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On a recent reciprocity formula for

Dedekind sums

Kurt Girstmair

Abstract

Let s(a, b) denote the classical Dedekind sum and S(a, b) = 12s(a, b). Recently,
Du and Zhang proved the following reciprocity formula. If a and b are odd natural
numbers, (a, b) = 1, then

S(2a∗, b) + S(2b∗, a) =
a2 + b2 + 4

2ab
− 3,

where aa∗ ≡ 1 mod b and bb∗ ≡ 1 mod a. In this paper we show that this formula
is a special case of a series of similar reciprocity formulas. Whereas Du and Zhang
worked with the connection of Dedekind sums and values of L-series, our main tool
is the three-term relation for Dedekind sums.

1. Introduction and Result

Let a be an integer, b a natural number, and (a, b) = 1. The classical Dedekind sum
s(a, b) is defined by

s(a, b) =

b
∑

k=1

((k/b))((ak/b)).

Here

((x)) =

{

x− ⌊x⌋ − 1/2 if x ∈ Rr Z;

0 if x ∈ Z

(see [6, p. 1]). It is often more convenient to work with

S(a, b) = 12s(a, b)

instead. We call S(a, b) a normalized Dedekind sum.
Probably the most important elementary result concerning Dedekind sums is reci-

procity law. If a and b are coprime natural numbers, then

S(a, b) + S(b, a) =
a2 + b2 + 1

ab
− 3. (1)

Recently, Du and Zhang have found the following hitherto unknown reciprocity law (see
[2]). If a and b are coprime odd natural numbers, then

S(2a∗, b) + S(2b∗, a) =
a2 + b2 + 4

2ab
− 3, (2)

1

http://arxiv.org/abs/1812.09482v1


where aa∗ ≡ 1 mod b and bb∗ ≡ 1 mod a.
The proof given in [2] is based on the connection of Dedekind sums and values of

L-series. The authors of the said paper ask for an elementary proof of their result. Here
we give such an elementary proof based on the tree-term-relation of Dedekind sums.
Moreover, we show that (2) is a special case of a series of similar reciprocity formulas.
Indeed, we have the following.

Theorem 1 Let a and b be coprime natural numbers and t a natural number such that

a2 + 1 ≡ 0 mod t. Further, let (b, t) = 1. Then

S(ta∗, b) + S(tb∗, a) =
a2 + b2 + t2

tab
− 3 + S(ab, t). (3)

As to the case t = 1, we note
S(a∗, b) = S(a, b) (4)

(see [6, p. 26]) and S(ab, 1) = 0. In the case t = 2, a and b are odd and S(ab, 2) = 0.
Hence we obtain the following.

Corollary 1 The formulas (1) and (2) are immediate consequences of Theorem 1 in the

cases t = 1 and t = 2.

Corollary 2 Suppose, in the setting of Theorem 1, that b ≡ ±1 mod t. Then

S(ta∗, b) + S(tb∗, a) =
a2 + b2 + t2

tab
− 3. (5)

Suppose, on the other hand, that b ≡ ±a mod t. Then

S(ta∗, b) + S(tb∗, a) =
a2 + b2 + t2

tab
+

{

−t− 2/t, if b ≡ a mod t;

t+ 2/t− 6, if b ≡ −a mod t.
(6)

As to (5), note that (ab)2 ≡ −1 mod t, which shows that S(ab, t) = 0 (see [6, p. 28]).
In the case of (6), we use S(1, t) = t + 2/t − 3 (which is an immediate consequence of
(1)) and S(−a, b) = −S(a, b) (see [6, p. 26]).

Remark. The natural numbers t such that there is a natural number a with a2 + 1 ≡ 0
mod t can be characterized as follows: t = m or t = 2m, where m is a natural number
whose prime divisors are all ≡ 1 mod 4 (this includes m = 1).

Example. Let t = 5, a such that a2 + 1 ≡ 0 mod 5, and (a, b) = (b, 5) = 1. This implies
a ≡ ±2 mod 5. If b ≡ ±1 mod 5, then

S(5a∗, b) + S(5b∗, a) =
a2 + b2 + 25

5ab
− 3.

In the remaining case, we have b ≡ ±a mod 5. If b ≡ a mod 5, then (6) reads

S(5a∗, b) + S(5b∗, a) =
a2 + b2 + 25

5ab
− 27/5.

If b ≡ −a mod 5, we have

S(5a∗, b) + S(5b∗, a) =
a2 + b2 + 25

5ab
− 3/5.
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Proof of Theorem 1

Let a, b, t be natural numbers, (a, b) = (b, t) = 1, such that a2 + 1 ≡ 0 mod t. Put
c = b(a2 + 1)/t. Obviously, (a, c) = 1. Then [4, Th.4 ] says

S(a, c) =
(b2 − 1)a

tb
− S(ab, t) + S(at∗, b). (7)

where tt∗ ≡ 1 mod b. By the reciprocity law (1),

S(a, c) = −S(c, a) +
a2 + c2 + 1

ac
− 3.

However, c ≡ bt∗ mod a, with tt∗ ≡ 1 mod a. Hence S(c, a) = S(bt∗, a). We replace
at∗ by ta∗ and bt∗ by tb∗ in the respective normalized Dedekind sums (see (4)). Then a
short calculation proves Theorem 1.

We still have to make clear that this remarkably simple proof is based on elementary
results. Indeed, (7) follows from the three-term relation

S(a, b) = S(c, d) + εS(r, |q|) +
b2 + d2 + q2

bdq
− 3ε

(see [4]). Here b, d, are natural numbers, a, c integers, (a, b) = (c, d) = 1, a/b 6= c/d.
Further, q = ad − bc and ε is the sign of q. Finally, r = aj − bk, where j, k are integers
such that −cj + dk = 1. The three-term relation, in turn, can be deduced from the
composition rule of the logarithm of Dedekind’s η-function (see [1, 3]). An elementary
proof of this composition rule is given in [5, §4].
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