the von Neumann entropy.

Observation 1. For any loopless directed graph Γ, S(Γ) ≤ S(~d+), where

~d+ = (d+(v1)/g, . . . , d
+(vn)/g)

is the distribution of out-degrees in Γ, and equality holds if and only if Γ has no (directed) cycles.

Proof. Clearly,

P (wj(vk) ends at vk) ≥ P (wj(vk) never leaves vk) = (1− d+k /g)
j,

with equality if and only if Γ has no directed cycles. Therefore,

S(~λ) ≤ 1

log 2



n− 1−
n
∑

k=1

∞
∑

j=2

(1− d+(vk)/g)
j

j(j − 1)





=
1

log 2

(

n− 1−
n
∑

k=1

(

d+(vk)

g
log

d+(vk)

g
+ 1− d+(vk)

g

)

)

= −
n
∑

k=1

d+(vk)

g
log2

d+(vk)

g

= S(~d+).

�
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Note that the condition for equality is equivalent to L̄Γ being permutation equivalent to an
upper-triangular matrix. This makes sense, since in that case the eigenvalues of LΓ are the
out-degrees of the vertices of Γ.

Corollary 3. For any loopless directed graph Γ, S(Γ) < log2 n.

Proof. Since the out-degrees are real-valued, we have S(Γ) = S(~λ) ≤ S(~d+) ≤ log2 n. If

S(~d+) = log2 n, then d+1 = . . . = d+n > 0, and Γ must have a directed cycle, so S(~λ) < S(~d+). �
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