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Higher omni-Lie algebroids

Yanhui Bi ∗, Luca Vitagliano †, Tao Zhang ‡

Abstract. We propose a definition of a “higher” version of the omni-Lie al-
gebroid and study its isotropic and involutive subbundles. Our higher omni-Lie
algebroid is to (multi)contact and related geometries what the higher generalized
tangent bundle of Zambon and Bi/Sheng is to (multi)symplectic and related ge-
ometries.
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Key Words and Phrases: Vector bundle form, Higher omni-Lie algebroid, Dirac
structure, Generalized geometry.

1. Introduction

The generalized tangent bundle of a smooth manifold is the direct sum TM ⊕ T ∗M .
It is the natural arena for various interesting geometries, e.g. Dirac geometry, and
generalized complex geometry. The generalized tangent bundle is an instance of a
Courant algebroid. The omni-Lie algebroid of a vector bundle E → M is the direct
sum DE ⊕ JE , where DE is the gauge algebroid, and JE is the first jet bundle of
E . The omni-Lie algebroid of a line bundle is the natural arena for Dirac-Jacobi
geometry, and generalized complex geometry in odd dimensions [24, 10, 18, 21, 22],
and it is an instance of an E -Courant algebroid. Now, fix a positive integer n.
There is an “n-form version” of the generalized tangent bundle, called the higher
generalized tangent bundle: TM ⊕ ∧nT ∗M . The higher generalized tangent bundle
and its isotropic and involutive subbundles have been first considered in [1, 27] (see
also [2, 3]). They encode higher Dirac structures, in particular closed n-forms and
certain Nambu structures [27].

It is then natural to ask: Is there an “n-form version” of the omni-Lie
algebroid? And, if yes, what kind of geometries do its isotropic and involutive
subbundles encode? In this paper, we (partially) answer these questions. We begin
with what we call vector bundle forms (see Subsection 2.2). They are sections of
a certain graded subbundle J•E of the bundle Hom(∧•DE,E) of E -valued forms
on the gauge algebroid. Vector bundle forms are for a vector bundle E → M
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what ordinary differential forms are for the trivial line bundle M × R → M . With
vector bundle forms at hand, we are able to define the higher omni-Lie algebroid (see
Subsection 2.3) as the direct sum DE ⊕ JnE (for any fixed n). In the same way
as vector bundle forms, higher omni-Lie algebroids are for a vector bundle what the
higher generalized tangent bundles are for the trivial line bundle. Various interesting
“higher geometric structures” appear as “Dirac structures” in the higher omni-Lie
algebroid. For instance, it turns out that certain “higher contact structures” [19] can
be seen as isotropic involutive subbundles of the higher omni-Lie algebroid.

The paper is organized as follows. In Section 2, we introduce the concept of
vector bundle forms and the higher omni-Lie algebroid of a vector bundle. In section
3, we study isotropic and involutive subbundles of a higher omni-Lie algebroid which
project isomorphically either on DE or on JnE . In the last Section 4, we study
higher omni-Lie algebroids for the spacial case when E is the trivial line bundle.

2. Higher omni-Lie algebroids

2.1. Preliminaries: omni-Lie algebroids

We begin recalling briefly the notion of omni-Lie algebroid [4], which general-
izes Weinstein’s omni-Lie algebras [26] to the realm of Lie algebroids. Given a vector
bundle E → M , let DE be the gauge algebroid of E . Recall that a section of DE is
a derivation of E , i.e. an R-linear operator d : Γ(E) → Γ(E) satisfying the following
Leibniz rule:

d(fu) = j(d)(f)u+ fdu, ∀u ∈ Γ(E),

for some, necessarily unique, vector field j(d) ∈ X(M). The gauge algebroid DE is
a Lie algebroid with Lie bracket given by the commutator of derivations, denoted
[−,−]D , and anchor given by the vector bundle map j : DE → TM . The anchor j

is actually surjective, and its kernel gl(E) consists of vector bundle endomorphisms
Φ : E → E (covering the identity). Hence there is a short exact sequence

0 // gl(E)
i

// DE
j

// TM // 0 (1)

sometimes called the Atiyah sequence of E . Notice that gl(E), hence DE , is
equipped with a canonical section: the identity endomorphism IdE : E → E .

Now denote by JE the first jet bundle of E . Besides the usual definition, JE
can be equivalently defined from DE as follows:

JE = {ν ∈ Hom(DE,E) : ν(Φ) = Φ ◦ ν(IdE), ∀Φ ∈ gl(E)} ⊂ Hom(DE,E). (2)

In its turn, DE is determined by JE :

DE ∼= {h ∈ Hom(JE,E) : ∃v ∈ TM, s.t. h(y) = y(v), ∀y ∈ Hom(TM,E)} . (3)

Given a vector bundle map h : JE → E as in (3), the associated derivation d is
given by

du = h(ju), u ∈ Γ(E),
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where j : Γ(E) → Γ(JE) is the first jet prolongation. The first jet bundle sits itself
in a short exact sequence:

0 // Hom(TM,E)
e

// JE
p

// E // 0, (4)

where p : JE → E is the usual projection, and e : Hom(TM,E) → JE is given by:

e(h) = h ◦ j, h ∈ Hom(TM,E).

We will often understand both the embeddings e and i when there is no risk of
confusion. We summarize the relationship between DE and JE with the E -valued,
bilinear pairing

〈−,−〉E : JE ⊗DE → E, (ν, d) 7→ ν(d).

Then (j, e) and (i,p) are pairs of mutually adjoint maps with respect to 〈−,−〉E .

Remark 2.1. There is yet another description of DE and JE . Namely, given a
vector bundle E → M , the diagram

TE //

��

E

��

TM // M

(5)

is a double vector bundle (more precisely a VB-algebroid). Then sections of DE
identify with linear sections of the horizontal bundle TE → E , while sections of
JE identify with linear sections of the vertical bundle TE → TM . Here, by linear
section, we mean those sections that are, additionally, vector bundle maps. Double
vector bundle (5) is also equivalent to a certain vector bundle of graded manifolds.
Namely, shifting by one the degree in the fibers of the horizontal bundles TE → E ,
and TM → M , we get the graded vector bundle

T [1]E

��

T [1]M

, (6)

and sections of JE do also identify with degree 0 sections of (6). For more details
about VB-algebroids see [16, 7]. See also [23] for the relationship between VB-
algebroids and graded manifolds.

The omni-Lie algebroid of E [4, 6] is the direct sum E(E) = DE ⊕ JE . The
main structures on E(E) are:

• the projection ρ : E(E) → DE onto the first summand;

• the (Dorfman-like) bracket {−,−} : Γ(E(E)) × Γ(E(E)) → Γ(E(E)) defined
by:

{d+ µ, r+ ν} = [d, r]D + Ldν − Lrµ+ j 〈ν, r〉E , ∀d + µ, r+ ν ∈ Γ(E), (7)
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• the E -valued, symmetric bilinear pairing (−,−)+ : E(E)⊗E(E) → E defined
by

(d+ µ, r+ ν)+ =
1

2
(〈µ, r〉E + 〈ν, r〉E) .

Formula (7) requires some explanations. Here L is the Lie derivative of jets along
derivations and it is uniquely defined by

〈Ldµ, r〉E = d 〈µ, r〉E − 〈µ, [d, r]D〉E .

Together with the structure maps ρ, {−,−}, (−,−)+ , the omni-Lie algebroid E(E)
is an E -Courant algebroid [5].

2.2. Vector bundle forms

In this section, we propose an “n-form version” of the omni-Lie algebroid
and study its isotropic and involutive subbundles. We begin with a “vector bundle
version” of differential forms. In the case n = 1 our definition of an “higher form”
should reproduce sections of the jet bundle JE .

The gauge algebroid DE acts tautologically on the vector bundle E . Hence
there is a natural cochain complex

(Ω•(DE,E),d) ,

the de Rham complex of DE with coefficients in its representation E . Here

Ω•(DE,E) , Γ(Hom(∧•DE,E)),

and the differential d : Ωk(DE,E) → Ωk+1(DE,E) is given by the usual formula:

dµ(d0, d1, · · · , dk) ,

k∑

i=0

(−1)idi
(
µ(d0, · · · , d̂i, · · · , dk)

)

+
∑

0≤i<j≤k

(−1)i+jµ([di, dj], · · · , d̂i, · · · , d̂j, · · · , dk),

(8)

for all µ ∈ Ωk(DE,E), di ∈ Γ(DE), where a hat “−̂” denotes omission.

Remark 2.2. de Rham complex (Ω•(DE,E),d) is actually acyclic [17]. Even
more, it possesses a canonical contracting homotopy given by contraction ιIdE

with
the identity endomorphism IdE .

Clearly, Ω•(DE,E) is a DG-module over Ω•(DE) , Γ(Hom(∧•DE,RM)).
Using j : DE → TM , we can define a DG-algebra map

j

∗ : Ω•(M) → Ω•(DE), ω 7→ ω(j−, . . . , j−).

Finally we can change the scalars via j

∗ , and give Ω•(DE,E) the structure of a
DG-module over Ω•(M). Notice that, for all u ∈ Γ(E), du = ju ∈ Ω1(DE,E) is
actually a section of JE and, from the Ω•(M)-DG-module property, we have that

d(fu) = fdu+ df ⊗ u, ∀f ∈ C∞(M), u ∈ Γ(E).
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Now we want to extend Γ(JE) to a whole Ω•(M)-DG-submodule Ω•
JE of Ω•(DE,E).

The DG-module Ω•
JE will be our vector bundle version of differential forms.

In the graded vector bundle Hom(∧•DE,E) consider the graded subbundle
[5]:

J•E , {µ ∈ Hom(∧•DE,E) : ∃λµ ∈ Hom(∧•−1TM,E),

s.t. ιΦµ = Φ ◦ j∗λµ, ∀Φ ∈ gl(E)}.
(9)

Sections of J•E will be denoted shortly by Ω•
JE , and the degree n homogeneous

component will be denoted JnE . In particular Ωn
JE = Γ(JnE). Notice that J1E =

JE . The space J•E and its section were first considered in [5] (under a different
notation).

Remark 2.3. Let µ ∈ J•E . Then the E -valued form λµ is necessarily unique
and it is completely determined by the condition

j

∗λµ = λµ(j−, . . . , j−) = ιIdE
µ, for all Φ ∈ gl(E). (10)

Proposition 2.4. Ω•
JE is an Ω•(M)-submodule in Ω•(DE,E). Additionally, it

is preserved, for all d ∈ Γ(DE), by
(1) the de Rham differential d, (2) contractions ιd , (3) Lie derivatives Ld ,

Proof. First we show that Ω•
JE is an Ω•(M)-submodule. Let ω ∈ Ωk(M), and

µ ∈ Ωl(DE,E). Then the product ω ∧ µ is given by

ω ∧ µ(d1, . . . , dk+l) =
∑

σ∈Sk,l

(−1)σω(j(dσ(1)), . . . , j(dσ(k)))µ(dσk+1
, . . . , dσk+l), (11)

for all di ∈ Γ(DE), where Sk,l denoted (k, l)-unshuffles. Now let µ ∈ Ωl
JE , and let

Φ ∈ Γ(gl(E)). As j(Φ) = 0, from (11), we immediately get

ιΦω ∧ µ = (−1)kω ∧ ιΦµ = (−1)kω ∧ (Φ ◦ j∗λµ) = Φ ◦ j∗((−1)kω ∧ λµ).

This shows that ω ∧ µ ∈ Ωk+l
JE and λω∧µ = (−1)kω ∧ λµ .

That Ω•
JE is preserved by the de Rham differential d, and Lie derivatives Ld ,

is proved in [5]. To see that it is also preserved by contractions ιd , let µ,Φ be as
above, and compute

ιΦιdµ = −ιdιΦµ = −ιd(Φ ◦ j∗λµ) = −Φ ◦ j∗ι
j(d)λµ.

This shows that ιdµ ∈ Ωl−1
JE , and λιdµ = −ι

j(d)λµ .

Remark 2.5. From Proposition 2.4, the full Cartan calculus restricts to Ω•
JE .

Additionally, from Remark 2.2 and Proposition 2.4 (last point), (Ω•
JE ,d) is an acyclic

subcomplex and ιIdE
is a contracting homotopy for it.

Proposition 2.6. The short exact sequence (4) extends to a (degree-wise) short
exact sequence of ∧•T ∗M -modules

0 // ∧•T ∗M ⊗ E
e•

// J•E
p•

// ∧•T ∗M ⊗E // 0 , (12)

where
p•(µ) = λµ, and e•(λ

′) = j

∗λ′.
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Proof. See [5].

Remark 2.7. The sequence (12) does not split (in the category of ∧•T ∗M -
modules) in general. However the induced sequence in sections:

0 // Ω•(M,E)
e•

// Ω•
JE

p•
// Ω•−1(M,E) // 0 , (13)

splits canonically in the category of graded vector spaces. Specifically, the map

j• : Ω
•−1(M,E) → Ω•

JE , λ 7→ dj

∗λ

is a right splitting. As a consequence, there is a canonical isomorphism of graded
vector spaces

Ω•
JE

∼= Ω•(M,E)⊕ Ω•−1(M,E) (14)

identifying µ ∈ Ωk
JE with a pair (µ0, µ1) consisting of an E -valued k -form, and a

E -valued (k − 1)-form. It is easy to see that, actually,

(µ0, µ1) = (λ
dµ, λµ). (15)

It then follows from Remark 2.5 that:

µ = j

∗µ0 + dj

∗µ1. (16)

Notice that j1 = j is just the first jet prolongation. Finally, we describe all natural
operations on Ω•

JE in terms of the isomorphism (14). So, let ω ∈ Ω•(M), and let
d ∈ Γ(DE). The multiplication by ω , the de Rham differential, the contraction and
the Lie derivative with d induce operations on Ω•(M,E) ⊕ Ω•−1(M,E) which we
still denote by ω∧−, d, ιd , Ld . A direct computation exploiting either (15) or (16)
then shows that, for all µ ∈ Ω•

JE ,

ω ∧ (µ0, µ1) = (ω ∧ µ0 − (−1)ωdω ∧ µ1, (−1)ωω ∧ µ1) ,

d(µ0, µ1) = (0, µ0) , (17)

ιd(µ0, µ1) =
(
ι
j(d)µ0 + Ldµ1,−ι

j(d)µ1

)
(18)

Ld(µ0, µ1) = (Ldµ0,Ldµ1) . (19)

In particular
ιIdE

(µ0, µ1) = (µ1, 0).

In Formulas (18) and (19) it appears the Lie derivative along d ∈ Γ(DE) of an
E -valued form ν ∈ Ω•(M,E). This requires an explanation. Let ν be of degree k ,
then Ldν is the E -valued k -form on M given by

Ldν(X1, . . . , Xk) = d(ν(X1, . . . , Xk))−

k∑

i=1

ν(X1, . . . , [j(d), Xi], . . . , Xk),

for all Xi ∈ X(M).

Remark 2.8. Notice that Ω•(M) can be seen as the graded algebra of function
on the graded manifold T [1]M . It is not hard to see, e.g. in local coordinates, that
Ω•

JE is also the Ω•(M)-module of sections of the graded bundle (6).
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2.3. The higher omni-Lie algebroid

We are now ready to give a definition of higher omni-Lie algebroid. Let
E → M be a vector bundle, and let n be a positive integer. We begin noticing
that there exists a Jn−1E -valued, bilinear pairing

〈−,−〉JE : JnE ⊗DE → Jn−1E, (µ, d) 7→ ιdµ.

Definition 2.9. The n-omni-Lie algebroid or, simply, the higher omni-Lie alge-
broid of E , is the quadruple (En(E), ρ, {−,−}, (−,−)+), where En(E) = DE⊕JnE .
Additionally

• ρ : En(E) → DE is the projection onto the first summand,

• {−,−} : Γ(En(E))× Γ(En(E)) −→ Γ(En(E)) is the bracket defined by:

{d+ µ, r+ ν} , [d, r]D + Ldν − Lrµ+ d 〈µ, r〉JE = [d, r]D + Ldν − ιrdµ, (20)

for all d, r ∈ Γ(DE), and µ, ν ∈ Γ(JnE), and

• (−,−)+ : En(E) ⊗ En(E) → Jn−1E is the symmetric bilinear pairing defined
by:

(d+ µ, r+ ν)+ ,
1

2

(
〈d, ν〉JE + 〈r, µ〉JE

)
, (21)

for all d, r ∈ DE , and µ, ν ∈ JnE .

The bracket {−,−} is called the higher Dorfman bracket.

Notice that the 1-omni-Lie algebroid E1(E) = E(E) is just the omni-Lie
algebroid. In the following, we will often denote En(E) simply by E if this does not
lead to confusion.

Example 2.10. Let E = ℓ be a line bundle. Then every first order differential
operator Γ(ℓ) → Γ(ℓ) is a derivation. Hence Dℓ ∼= Hom(Jℓ, ℓ) and Jℓ ∼= Hom(Dℓ, ℓ).
Similarly, the condition on λ in (9) is empty and we have

J•ℓ = Hom(∧•Dℓ, ℓ).

It follows that Ω•
Jℓ = Ω•(Dℓ, ℓ) and

En(ℓ) = Dℓ⊕ Hom(∧nDℓ, ℓ).

Theorem 2.11. Let (E , ρ, {−,−}, (−,−)+) be the n-omni-Lie algebroid of a vec-
tor bundle E → M . Then

(i) (Γ(E), {−,−}) is a Leibniz algebra;

(ii) ρ({e1, e2}) = [ρ(e1), ρ(e2)]D ,

(iii) {e1, fe2} = f{e1, e2}+ 〈j ◦ ρ(e1), df〉 (e2),

(iv) Lρ(e1)(e2, e3)+ = ({e1, e2}, e3)+ + (e2, {e1, e3})+ ,
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(v) {e, e} = d(e, e)+ ,

for all e, e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M).

Proof. Similarly as in the case of the generalized tangent bundle and the omni-Lie
algebroid, the statement follows from standard Cartan calculus on Ω•

JE . We report
here some details of the proof for completeness.

(i). Write ei = di+µi , where di ∈ Γ(DE) and µi ∈ Γ(JnE), i = 1, 2, 3. Then
we have

{d1 + µ1, {d2 + µ2, d3 + µ3}} = [d1, [d2, d3]D]D + Ld1Ld2ν3 − Ld1Ld3ν2

+ Ld1did3ν2 − L[d2,d3]Dν1 + di[d2,d3]Dν1,

{{d1 + µ1, d2 + µ2}, d3 + µ3} = [[d1, d2]D, d3]D + L[d1,d2]Dν3 − Ld3Ld1ν2

+ Ld3Ld2ν1 − Ld3did2ν1 + did3Ld1ν2

− did3Ld2ν1 + did3did2ν1,

{d2 + µ2, {d1 + µ1, d3 + µ3}} = [d2, [d1, d3]D]D + Ld2Ld1ν3 − Ld2Ld3ν1

+ Ld2did3ν1 − L[d1,d3]Dν2 + di[d1,d3]Dν2.

So, it is enough to show that

Ld1did3ν2 + di[d2,d3]Dν1 =Ld2did3ν1 + di[d1,d3]Dν2 − Ld3did2ν1

+ did3Ld1ν2 − did3Ld2ν1 + did3did2ν1.

But this identity follows straightforwardly from the following Cartan formulas (see,
e.g., [4])

[ιd,d] = Ld, [Ld,d] = 0, [ιd1 ,Ld2 ] = ι[d1,d2], (22)

where [−,−] is the graded commutator.

(ii). It follows from ρ({d1 + µ1, d2 + µ2}) = [d1, d2]D .

(iii). We have

{d1 + µ1, f(d2 + µ2)} = [d1, fd2]D + Ld1(fµ2)− ιfd2dµ1

= f{d1 + µ1, d2 + µ2}+ 〈d1,df〉 (d2 + µ2)

= f{d1 + µ1, d2 + µ2}+ 〈ρ(d1 + µ1),df〉 (d2 + µ2).

This concludes the proof of (iii).

(iv). The right side of (iv) is

1

2
(ι[d1,d2]Dµ3 + ιd3Ld1µ2 + ιd2Ld1µ3 + ι[d1,d3]Dµ2)

and the left hand side is
1

2
(Ld1id2µ3 + Ld1id3µ2).

Now the statement follows from the third one of (22).

(v). It immediately follows from (20) and (21).
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Remark 2.12. The properties of the omni-Lie algebroid can be axiomatized and
this produces the definition of an E -Courant algebroid [5]. Similarly it should
be possible to axiomatize the properties of the higher omni-Lie algebroid listed in
Theorem 2.11 and produce a definition of higher E -Courant algebroid. Specifically,
let E → M be a vector bundle. Then a higher E -Courant algebroid should be a
quadruple (E , ρ, {−,−}, (−,−)+) where

• E → M is a vector bundle,

• ρ : E → DE is a vector bundle map,

• {−,−} : Γ(E)× Γ(E) → Γ(E) is an R-bilinear bracket, and

• (−,−)+ : E ⊗ E → Jn−1E is a non-degenerate, symmetric, bilinear pairing.

Additionally, the structure maps ρ, {−,−}, (−,−)+ should satisfy the properties (i)–
(iv) in the statement of Theorem 2.11. Finally, we speculate that property (v) in
Theorem 2.11 should be replaced by the following identity

({e, e}, e′)+ = ιρ(e′)d(e, e)+,

for all e, e′ ∈ Γ(E). Investigating this definition goes beyond the scopes of this paper.
Hopefully, we will follow this line of thoughts elsewhere.

Remark 2.13. The Dorfman bracket on sections of the higher generalized tangent
bundle TM ⊕ ∧nT ∗M can be deformed by a closed (n + 2)-form [1]. Similarly, the
higher Dorfman bracket can be deformed by a section of Jn+2E . To see this, take
ω ∈ Ωn+2

JE and define a new deformed higher Dorfman bracket

{−,−}ω : Γ(E)× Γ(E) → Γ(E)

by
{e1, e2}ω = {e1, e2}+ ιρ(e2)ιρ(e1)ω. (23)

Now, a long but straightforward computation shows that

{e1, {e2, e3}ω}ω − {{e1, e2}ω, e3}ω − {e2, {e1, e3}ω}ω = ιρ(e3)ιρ(e2)ιρ(e1)dω

For all e1, e2, e3 ∈ Γ(E). In particular, (Γ(E), {−,−}ω) is a Leibniz algebra if and
only if dω = 0, i.e. ω = dµ for some µ ∈ Ωn+1

JE .

3. Higher Dirac-Jacobi structures

In this section we study isotropic and involutive subbundles of a higher omni-Lie
algebroid. So, let E → M be a vector bundle, let n be a positive integer and let
E = En(E) be the higher omni-Lie algebroid of E .

Definition 3.1. A subbundle L ⊂ E is isotropic if (e1, e2)+ = 0 for all e1, e2 ∈ L
and it is involutive when {e1, e2} ∈ Γ(L) for all e1, e2 ∈ Γ(L). A maximal isotropic
and involutive subbundle of E will be called a higher Dirac-Jacobi structure.
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Remark 3.2. Clearly, an isotropic subbundle L ⊂ E is maximal isotropic if and
only if, for every section e ∈ Γ(E) such that (e, e′)+ = 0 for all e′ ∈ Γ(L), e already
belongs to Γ(L).

When E = ℓ is a line bundle, and n = 1, then higher Dirac-Jacobi struc-
tures L ⊂ E are exactly Dirac-Jacobi structures, first studied in [24, 25] (see also
[18]). Dirac-Jacobi structure encompass Jacobi structures, homogeneous Poisson
structures, and hyperplane distributions as special cases [24, 25, 18]. For generic
n we will only consider higher Dirac-Jacobi structures projecting isomorphically on
either DE or JnE .

3.1. Higher Dirac-Jacobi structures projecting isomorphically on DE

We begin with a form µ ∈ Ωn+1
JE . In the following we denote by Bµ : DE →

JnE the vector bundle map d 7→ idµ . The graph of Bµ is

graphBµ , {d+Bµ(d) : d ∈ DE} ⊂ E .

Theorem 3.3. Let µ ∈ Ωn+1
JE . The graph L of Bµ is a maximal isotropic

subbundle and every isotropic subbundle projecting isomorphically onto DE arises
in this way. Additionally, L is involutive, hence a higher Dirac-Jacobi structure, if
and only if µ is closed, hence exact.

Proof. Let µ ∈ Ωn+1
JE . It is obvious that graphBµ ⊂ E is an isotropic subbundle.

It is also easy to see, using Remark 3.2, that graphBµ is maximal isotropic. Con-
versely, let L ⊂ E be an isotropic subbundle projecting isomorphically onto DE .
Then L is the graph of a, necessarily unique, vector bundle map B : DE → JnE .
From isotropicity B is skewsymmetric in the sense that

ιd1B(d2) + ιd2B(d1) = 0

for all d1, d2 ∈ DE . Hence B = Bµ for some µ ∈ Ωn+1(DE,E) and it remains to
check that µ ∈ Ωn+1

JE . So let Φ ∈ gl(E), let d1, . . . , dn ∈ DE , and compute

ιΦµ(d1, d2, . . . , dn) = µ(Φ, d1, d2, . . . , dn)

= −µ(d1,Φ, d2, . . . , dn)

= −B(d1)(Φ, d2, . . . , dn)

= −Φ ◦ λB(d1)(j(d2), . . . , j(dn))

Next we check that λB(d1)(jd2, . . . , jdn) is skew-symmetric in its arguments d1, . . . , dn .
Indeed

λB(d1)(jd2, . . . , jdn) = B(d1)(IdE, d2, . . . , dn) = −ιIdE
µ(d1, . . . , dn)

which is skewsymmetric. This shows that there exists an E -valued (n + 1)-form
ν ∈ Ωn+1(M,E) such that λB(d1)(j(d2), . . . , j(dn)) = ν(j(d1), j(d2), . . . , j(dn)) for all
d1, . . . , dn ∈ DE . Hence µ ∈ Ωn+1

JE and ν = −λµ .

For the second part of the statement, let µ ∈ Ωn+1
JE , and let e1, e2 ∈ Γ(Bµ).

So there are d1, d2 such that ei = di + ιdiµ , i = 1, 2, and

{e1, e2} = [d1, d2]D + Ld1ιd2µ− Ld2ιd2 + dιd2µ.
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The latter belongs to graphBω if and only if

Ld1ιd2µ− Ld2ιd2 + dιd2µ = ι[d1,d2]Dµ. (24)

Using (22) we see that (24) is equivalent to ιd1ιd2dµ = 0, and, from the arbitrariness
of d1, d2 , this is equivalent to dµ = 0.

The above proposition shows that higher Dirac-Jacobi structures of E pro-
jecting isomorphically onto DE are in one-to-one correspondence with closed, hence
exact, forms in Ωn+1

JE . In their turn, (17) shows that exact elements in Ωn+1
JE are in

one-to-one correspondence with E -valued n-forms on M . Summarizing, the assign-
ment

ν 7−→ graphB
dj

∗ν

is a one-to-one correspondence between Ωn(M,E) and higher Dirac-Jacobi struc-
tures projecting isomorphically onto DE . The case when E = ℓ is a line bundle
is particularly interesting. In this case, higher Dirac-Jacobi structures projecting
isomorphically onto Dℓ encompass (pre-)multicontact structures, i.e. corank n dis-
tributions on M [19], as we now show.

Begin with an ℓ-valued n-form ν ∈ Ωn(M, ℓ). By definition, the kernel of ν
is the (non-necessarily smooth) distribution ker ν ⊂ TM on M consisting of tangent
vectors v such that ιvν = 0.

Definition 3.4. An ℓ-valued n-form ν on M is of multicontact type if ker ν has
corank exactly equal to n.

Notice that the kernel of an ℓ-valued n-form ν of multicontact type is a
smooth and regular distribution. When n = 1, Definition 3.4 simply says that
D , ker ν is an hyperplane distribution, hence ν is an everywhere non-zero, hence
surjective, ℓ-valued 1-form on M , and can be interpreted as the projection TM →
TM/D ∼= ℓ . Next proposition generalizes this picture to the possibly higher n case.

Proposition 3.5. Let ν be an ℓ-valued n-form of multicontact type. Then D ,

ker ν is a smooth and regular distribution and there is a canonical isomorphism
∧n(TM/D) ∼= ℓ. Conversely, let D ⊂ TM be a corank n distribution, so that
ℓ = ∧n(TM/D) is a line bundle. Then there exists a canonical ℓ-valued n-form of
multicontact type νD such that D = ker νD . Correspondences

ν 7→ ker ν, and D 7→ νD

are mutually inverse.

Proof. Let ℓ → M be a line bundle and let ν ∈ Ωn(M, ℓ) be of multicontact
type. Denote D , ker ν , and consider the vector bundle map

A : ∧n(TM/D) → ℓ, (v1 +D) ∧ · · · ∧ (vn +D) 7→ ν(v1, . . . , vn).

Clearly A is an isomorphism. Conversely, let D ⊂ TM be a corank n distribution.
Put ℓ = ∧n(TM/D) and let νD : ∧n(TM/D) → ℓ be the n-form defined by

νD(v1, . . . , vn) , (v1 +D) ∧ · · · ∧ (vn +D).
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It is easy to see that ker νD = D , in particular νD is of multicontact type. This
concludes the proof.

3.2. Higher Dirac-Jacobi structures projecting isomorphically on JnE

We now pass to higher Dirac-Jacobi structures L projecting isomorphically
on JnE . In particular, L is the graph of a vector bundle map B : JnE → DE :

L = graphB , {B(µ) + µ : µ ∈ JnE} ⊂ E .

We want to characterize isotropicity and involutivity of L in terms of B . The case
n = 1 is studied in details in [6] (see also [18] for the case n = rankE = 1): in this
case B can be seen as a first order bidifferential operator ∆ : Γ(E)× Γ(E) → Γ(E)
via

∆(e1, e2) = B(de1)(e2).

In particular, ∆ is a derivation in the first entry. Then L is isotropic if and only if ∆
is skew-symmetric, hence it is a bi-derivation. Additionally, L is a Dirac subbundle
if and only if 1) ∆ is a Jacobi bracket on ℓ , if E = ℓ is a line bundle, and 2) ∆ is
the Lie bracket of a, necessarily unique, Lie algebroid structure on E , if rankE > 1.
See [6] for all the details.

Next we assume n > 1. We have the following

Theorem 3.6. Let L ⊂ E be an isotropic subbundle projecting isomorphically
onto JnE . If 1 < n < dimM + 1, then L = 0 ⊕ JnE , and, in this case, L is
necessarily a higher Dirac-Jacobi structure.

Proof. See Appendix A.

It remains to study the case n = dimM +1. In order to state the main result
of this section, we need to give a new definition. So, let E → M be a vector bundle.

Definition 3.7. A volume with values Lie algebras is a section Z of

∧topTM ⊗Hom(∧2E,E)

such that, for every top form Ω ∈ Ωtop(M), 〈Ω, Z〉 ∈ Γ(Hom(∧2E,E)) gives to E
the structure of a bundle of Lie algebras.

In the next proposition we show that, when n = dimM + 1, a higher Dirac-
Jacobi structure in E projecting isomorphically onto JnE is equivalent to a volume
with values Lie algebras Z . Before stating our result we need some remarks. Let
m = dimM , and notice that, in view of (14),

Jm+1E ∼= ∧mT ∗M ⊗ E.

In this case, a vector bundle map B : JnE → DE can be seen as a vector bundle map
B : ∧mT ∗M ⊗E → DE or, equivalently, as a section Z of ∧topTM ⊗Hom(∧2E,E).
Now the bundle Hom(∧2E,E) embeds canonically into Hom(E,DE) via

Hom(∧2E,E) →֒ Hom(E,DE), b 7→ φb
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where
φb(e1)(e2) , b(e1, e2), e1, e2 ∈ E.

Theorem 3.8. Let n = m + 1 = dimM + 1, and assume that Z be a section of
∧mTM⊗Hom(∧2E,E). Denote by BZ : Jm+1E → DE the associated vector bundle
map. The graph L of BZ is a maximal isotropic subbundle of E and every isotropic
subbundle projecting isomorphically onto Jm+1E arises in this way. Additionally, L
is involutive, hence a higher Dirac-Jacobi structure, if and only if Z is a volume with
values Lie algebras.

Proof. As in Remark 2.7 we denote by

j• : Ω
•−1(M,E) → Ω•

JE , λ 7→ dj

∗λ

the embedding. As already remarked, jm+1 is actually a C∞(M)-linear isomorphism.
Hence it comes from a vector bundle isomorphism that we denote again by

jm+1 : ∧
mT ∗M ⊗E → Jm+1E.

Now, let L ⊂ E be a subbundle projecting isomorphically onto Jm+1E . So L is the
graph of a vector bundle map B : Jm+1E → DE . We work locally and fix a volume
form vol on M . Clearly B is completely determined by the composition

E
vol⊗−

// ∧mT ∗M ⊗E
jm+1

// Jm+1E
B

// DE ,

that we denote by
BE : E → DE.

Notice that
jm+1(vol⊗e) = (−1)m vol∧de (25)

for all e ∈ Γ(E). First we want to show that L is isotropic if and only if B = BZ for
some section Z of ∧mTM⊗Hom(∧2E,E) (and, in this case, it is maximal isotropic).
This is equivalent to the following two conditions:

σ ◦BE = 0, and BE(e1)(e2) +BE(e2)(e1) = 0

for all e1, e2 ∈ Γ(E), and, in this case, 〈vol, Z〉 (e1, e2) = BE(e1)(e2). Now, L is
isotropic if and only if

〈B(µ1), µ2〉JE + 〈B(µ2), µ1〉JE = 0

for all µ1, µ2 ∈ Jm+1E . In view of the above discussion, it is enough to consider
µ1, µ2 of the form

µi = jm+1(vol⊗ei) = (−1)m vol∧dei, ei ∈ Γ(E), i = 1, 2.

where we used (25). In this case,

〈B(µ1), µ2〉JE + 〈B(µ2), µ1〉JE

= (−1)m
(
ιBE(e1) (vol∧de2) + ιBE(e2) (vol∧de1)

)

= (−1)m
((
ισ(BE (e1)) vol

)
∧ de2 +

(
ισ(BE (e2)) vol

)
∧ de1

)

+ vol∧ (BE(e1)(e2) +BE(e2)(e1)) .
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Denote by µ ∈ Ωm
JE the latter expression. It vanishes if and only if

ιIdE
µ = 0, and ιIdE

dµ = 0.

The first condition reads
(
ισ(BE(e1)) vol

)
⊗ e2 +

(
ισ(BE (e2)) vol

)
⊗ e1 = 0, (26)

while the second condition simply reads

vol∧ (BE(e1)(e2) +BE(e2)(e1)) .

or, which is the same, simply

BE(e1)(e2) +BE(e2)(e1) = 0.

So, it remains to show that condition (26) holds for all e1, e2 if and only if σ◦BE = 0.
The “if” part is obvious. For the “only if” part choose a local basis (∂i) for X(M),
and a local basis (εα) for Γ(E). Then there are local functions Bi

α such that

σ(BE(εα)) = Bi
α∂i.

Finally, write condition (26) for e1 = εα and e2 = εβ to get

ι∂i vol⊗
(
Bi

αεβ +Bi
βεα

)
= 0 =⇒ Bi

αεβ +Bi
βεα = 0,

which in turn implies Bi
α = 0 for all α, i, hence σ ◦ BE = 0. An easy check reveals

that L is also a maximal isotropic subbundle. This concludes the proof of the first
part of the statement.

For the second part, let Z be a section of ∧mTM ⊗ Hom(∧2E,E), let BZ :
Jm+1E → DE be the associated vector bundle map, and let L ⊂ E be its graph.
Then L is involutive if and only if, for all µ1, µ2 ∈ Ωm+1

JE ,

{BZ(µ1) + µ1, BZ(µ2) + µ2} ∈ Γ(L).

Now, as µ2 has top degree

{BZ(µ1) + µ1, BZ(µ2) + µ2} = [BZ(µ1), BZ(µ2)] + LBZ (µ1)µ2,

which is in Γ(L) if and only if

BZ(LBZ (µ1)µ2) = [BZ(µ1), BZ(µ2)]. (27)

We fix again a local volume form vol so that µi = vol∧dei , ei = Γ(E), i = 1, 2. In
particular

LBZ(µ1)µ2 = LBZ (µ1) vol∧de2 = vol∧dBZ(µ1)(e2), (28)

where we used that σ ◦BZ = 0. Finally, we put

b , 〈vol, Z〉 : ∧2E → E,

hence BZ(µi) = b(ei,−), and, taking into account (28), condition (27) reads

[b(e1,−), b(e2,−)] = b(b(e1, e2),−).

Applying both sides to a third section e3 ∈ Γ(E), after reorganizing the three terms,
we get

b(e1, b(e2, e3)) + b(e2, b(e3, e1)) + b(e3, b(e1, e2)) = 0,

which is the Jacobi identity for b. This concludes the proof.
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4. Higher extended generalized tangent bundle

When E = RM := M × R is the trivial line bundle, the structure maps in the
higher omni-Lie algebroid can be expressed entirely in terms of standard Cartan
calculus. This expressions are sometimes useful, and we present them in this section.
This section will also serve as a dictionary from the trivial [9, 11, 13, 14, 24] to the
non-trivial [12, 18] line bundle case.

We begin with a more general situation which is of an independent interest.
Namely, we assume E → M is a generic vector bundle equipped with a linear
connection ∇. In this case, the short exact sequence (1) splits canonically via

∇ : TM → DE, X 7→ ∇X .

Accordingly, there is a direct sum decomposition of vector bundles

DE ∼= TM ⊕ gl(E) (29)

and every derivation d ∈ Γ(DE) can be uniquely written in the form

d = ∇X + Φ (30)

where X = j(d) and Φ is a section of gl(E). In what follows we will often use (29)
to identify d with the pair (X,Φ).

Now, recall that the short exact sequence (13) splits in the category of graded
vector spaces, but does not split canonically in the category of graded Ω•(M)-
modules. However, connection ∇ defines an Ω•(M)-linear splitting:

j∇• : Ω•−1(M,E) → Ω•
JE , λ 7→ j•λ− e•(d

∇λ),

where d∇ : Ω•−1(M,E) → Ω•(M,E) is the connection “differential”. As a conse-
quence, there is an isomorphism of graded Ω•(M)-modules

Ω•
JE

∼= Ω•(M,E)⊕ Ω•−1(M,E), (31)

identifying µ ∈ Ωk
JE with a pair consisting of an E -valued k -form, and an E -valued

(k − 1)-form, that we denote by (µ̃0, µ̃1) in order to distinguish it from the pair
(µ0, µ1) of Section 2.2. Using the same notation as in Section 2.2, it is easy to see
that

(µ̃0, µ̃1) = (µ0 + d∇µ1, µ1). (32)

Now, we want to describe all natural operations on Ω•
JE in terms of the isomorphisms

(29) and (31). To do this, we first recall two basic facts about linear connections and
their connection differential.

Firstly, any gl(E)-valued form on M , Φ ∈ Ω•(M,E), defines a degree |Φ| ,
graded homomorphism of Ω•(M)-modules, also denoted by

Φ : Ω•(M,E) → Ω•+|Φ|(M,E),

in the obvious way. In particular, the curvature R of ∇ is a gl(E)-valued 2-form
on M , hence it defines a degree 2, graded homomorphism

R : Ω•(M,E) → Ω•+2(M,E),



16 Bi, Vitagliano, Zhang

and we have (d∇)2 = R .

Secondly, the connection ∇ defines a connection in the whole tensor algebra
of E , in particular on gl(E). We denote again by ∇ the induced connection. For
any Φ ∈ Ω•(M, gl(E)) we have

d∇Φ = [d∇,Φ], (33)

where, in the left hand side, d∇ is the differential of the connection in gl(E), Φ is a
gl(E)-valued form, but d∇Φ is interpreted as a graded homomorphism Ω•(M,E) →
Ω•+|Φ|+1(M,E), while, in the right hand side, d∇ is the differential of the connection
in E and Φ is interpreted as a graded homomorphism Ω•(M,E) → Ω•+|Φ|(M,E).

Finally, let ω ∈ Ω•(M), and let d = ∇X +Φ ∈ Γ(DE). The multiplication by
ω , the de Rham differential, the contraction and the Lie derivative along d induce
new operations on Ω•(M,E)⊕ Ω•−1(M,E) via (31). The latter will be denoted by

ω ∧̃ −, d̃, ι̃(X,Φ), L̃(X,Φ),

respectively, in order to distinguish them from the operations on Ω•(M,E)⊕Ω•−1(M,E)
discussed in Section (2.2) (and independent of ∇). A direct computation exploiting
(30), (32) and (33) shows that, for all µ ∈ Ω•

JE ,

ω ∧̃ (µ̃0, µ̃1) = (ω ∧ µ̃0, (−1)|ω|ω ∧ µ̃1) (34)

d̃(µ̃0, µ̃1) = (d∇µ̃0 − R(µ̃1), µ̃0 − d∇µ̃1) (35)

ι̃(X,Φ)(µ̃0, µ̃1) = (ιX µ̃0 + Φ(µ̃1),−ιX µ̃1) (36)

L̃(X,Φ)(µ̃0, µ̃1) =
(
L∇
X µ̃0 + Φ(µ̃0) +

(
d∇Φ− 1

2
ιXR

)
(µ̃1),L

∇
X µ̃1 + Φ(µ̃1)

)
(37)

where L∇
X = [ιX , d

∇]. In particular

ι̃(0,IdE)(µ̃0, µ̃1) = (µ̃1, 0).

When E = RM is the trivial line bundle and ∇ is the trivial connection on
it, Equations (35)–(37) significantly simplify. Indeed, in this case gl(E) = RM and
every derivation d ∈ Γ(DRM) is of the form d = X + f where X = j(d) as usual,
and f ∈ C∞(M). Additionally, µ̃0, µ̃1 are standard differential forms, d∇ = d , the
standard de Rham differential, and R = 0. Hence, in this case,

d̃(µ̃0, µ̃1) = (dµ̃0, µ̃0 − dµ̃1) (38)

ι̃(X,f)(µ̃0, µ̃1) = (ιX µ̃0 + fµ̃1,−ιX µ̃1) (39)

L̃(X,f)(µ̃0, µ̃1) = (LX µ̃0 + fµ̃0 + df ∧ µ̃1,LX µ̃1 + fµ̃1) (40)

Remark 4.1. The operations (38), (39) and (40) are also discussed in [24, 8, 10].
Our version differs from those by a sign, which is due to our conventions about the
isomorphism JnRM

∼= ∧nT ∗M ⊕ ∧n−1T ∗M .

Definition 4.2. The higher extended generalized tangent bundle is the higher
omni-Lie algebroid

E ∼= (TM ⊕ RM)⊗ (∧nT ∗M ⊕ ∧n−1T ∗M). (41)

of the trivial line bundle RM .
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Remark 4.3. In (41) we used the vector bundle splittings DRM
∼= TM ⊕ RM

and JnRM
∼= ∧nT ∗M ⊕ ∧n−1T ∗M , induced by the trivial connection in the trivial

line bundle. For n = 1, we recover Wade’s extended generalized tangent bundle [24].

We conclude this section describing explicitly the structure maps of the higher
generalized tangent bundle in terms of standard Cartan calculus, as promised. Using
(38), (39) and (40), we immediately see that, for any pair of sections (X, f) +
(µ̃0, µ̃1), (Y, g) + (ν̃0, ν̃1) of the higher generalized tangent bundle, we have

((X, f) + (µ̃0, µ̃1), (Y, g) + (ν̃0, ν̃1))+

=
1

2
(ιX ν̃0 + f ν̃1 + ιY µ̃0 + gµ̃1,−ιX ν̃1 − ιY µ̃1)

and

{(X, f) + (µ̃0, µ̃1), (Y, g) + (ν̃0, ν̃1)} = ([X, Y ], X(g)− Y (f))

+ (LX ν̃0 + f ν̃0 + df ∧ ν̃1 − ιY dµ̃0 − g(µ̃0 − dµ̃1),LX ν̃1 + f ν̃1 + ιY (µ̃0 − dµ̃1))

These formulas generalize to the case n ≥ 1 those of [24] (in the case n = 1), up to
a conventional sign.

Remark 4.4. Recall that the graph of a map B = DE → JnE is a higher
Dirac-Jacobi structure if and only if B is the flat map

µ♭ : DE → JnE, d 7→ ιdµ

of a closed, hence exact form µ ∈ Ωn+1
JE . We now apply this result to the case

E = RM to see, from (38) and (39), that the graph of a map B : TM ⊕ RM →
∧nT ∗M ⊕ ∧n−1T ∗M is a higher Dirac-Jacobi structure if and only if B is the flat
map

(µ̃0, µ̃1)♭ : TM ⊕ RM → ∧nT ∗M ⊕ ∧n−1T ∗M, (X, f) 7→ ι̃(X,f)(µ̃0, µ̃1)

of a pair (µ̃0, µ̃1) ∈ Ωn+1(M) ⊕ Ωn(M) such that d̃(µ̃0, µ̃1) = 0, or, which is the
same, µ̃0 = dµ̃1.

A. Proof of Theorem 3.6

In this proof we understand the embedding

e• : Ω
•(M,E) → Ω•

JE

and interpret Ω•(M,E) as a graded Ω•(M)-submodule in Ω•
JE . We work in local

coordinates. So, let dimM = m, and let x1, . . . , xm be coordinates on M , and
∂i :=

∂
∂xi the associated coordinate vector fields. Additionally, let (εα) be a local

frame of sections of E . Locally, a derivation d ∈ Γ(DE) can be uniquely written as
d = X i∂i +Xγ

βε
β
γ , where,
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(1) εβγ is the unique endomorphism Γ(E) → Γ(E) such that εβγ(εα) = δβαεγ , for all
α ,

(2) abusing the notation, we also denote by ∂i the unique derivation with symbol
the i-th coordinate vector field, and such that ∂iεα = 0 for all α ,

and the X i, Xα
β are local functions. It will be also useful to consider the coordinate

volume form
vol := dx1 ∧ · · · ∧ dxm,

and, for every (skewsymmetric) multiindex I = i1 · · · ik , the m− k form

volI = voli1···ik := ι∂i1 · · · ι∂ik vol .

In the following we denote by |I| := k the lenght of a multiindex I = i1 · · · ik .

It easily follows from (14) that Ω•
JE is locally generated, as a graded Ω•(M)-

module, by (εα,dεα). Hence, it is generated, as a C∞(M)-module, by the following
forms:

µI,α := volI ⊗εα, and νJ,α := volJ ∧dεα.

Now, let 1 < n < m + 1, and let B : JnE → DE be a vector bundle map.
Then B is completely determined by

B(µI,α) = Bi
I,α∂i +Bγ

I,αβε
β
γ , |I| = m− n,

and
B(νJ,α) = C i

J,α∂i + Cγ
J,αβε

β
γ , |J | = m− n+ 1.

Compute
〈B(µI,α), µI′,α′〉

JE = Bi
I,αµiI′,α′

〈B(µI,α), νJ,α′〉
JE = Bi

I,ανiJ,α′ + (−1)n−1Bγ
I,αα′µJ,γ

〈B(νJ,α), µI,α′〉
JE = C i

J,αµiI,α′

〈B(νJ,α), νJ ′,α′〉
JE = C i

J,ανiJ ′,α′ + (−1)n−1Cγ
J,αα′µJ ′,γ.

Denote by L the graph of B and recall that L is an isotropic subbundle of
E if and only if

〈B(µ), ν〉JE + 〈B(ν), µ〉JE = 0, for all µ, ν ∈ Ωn
JE . (42)

It is clear that, if B = 0, then L = 0 ⊕ JnE is isotropic, and it is easy to
check that it is actually maximal isotropic and involutive, i.e. a higher Dirac-Jacobi
structure. Conversely, let L be isotropic. Then, using (42) with µ, ν chosen among
the generators µI,α, νJ,α , we find, e.g.:

0 = 〈B(µI,α), µI′,α′〉
JE + 〈B(µI′,α′), µI,α〉JE =

(
δI

′′

I′ δ
α′′

α′ Bi
I,α + δI

′′

I δα
′′

α Bi
I′,α′

)
µiI′′,α′′.

As the lenght of I is at least 1, it follows that Bi
I,α = 0. One can show that the

other coefficients Bγ
I,αβ, C

i
J,α, C

γ
J,αβ all vanish, in a similar way. We leave the obvious

details to the reader.
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