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UPPER-TRIANGULAR LINEAR RELATIONS ON MULTIPLICITIES AND THE

STANLEY–STEMBRIDGE CONJECTURE

MEGUMI HARADA AND MARTHA PRECUP

ABSTRACT. In 2015, Brosnan and Chow, and independently Guay-Paquet, proved the Shareshian–Wachs con-
jecture, which links the Stanley–Stembridge conjecture in combinatorics to the geometry of Hessenberg varieties
through Tymoczko’s permutation group action on the cohomology ring of regular semisimple Hessenberg vari-
eties. In previous work, the authors exploited this connection to prove a graded version of the Stanley–Stembridge
conjecture in a special case. In this manuscript, we derive a new set of linear relations satisfied by the multiplicities
of certain permutation representations in Tymoczko’s representation. We also show that these relations are upper-
triangular in an appropriate sense, and in particular, they uniquely determine the multiplicities. As an application
of these results, we prove an inductive formula for the multiplicity coefficients corresponding to partitions with
a maximal number of parts.
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1. INTRODUCTION

Recent results have forged exciting new connections between algebraic combinatorics and the geom-
etry and topology of certain subvarieties of the flag variety called Hessenberg varieties. In particular, the
Shareshian–Wachs conjecture [7], proven in 2015 by Brosnan and Chow [1] (and independently by Guay-
Paquet [3]), established a new connection between Hessenberg varieties and the long-standing Stanley–
Stembridge conjecture in combinatorics, which states that the chromatic symmetric function of the incompa-
rability graph of a (3+1)-free poset is e-positive, i.e., it is a non-negative linear combination of elementary
symmetric functions. This is a well-known conjecture in the field of combinatorics which is related to vari-
ous other deep conjectures about immanants. These recent results have established the following research
problem: use the properties of Hessenberg varieties to prove the Stanley–Stembridge conjecture. The problem can
in fact be made more specific, as follows. The results of Brosnan–Chow and Guay-Paquet connect the dot
action representation, defined by Tymoczko in [10] on the cohomology groups of regular semisimple Hes-
senberg varieties, to the Stanley–Stembridge conjecture. From this it follows that if Tymoczko’s dot action
representation is a permutation representation in which each point stabilizer is a Young subgroup, then
the Stanley–Stembridge conjecture is true. We refer the reader to [4, Introduction and Section 2] for a more
leisurely account of the historical background and motivation for this circle of ideas.

There are already substantive partial results to the problem stated above. Most recently, we used Hes-
senberg varieties to prove a graded refinement of the Stanley–Stembridge conjecture in the so-called abelian
case by giving an inductive description of the nontrivial permutation representations that appear in that
case. [4]. Moreover, in that manuscript we additionally stated a conjecture which gives, in the general case,
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an inductive description of the multiplicities of certain nontrivial permutation representations [4, Conjec-
ture 8.1]. Our main motivation for the present manuscript was to prove this conjecture using the geometry
and combinatorics of Hessenberg varieties. In doing so, we discovered new properties obeyed by the mul-
tiplicities of the so-called tabloid representations in Tymoczko’s representation, as we now explain.

We now describe in more detail the results of this manuscript. Hessenberg varieties in type A are subva-
rieties of the full flag variety Fℓags(Cn) of nested sequences of linear subspaces in Cn. These varieties are
parameterized by a choice of linear operator X ∈ gl(n,C) and Hessenberg function h : [n] = {1, 2, . . . , n} →
[n] = {1, 2, . . . , n}. (For details see Section 2.) For the purpose of this discussion it suffices to consider only
the case when the operator is a regular semisimple operator S in gl(n,C); we denote the corresponding
Hessenberg variety by Hess(S, h). As mentioned above, Tymoczko defined [10] an action of the symmetric
group Sn on H2i(Hess(S, h)) for each i ≥ 0. From the work of Shareshian–Wachs, Brosnan–Chow, and
Guay-Paquet it follows that in order to prove the (graded) Stanley–Stembridge conjecture, it suffices to
prove that the cohomology H2i(Hess(S, h)) for each i is a non-negative combination of the tabloid repre-
sentations Mµ [2, Part II, Section 7.2] of Sn for µ a partition of n. In other words, given the decomposition

(1.1) H2i(Hess(S, h)) =
∑

µ⊢n

cµ,iM
µ

in the representation ring Rep(Sn) of Sn, it suffices to show that the coefficients cµ,i are non-negative.
We take a moment to mention here that the coefficients cµ,i appearing in (1.1) were previously known to

satisfy a matrix equation
∑

µ⊢n

Nλµcµ,i = yλ,i

where the yλ,i are derived from Betti numbers of certain regular Hessenberg varieties and Nλµ =
∑

ν⊢n Kν,λKν,µ

where the Kν,λ,Kν,µ are the Kostka numbers [4, Section 2]. However, the Kostka numbers and the matrix
N are well-known to be computationally unwieldy, and it was not clear (to us) how to exploit the above
matrix equation to prove the non-negativity of the cµ,i. Another motivation for this manuscript was to find
other relations satisfied by these coefficients which are more computationally tractable.

The main results of this manuscript are as follows. Let n be a positive integer and h : [n] → [n] a
Hessenberg function. Let i ≥ 0 be a fixed non-negative integer and Xi = (cµ,i) denote the (column) vector
whose entries are the coefficients appearing in (1.1) above.

• In Corollary 3.7, we derive a family of (new) matrix equations AXi = Wi satisfied by the column
vectors Xi for i ≥ 0. The matrix A = (A(λ, µ))λ,µ⊢n is obtained by counting certain subsets of the
permutation group Sn using the data of a pair of partitions λ, µ ⊢ n, and is independent of both
the choice of Hessenberg function h and the integer i ≥ 0. The column vectors Wi are obtained by
counting certain subsets of the permutation group Sn using the data of a partition λ, the Hessenberg
function h, and the integer i ≥ 0.

• In Theorem 4.5, we prove that the above matrix A = (A(λ, µ)) is upper-triangular, with 1’s along
the diagonal, with respect to an appropriately chosen linear order on the set Par(n) of partitions
of n. We additionally prove an inductive formula for its matrix entries (Proposition 4.1, cf. also
Corollary 4.14).

• Generalizing results of [4, Section 4], we obtain a sink set decomposition of the subsets of Sn defin-
ing the column vector Wi above (Proposition 5.10). As a consequence we obtain an inductive for-
mula for the entries of Wi for the special case in which λ has the maximal possible number of parts
(Theorem 5.25).

• As an application of the above results, we prove [4, Conjecture 8.1]; more precisely, we obtain an
inductive formula for the coefficients cµ,i in (1.1) for the special case in which µ has the maximal
possible number of parts (Theorem 6.1), thus providing further evidence for the Stanley–Stembridge
conjecture.

Some remarks are in order. Firstly, the main contribution of this manuscript are the new linear relations
in Corollary 3.7; most particularly, the upper-triangularity of the matrix A gives substantial reason to ex-
pect that these matrix equations will play a significant role in the solution to the full Stanley–Stembridge
conjecture. Secondly, we are aware that there exist other proofs of our conjecture as stated in [4, Conjecture
8.1], using the coproduct structure on the ring of symmetric functions [5]. Thirdly, in his original paper on
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the subject, Stanley derives a different set of linear relations obeyed by the coefficients cλ [8, 9, Theorem
3.4, cf. also the erratum posted on Stanley’s personal webpage], in which he uses a notion of sink sequences
which appear to be related to our sink-set decompositions.

We now give a brief overview of the contents of the manuscript. Section 2 is devoted to the setup and
definitions of appropriate notation and terminology. In Section 3 we derive the new matrix equations
AXi = Wi, and in Section 4 we prove that A is upper-triangular, with 1’s along the diagonal. We also derive
the inductive formula for the numbers A(λ, µ). In Section 5 we derive a separate inductive formula for the
entries of the “constant vector” Wi. Finally, in Section 6 we prove Conjecture 8.1 from [4].

Acknowledgements. We are grateful for the hospitality and financial support of the Fields Institute for
Research in the Mathematical Sciences in Toronto, Canada. The Fields Research Fellowship allowed us to
spend a fruitful month together at the Fields Institute in August 2018, during which we had many of the
ideas in this manuscript.

2. BACKGROUND AND TERMINOLOGY

In this section we briefly recall the setting of our paper. For a more leisurely account we refer to [4]. Hes-
senberg varieties in Lie type A are subvarieties of the (full) flag variety Fℓags(Cn), which is the collection
of sequences of nested linear subspaces of Cn:

Fℓags(Cn) := {V• = ({0} ⊂ V1 ⊂ V2 ⊂ · · ·Vn−1 ⊂ Vn = C
n) | dimC(Vi) = i for all i = 1, . . . , n}.

A Hessenberg variety in Fℓags(Cn) is specified by two pieces of data: a Hessenberg function, that is, a
nondecreasing function h : {1, 2, . . . , n} → {1, 2, . . . , n} such that h(i) ≥ i for all i, and a choice of an
element X in gl(n,C). We frequently write a Hessenberg function by listing its values in sequence, i.e.,
h = (h(1), h(2), . . . , h(n)). The Hessenberg variety associated to the linear operator X and Hessenberg
function h and is defined as

(2.1) Hess(X, h) = {V• ∈ Fℓags(Cn) | XVi ⊆ Vh(i) for all i}.

When the linear operator X is chosen to be a regular semisimple operator S (i.e., diagonalizable with
distinct eigenvalues), we refer to the corresponding Hessenberg variety Hess(S, h) as a regular semisimple
Hessenberg variety. Tymoczko defined an action of the symmetric group Sn on the cohomology of a
regular semisimple Hessenberg variety H∗(Hess(S, h)) which is called the dot action [10]. This action
preserves the grading on cohomology, so in fact Sn acts on each H2i(Hess(S, h)) for i ≥ 0 (the cohomology
is concentrated in even degrees). For µ a partition of n, we denote by Mµ the complex vector space with
basis given by the set of tabloids of shape µ. Since Sn acts on the set of tabloids, Mµ is a Sn-representation,
and is called the tabloid representation (corresponding to µ) [2, Part II, Section 7.2]. It is well-known that
the set of these tabloid representations form a Z-basis for the representation ring Rep(Sn) of Sn, so we can
decompose H∗(Hess(S, h)) with respect to Tymoczko’s dot action as follows:

(2.2) H∗(Hess(S, h)) =
∑

µ⊢n

cµM
µ and H2i(Hess(S, h)) =

∑

µ⊢n

cµ,iM
µ

where cµ, cµ,i ∈ Z.
As explained in the Introduction, the motivation of this manuscript is to prove the graded Stanley–

Stembridge conjecture. We refer the reader to [4] for more history; for the present manuscript we take the
‘graded Stanley–Stembridge conjecture’ to mean the following.

Conjecture 2.1. Let n be a positive integer, h : [n] → [n] be a Hessenberg function, and S be a regular semisimple
linear operator. Then the integers cµ,i appearing in (2.2) are non-negative.

2.1. Hessenberg data. For later use, we introduce some Lie-theoretic and combinatorial notation associ-
ated to Hessenberg varieties. We fix a Hessenberg function h : [n] → [n].

Let t ⊆ gl(n,C) denote the Cartan subalgebra of diagonal matrices and let ti denote the coordinate on t

reading off the (i, i)-th matrix entry along the diagonal. Denote the root system of gl(n,C) by Φ. Then the
positive roots of gl(n,C) are Φ+ = {ti− tj | 1 ≤ i < j ≤ n} where ti− tj ∈ Φ+ corresponds to the root space
spanned by the elementary matrix Eij , denoted gti−tj . Similarly, the negative roots of gl(n,C) are Φ− =

{ti− tj | 1 ≤ j < i ≤ n}. We denote the simple positive roots in Φ+ by ∆ = {αi := ti − ti+1 | 1 ≤ i ≤ n− 1}.
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Finally, it is clear that each root ti − tj ∈ Φ can be uniquely identified with an ordered pair (i, j), with i 6= j.
We will make this identification below whenever it is notationally convenient.

For each permutation w ∈ Sn, let

inv(w) := {(i, j) | i > j and w(i) < w(j)}

denote the set of inversions of w. Note that we adopt the nonstandard notation of listing the larger number
in the pair (i, j) ∈ inv(w) first. This is because we frequently identity inv(w) with a subset of negative roots.
Under the correspondence between ordered pairs and roots discussed in the last paragraph, this set indexes
the negative roots which become positive under the action of w. This action can be expressed concretely as
w(ti − tj) = tw(i) − tw(j).

The Hessenberg function h : [n] → [n] uniquely determines two subsets of roots as follows:

Φ−
h := {ti − tj | i > j and i ≤ h(j)} and Φh := Φ−

h ⊔ Φ+.

Let invh(w) := inv(w) ∩ Φ−
h ; this set of inversions is used later to compute the Betti numbers of certain

Hessenberg varieties.
Recall that an ideal I of Φ− is defined to be a collection of negative roots such that if α ∈ I , β ∈ Φ−, and

α+ β ∈ Φ−, then α+ β ∈ I . The relation defining Φ−
h immediately implies that

Ih := Φ− \ Φ−
h

is an ideal in Φ−. We call it the ideal corresponding to h.
Given an ideal I ⊆ Φ−, its lower central series is the sequence of ideals defined inductively by

I1 = I and Ij = {γ + β | γ, β ∈ Ij−1 and γ + β ∈ Φ−} for all j ≥ 2.

The height of an ideal I is the length of its lower central series and we denote it by ht(I).

Example 2.2. Let h = (2, 4, 4, 5, 5). Then

Φ−
h = {t2 − t1, t3 − t2, t4 − t2, t4 − t3, t5 − t4} and Ih = {t3 − t1, t4 − t1, t5 − t1, t5 − t2, t5 − t3}

and ht(Ih) = 2 since

(Ih)2 = {t5 − t1} and (Ih)3 = ∅.

The data of a Hessenberg function can also be encoded by way of a graph. Given a Hessenberg function
h : [n] → [n], the incomparability graph associated to h is the graph Γh = (Vh, Eh) with vertex set Vh = [n]
and edge set Eh = {{i, j} | i < j and h(i) ≥ j}. Notice that the edges of Γh correspond bijectively to the
roots in Φ−

h .

Example 2.3. The graph corresponding to the Hessenberg function h = (2, 4, 4, 5, 5) from Example 2.2 is

1 2 3 4 5

In many ways, the combinatorial structure of the graph Γh and the ideal Ih mirror one another. For ex-
ample, [4, Proposition 5.8] shows that m(Γh) = ht(Ih) + 1, where m(Γh) denotes the maximum cardinality
of an independent subset of vertices (that is, vertices which are pairwise nonadjacent) in Γh. The reader can
confirm this equation for the Hessenberg function h = (2, 4, 4, 5, 5) appearing in Example 2.2 and Exam-
ple 2.3. This correspondence is essential for the arguments of Section 5 below. Furthermore, the structure
of the ideal Ih, and that of the graph Γh, is closely connected to the dot action representation. The following
theorem relates the multiplicities of the tabloid representations appearing in (2.2) with the height of Ih. This
is a restatement of [4, Corollary 5.12].

Theorem 2.4. Let cµ and cµ,i be the coefficients appearing in (2.2). Then cµ = cµ,i = 0 for all µ ⊢ n with more than
m(Γh) = ht(Ih) + 1 parts.
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2.2. Partitions and subsets of simple positive roots. In this section we establish some combinatorial ter-
minology and notation which we use below. Let n be a positive integer.

Definition 2.5. Let λ ⊢ n. We define Jλ to be the set of simple positive roots associated to λ as follows:

Jλ := ∆ \ {αλ1
, αλ1+λ2

, . . . , αλ1+···+λk−1
} ⊆ ∆.

We illustrate in Example 2.6 how the above definition can be visualized. Note that any partition of n
corresponds to a Young diagram with n boxes, and by slight abuse of notation we denote both the partition
λ = (λ1, λ2, · · · , λk) and the corresponding Young diagram as λ. We also identify the set of simple positive
roots ∆ with the set [n− 1] := {1, 2, . . . , n− 1} by the association i 7→ αi.

Example 2.6. Let λ = (5, 4, 4, 2) ⊢ 15. Using the simplest Young tableau of this diagram which fills the boxes of λ
with the integers {1, 2, . . . , n} in order starting from the top left and reading across rows from left to right, starting
from the top row to the bottom row, as indicated below, the set Jλ = ∆ \ {α5, α9, α13} corresponds to those boxes
which are not at the rightmost end of a row. In the figure below, the boxes corresponding to simple roots that are
contained in Jλ are shaded in grey.

1 2 3 4 5

6 7 8 9

10 11 12 13

14 15

Recall that the dual partition λ∨ of λ is obtained by swapping the rows and the columns of the Young
diagram of λ. We will also be interested in the set Jλ∨ corresponding to λ∨. In fact it will be useful to
introduce notation for the complement of Jλ∨ . We let

(2.3) Jλ := ∆ \ Jλ∨ .

Example 2.7. Continuing Example 2.6, let λ = (5, 4, 4, 2) ⊢ 15. Then it is straightforward to see that λ∨ =
(4, 4, 3, 3, 1) and Jλ∨ = ∆ \ {α4, α8, α11, α14} and that Jλ := ∆ \ Jλ∨ = {α4, α8, α11, α14}. Below, the shaded
boxes in the figure on the left correspond to the positive simple roots contained in Jλ∨ , while the shaded boxes in the
figure on the right correspond to those contained in Jλ := ∆ \ Jλ∨ . Note that the diagram for λ is drawn, but the
labelling of the boxes corresponds to the simplest Young tableau of the dual partition λ∨. The box labelled 15 in the
diagram is contained in neither Jλ∨ nor Jλ since both sets are contained in [n− 1], not [n].

1 5 9 12 15

2 6 10 13

3 7 11 14

4 8

1 5 9 12 15

2 6 10 13

3 7 11 14

4 8

We will also be interested in certain subdiagrams of a Young diagram λ. First recall that for λ =
(λ1, · · · , λk) a partition with λk > 0, the integer k is often called the number of parts of λ (also known
as the length of λ). By definition, the number of parts of λ is equal to λ∨

1 , the first entry of the dual partition
λ∨. Thus we will sometimes use the notation λ∨

1 for the number of parts.
We will also need to refer to the number of boxes in the bottom row of λ, which is equal to λλ∨

1
; however,

to avoid cumbersome notation we denote this as r(λ) and call it the bottom length of λ. (Thus, if λ has k
parts, then r(λ) = λk.) It follows from the definitions that the maximum number of boxes in a column of λ
is exactly λ∨

1 , and there are precisely r(λ) many such columns in λ.
In the inductive arguments given in the later sections, we will need to remove columns from λ as follows.

Definition 2.8. Let λ be a partition of n. Let ℓ be a positive integer. Then we denote by λ[ℓ] the partition
obtained by removing the leftmost ℓ columns from the Young diagram associated to λ.

Example 2.9. Let λ = (6, 4, 2, 1) and let ℓ = 2. Then λ[2] is the partition λ = (4, 2) obtained by removing the
leftmost 2 columns of λ. In the figure below, the boxes that are removed are shaded, and the white boxes correspond to
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the smaller partition λ[2].

Remark 2.10. Using the terminology and notation introduced above, we note that if λ is a partition of n with exactly
k parts and r = r(λ) and ℓ ∈ Z with 1 ≤ ℓ ≤ r − 1, then the partition λ[ℓ] still has k parts, while λ[r] is a partition
of n− rk which has strictly fewer than k parts.

Definition 2.11. Let λ be a partition. We say a consecutive sequence {s, s+ 1, . . . , s + t} ⊆ [λ1] is a step of
λ if

λ∨
s = λ∨

s+1 = · · · = λ∨
s+t

and if this sequence is maximal with respect to this property, i.e., assuming the quantities are defined, both
λ∨
s−1 6= λ∨

s and λ∨
s+t+1 6= λ∨

s+t (with the convention that λ∨
0 = 0).

The terminology above is motivated by viewing the Young diagram of λ as an (upside-down) staircase.

Example 2.12. If λ = (8, 5, 3, 2) so that λ∨ = (4, 4, 3, 2, 2, 1, 1, 1) as in the diagram below

then there are four steps of λ, namely A1 = {1, 2}, A2 = {3}, A3 = {4, 5}, A4 = {6, 7, 8}. Each step gives the labels
of a set of columns (starting from the left) of λ with the same length.

It is clear that every column in λ belongs to exactly one step of λ, giving us the following decomposition.

Definition 2.13. The step decomposition of λ ⊢ n is the decomposition

[λ1] = A1 ⊔ A2 ⊔ · · · ⊔Astep(λ)

where each Ai is a step of λ and step(λ) is a positive integer which we call the number of steps (or step
number) of λ. We will always assume that the Ai are listed in increasing order, i.e. A1 = {1, 2, · · · , a1},
A2 = {a1 + 1, . . . , a2}, and so on, for some sequence of integers 1 ≤ a1 < a2 < · · · < astep(λ) = λ1.

3. LINEAR EQUATIONS SATISFIED BY REPRESENTATION MULTIPLICITIES

The main result of this section, Theorem 3.2, gives a set of linear equations satisfied by the multiplicity
coefficients cµ and cµ,i of equation (2.2). In Corollary 3.7 below, we also reformulate our main result into a
family of matrix equations by applying Theorem 3.2 to the special cases when the set J below is chosen to
be Jλ for a partition λ of n. We follow the notation introduced in Section 2.

The following sets of permutations play a key role in the analysis below.

Definition 3.1. Let J ⊆ ∆ be any subset of the set ∆ of simple positive roots and i ∈ Z, i ≥ 0. We define

Wi(J, h) := {w ∈ Sn | w−1(J) ⊆ Φh and w−1(∆ \ J) ⊆ Ih and |invh(w)| = i} ⊆ Sn.

We also define

W(J, h) :=
⊔

i

Wi(J, h) = {w ∈ Sn | w−1(J) ⊆ Φh and w−1(∆ \ J) ⊆ Ih} ⊆ Sn

where the union is taken over all i such that Wi(J, h) 6= ∅.

It will be convenient to introduce the following notation. Let w ∈ Sn be a permutation. Then

(3.1) DesL(w) = {αi ∈ ∆ | w−1(i) > w−1(i + 1)}

is the set of left descents of w and

(3.2) DesR(w) = {αi ∈ ∆ | w(i) > w(i + 1)}
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is the set of right descents of w. Both of these sets have a natural interpretation in terms of the one-line
notation for w. The set of left descents corresponds to the set of ordered pairs (i, i+1) such that i+1 appears
before i in the one-line notation for w. Similarly, the set of right descents corresponds to the pairs (i, i + 1)
such that, in the one-line notation of w, the (i+ 1)-st entry is less than the i-th entry.

For two subsets J and K of ∆ we define

(3.3) D(J,K) := {w ∈ Sn | DesL(w) = ∆ \ J and DesR(w) ⊆ ∆ \K}.

The goal of this section is to prove the following.

Theorem 3.2. Let J ⊆ ∆ and i ∈ Z, i ≥ 0. Then

|Wi(J, h)| =
∑

µ⊢n

cµ,i |D(J, Jµ)|.(3.4)

and

|W(J, h)| =
∑

µ⊢n

cµ |D(J, Jµ)|.(3.5)

We organize this section as follows. In Section 3.1 we prove Theorem 3.2 modulo two elementary lem-
mas, and in Section 3.2 we record the proofs of these two lemmas. Finally, in Section 3.3 we re-organize a
certain subset of these linear relations obtained in Theorem 3.2, namely, those for which J = Jλ, into a set
of matrix equations, one for each i ≥ 0.

3.1. Proof of Theorem 3.2. The proof of Theorem 3.2 relies on three results which we list below. The first
is a result of Brosnan–Chow [1] which relates the representation multiplicities in (2.2) to the Betti numbers
of certain regular Hessenberg varieties. The last two are straightforward inclusion-exclusion arguments.

We first state a theorem of Brosnan and Chow [1, Theorem 127]. For a given subset J ⊆ ∆, let XJ ∈
gl(n,C) be the regular element such that XJ = NJ + SJ where

NJ =
∑

αi∈J

Ei,i+1

and SJ is a semisimple linear operator such that NJ is a regular nilpotent element in the Levi subalgebra
zg(SJ). A Hessenberg variety associated to such a regular operator XJ as above is called a regular Hessen-
berg variety. Moreover, let SJ := 〈sα : α ∈ J〉 be the subgroup of the symmetric group generated by the
simple reflections corresponding to the simple roots in J . The theorem of Brosnan and Chow identifies the
dimension of the subspaces H2i(Hess(S, h))SJ with the dimension of the cohomology of a certain regular
Hessenberg variety.

Theorem 3.3. (Brosnan–Chow, [1, Theorem 127]) Let n be a positive integer and h : [n] → [n] a Hessenberg
function. Let XJ and SJ for J ⊆ ∆ be as above, and S be a regular semisimple operator. Then for each non-negative
integer i, we have

dim(H2i(Hess(S, h)))SJ = dimH2i(Hess(XJ , h)).

The next two results are straightforward inclusion-exclusion arguments which are based on a combina-
torial formula for the Betti numbers of regular Hessenberg varieties obtained by the second author [6].

Lemma 3.4. Let J ⊆ ∆, h any Hessenberg function, and i ∈ Z, i ≥ 0. Then

|Wi(J, h)| =
∑

I : J⊆I

(−1)|I|−|J| dim(H2i(Hess(XI , h))).(3.6)

Lemma 3.5. Let µ be a partition of n and J ⊆ ∆. Then

|D(J, Jµ)| =
∑

I:J⊆I

(−1)|I|−|J| dim(Mµ)SI .(3.7)

We now give a proof of Theorem 3.2, assuming Lemma 3.4 and Lemma 3.5.
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Proof of Theorem 3.2. We have:

|Wi(J, h)| =
∑

I:J⊆I

(−1)|I|−|J| dim(H2i(Hess(XI , h))) by Lemma 3.4

=
∑

I:J⊆I

(−1)|I|−|J|
∑

µ⊢n

cµ,i dim(Mµ)SI by Theorem 3.3

=
∑

µ⊢n

cµ,i





∑

I:J⊆I

(−1)|I|−|J| dim(Mµ)SI





=
∑

µ⊢n

cµ,i|D(J, Jµ)| by Lemma 3.5

which proves equation (3.4). Equation (3.5) follows directly from (3.4) by summing over i. �

3.2. Möbius inversion on the Boolean lattice. We now give proofs of the elementary lemmas used in the
previous section. Both follow from an application of the well-known Möbius inversion formula on the
Boolean lattice, which is a version of the principle of inclusion-exclusion. We will need the following Betti
number formula [6, Lemma 1].

Theorem 3.6. Let J ⊆ ∆ and h be any Hessenberg function. Then for each non-negative integer i, we have

dim(H2i(Hess(XJ , h))) = |{w ∈ Sn | w−1(J) ⊆ Φh and |invh(w)| = i}|.

Using the above, we first prove Lemma 3.4.

Proof of Lemma 3.4. Let Wi := {w ∈ Sn | |invh(w)| = i} and for each I ⊆ ∆ define fI : Wi → {0, 1} as
follows:

fI(w) =

{

1 if w−1(I) ⊆ Φh and w−1(∆ \ I) ⊆ Ih

0 else.

For each I ⊆ ∆, let us also define a function gI : Wi → {0, 1} by

gI(w) =

{

1 if w−1(I) ⊆ Φh

0 else.

Then it is clear that fJ(w) = 1 if and only if w ∈ Wi(J, h), and thus

|Wi(J, h)| =
∑

w∈Wi

fJ(w).

Next we examine the RHS of (3.6). By Theorem 3.6 the RHS is equal to
∑

I:J⊆I

(−1)|I|−|J||{w ∈ Wi | w
−1(I) ⊆ Φh}|.

On the other hand, from the definition of gI it is clear that this is in turn equal to
∑

I:J⊆I

(−1)|I|−|J|
∑

w∈Wi

gI(w) =
∑

w∈Wi

∑

I:J⊆I

(−1)|I|−|J|gI(w).

Therefore, to prove the proposition it would suffice to show that

fJ =
∑

I:J⊆I

(−1)|I|−|J|gI

but this follows immediately from the Möbius inversion formula on the Boolean lattice, because gJ =
∑

I:J⊆I fI by the definitions of gJ and fI . This completes the proof. �

To prove Lemma 3.5 we first recall the following well-known description of the numbers dim(Mµ)SI ,
namely:

(3.8) dim(Mµ)SI = |{w ∈ Sn | DesL(w) ⊆ ∆ \ I and DesR(w) ⊆ ∆ \ Jµ}|.
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Proof of Lemma 3.5. Consider Aµ := {w ∈ Sn | DesR(w) ⊆ ∆ \ Jµ}. On Aµ define for each I ⊆ ∆ a function
fI : Aµ → {0, 1} by

fI(w) =

{

1 if DesL(w) = ∆ \ I

0 else.

On Aµ also define for each I ⊆ ∆ a function gI as follows:

gI(w) =

{

1 if DesL(w) ⊆ ∆ \ I

0 else.

Then it is clear that |D(J, Jµ)| =
∑

w∈Aµ
fJ(w) by definition of f .

We now examine the RHS of (3.7). We have

RHS =
∑

I:J⊆I

(−1)|I|−|J| dim(Mµ)SI

=
∑

I:J⊆I

(−1)|I|−|J|
∣

∣{w ∈ Sn | DesL(w) ⊆ ∆ \ I and DesR(w) ⊆ ∆ \ Jµ}
∣

∣ by (3.8)

=
∑

I:J⊆I

(−1)|I|−|J|
∑

w∈Aµ

gI(w)

=
∑

w∈Aµ

∑

I:J⊆I

(−1)|I|−|J|gI(w).

Thus it suffices to show that

fJ(w) =
∑

I:J⊆I

(−1)|I|−|J|gI

but, as in the proof of the previous lemma, this follows immediately from the Möbius inversion formula on
the Boolean lattice, since gJ =

∑

I:J⊆I fI from the definitions of gJ and fI . This completes the proof. �

3.3. A new matrix equation. We now introduce the matrix equation that is the subject of the next section.
We will be particularly interested in Wi(J, h) in the case that J = Jλ and we introduce notation for the
cardinality of the sets in (3.3) for the case J = Jλ and K = Jµ for two partitions λ, µ ⊢ n. Let

(3.9) A(λ, µ) := |D(Jλ, Jµ)|.

Using the above notation, Theorem 3.2 can be rewritten as follows. Let Par(n) denote the set of partitions
of n.

Corollary 3.7. Let A = (A(λ, µ))λ,µ∈Par(n) be the matrix whose coefficients are the integers (3.9) and i ∈ Z, i ≥ 0.
Let Xi be the (column) vector whose entries are the cµ,i ∈ Z specified in (2.2). Let Wi be the (column) vector whose
entries are the integers |Wi(Jλ, h)|. Then AXi = Wi.

Note that the indexing set for the matrix entries of A is the set Par(n) of all partitions of n. In the
next section we will show that the matrix A has computationally convenient properties with respect to an
appropriate choice of total order on Par(n).

4. UPPER-TRIANGULARITY OF A AND AN INDUCTIVE FORMULA FOR THE MATRIX ENTRIES

In the previous section, we saw that the multiplicity coefficients cµ,i in (2.2) obey a set of linear equations
which can be interpreted as a matrix equation AXi = Wi. Moreover, since there exists such a linear equation
for each choice of a partition λ ⊢ n, and since the indexing set of the coefficients cµ,i is also the set of
partitions of n, the matrix A = (A(λ, µ)) is in fact a square matrix.

The main results of this section are Proposition 4.1 and Theorem 4.5. Proposition 4.1 states that certain
matrix entries of A have an inductive description or are equal to 0. Theorem 4.5 states that – with respect to
an appropriately defined total order on the set of partitions of n – the matrix A is upper-triangular with 1’s
along the diagonal.

We begin by stating the first main result. Recall that λ[ℓ] denotes the partition obtained by deleting ℓ
columns from λ as in Definition 2.8.
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Proposition 4.1. Let λ ⊢ n be a partition with exactly k parts and let r = λk be the bottom length of λ. Let µ ⊢ n
be a partition of n with at most k parts. Then

(1) if µk < λk (so in particular if µk = 0, i.e., µ has strictly fewer than k parts), then

D(Jλ, Jµ) = ∅ and therefore A(λ, µ) = 0

and
(2) if µk ≥ λk, then for any ℓ ∈ Z with 0 ≤ ℓ ≤ r, there exists a natural bijection between the sets

D(Jλ, Jµ) and D(Jλ[ℓ], Jµ[ℓ])

and in particular we have
A(λ, µ) = A(λ[ℓ], µ[ℓ]).

We will prove Proposition 4.1 in due course, but we first state the second main result of this section,
which is an upper-triangularity property of the matrix A. First, we define an appropriate total order on the
set of partitions of n.

Definition 4.2. Let n be a positive integer and let Par(n) denote the set of partitions of n. We define a total
ordering � on Par(n) as follows:

(4.1) µ � λ ⇔ µ∨ ≤lex λ∨.

Example 4.3. Let n = 6 and consider λ = (3, 3) and µ = (4, 1, 1). Note that λ and µ are incomparable in the dom-
inance order, but λ∨ = (2, 2, 2) and µ∨ = (3, 1, 1, 1) so λ∨ <lex µ∨ and therefore, according to our definition (4.1),
we have λ ≺ µ.

Remark 4.4. It is straightforward to see that lexicographical order of Par(n), which is a total order, respects the
dominance (partial) ordering on Par(n), in the sense that µ ✂ λ implies µ ≤lex λ. It is also well known that µ ✂ λ
if and only if their dual partitions satisfy the reverse relation, i.e. λ∨ ✂ µ∨. It follows that the total order � of
Definition 4.2 on Par(n) respects the reversed dominance order.

We now state our upper-triangularity theorem.

Theorem 4.5. The matrix (A(λ, µ))λ,µ∈Par(n), written with respect to the total order (4.1) on the indexing set
Par(n), is upper-triangular with 1’s along the diagonal. Equivalently, for λ, µ ∈ Par(n), we have the following:

(1) If µ ≺ λ with respect to the total order (4.1) then D(Jλ, Jµ) = ∅, so in particular, A(λ, µ) = 0.
(2) The set D(Jλ, Jλ) contains a unique element, so in particular, A(λ, λ) = 1.

Example 4.6. When n = 2 we get the matrix:

(A(λ, µ))λ,µ∈Par(2) =

[

A((2), (2)) A((2), (1, 1))
A((1, 1), (2)) A((1, 1), (1, 1))

]

=

[

1 1
0 1

]

and similarly for n = 3 we have Par(3) = {(3) ≺ (2, 1) ≺ (1, 1, 1)} and it can be checked directly that we get the
matrix

(A(λ, µ))λ,µ∈Par(3) =





A((3), (3)) A((3), (2, 1)) A((3), (1, 1, 1))
A((2, 1), (3)) A((2, 1), (2, 1)) A((2, 1), (1, 1, 1))
A((1, 1, 1), (3)) A((1, 1, 1), (2, 1)) A((1, 1, 1), (1, 1, 1))



 =





1 1 1
0 1 2
0 0 1



 .

The remainder of this section is devoted to the proofs of Proposition 4.1 and Theorem 4.5. We need
several preliminaries. For what follows, we frequently identify ∆ with the set [n− 1] = {1, 2, . . . , n− 1} using the
bijection i ↔ αi.

Let J = {i1 < i2 < · · · < iℓ} ⊆ ∆ ∼= [n − 1] be a subset of the positive simple roots. The staircase
decomposition (of [n]) corresponding to J is the decomposition

[n] = {i0 = 1, 2, . . . , i1} ⊔ {i1 + 1, i1 + 2, · · · , i2} ⊔ · · · ⊔ {iℓ−1 + 1, · · · , iℓ} ⊔ {iℓ + 1, · · · , n = iℓ+1}.

where by convention we set i0 := 1 and iℓ+1 := n. Each subset appearing in the above decomposi-
tion is called a staircase. The motivation for the “staircase” terminology comes from studying the set of
right descents of a permutation w ∈ Sn. It follows directly from the definition of DesR(w) in (3.2) that if
DesR(w) ⊆ J = {i1 < i2 < · · · < iℓ} ⊆ ∆ ≃ [n− 1] then for all 0 ≤ s ≤ ℓ we have

w(is + 1) < w(is + 2) < · · · < w(is+1)
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on each staircase {is + 1, is + 2, . . . , is+1} of J .
Given a subset J of cardinality ℓ, the number of staircases in its associated staircase decomposition,

which we denote F(J), is ℓ+ 1, i.e.
F(J) := |J |+ 1 = ℓ+ 1.

We also find it convenient to introduce analogous terminology for the permutations themselves. Let
w ∈ Sn and {is + 1, is + 2, · · · , is+1} ⊆ [n− 1] for is+1 > is be a sequence of consecutive integers, possibly
of length 1 (when is+1 = is+1). We say w is a staircase on the interval {is+1, is+2, · · · , is+1} if w(is+1) <
w(is + 2) < · · · < w(is+1). We also say that {is + 1, is + 2, · · · , is+1} is a staircase of w. A staircase {is +
1, is+2, · · · , is+1} of w is maximal if neither {is, is+1, is+2, · · · , is+1} nor {is+1, is+2, · · · , is+1, is+1+1}
is a staircase of w. The following is immediate from the definition of the right descent set given in (3.2) and
we omit the proof.

Lemma 4.7. Let w ∈ Sn. Suppose J = {i1 < i2 < · · · < iℓ}. Let i0 := 1 and iℓ+1 := n. If DesR(w) ⊆ J ,
then w is a staircase on each interval {is + 1, is + 2, · · · , is+1} for 0 ≤ s ≤ ℓ, and there are at most ℓ + 1 maximal
staircases in the staircase decomposition of w. In particular, suppose µ = (µ1, . . . , µk) is a partition of n with k parts,
and DesR(w) ⊆ ∆ \ Jµ = {µ1, µ1 + µ2, · · · , µ1 + · · · + µk−1}. Then there are at most F(∆ \ Jµ) = k maximal
staircases of w.

Example 4.8. Let w = [1, 4, 7, 8, 2, 5, 6, 3] ∈ S8. Then DesR(w) = {4, 7} since it is between the 4th and 5th
entries, as well as the 7th and 8th entries, that there is a decrease in the one-line notation of w. The maximal staircases
of w are {1, 2, 3, 4}, {5, 6, 7} and {8}. Note that DesR(w) ⊆ ∆ \ Jµ where µ = (4, 3, 1). In this case, F(∆ \ Jµ) =
F({4, 7}) = 3 is the number of maximal staircases of w, in agreement with the lemma above.

We now turn our attention to left descents. As already noted, for a permutation w ∈ Sn, the left descent
set DesL(w) specifies which pairs of the form (i, i+1), for 1 ≤ i ≤ n−1, have the property that i+1 appears
to the left of the i in the one-line notation of w. Let w ∈ Sn and i ∈ [n]. For a given staircase of w, we
say i occurs in that staircase if i appears in the segment of the one-line notation of w corresponding to that
staircase.

Example 4.9. Continuing with Example 4.8, let w = [1, 4, 7, 8, 2, 5, 6, 3] ∈ S8. Then {1, 2, 3, 4} is a staircase, and
we say that 7 appears in that staircase since 7 occurs as one of the entries in positions 1, 2, 3, or 4 in the one-line
notation of w.

Note that any j ∈ [n] occurs in exactly one maximal staircase of w for any w ∈ Sn. From the definition of
staircases and left descents, the following is straightforward.

Lemma 4.10. Let w ∈ Sn. Suppose that {j, j+1, · · · , j+ ℓ− 1} ⊆ DesL(w) is a sequence of ℓ consecutive integers
contained in DesL(w). Then the ℓ + 1 many integers j + ℓ > j + ℓ − 1 > · · · > j + 1 > j must appear in distinct
maximal staircases of w, each strictly to the right of the previous one. In particular, the number of maximal staircases
of w must be greater than or equal to ℓ+ 1.

Proof. Within each staircase, the entries in the one-line notation of w must be increasing, so any pair of
consecutive integers which must appear in inverted order cannot appear in the same staircase. Moreover,
if they must be inverted, then the smaller integer must appear to the right of the greater integer i.e., must
appear in a staircase strictly to the right of the greater integer. �

The next statement follows from Lemmas 4.7 and 4.10.

Corollary 4.11. Suppose K ⊆ [n − 1] ∼= ∆ is a subset of [n− 1] ∼= ∆ containing a consecutive sequence of simple
roots of length ℓ. Let µ = (µ1, . . . , µk) be a partition of n with k parts. Then the set

(4.2) D(∆ \K, Jµ) = {w ∈ Sn | DesL(w) = K and DesR(w) ⊆ ∆ \ Jµ}

is empty if ℓ+ 1 > k.

Proof. Suppose w ∈ Sn and that DesL(w) = K . Since K contains a sequence of ℓ many consecutive simple
positive roots, from Lemma 4.10 it follows that the number of maximal staircases of w is at least ℓ + 1. On
the other hand, if DesR(w) ⊆ ∆ \ Jµ then by Lemma 4.7, we have F(∆ \ Jµ) = k, and w has at most k
maximal staircases. Since ℓ+ 1 > k, this cannot occur. Hence (4.2) is empty as desired. �

In fact, we can say more. The following statement is straightforward and we omit the proof.
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Lemma 4.12. Let µ be a partition of n with k many parts. Let w ∈ Sn and suppose DesL(w) contains a sequence
{a, a+ 1, . . . , a+ k − 2} ⊆ [n− 1] ≃ ∆ of maximal cardinality k − 1 and DesR(w) ⊆ ∆ \ Jµ. Then:

(1) DesR(w) = ∆ \ Jµ, so in particular the one-line notation of w contains precisely k maximal staircases, and
(2) for each i such that 0 ≤ i ≤ k − 1, the element a+ i in the sequence {a, a+ 1, . . . , a+ k − 1} must appear

in the (i+ 1)st staircase of the one-line notation of w (counting from the left).

In particular, if the hypotheses are satisfied, then the staircases in which each a + i must occur is fixed, and exactly
one element in the sequence {a, a+ 1, . . . , a+ k − 1} occurs in each of the k maximal staircases.

In the course of the argument below it will be useful to have the following terminology. Suppose w ∈ Sn

and suppose m ∈ Z, 1 ≤ m < n. There is a map (which is not a group homomorphism)

dn,m : Sn → Sn−m

obtained by deleting the entries {1, 2, . . . ,m} = [m] in the one-line notation of w, and interpreting what
remains as a permutation of n−m, under the identification {m+ 1,m+ 2, . . . , n} ∼= {1, 2, . . . ,m} given by
j 7→ j − m. We will refer to this procedure of applying dn,m as ignoring the [m] entries (of the one-line
notation of w).

Example 4.13. Let m = 2 and n = 5. Let w = [4, 3, 2, 5, 1]. Then d5,2(w) = [2, 1, 3] because we first ignore the
entries 1 and 2 in w = [4, 3,2, 5,1] to obtain [4, 3, 5] and then use the identification j 7→ j − 2 to obtain [2, 1, 3].

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. We begin with the case µk < λk , which itself can be separated into two subcases,
namely, µk = 0 and 0 < µk < λk . First suppose µk = 0, i.e., µ has strictly fewer than k parts. From the
definition of the set Jλ, it follows that there are r = λk many distinct sequences in ∆ \ Jλ = Jλ∨ , of the form

{1, 2, . . . k − 1}, {k + 1, k + 2, · · · , 2k − 1}, · · · , {(r − 1)k + 1, . . . , kr − 1}.

This means in particular that the set Jλ contains at least one consecutive sequence of positive simple roots
of length r − 1. Applying Corollary 4.11, we immediately obtain that D(Jλ, Jµ) = ∅ if µ has strictly fewer
than k parts. This proves the proposition in the case µk = 0.

Next we consider the case when µ has k parts but µk < λk. Suppose that w ∈ D(Jλ, Jµ), so DesL(w) = Jλ

and DesR(w) ⊆ ∆ \ Jµ. Then w satisfies the hypotheses of Lemma 4.12 and it follows that the given
conditions completely determine the staircases in which the integers {1, 2, . . . , kr} must occur in the one-
line notation of w. In fact, since these are the smallest kr integers in [n] and since each staircase must
have increasing entries, the hypotheses determine the precise location (not just the staircase) in which these
entries must occur. In particular, the r many integers {1, k + 1, 2k + 1, . . . , (r − 1)k + 1} must appear in the
rightmost staircase of w, which contains µk many entries. This implies that µk ≥ r = λk, or in other words,
if µk < λk then D(Jλ, Jµ) = ∅. This concludes the proof of part (1) of the proposition.

Now suppose that µk ≥ r = λk. By similar reasoning as in the previous paragraph, it follows that if a
permutation w ∈ Sn satisfies DesL(w) = ∆ \ Jλ = Jλ∨ and DesR(w) ⊆ ∆ \ Jµ, then w is determined by the
location (in the one-line notation) of the integers {kr+1, kr+2, . . . , n} ∼= [n−kr], i.e., the image of w under
the map dn,kr described above. It is straightforward to see that w is also determined by its image under
the map dn,kℓ for any 1 ≤ ℓ ≤ r. In what follows, for concreteness we make the argument in detail for the
special case ℓ = r. Consider the image in Sn−kr of the set

(4.3) D(Jλ, Jµ) = {w ∈ Sn | DesL(w) = ∆ \ Jλ and DesR(w) ⊆ ∆ \ Jµ}

under the map dn,kr which ignores the [kr] entries. By the above argument, dn,kr is injective on (4.3). To
prove the desired claim, it suffices to show that the image of (4.3) under dn,kr is precisely

(4.4) D(Jλ[r], Jµ[r]) = {w′ ∈ Sn−kr | DesL(w
′) = ∆n−kr \ Jλ[r] and DesR(w

′) ⊆ ∆n−kr \ Jµ[r]}

where we temporarily denote by ∆n−kr the set of positive simple roots corresponding to gln−kr(C). To see
this, we first show that any w′ = dn,kr(w) for w in (4.3) must lie in (4.4). Since DesL(w) = ∆ \ Jλ = Jλ∨ , we
already know that the left descents (j, j + 1) occurring in w with j > kr are precisely the ones of the form

{kr + 1, kr + 2, . . . , n} \ {kr + λ∨
r+1, kr + λ∨

r+1 + λ∨
r+2, . . . , kr + λ∨

r+1 + · · ·+ λ∨
t−1}
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where λ∨ = (λ∨
1 , λ

∨
2 , . . . , λ

∨
t ) has t parts and λ∨

1 = · · · = λ∨
r = k by assumption. Notice that λ[r]∨ =

(λ∨
r+1, λ

∨
r+2, . . . , λ

∨
t ). Under the identification of {kr + 1, kr + 2, . . . , n} with [n − kr] given by j 7→ j − kr,

this means that w′ has left descent set ∆n−kr \ Jλ[r].
Next we need to show that DesR(w

′) ⊆ ∆n−kr\Jµ[r]. It follows from the above that the entries {1, 2, . . . , kr}
distribute themselves in the k staircases of the one-line notation of w in such a way that each staircase con-
tains precisely r many of the entries within {1, 2, . . . , kr}. Therefore, when ignoring the [kr] entries in w to
obtain w′, the locations where the right descents can possibly occur are precisely at

{µ1 − r, µ1 + µ2 − 2r, . . . , µ1 + · · ·+ µk−1 − (k − 1)r}

which is exactly the set ∆n−kr \ Jµ[r] for the partition µ[r] = (µ1 − r, µ2 − r, . . . , µk − r). In particular we
conclude DesR(w

′) ⊆ ∆n−kr \ Jµ[r] as desired.
Thus dn,kr sends the set (4.3) into the set (4.4). In fact, the argument given above is reversible, i.e.,

any w′ ∈ Sn−kr lying in (4.4) can be extended to an element in Sn by reversing the correspondence to
j 7→ j + kr and adding the entries {1, 2, . . . , kr} in exactly the locations specified by the hypotheses in (4.3),
and it is clear that this extension then lies in (4.3). This proves the claim in the special case ℓ = r. For
any 1 ≤ ℓ < r, by arguments similar to those above it follows that the entries of dn,ℓk(w) corresponding to
the integers {1, 2, . . . , (r − ℓ)k} are already determined, and so an argument essentially identical to the one
above proves the desired claim. This concludes the proof of the proposition. �

From Proposition 4.1 we readily obtain the following.

Corollary 4.14. Let λ, µ be partitions of n and suppose that there exists ℓ ∈ Z, ℓ ≥ 1, such that the dual partitions
λ∨ and µ∨ agree up to the ℓ-th entry, i.e. λ∨

s = µ∨
s for all 1 ≤ s ≤ ℓ. Then

A(λ, µ) = A(λ[ℓ], µ[ℓ]).

Proof. The argument is a simple induction on the number of steps (in the sense of Definition 2.11) in the
partitions λ and µ on which they agree. More precisely, suppose

[λ1] = A1 ⊔ A2 ⊔ · · · ⊔Astep(λ)

is the step decomposition of λ and define u to be the index of the step in which ℓ occurs, i.e., suppose ℓ ∈ Au.
We take cases. Suppose u = 1. Let k denote the number of parts of λ. Then the Young diagrams of

λ and µ both contain as their leftmost ℓ columns a rectangular k × ℓ box. Proposition 4.1 then implies
A(λ, µ) = A(λ[ℓ], µ[ℓ]) as desired. This proves the base case.

Now suppose u > 1. Also suppose by induction that the claim is proved for u− 1. Since u > 1 we know
λ and µ both contain a rectangular k×r box where k is the number of parts of both λ and µ and r = λk is the
bottom length of both λ and µ. Another application of Proposition 4.1 implies that A(λ, µ) = A(λ[r], µ[r]).
By assumption, the dual partitions of λ[r] and µ[r] agree up to entry ℓ − r, and in the step decomposition
of λ[r], the number ℓ − r occurs in step Au−1 since we have deleted a full step from λ to obtain λ[r]. Hence
by induction we know A((λ[r])[ℓ − r], (µ[r])[ℓ − r]) = A(λ[r], µ[r]), but from Definition 2.8 it is clear that
ν[s][t] = ν[s+ t] for any partition ν and s, t for which the statement makes sense, so the result follows. �

We are finally in a position to prove the upper-triangularity property.

Proof of Theorem 4.5. Since λ∨ >lex µ∨, there exists some ℓ ∈ Z≥1 such that λ∨
s = λ∨

s for all 0 ≤ s ≤ ℓ and
λ∨
ℓ+1 > µ∨

ℓ+1. (If no such ℓ exists, then λ1 > µ1 and we may apply Proposition 4.1 directly.) By Corollary 4.14,
we know A(λ, µ) = A(λ[ℓ], µ[ℓ]). By construction, λ[ℓ] and µ[ℓ] have the property that (λ[ℓ]∨)1 > (µ[ℓ]∨)1.
Hence by Proposition 4.1, we have A(λ[ℓ], µ[ℓ]) = 0, as desired.

We also need to show that for any λ, we have A(λ, λ) = 1. Indeed, applying the Corollary 4.14 to
ℓ = λ1− 1 we obtain that A(λ, λ) = A(λ[λ1 − 1], λ[λ1− 1]). By construction, λ[λ1 − 1] is a partition with only
one column. Therefore we are now reduced to showing that if a partition ν is of the form ν = (1, 1, · · · , 1)
then A(ν, ν) = 1. Let ν be such a be a partition of m for some positive integer m ≤ n. By definition,
Jν = ∅ = Jν so ∆ \ Jν = {α1, . . . , αm−1} = ∆ \ Jν . This means D(Jν , Jν) consists of permutations w in Sm

with the property that every pair (i, i + 1) for all 1 ≤ i ≤ m − 1 appears inverted in the one-line notation
of w, and that for all i such that 1 ≤ i ≤ m− 1, we have w(i) > w(i + 1). The only such permutation is the
longest element [m,m − 1, . . . , 2, 1] ∈ Sm, so D(Jν , Jν) is a singleton set and A(ν, ν) = 1 as desired. This
concludes the proof. �
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5. AN INDUCTIVE FORMULA FOR THE W -VECTOR

We saw in Section 3.3 that the coefficients cµ,i of (2.2), when written as a column vector Xi = (cµ,i),
satisfy a matrix equation AXi = Wi. In order to solve this matrix equation, we need to analyze the “constant
vector” Wi for each i. This is the purpose of this section.

Recall that the vector Wi is defined to have entries |Wi(Jλ, h)|, where the sets Wi(Jλ, h) are introduced
in Definition 3.1, and λ varies over the partitions of n. The main result (Theorem 5.25) of this section is
an inductive description of the set Wi(Jλ, h) in the case that λ has k = ht(Ih) + 1 parts. However, it is
worthwhile to note that the assumption that λ has exactly k = ht(Ih)+1 parts will not be required for many
of the other results in this section.

5.1. Sink sets and subsets of height k. In order to obtain our inductive formula, we exploit the structural
relationship between the ideal Ih and graph Γh alluded to in Section 2. Recall the following notation from
[4].

• We let A(Γh) denote the set of all acyclic orientations of Γh and Ak(Γh) denote the set of all acyclic
orientations with exactly k sinks.

• Given ω ∈ A(Γh) we denote the subset of vertices that occur as sinks of ω by sk(ω). Note that
each independent set of vertices in Γh occurs as the sink set of some acyclic orientation and sk(ω) is
independent for each ω ∈ A(Γh).

• Let SKk(Γh) be the set of all possible sink sets (or, independent sets) of Γ of cardinality k.
• The maximum sink set size m(Γh) is the maximum of the cardinalities of the sink sets sk(ω) associ-

ated to all possible acyclic orientations of Γh, i.e.,

m(Γh) := max{|sk(ω)| |ω ∈ A(Γh)}.

The sink set decomposition is

Ak(Γh) =
⊔

T∈SKk(Γh)

{ω ∈ Ak(Γh) | sk(ω) = T }.(5.1)

With this terminology in place, our goal is to extend the sink set decomposition of Ak(Γh) to a sink set
decomposition of the set W(Jλ, h).

If T ∈ SK(Γh) let Γh[T ] := Γh − T be the graph obtained from Γh be deleting the vertices in T and all
incident edges. Then Γh[T ] is the incomparability graph for a Hessenberg function h[T ] : [n− k] → [n− k]
as shown in [4, Lemma 4.3].

Remark 5.1. It is not difficult to see from the definitions of ht(Ih) and m(Γh) that m(Γh[T ]) ≤ m(Γh), or equiva-
lently, that ht(Ih[T ]) ≤ ht(Ih) (cf. also [4, Proposition 5.8, Corollary 5.12, Lemma 5.13]).

Note that any acyclic orientation of Γh induces an acyclic orientation of Γh[T ], as demonstrated in the
example below.

Example 5.2. Let h = (2, 3, 5, 6, 7, 8, 8, 8), and consider the following acyclic orientation ω of Γh displayed below.

1 2oo // 3 4oo //
!!

5
}}

// 6 7
}}

oo // 8
}}

This acyclic orientation has T = sk(ω) = {1, 3, 6}, where the vertices in sk(ω) and all incident edges are highlighted
in red for emphasis. For this graph, we have m(Γh) = 3. The graph below shows Γ[T ] with the acyclic orientation
induced from Γh.

2 4 // 5 7 //oo 8

which corresponds to the Hessenberg function h[T ] = (1, 3, 4, 5, 5). Note that we could also re-index the vertices of
Γ[T ] to obtain the following acyclic graph.

1 2 // 3 4 //oo 5
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An orientation ω ∈ A(Γh) assigns each edge e a source and a target; we notate the source (respectively
target) of e according to the orientation ω by srcω(e) (respectively tgtω(e)). Given an orientation ω of Γh we
let

asc(ω) := {e = {a, b} | srcω(e) = a, tgtω(e) = b, and a < b}.

In other words, if Γh is drawn as in Example 5.2 with the labels of the vertices increasing from left to right,
then asc(ω) counts the number of edges which point to the right.

Given a sink set T ∈ SK(Γh) the degree of T is

degh(T ) := min{asc(ω) | ω ∈ A(Γh) and sk(ω) = T }.

For example, degh(T ) = 3 for the h and T as appearing in Example 5.2. The next lemma is [4, Lemma 4.8],
and shows that in practice it is easy to compute degh(T ) for any T ∈ SK(Γh).

Lemma 5.3. Let T ∈ SK(Γh). Then

degh(T ) = |{e = {a, b} ∈ E(Γh) | a < b, b ∈ T }|.

We will see that sink sets in Γh correspond bijectively to certain subsets of roots in Ih. In particular, we
need the following definition.

Definition 5.4. Let R ⊆ Φ−. We say R is a subset of height k if there exist integers q1, q2, . . . , qk, qk+1 ∈ [n]
such that q1 < q2 < . . . < qk < qk+1 and R = {tq2 − tq1 , tq3 − tq2 , . . . , tqk+1

− tqk}. We let Rk(I) denote the
set of all subsets of height k in an ideal I , and define R(I) :=

⊔

k≥0 Rk(I).

It is easy to show that R ⊆ Φ− is a subset of height k if and only if there exists w ∈ Sn such that w(R) is
a subset of simple roots corresponding to k consecutive vertices in the Dynkin diagram for gl(n,C). The set
R(I) can also be used to compute the height of the ideal. The following is [4, Lemma 5.5].

Lemma 5.5. Let I be a nonempty ideal in Φ−. Then ht(I) = max{|R| | R ∈ R(I)}.

Recall that [4, Section 5] defines a bijection:

SKk(Γh) → Rk−1(Ih); T 7→ RT := {βi = tℓi+1
− tℓi | 1 ≤ i ≤ k − 1}(5.2)

where T = {ℓ1 < ℓ2 < · · · < ℓk}. By Lemma 5.5, this bijection shows that the maximum size of any sink set
in Γh is precisely ht(Ih) + 1, as noted in Section 2.

Example 5.6. Let h and T be an in Example 5.2. The bijection defined in (5.2) above associates T = {1, 3, 6} ∈
SK3(Γh) to the subset

{t3 − t1, t6 − t3} ∈ R2(Γh).

Since 3 = m(Γh) = ht(Γh) + 1, we know that Ih cannot contain any subsets of height k ≥ 3. This line of reasoning
is essential for proving the inductive formulas later in this section.

5.2. Another sink-set decomposition. Throughout this section, λ = (λ1, λ2, . . . , λk) is a partition of n with
k parts. In this section we will show that the sets W(Jλ, h) have a sink set decomposition. First we define a
subset of W(Jλ, h) associated to each sink set.

Definition 5.7. Given T = {ℓ1 < ℓ2 < · · · < ℓk} ∈ SKk(Γh) we define

Wi(Jλ, h, T ) := {w ∈ Wi(Jλ, h) | w(ℓj) = k − j + 1, 1 ≤ j ≤ k}.

and let W(Jλ, h, T ) = ⊔iWi(Jλ, h, T ) where the union is taken over all i such that Wi(Jλ, h, T ) 6= ∅.

The conditions defining W(Jλ, h, T ) tell us that if w ∈ W(Jλ, h, T ) then:

k, k − 1, . . . , 2, 1 appear in positions ℓ1, ℓ2, . . . , ℓk−1, ℓk in the one-line notation for w.(5.3)

In particular, (k, k − 1, . . . , 2, 1) is a subsequence of the one-line notation for w.

Example 5.8. Let h = (2, 3, 5, 6, 7, 8, 8, 8) and T = {1, 3, 6} as in Example 5.2. Consider λ = (3, 3, 2); in this case
Jλ = {α3, α6}. We have, for example, that w ∈ W(Jλ, h, T ) where

w = [3, 6,2, 8, 5,1, 7, 4].

Note that in the example above, w−1({α1, α2}) = {t3 − t1, t6 − t3} = RT , where RT was computed in
Example 5.6. The next lemma shows that this property characterizes the elements of Wi(J, h, T ).
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Lemma 5.9. Let T ∈ SKk(Γh). Then w ∈ Wi(Jλ, h, T ) if and only if w ∈ Wi(Jλ, h) andRT = w−1({α1, . . . , αk−1}).

Proof. If w ∈ Wi(Jλ, h, T ) for T = {ℓ1, ℓ2, . . . , ℓk} then w ∈ Wi(Jλ, h) and

w−1(αk−j) = w−1(tk−j − tk−j+1) = tℓj+1
− tℓj for all j = 1, . . . , k − 1

by definition of Wi(Jλ, h, T ). Now the definition of RT given in (5.2) implies w−1({α1, . . . , αk−1}) = RT ∈
Rk−1(Ih), as desired.

To show the converse, suppose w ∈ Wi(Jλ, h) and w−1({α1, . . . , αk−1}) = RT where T = {ℓ1, ℓ2, . . . , ℓk} ∈
SKk(Γh). Then

w−1({α1, α2, . . . , αk−1}) = RT := {tℓ2 − tℓ1 , tℓ3 − tℓ2 , . . . , tℓk − tℓk−1
}.

All that remains to show is that w(ℓj) = k − j + 1 for all 1 ≤ j ≤ k. The equation above implies w(ℓj) ∈
{1, 2, . . . , k}. Observe that w−1({α1, . . . , αk−1}) = RT implies w(RT ) = {α1, . . . , αk−1}. Thus we also know
w(ℓj) = w(ℓj+1) + 1 since

w(tℓj+1
− tℓj ) = tw(ℓj+1) − tw(ℓj) ∈ {α1, . . . , αk−1}.

This can only be the case if ℓ1 = k, ℓ2 = k − 1, and so on. We conclude w(ℓj) = k − j + 1, 1 ≤ j ≤ k as
desired. �

The next proposition generalizes the sink set decomposition given in (5.1) and gives a sink set decompo-
sition of the set Wi(Jλ, h) for each i.

Proposition 5.10. Let n be a positive integer and h : [n] → [n] a Hessenberg function. Let i ∈ Z, i ≥ 0 and λ be a
partition of n with k parts. Then

Wi(Jλ, h) =
⊔

T∈SKk(Γh)

Wi(Jλ, h, T ).(5.4)

We call the decomposition (5.4) the sink set decomposition of W(Jλ, h).

Proof. It is straightforward from the definition of the sets Wi(Jλ, h, T ) that the RHS of (5.4) is contained in
the LHS. Thus we have only to prove the opposite inclusion. Let w ∈ Wi(Jλ, h). By definition, w−1(∆\Jλ) ⊆
Ih. Since {α1, . . . , αk−1} ⊆ ∆ \ Jλ it follows immediately that

tw−1(1) − tw−1(2), tw−1(2) − tw−1(3), . . . , tw−1(k−1) − tw−1(k) ∈ Ih.

In particular, R = w−1({α1, . . . , αk−1}) is a subset of Ih of height k− 1. Since (5.2) is a bijection, there exists
a unique sink set T ∈ SKk(Γh) such that R = RT and therefore w ∈ Wi(Jλ, h, T ) by Lemma 5.9. �

5.3. Inductive Formulas. Our next goal is to identify each set Wi(J, h, T ) with a subset of permutations in
Sn−k. The following notation generalizes [4, Definition 7.3].

Definition 5.11. Suppose T ∈ SKk(Γh) with T = {ℓ1 < ℓ2 < · · · < ℓk} and λ ⊢ n with k parts. Define a
permutation in Sn, denoted wT , by:

(1) wT (ℓj) = k − j + 1, 1 ≤ j ≤ k, i.e. wT satisfies (5.3), and
(2) the remaining entries in the one-line notation of wT list the integers [n]−T in increasing order from

left to right.

Example 5.12. Let h = (2, 3, 5, 6, 7, 8, 8, 8) and T = {1, 3, 6} as in Example 5.2. Then

wT = [3, 4,2, 5, 6,1, 7, 8]

where the entries in positions ℓ1 = 1, ℓ2 = 3 and ℓ3 = 6 are bolded for emphasis. Note that wT need not be an element
of W(Jλ, h, T ). For example wT /∈ W(Jλ, h, T ) when λ = (3, 3, 2) is the same partition considered in Example 5.8
since

w−1
T (α4) = w−1

T (t4 − t5) = t2 − t4 ∈ Φh

so wT does not satisfy the condition that w−1
T (∆ \ Jλ) ⊆ Ih.

For each sink set T = {ℓ1 < ℓ2 < · · · < ℓk} let fT : ([n] \ T ) → [n − k] be the bijection such that
φT (j) = j − j′ where j′ denotes the number of elements i ∈ T such that i ≤ j. This bijection can be used to
give explicit formulas for wT , as noted in the following remark.

Remark 5.13. The conditions defining wT can be written explicitly in formulas involving fT as follows.
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• If j > k then w−1
T (j), the position of j in the one-line notation for wT , is the unique element of [n] such that

fT (w
−1
T (j)) = j − k, and

• if j ∈ [n]− T we have wT (j) = fT (j) + k.

Example 5.14. Continuing Example 5.12 from above, we have T = {1, 3, 6} and

fT (2) = 1, fT (4) = 2, fT (5) = 3, fT (7) = 4, fT (8) = 5.

Notice that fT is the natural bijection we used to relabel the vertices of Γh[T ] in Example 5.2. The reader can easily
verify the formulas given in Remark 5.13 in this case. For example,

wT (2) = fT (2) + 3 = 4 and fT (w
−1
T (6)) = fT (5) = 3 = 6− 3.

The following is a generalization of [4, Lemma 7.6].

Lemma 5.15. Let T = {ℓ1 < ℓ2 < · · · < ℓk} be a sink set of cardinality k. Each element w ∈ Sn satisfying
condition (1) of Definition 5.11 can be written uniquely as w = wTσ where σ ∈ Stab(ℓ1, ℓ2, . . . , ℓk).

Proof. The hypotheses on w determine the entries in positions ℓ1, ℓ2, . . . , ℓk in one-line notation. The other
entries must be a permutation of the set [n] \ {ℓ1, ℓ2, . . . , ℓk}, and the hypotheses on w place no conditions
on this permutation. Recall that for wT and any permutation σ ∈ Sn, right-composition with σ “acts on the
positions”, i.e. if wT sends i to wT (i), then wTσ sends i to wT (σ(i)). Thus, if σ stabilizes ℓ1, ℓ2, . . . , ℓk, then
w = wTσ satisfies w(ℓj) = wT (ℓj) = k − j + 1 for all j = 1, . . . , k. Moreover, it is straightforward to see that
such a σ is unique. �

Corollary 5.16. Each w ∈ Wi(Jλ, h, T ) can be written uniquely as w = wTσ where σ ∈ Stab(ℓ1, ℓ2, . . . , ℓk).

Proof. By definition, each element of Wi(Jλ, h, T ) satisfies condition (1) of Definition 5.11. �

Example 5.17. Let w = [3, 6,2, 8, 5,1, 7, 4] ∈ W(J(3,3,2), h, T ) for h = (2, 3, 5, 6, 7, 8, 8, 8), as shown in Exam-
ple 5.8. In this case, the factorization w = wTσ gives us

σ = [1, 5,3, 8, 4,6, 7, 2] ∈ Stab(1, 3, 6).

The bijection fT defined above induces a natural isomorphism:

Stab(ℓ1, ℓ2, . . . , ℓk) → Sn−k; σ 7→ xσ

defined as follows. Given σ ∈ Stab(ℓ1, ℓ2, . . . , ℓrk), delete positions ℓ1, ℓ2, . . . , ℓk from the one-line notation
for σ and then apply fT to the remaining entries to obtain xσ . The result is clearly an element in Sn−k and
each element of Sn−k arises in this way.

Example 5.18. The element σ = [1, 5,3, 8, 4,6, 7, 2] ∈ Stab(1, 3, 6) obtained in Example 5.17 above maps to
xσ = [3, 5, 2, 4, 1] ∈ S5.

By Lemma 5.15, for each T ∈ SKk(Γh) we get a well defined bijection

ΨT : {w ∈ Sn : w satisfies condition (1) of Definition 5.11 } → Sn−rk

defined by ΨT (wλ,Tσ) = xσ . Note that ΨT is very similar to the map dn,m : Sn → Sn−m defined in
Section 4 and used in the proof of Proposition 4.1. Indeed, using the language of that section, applying ΨT

can be described as ignoring the [k] entries in the one-line notation of w.
Recall that there is a natural Lie subalgebra of gl(n,C) obtained by “setting the variables in row/columns

{ℓ1, ℓ2, . . . , ℓk} equal to zero.” More precisely, there is a natural Lie algebra isomorphism

{X ∈ gl(n,C) |Xij = 0 if {i, j} ∩ T 6= ∅} ∼= gl(n− k,C).(5.5)

defined explicitly on the basis {Eij | {i, j} ∩ T = ∅} of the LHS by Eij 7→ EfT (i)fT (j).
Recall that for each T ∈ SKk(Γh) we have an associated Hessenberg function h[T ] : [n − k] → [n − k]

whose incomparability graph is obtained by deleting the vertices in T and any incident edges from Γh. In
fact, this Hessenberg function corresponds to the Hessenberg space H ∩gl(n−k,C) under the identification
in (5.5). (See [4, Section 4] for more details on this perspective.) We identify the set of roots

Φ[T ] := {ti − tj ∈ Φ | {i, j} ∩ T = ∅} ⊆ Φ

with the root system of gl(n− k,C) via

ti − tj 7→ tfT (i) − tfT (j).(5.6)
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Example 5.19. We demonstrate the identifications from (5.5) and (5.6) in the running example started in Exam-
ple 5.2, with h = (2, 3, 5, 6, 7, 8, 8, 8). To visualize what is going on, we represent gl(8,C) as an 8×8 grid with a star
placed in the (i, j)-box precisely when the root (i, j) is contained in Φh. The boxes highlighted in grey correspond the
roots in Φ \Φ[T ] so the white boxes containing a star correspond to the roots in Φh[T ] := Φ[T ]∩Φh, to be discussed
further below.

gl(8,C) :

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

gl(5,C) :

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

Note that the map in (5.6) is an isomorphism of root systems, where Φ[T ] is viewed as a subroot system
of Φ (since Φ[T ] is closed under addition in Φ). Moreover, the subsets Φh[T ] := Φh ∩ Φ[T ] and Φ−

h [T ] :=

Φ−
h ∩ Φ[T ] correspond to Φh[T ] and Φ−

h[T ] respectively, via (5.6).

Remark 5.20. The root system isomorphism given in (5.6) is compatible with the corresponding identification
Stab(ℓ1, . . . , ℓk) given in (5.5). Indeed, if σ ∈ Stab(ℓ1, . . . , ℓk) and ti − tj ∈ Φ[T ] then σ(ti − tj) ∈ Φ[T ] and

tk − tℓ = σ(ti − tj) ⇔ tfT (k) − tfT (ℓ) = xσ(tfT (i) − tfT (j)).

Recall that for a permutation w ∈ Sn we define

inv(w) := {(i, j) | i > j and w(i) < w(j)}.

Then (5.6) gives a bijection between inv(σ)∩Φ[T ] and inv(xσ) and a bijection between invh(σ)∩Φ[T ] and invh[T ](xσ).

Lemma 5.21. Let T ∈ SKk(Γh). Then

(1) inv(wT ) = {(i, j) | i > j and i ∈ T }, and
(2) if w = wTσ for σ ∈ Stab(ℓ1, . . . , ℓk) then

inv(w) = inv(wT ) ⊔ (inv(σ) ∩ Φ[T ]).(5.7)

Proof. We begin by proving statement (1). If (i, j) ∈ inv(wT ) then i > j and wT (i) < wT (j). If i /∈ T , then
wT (j) > wT (i) > k so from the construction of wT we conclude j /∈ T . But the entries in the one-line
notation of wT for i, j 6∈ T cannot be inverted, by Definition 5.11(2). Hence wT (j) > wT (i), yielding a
contradiction. Therefore i ∈ T as desired. On the other hand, consider (i, j) with i > j and i ∈ T . Since
i ∈ T , we may write i = ℓi0 for some i0 with 1 ≤ i0 ≤ k. If j ∈ T , then j = ℓj0 for some j0 with 1 ≤ j0 ≤ k
such that j0 < i0 (since j < i) and we have

wT (i) = wT (ℓi0) = k − i0 + 1 < k − j0 + 1 = wT (ℓj0) = wT (j)

so (i, j) ∈ inv(wT ). If j /∈ T , then wT (j) > k and therefore

wT (i) ≤ k < wT (j)

so (i, j) ∈ inv(wT ) also. This proves (1).
Next we prove (2). Let w be as given. Note that since σ ∈ Stab(ℓ1, . . . , ℓk), we have w(T ) = wT (T ) =

{1, 2, . . . , k}. Our proof relies on this fact, as well as the formulas given in Remark 5.13. We first show the
inclusion inv(w) ⊆ inv(wT ) ⊔ (inv(σ) ∩ Φ[T ]). Let (i, j) ∈ inv(w). If i ∈ T then (i, j) ∈ inv(wT ) by (1). If
i 6∈ T , then k < w(i) < w(j) so j /∈ T as above and we conclude (i, j) ∈ Φ[T ]. Since σ ∈ Stab(ℓ1, . . . , ℓk) and
σ is a permutation σ also preserves the complement [n]\ {ℓ1, . . . , ℓk} = [n]−T . Hence if i 6∈ T then σ(i) 6∈ T
also. Using this fact and the formulas from Remark 5.13 we now have

fT (σ(i)) + k = wTσ(i) < wTσ(j) = fT (σ(j)) + k ⇒ fT (σ(i)) < fT (σ(j)) ⇒ σ(i) < σ(j)

since f
−1
T is an increasing function. Therefore (i, j) ∈ inv(σ) ∩ Φ[T ].
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To prove the opposite inclusion, suppose (i, j) ∈ inv(wT ). By (1), we know i ∈ T . If j ∈ T then

w(i) = wTσ(i) = wT (i) < wT (j) = wTσ(j) = w(j)

so (i, j) ∈ inv(w). If j /∈ T then w(j) = wTσ(j) > k and

w(i) = wTσ(i) = wT (i) ≤ k < w(j)

so (i, j) ∈ inv(w) in this case also. Hence inv(wT ) ⊆ inv(w). Next suppose (i, j) ∈ inv(σ)∩Φ[T ]. This means
i, j /∈ T and thus we know, as above, that σ(i), σ(j) /∈ T also. Hence

w(i) = wTσ(i) = fT (σ(i)) + k < fT (σ(j)) + k = wTσ(j) = w(j)

since fT is increasing and σ(i) < σ(j) by assumption. Therefore inv(σ)∩Φ[T ] ⊆ inv(w) also. This completes
the proof. �

Example 5.22. Continuing the running example, we have

wTσ = w = [3, 6,2, 8, 5,1, 7, 4] ∈ W(J(3,3,2), h, T )

where wT = [3, 4,2, 5, 6,1, 7, 8] and σ = [1, 5,3, 8, 4,6, 7, 2] ∈ Stab(1, 3, 6). In this case it can be checked that

inv(w) = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (3, 1), (3, 2), (8, 2), (8, 4), (8, 5), (8, 7), (5, 2), (5, 4), (7, 4)}

where

inv(wT ) = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (3, 1), (3, 2)}

and

inv(σ) ∩ Φ[T ] = {(8, 2), (8, 4), (8, 5), (8, 7), (5, 2), (5, 4), (7, 4)}.

It is, in general, not the case that ℓ(w) = ℓ(wT ) + ℓ(σ) (where ℓ(w) denotes the Bruhat length of w ∈ Sn);
indeed, this is not true for the example above. Therefore the decomposition of the inversions given in
Lemma 5.21 above is not a simple application of known formulas for the inversion set of a given permuta-
tion.

Lemma 5.23. Let λ = (λ1, λ2, . . . , λk) be a partition of n with exactly k parts and T ∈ SKk(Γh). Then:

(1) w−1
T (Jλ) ∩ Φ[T ] is mapped to Jλ[1] under the identification in (5.6) and

(2) w−1
T (∆ \ Jλ) ∩ Φ[T ] is mapped to {α1, . . . , αn−k−1} \ Jλ[1] under the identification in (5.6),

where λ[1] = (λ1 − 1, λ2 − 1, . . . , λk − 1).

Proof. By definition, wT (T ) = {1, 2, . . . , k}. Therefore

w−1
T (αj) = tw−1

T
(j) − tw−1

T
(j+1) ∈ Φ[T ] ⇔ {w−1

T (j), w−1
T (j + 1)} ∩ T = ∅

⇔ {j, j + 1} ∩ {1, 2, . . . , k} = ∅

and we conclude that w−1
T (αj) ∈ Φ[T ] if and only if k+ 1 ≤ j ≤ n− 1. Let Jλ[1]+k := {αi+k : αi ∈ Jλ[1]} and

Jc
λ[1]+k

:= {αk+1, . . . , αn−1} \ Jλ[1]+k. By definition,

Jλ = {αk} ⊔ Jλ[1]+k and ∆ \ Jλ = {α1, . . . , αk} ⊔ J
c
λ[1]+k.

Thus, w−1
T (Jλ) ∩ Φ[T ] = w−1

T (Jλ[1]+k) and w−1
T (∆ \ Jλ) ∩ Φ[T ] = w−1

T (Jc
λ[1]+k

). Suppose j > k. From the

formula given in Remark 5.13 we have

w−1
T (αj) = tw−1

T
(j) − tw−1

T
(j+1) 7→ t

fT (w−1

T
(j)) − t

fT (w−1

T
(j+1)) = tj−k − tj+1−k

under the identification in (5.6). Therefore (5.6) mapsw−1
T (Jλ[1]+k) to Jλ[1] andw−1

T (Jc
λ[1]+k

) to {α1, . . . , αn−k−1}\

Jλ[1] as desired. �

The next lemma is the technical heart of our argument. Notice that this is the first time we require the
assumption that k = ht(Ih) + 1.

Lemma 5.24. Let λ = (λ1, λ2, . . . , λk) be a partition of n with k parts, where k = ht(Ih) + 1 and T ∈ SKk(Γh).
Then w = wTσ ∈ W(Jλ, h, T ) if and only if ΨT (w) = xσ ∈ W(Jλ[1], h[T ]).
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Proof. By Corollary 5.16, each w ∈ W(Jλ, h, T ) is of the form w = wTσ for a unique σ ∈ Stab(ℓ1, ℓ2, . . . , ℓk)
and

w−1(Jλ) ⊆ Φh and w−1(∆ \ Jλ) ⊆ Ih.

Since Φ[T ] is invariant under σ and Φh[T ] = Φ[T ] ∩ Φh, intersecting the sets appearing in the equations
above with Φ[T ] yields

σ−1(w−1
T (Jλ) ∩ Φ[T ]) ⊆ Φh[T ] and σ−1(w−1

T (∆ \ Jλ) ∩ Φ[T ]) ⊆ Ih[T ](5.8)

where Ih[T ] := Φ[T ] ∩ Ih. The forward direction of the statement now follows directly from Lemma 5.23
and Remark 5.20.

On the other hand, if xσ ∈ W(J[1], h[T ]) then Lemma 5.23 and Remark 5.20 together imply that equa-

tion (5.8) still holds. In order to show w = wTσ ∈ W(Jλ, h, T ) we must prove w−1(αk) ∈ Φh and
w−1({α1, · · · , αk−1}) ⊆ Ih. The latter fact is straightforward, since from the definition of wT we have

w−1({α1, . . . , αk−1}) = RT ⊆ Ih.

Thus, we have only to show that w−1(αk) ∈ Φh. If not, then w−1(αk) ∈ Ih and

R = w−1({α1, . . . , αk−1, αk}) ⊆ Ih

is a subset of height k in Ih. Lemma 5.5 now implies ht(Ih) > k − 1, a contradiction. We conclude that
w ∈ W(Jλ, h, T ) as desired. �

We are now ready to prove the main result of this section.

Theorem 5.25. Let λ be a partition of n with k parts, where k = ht(Ih) + 1 and T ∈ SKk(Γh). Then ΨT maps
Wi(Jλ, h, T ) bijectively onto Wi−degh(T )(Jλ[1], h[T ]).

Proof. Let w ∈ Wi(Jλ, h, T ) and T = {ℓ1 < ℓ2 < · · · < ℓk}. By Corollary 5.16, w = wTσ for a unique
σ ∈ Stab(ℓ1, . . . , ℓk) and ΨT (w) = xσ by definition. Lemma 5.24 implies ΨT : W(Jλ, h, T ) → W(Jλ[1], h[T ])
is a bijection, so we have only to show that this bijection respects the grading as indicated. But this follows
from Lemma 5.21 by intersecting both sides of (5.7) with Φh. We obtain

invh(w) = invh(wT ) ⊔ (inv(σ) ∩ Φh[T ])

so

i = |invh(w)| = |invh(wT )|+ |invh[T ](xσ)| = degh(T ) + |invh[T ](xσ)|

where the equation above follows directly from Lemma 5.3 and Remark 5.20. From this it follows that
ΨT (w) ∈ Wi−degh[T ](Jλ[1], h[T ]) as desired. �

6. INDUCTIVE FORMULAS FOR THE MULTIPLICITIES ASSOCIATED TO MAXIMAL SINK SETS

The main result of this section is a first application of the results obtained in the previous sections. Specif-
ically, we derive an inductive formula for the multiplicities cµ,i of the tabloid representations in the decom-
position of the dot action representation on H2i(Hess(S, h)), for partitions µ with the maximal number of
parts. This result proves [4, Conjecture 8.1].

In the following we use the notation and terminology of Section 5. Let n be a positive integer, h : [n] → [n]
a Hessenberg function, Γh its associated incomparability graph. Let k = ht(Ih) + 1. Let ω ∈ Ak(Γh) be an
acyclic orientation of Γh and let T = sk(ω) be the sink set of ω of maximal size k. We can delete the vertices of
T and all incident edges from Γh to obtain a strictly smaller graph Γh[T ] associated to a smaller Hessenberg
function h[T ] : [n− k] → [n− k] (see [4, Section 4] for more details).

Let Sn−k ∈ gl(n − k,C) be a regular semisimple operator. The cohomology of the Hessenberg variety
Hess(Sn−k, h[T ]) ⊆ Fℓags(Cn−k) has a dot action of the permutation group Sn−k and therefore has a
corresponding decomposition analogous to (2.2). We denote the coefficients for this decomposition by cTµ′,i

as follows:

(6.1) H2i(Hess(Sn−k, h[T ])) =
∑

µ′⊢(n−k)

cTµ′,iM
µ′

.

With the notation in place we can state our inductive formula, which was first stated as Conjecture 8.1
in [4].
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Theorem 6.1. Let n be a positive integer and h : [n] → [n] a Hessenberg function. Let k = ht(Ih) + 1. Suppose
µ ⊢ n is a partition of n with exactly k = ht(Ih) + 1 parts. Then for all i ≥ 0 we have

(6.2) cµ,i =
∑

T∈SKk(Γh)

cTµ[1],i−degh(T ).

Proof. Let Par≥k(n) denote the set of all partitions of n with at least k parts and Park(n) denote the set of all

partitions of n with exactly k parts. Let A = (A(λ, µ))λ,µ∈Par≥k(n). By definition, if λ ∈ Par≥k(n) and λ � µ,

then µ has at least k parts so A is the lower right-hand |Par≥k(n)|× |Par≥k(n)| submatrix of A. In particular,

A is upper-triangular since A is by Theorem 4.5. We consider the matrix equation

AX i = W i where Xi = (cµ,i)µ∈Par≥k(n) and W i = (|Wi(Jλ, h)|)λ∈Par≥k(n).(6.3)

The matrix equation appearing in (6.3) is consistent since we already know a priori that there exists a

solution, given by the coefficients cµ,i of (2.2). Moreover, since A is upper-triangular, this solution is unique.
Furthermore, cµ,i = 0 for all partitions µ with more than k parts by Theorem 2.4. We may therefore rewrite

the matrix equation AX i = W i as the following system of linear equations, one equation for each partition
λ ⊢ n with exactly k parts:

|Wi(Jλ, h)| =
∑

µ∈Park(n)

cµ,iA(λ, µ).(6.4)

In order to proved the desired result, it suffices to show that the RHS of (6.2) satisfies, as µ varies among
all partitions of n with exactly k parts, the linear relations obtained in (6.4). From the sink set decomposition
of Wi(Jλ, h) given in Proposition 5.10 and the bijection between Wi(Jλ, h, T ) and Wi−degh(T )(Jλ[1], h[T ])
given in Theorem 5.25 we obtain

|Wi(Jλ, h)| =
∑

T∈SKk(Γh)

|Wi−degh(T )(Jλ[1], h[T ])|

=
∑

T∈SKk(Γh)

∑

µ′⊢(n−k)

cTµ′,i−degh(T ) |D(Jλ[1], Jµ′)|

where the second equality follows from Theorem 3.2, applied to J = Jλ[1], h[T ] and n − k. Notice that
|D(Jλ[1], Jµ′)| = A(λ[1], µ′) by (3.9).

From Remark 5.1 it follows that for any T ∈ SKk(Γh), the height of the ideal Ih[T ] is at most k−1 = ht(Ih)

and hence the coefficient cT
µ′,i−degh(T ) appearing in the last expression above is zero if µ′ has more than k

parts. Therefore we may rewrite the above expression and exchange the summation operations as follows:
∑

T∈SKk(Γh)

∑

µ′⊢(n−k)

cTµ′,i−degh(T ) A(λ[1], µ
′) =

∑

T∈SKk(Γh)

∑

µ′⊢(n−k)
µ′ has at most k parts

cTµ′,i−degh(T ) A(λ[1], µ
′)

=
∑

µ′⊢(n−k)
µ′ has at most k parts





∑

T∈SKk(Γh)

cTµ′,i−degh(T )



A(λ[1], µ′).

Next we observe that any partition µ′ of n − k which has at most k parts is equal to µ[1] for a unique
partition µ of n with the properties that µ has exactly k parts. Indeed, it is not hard to see that µ :=
(µ′

1 + 1, µ′
2 + 1, . . . , µ′

k + 1) is precisely this (unique) µ.
Using this correspondence µ ↔ µ[1] = µ′, we may therefore conclude that the last expression in the

displayed equations above is equal to

∑

µ∈Park(n)





∑

T∈SKk(Γh)

cTµ[1],i−degh(T )



A(λ[1], µ[1])

which is in turn equal to

∑

µ∈Park(n)





∑

T∈SKk(Γh)

cTµ[1],i−degh(T )



A(λ, µ)
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by Corollary 4.14. Putting the above together we have obtained

(6.5) |Wi(Jλ, h)| =
∑

µ∈Park(n)





∑

T∈SKk(Γh)

cTµ[1],i−degh(T )



A(λ, µ).

This proves the desired result. �
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