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PAIR COMPONENT CATEGORIES FOR DIRECTED SPACES

MARTIN RAUSSEN

Abstract. The notion of a homotopy flow on a directed space was introduced in [21] as a
coherent tool for comparing spaces of directed paths between pairs of points in that space
with each other. If all directed maps along such a 1-parameter deformation preserve the
homotopy types of path spaces, such a flow and the parameter maps are called inessential.

For a directed space, one may consider various categories whose objects are pairs of
reachable points to which a functor associates the space of directed paths between them.
The monoid of all inessential maps acts on such a category by endofunctors leaving the
associated path spaces invariant up to homotopy. We construct a pair component category
as quotient category: it has as objects pair components along which the homotopy type is
invariant – for a coherent and transparent reason.

This paper follows up [8, 16, 21] and removes some of the restrictions for their applicability.
At least in several examples, it gives reasonable results for spaces with non-trivial directed
loops. If one uses homology equivalence instead of homotopy equivalence as the basic relation,
it yields an alternative to computable versions of “natural homology” introduced in [5] and
elaborated in [3]. It refines, for good and for evil, the stable components introduced and
investigated in [25].

1. Introduction

1.1. Directed spaces and spaces of directed paths. A directed space (or d-space for

short) [17, 18] is a topological space X together with a subset ~P (X) ⊂ P (X) = XI of directed

paths (or d-paths) satisfying reasonable properties: ~P (X) includes all constant paths, it is
closed under concatenation α∗β of d-paths α and β and under non-decreasing reparametriza-

tions. The set ~P (X) is given the compact-open topology inherited from P (X) = XI . A map

f : X → Y is a d-map if f(~P (X)) ⊂ ~P (Y ).

Particularly important d-spaces are the directed interval ~I with ~P (~I) consisting of all

non-decreasing maps I → I, and the d-spaces ~In which are the building blocks for cubical
complexes - the geometric realizations of pre-cubical sets with d-paths that are cubewise non-
decreasing. Cubical complexes are the underlying d-spaces for Higher Dimensional Automata,
models for true concurrency introduced and investigated by Pratt and van Glabbeek [20, 13,
14]; cf Section 3.3.1 for details.
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2 MARTIN RAUSSEN

For two points x, y ∈ X, we consider the subspace ~P (X)yx ⊂ ~P (X) of all d-paths with
source x and target y. The point y is reachable from x if this subset is non-empty; and
(x, y) is then called a reachable pair. A d-path p and a reparametrization q = p ◦ ϕ with

ϕ : ~I → ~I a surjective non-decreasing map are reparametrization equivalent. The symmetric
and transitive closure of this relation is called reparametrization equivalence [7]. Equivalence

classes, the so-called traces, are the elements of trace spaces ~T (X)yx with the quotient topology

under the natural projection p : ~P (X)yx → ~T (X)yx. In many cases, and in particular for cubical
complexes X, these projection maps are homotopy equivalences [22].

Unlike in classical topology, the topology of path and trace spaces may vary depending on
the pair of end points, even for path-connected spaces, since the reverse path of a d-path is,
in general, not a d-path; for simple examples cf Section 4. In this article, we will partition,

not the d-space X itself (this was done in [8] and [16]), but the subspace ~X2 ⊂ X × X of
reachable pairs (cf Section 2.1.3) into coherent “components” along which the homotopy type
of the path and trace spaces have to be invariant.

1.2. A motivating example. Reading the impressive and comprehensive thesis [3] by Jérémy
Dubut, an example (p. 162) with graphical representation in Figure 1 caught my attention:

A

B2

B1

C

Figure 1. The cubical complex D

The cubical complex D (geometric realization of a pre-cubical set, cf Section 3.3.1, Def-
inition 3.4) consists of four 2-cells A,B1, B2, C. Remark that the cell C shares a face
with both cells B1 and B2. As a result, path spaces between points in cell A and points
in cell C have different homotopy types depending on their relative positions: The space
~P (D)

[C,(y1,y2)]
[A,(x1,x2)]

, 0 ≤ xi, yi ≤ 1,

• is empty if x1 > y1 and x2 > y2
• has two contractible components if x1 ≤ y1 and x2 ≤ y2
• is contractible else;

cf Figure 2.

Observe that a d-path with source in [C, (y1, y2)] and target in [C, (y′1, y
′
2)] hence does not

induce a homotopy equivalence between ~P (D)
[C,(y1,y2)]
[A,(x1,x2)]

and ~P (D)
[C;(y′

1
,y′

2
)]

[A;(x1,x2)]
by extension if

y1 < x1 ≤ y′1 and x2 ≤ y2 (or if y2 < x2 ≤ y′2 and x1 ≤ y1); cf Figure 2. In particular, the
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Figure 2. Homotopy types of path spaces depend on end points

only d-paths σ within D that, by extension, induce homotopy equivalences on all non-empty

path spaces ~P (D)
[C,(y1,y2)]
[A,(x1,x2)]

are the trivial ones: y1 = y′1, y2 = y′2; cf Figure 3. Similarly for d-

paths connecting various points within A; they are never weak isomorphisms in the parlance
of [16, 10]. As a consequence, the fundamental category ~π1(D) of the cubical complex D
(cf Section 2.1.2) allows only a trivial system of weak isomorphisms (consisting solely of the
contant paths).

A

B2

B1

C

�

Figure 3. No non-trivial d-path within A or C gives rise to a weak isomorphism
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1.3. Previous work. In order to obtain discrete invariants, previous work [16, 10] studies
localizations and component categories (cf Section 2.3) of the fundamental category ~π1(X) (cf
Section 2.1.2) of a d-space without non-trivial loops. So-called weak isomorphisms consisting
of inessential d-paths (inducing equivalences on all non-empty path spaces) form systems of
morphisms that are used for localizations or quotients.

In Dubut’s example in the previous section, it turns out that each component consists of
a single point only; the components do not give rise to any state space reduction at all! K.
Ziemiański [25] has recently suggested so-called stable components to overcome this problem,
cf also Section 6.2.

A similar problem has been known for a long time for directed spaces with non-trivial

directed loops. The simplest such space X = ~S1, the directed circle with counterclockwise
directed paths, does not allow any non-trivial paths giving rise to weak isomorphisms either,
cf [10, Section 6.4.1].

1.4. Contributions. The present paper takes a different approach resulting in reasonable
finite component categories in both above mentioned cases (cf Section 5.5 and Section 4.4.1);
in particular, this is probably the first definition of a component category that can deal with
directed spaces containing non-trivial directed loops.

The category of departure is no longer the fundamental category ~π1(X) (with point as
objects, cf Section 2.1.2) but its extension category E~π1(X) that has pairs of reachable

points within ~X2 := {(x, y) ∈ X × X| ~P (X)yx 6= ∅} as objects; the morphisms are pairs of
d-homotopy classes of d-paths, cf. Section 2.1.3. This category comes with a trace functor
~T (X)∗∗ : E~π1(X) → Ho−Top (cf Section 2.3.2) associating to a pair (x, y) ∈ ~X2 the trace

space ~T (X)yx. The aim is to identify, in a functorial way, pairs and d-homotopy classes

in the extension category that give rise to the same data under ~T (X)∗∗, up to (homotopy)
equivalence.

The resulting component categories are results of a quotient formation that arises from an

action of a submonoid of the monoid ~C(X,X) consisting of all d-maps from X into itself.
A d-map f : X → X is called inessential if it is d-homotopic to the identity map idX via a
d-homotopy H (called a homotopy flow) that, moreover, is path space preserving (psp), ie it

induces homotopy equivalences ~T (Ht) : ~T (X)yx → ~T (X)
Ht(y)
Ht(x)

, t ∈ I, x, y ∈ X, on non-empty

trace spaces, cf Section 2.2.1, Definition 2.5.
These inessential d-maps act on the extension category E~π1(X) by endo-functors. In

particular, the trace functor ~T (X)∗∗ factors over the action of these inessential morphisms (up
to isomorphisms). The arising components (objects in a component category) are the path
components among the pairs of reachable points with respect to the effects of path space
preserving homotopy flows on the end points: In which ways can a pair of source and target
points be perturbed by a 1-parameter deformation of the entire d-space without changing the
homotopy type (or another reasonable invariant) of the path space inbetween?

To construct the pair component category, we make use of a localization and quotient

process (cf Section 2.3) on a category with objects ~X2 and morphisms generated freely by
those in E~π1(X) and, additionally, morphisms arising from the endo-functors induced by
inessential d-maps on X – modulo several natural relations; for details cf Section 2.1.5 and
2.3.1.
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Several important properties of the arising pair component categories are collected in Sec-
tion 3. In Section 4, they are used in the investigation of a number of basic examples illustrat-
ing scope and results of the chosen approach. In particular, the pair component category of

the directed circle ~S1 has two objects: the diagonal and its complement. Morphisms between
them correspond either to the natural numbers N or to the augmented natural numbers N≥0,
cf Section 4.4.1.

It is certainly out of scope to determine pair components of a general d-space and their
category algorithmically. When the space in question is a cubical complex, ie the geometric
realization of a pre-cubical set, (Section 3.3.1), it is possible to find an approximation in the
form of a so-called order component category, cf Section 5; usually much finer than the pair
component category discussed previously: One considers only specific inessential d-maps (for
details cf Section 5) that preserve each cell of the complex. We verify that, for a cubical com-
plex with finitely many cells, the localization and the quotient process, as above, using only
these specific d-maps, gives rise to a finite order component category. The pair component
categories of cubical complexes are quotients of these order component categories.

Some of the constructions in this paper are borrowed from [21] and developed to suit
new purposes. The reader should also compare K. Ziemianski’s recent interesting paper [25]
defining and investigating stable components. Comments can be found in Section 6.2. Pointers
to future work, in particular investigating how far this approach can be made functorial,
conclude this article in Section 6.3.

2. Categorical constructs. Towards components and their categories

2.1. A zoo of categories.

2.1.1. Trace category. The trace category [21] ~T (X) of a d-space X has as objects the el-

ements of X. Morphisms from x to y are given by ~T (X)(x, y) := ~T (X)yx. Identities are
given by constant traces, and composition by concatenation (up to reparametrization; hence
associative). The trace category is enriched in Top.

A d-map f : X → Y between two d-spaces X and Y induces a functor (of topologically

enriched categories) ~T (f) : ~T (X)→ ~T (Y ).

2.1.2. Fundamental category. The fundamental category ~π1(X) [17, 9, 18, 10] of a d-space X
is an ordinary category. It arises from the trace category by identifying morphisms (ie traces)
that are related by a directed homotopy (or a d-homotopy [17, 18]; this is not always the
same notion!). Morphisms are identified along the path-component functor π0 : Top→ Set,

giving rise to a quotient functor ~π0 : ~T (X)→ ~π1(X). A d-map f : X → Y induces a functor
~π1(f) : ~π1(X)→ ~π1(Y ).

2.1.3. Extension and factorization categories. Since we are interested in path spaces between
given end points and their inter-relation, we need a category allowing for bookkeeping of both

start and end points. The reachable pairs in a d-space X, ie those in ~X2 := {(x, y) ∈ X ×

X| ~P (X)yx 6= ∅}, form the objects of the extension category E~T (X) (called preorder category
~D(X) in [21]); cf. also [19, 5, 3]) of the trace category ~T (X) (cf 2.1.1). It is considered as a full
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subcategory of ~T (X)op × ~T (X); an (extension) morphism has the form (α∗, ∗β) ∈ E~T (X):

(2.1) (x, y)
∗β //

α∗

��

(α∗,∗β)

$$■
■■

■■
■■

■■
(x, y′)

α∗

��
(x′, y)

∗β // (x′, y′)

It was remarked by Fajstrup and Hess [11] that it is important to consider these categories
together with the subcategories which allow only right. resp. only left extensions in order to
distinguish clearly different d-spaces (for example the one arising by reversing all arrows from
the original one); for a careful analysis, consult [4].

The extension category comes equipped with a functor ~T (X)∗∗ : E~T (X) → Top with
~T (X)∗∗(x, y) := ~T (X)yx and ~T (X)∗∗(α∗, ∗β)(γ) = α ∗ γ ∗ β.
More useful in the future is the extension category E~π1(X) of the fundamental category

with morphisms (α∗, ∗β) ∈ E~π1(X)((x, y), (x′, y′)) = ~π1(X)xx′ × ~π1(X)y
′

y . It comes equipped
with a functor ~π1(X)∗∗ : E~π1(X)→ Ho−Top into the category of homotopy types (cf Section
2.3.2).

A d-map f : X → Y between d-spaces induces a functor E~T (f) between extension cat-

egories E~T (X) → E~T (Y ) and a natural transformation ~T (f)∗∗ from the functor ~T (X)∗∗ to
~T (Y )∗∗ ◦ E~T (f) on E~T (X). Likewise a functor E~π1(f) : E~π1(X) → E~π1(Y ) and a natural
transformation ~π1(f)

∗
∗ from ~π1(X)∗∗ to ~π1(Y )∗∗ ◦ E~π1(f) on E~π1(X).

Homotopy groups (of path spaces) require a base point. To allow the necessary categorical
bookkeeping, one may consider the factorization categories of the trace category, resp. the
fundamental category, with traces, resp. d-homotopy classes of such as objects; cf [21, 3,
4]. Although not essentially more difficult, we will not use factorization categories in the
subsequent parts of this paper.

2.1.4. Endo-d-category. We will need further categories with the same objects (the set ~X2 of
reachable pairs) but with different morphisms:

Definition 2.2. Let X denote a topological space.

(1) C(X,X) denotes the topological monoid of all continuous self (or endo)-maps on X,
equipped with the compact-open topology.

(2) If X is a d-space, a d-map f ∈ C(X,X) is called an endo-d-map. Altogether, the

endo-d-maps on X form the topological submonoid ~C(X,X) ⊂ C(X,X) (under com-
position).

(3) Endo-d-maps give rise to the morphisms of the category d(X) with objects in ~X2, i.e.,

d(X)((x, y)), (x′ , y′)) is the space of all d-maps f ∈ ~C(X,X) satisfying fx = x′ and
fy = y′. Composition is given by composition of d-maps; the identity map idX gives
rise to all identity morphisms.

The category d(X) is topologically enriched.
Remark that also the endo-d-category comes with a functor d(X)∗∗ : d(X) → Top; on the

objects, it is defined as for the extension category; on morphisms, it associates to f : (x, y)→

(fx, fy) the map ~T (f) : ~T (X)yx → ~T (X)fyfx, [σ]→ [f ◦ σ].

In general, a d-map between d-spaces X and Y does not induce a functor from d(X) into
d(Y ).
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2.1.5. d-extension category. Combining the morphisms from the categories d(X) and E~π1(X)
yields the d-extension category of X: The set of objects is again the set of reachable pairs in
~X2. The morphisms arise from a quotient of the category freely generated by the morphisms
from d(X) and from E~π1(X) by composition modulo the congruence relation making diagrams
(2.3) and (2.4) below commute:

(2.3) (fx, fy)
((f◦σ)∗,∗(f◦τ))

// (fx′, fy′)

(x, y)

f

OO

(σ∗,∗τ)
// (x′, y′)

f

OO
,

for any f ∈ ~C(X,X), (x, y) ∈ ~X2, σ ∈ ~π1(X)xx′ , τ ∈ ~π1(X)y
′

y ; and

(2.4) (fx, fy)
∗H(y) // (fx, gy)

(x, y)

f

OO

g // (gx, gy)

H(x)∗

OO

for any simple future d-homotopy (cf Definition 2.5) H : X × ~I → X from H0 = f to H1 = g,

and for all (x, y) ∈ ~X2. Here H(x) is the d-path arising by restricting H to x.

Remark. (1) Imposing (2.3) means that every endo-d-map f ∈ ~C(X,X) defines a func-
tor from E~π1(X) into itself. Altogether they define a monoid action of the monoid
~C(X,X) on E~π1(X) by such endo-functors.

(2) Diagram (2.3) encodes a coherent lr-extension property (compare [8, 16]) of the mor-
phisms in the subcategory of endo-d-maps with respect to the subcategory of mor-
phisms in the subcategory of extensions.

(3) As a consequence of (2.3), every morphism in dE~π1(X) is a composition of just one
endo-d-morphism and one extension morphism
(σ∗, ∗τ) ◦ f : (x, y)→ (fx, fy)→ (x′, y′).

(4) If there is a simple d-homotopy H from H0 = f to H1 = g such that f(x) = H0(x) =
Ht(x) = H1(x) = g(x) and f(y) = H0(y) = Ht(y) = H1(y) = g(y), t ∈ I, then,

according to (2.4), f, g ∈ ~C(X,X) give rise to the same morphism f = g : (x, y) →
(fx, fy) = (gx, gy) in dE~π1(X).

(5) The functors from the previous paragraphs can be aggregated to define a functor
dE~π1(X)∗∗ : dE~π1(X) → Ho−Top (and this is why it makes sense to impose the
commutativity of (2.3) and (2.4) above).

(6) Note that, even if the d-space X does not allow any non-trivial loops, the d-extension
category may include non-identity endomorphisms arising from combinations of d-
maps and of extensions.

(7) Inclusion of morphism sets defines functors fromE~π1(X), resp. from d(X) into dE~π1(X)

– all categories have the same objects given by ~X2. By (4) above, the latter functor
is not faithful in general.

2.2. Homotopy flows and inessential d-maps.
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2.2.1. Homotopy flows. We start by recalling elementary definitions about homotopy notions

in directed algebraic topology: We distinguish the directed unit interval ~I with ~P (~I) consisting

of all non-decreasing self maps (d-paths) and the undirected unit interval with ~P (I) consisting
of all constant maps (paths).

Definition 2.5. Let X and Y denote two d-spaces.

(1) A d-map H : X × ~I → Y is called a simple d-homotopy from f = H0 to g = H1 (also:
a future d-homotopy from f to g, or a past d-homotopy from g to f)

(2) A d-map H : X × I → Y is called a dihomotopy (or neutral d-homotopy).
(3) Simple d-homotopiesH fromX toX withH0 = idX (resp.H1 = idX) are called future

(resp. past) homotopy flows. Simple dihomotopies with H0 = idX (resp. H1 = idX)
are called neutral homotopy flows.

Both for a d-homotopy and for a dihomotopy, all level maps Ht : X → Y, t ∈ I are d-maps.
Only for d-homotopies, every path H(x,−) : I → Y, x ∈ X, is a d-path in Y .

The notion of homotopy flow [21] is meant to capture some, but not all, of the properties
of a flow for a dynamical system associated to a vector field. Note that it is not demanded
that the level maps Ht : X → X, 0 ≤ t ≤ 1, are invertible; they need neither be injective nor
surjective. The map H is not supposed to satisfy a group (or monoid) law either.
Concatenations and compositions. Two simple d-homotopies between endo-d-maps on a d-
space X, say from h to f , resp. from f to g, can be concatenated to yield a d-homotopy from
h to g. In particular, a homotopy flow H from idX to f can be concatenated with a simple
d-homotopy from f to g on X to yield a homotopy flow from idX to g.

Homotopy flows on a given d-space X can be composed in various ways (cf [21]). Here we

propose a generalized construction: For two simple future d-homotopies G,H : X×~I → X let

[G,H] : X × ~I2 → X be given by [G,H]((s, t);x) = Gs(Ht(x)). In particular, [G,H](0, 0) =
G0 ◦H0, [G,H](s, 0) = Gs ◦H0, [G,H](0, t) = G0 ◦Ht,
[G,H](s, 1) = Gs ◦H1, [G,H](1, t) = G1 ◦Ht and [G,H](1, 1) = G1 ◦H1. Remark that this
construction does not commute: in general, [G,H] 6= [H,G].

Any d-path p ∈ ~P (~I2)
(1,1)
(0,0) provides a simple d-homotopy [G,H]◦p from G0 ◦H0 to G1 ◦H1.

In particular, d-paths on the 1-skeleton of ~I2 joining (0, 0) and (1, 1) yield such simple d-
homotopies “via” G1 ◦H0, resp. “via” G0 ◦H1. In the special case of homotopy flows G,H,
their composition [G,H] provides homotopy flows ending at G1 ◦H1 (via G1, resp. via H1).

Similarly for past d-homotopies on X. For neutral homotopy flows the path p does not
have to be directed. The construction above can be generalized to yield a composition

[H1, . . . ,Hn] : X × ~In → X of n simple d-homotopies Hi.

2.2.2. Psp homotopy flows and inessential d-maps. Ziemiański [25, Definition 2.6] gives a list
of very natural requirements to a family F of morphisms in the category Top to be considered
as an equivalence system. We will concentrate here on the following particular cases (also
considered in [25]):

F = F∞: consists of all (weak) homotopy equivalences.
F = F0: consists of all maps inducing bijections on sets of path components (π0).
F = HA,k: consists of all maps inducing isomorphisms on Hn(−;A) for n ≤ k; A denotes

an abelian group.
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In the following, all families F are supposed to be sandwiched between F0 and F∞ : F0 ⊆
F ⊆ F∞. We are, first of all, interested in homotopy flows that preserve path spaces up to
an F-equivalence:

Definition 2.6. (1) A d-map f : X → Y is called F-path space preserving (F-psp for

short) if ~T (f) : ~T (X)x2

x1
→ ~T (Y )fx2

fx1
is an F-equivalence for all pairs (x1, x2) ∈ ~X2.

(2) A d-homotopy (in particular, a homotopy flow) is called F-psp if every d-map Ht :
X → X, t ∈ I, is psp.

(3) An endo d-map f : X → X is called future/past/neutral F-inessential if there exists
a future/past/neutral F-psp homotopy flow with H0 = idX and H1 = f (resp. H0 = f
and H1 = idX).

In the following, we will write abbreviate the “flavours” future with α = +, past with
α = −, and neutral with α = 0. We may then talk about an αF homotopy flow, resp.
inessential map.

Lemma 2.7. Let X denote a d-space.

(1) The concatenation of an αF homotopy flow on X ending at f with an αF homotopy
from f to g (cf Section 2.2.1) yields an αF homotopy flow ending at g.

(2) The αF-inessential maps on a d-space X are closed under composition; they form a

submonoid Σα
F (X) ⊂ ~C(X,X) of the monoid of all endo-d-maps on X.

(3) Consider the morphisms denoted f in (2.3) in the case where f is F-psp. Then the
functor dE~π1(X)∗∗ (cf Section 2.1.5, Remark 2.1.5) sends all these morphisms into
F-equivalences.

(4) If f is +F-inessential via a +F homotopy flow H keeping x1 fixed (i.e., fx1 =
x1), then all extensions (cx1

, ∗H(x2)) : (x1, x2) → (x1, fx2) starting at x1 induce F-
equivalences. Likewise, if f is −F inessential via a −F homotopy flow H from f to
idX fixing x2, then extensions (H(x1)∗, cx2

) : (x1, x2)→ (fx1, x2) ending at x2 induce
F-equivalences.

Proof. The statements follow from the construction of compositions of (psp) homotopy flows
in Section 2.2.1, from Definition 2.6 and from (2.4) in the case where one of the maps is the
identity.

�

Remark. (1) In previous work ([8, 16]), attention was given to psp-properties of extension
morphisms and, moreover, a pushout/pullback property encompassing that the psp
property can be “matched “ (on an individual basis) at start and end points. Asking
for a psp homotopy flow means that there has to be a global witness (the psp ho-
motopy flow) for these psp properties. As the example in Section 1.2 shows, it may
be necessary to perturb start and end point coherently together to obtain “constant”
path spaces (up to F-equivalence). Hence, we are not going to compress the effects
of inessential extension morphisms but those of inessential d-maps.

(2) The concepts “psp homotopy flow” and “inessential d-map” make also sense from a
computer science applied perspective. A psp homotopy flow captures coherent pertur-
bations of all executions regardless of end points on a Higher Dimensional Automaton
(HDA) in concurrency theory (cf [20, 14, 10]).

2.3. Localization and component categories.
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2.3.1. Inessential subcategories: Definitions. According to Lemma 2.7, the F-inessential d-
maps on X (cf Definition 2.6.3) form submonoids Σ+

F (X),Σ−
F (X), resp. Σ0

F(X) (the neutral
ones) of the monoid of all endo-d-maps on X. As such, they give rise to wide subcategories

of dE~π1(X) that we call Σα
F (X), α = +,−, 0. Objects are always the sets ~X2, regardless the

decorations α and F .
A fourth flavour ± comes up as follows: Let

Σ±
F
(X)((x, y), (x′, y′)) := {f ∈ Σ+

F
(X)((x, y), (x′, y′))| ∃g ∈ Σ−

F
(X)((x′, y′), (x, y)) :

~T (g ◦ f) : ~T (X)yx → ~T (X)yx is F− homotopic to the identity map}; ie ~T (g ◦ f) induces the
identity map on all homotopy groups, on path components, resp. on a range of homology
groups.

In the following (starting in Section 2.3.4), we will concentrate on (mixed) subcategories
Σα
FE~π1(X) ⊂ dE~π1(X), α = +,−, 0,±, with

Objects: Pairs of points in ~X2.
Morphisms: arise as finite compositions of inessential morphims in Σα

F (X) with ex-
tension morphisms in E~π1(X) obeying to the relations (2.3) and (2.4); the latter for
f = idX .

As in Section 2.1.5, Remark 2.1.5, one should think of the monoid Σα
F (X) as “acting” on the

extension category E~π1(X) by endo-functors, this time leaving moreover the homotopy types
of associated trace spaces invariant.

2.3.2. Localization. Given a category C with subcategory Σ, the localization [1] of C with
respect to Σ consists of a category C[Σ−1] together with a functor L : C → C[Σ−1] turning
Σ-morphisms into isomorphisms, and such that a functor F : C → D factors uniquely through
L if and only if it sends all Σ-morphisms into isomorphisms.

In practice, localization consists in adding formal inverses to the Σ-morphisms; the mor-
phisms in the localized category are finite zig-zags consisting of morphisms in the category C
and inverses of morphisms in the subcategory Σ. A prominent example defines the category
Ho−Top as the result of localizing the subcategory whose morphisms Σ = F∞ consists of
all weak homotopy equivalences.

We will consider categories arising from a d-space X. Of particular interest are the local-
ized categories Σα

FE~π1(X)[Σα
F (X)−1], α = +,−, 0,±: all morphisms arising from inessential

d-maps (and no extension morphisms) are inverted. In these cases, we can draw several
conclusions from (2.3) and (2.4) in Section 2.1.5:

Lemma 2.8. (1) The relations from (2.3) and (2.4) lead to reverse relations concerning
morphisms f−1 : (fx, fy) → (x, y) for f ∈ Σα

F (X) and F psp homotopy flows H on
X:
(a) (σ∗, ∗τ) ◦ f−1 = f−1 ◦ (fσ∗, ∗fτ).
(b) H(y) ∗ ◦f−1 = ∗H(x) : (fx, fy)→ (x, fy).

(2) Let g denote an inessential d-map on X. Then ~T (g) indcuces bijections between
morphism sets E~π1(X)((x, y), (x′ , y′))→ E~π1(X)((gx, gy), (gx′ , gy′)).

Proof. (1) follows directly from (2.3) and (2.4) in Section 2.1.5.

(2) E~π1(X)((x, y), (x′ , y′)) = π0 ~T (X)xx′ × π0 ~T (X)y
′

y
∼= π0 ~T (X)gxgx′ × π0 ~T (X)gy

′

gy

= E~π1(X)((gx, gy), (gx′ , gy′)).
�
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By the universal property characterizing localization, for F = F∞, the functors ~T (X)∗∗ into
Top and ~π1(X)∗∗ into Ho−Top (cf Section 2.1.3) extend to give rise to functors from the
localized categories into Ho−Top for which we will use the same notation. Similarly, for
a wider class of equivalence systems, for the functors with target category Ab arising from
composing with eg homology or Set from taking connected components.

2.3.3. Component categories. Going one step further, one may form from a category C with
a subcategory Σ a quotient category C/Σ together with a quotient functor Q : C → C/Σ
sending morphisms in Σ to identities and such that a functor F : C → D factors uniquely
through Q if and only if it sends all Σ-morphisms to identities [2, 10]. The quotient category
has as objects the path components of C-objects with respect to paths arising by composing
morphism in Σ and Σ−1. Morphisms in the quotient category are represented by morphisms in
the category C[Σ−1], ie by concatenations of morphisms in the original category and inverses of
Σ-morphisms. Representatives can be composed if just their target, resp. source are situated
in the same component (plug in an arbitrary Σ-morphism to obtain a morphism representing
the composition); cf eg [2, 10] for details. In particular, every Σ-morphism in C represents an
identity in the component category C/Σ.

By the universal properties, the quotient functor factors over the localization functor giving
rise to a functor Q̄ : C[Σ−1] → C/Σ. This functor is not always an equivalence of categories;
it is so if C is loop-free, ie if it contains only identities as endomorphisms; cf [16, 10].

2.3.4. Pair component categories. Since objects are interpreted as path components, we will
use the notation ~π0(C; Σ) = C/Σ for relevant categories of pairs in our context.

In the following, we describe a number of interesting pair component categories; in all of

them, pairs (x, y) and (x′, y′) in ~X2 give rise to the same object (then called component) if
and only if there exists a zig-zag (x, y) → (x1, y1) ← (x2, y2) → · · · → (xn, yn) = (x′, y′) of
Σ-morphisms. For Σ = Σα

F , α = +,−, 0,±, those are induced by zig-zags of psp homotopies
flows joining them. We will call the components in these categories future, past, neutral resp.
total components.

By far the most important pair component categories arise as categories of components C/Σ
with C = Σα

FE~π1(X) and Σ = Σα
F(X). As discussed above, objects (components) correspond

to path components among reachable pairs along psp homotopy flows. Extension morphisms
are identified if equivalent up to an inessential endo-d-map. The key relations go back to
(2.3) and (2.4) – for f = idX – in Section 2.1.5:

For an inessential endo-d-map f onX and d-homotopy classes σ, τ , the morphisms (σ∗, ∗τ) :
(x, y) → (x′, y′) and ((f ◦ σ)∗, ∗(f ◦ τ)) : (fx, fy)→ (fx′, fy′) represent the same morphism
in the component category. Likewise, cf Lemma 2.8.2, morphisms (σ′∗, ∗τ ′) : (fx, fy) →
(fx′, fy′) arise from morphisms (σ∗, ∗τ) : (x, y)→ (x′, y′) under f .

In the remaining part of the paper, we will use the shorter notation ~π0(X;α,F)∗∗ =
~π0(Σ

α
FE~π1(X); Σα

F (X)), α = +,−, 0,±, for the future, past, neutral resp. total pair com-
ponent categories. Inclusion induces functors

~π0(X;±,F)∗∗ //

��

~π0(X; +,F)∗∗

��
~π0(X;−,F)∗∗ // ~π0(X; 0,F)∗∗

.
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These are onto on objects and, since every morphism arises from an extension, full on mor-
phisms.

For C = Top and Σ = F∞, the quotient category C/Σ is the naive category of homotopy

types. By the universal property characterizing quotient categories, the functors ~T (X)∗∗ fac-
tors to give rise to functors from ~π0(X;α,F)∗∗ to this category of homotopy types. Likewise
for F0, C = Sets and Σ consisting of bijections; or HA;k, C = A−mod and Σ consisting of
isomorphisms.

Remark. There are several variations on this theme that we are not going to follow up:

(1) The full category C = dE~π1(X) with the same subcategories Σ = Σα
F (X); resulting in

a pair component with the same objects as above but with an additional “action” of
essential endo-d-maps (the quotient of morphisms in dE(X)with respect to Σα

F (X)
and its inverses; see 3) below).

(2) In both cases: Pair component categories with departure the extension category

E~T (X) of the trace category instead of that of the fundamental category.
(3) Forgetting extensions, and considering C = d(X),Σ = Σα

F (X), morphisms given by
an endo d-map f and its compositions g ◦ f and f ◦ g with an inessential such map g
are identified in the quotient category.

3. Properties of homotopy flows and components

3.1. Components are path-connected. Any homotopy flow on a d-space X yields, when
restricted to a point or a pair of points, a path connecting the ends. This elementary obser-
vation implies:

Lemma 3.1. Any component C ⊂ ~X2 is path-connected. For α = +,−,±, two elements of
the same component can be connected by a zig-zag of (pairs of) d-paths.

3.2. Future components are future connected. The following definition adapts similar
ones from [8, 25] to the pair setting:

Definition 3.2. A subset C ⊂ ~X2 ⊂ X ×X is called future connected if, for any two pairs

(x1, y1), (x2, y2) ∈ C, there exist (x, y) ∈ C and d-paths αi, βi ∈ ~P (X), i = 1, 2, such that
(αi(t), βi(t)) ∈ C for all t, αi(0) = xi, βi(0) = yi, αi(1) = x, βi(1) = y.

Past connectivity is defined similarly. We omit the decoration F .

Proposition 3.3. Future components are future connected. Past components are past con-
nected. Total components are both.

Proof. We give a proof of future connectivity; the other cases follow by considering the reverse
directed space. There are essentially two zig/zag situations to consider (arrows indicate +F-

psp homotopy flows G,H : X × ~I → X by their restrictions to pairs of points):

(x, y) (x1, y1) (x2, y2)

(x1, y1)

::✉✉✉✉✉✉✉✉✉
(x2, y2)

dd■■■■■■■■■

(x̄, ȳ)

dd■■■■■■■■■

::✉✉✉✉✉✉✉✉✉

In the case on the left, the d-paths joining (xi, yi) with (x, y) within C can be chosen as
restrictions of G and H to (xi, yi).
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In the case on the right, there is a psp homotopy flow G : X × ~I → X with G1(x̄) =

x1, G1(ȳ) = y1 and a psp d-homotopy flowH : X×~I → X withH1(x̄) = x2,H2(ȳ) = y2. In the
notation from Section 2.2.1, let x := [G,H]((1, 1); x̄) = G1(H1(x̄)) and y := [G,H]((1, 1); ȳ) =
G1(H1(ȳ)). The dipaths (α1(t), β1(t)) = [G,H]((1, t); (x̄, ȳ)) connect (x1, y1) with (x, y)
within C. The dipaths (α2(t), β2(t)) = [G,H]((t, 1); (x̄, ȳ)) connect (x2, y2) with (x, y) within
C.

The general zig-zag situation follows by an inductive argument. �

3.3. Regions fixed by (psp) homotopy flows.

3.3.1. Pre-cubical sets. Cubical complexes.

Definition 3.4. (1) A pre-cubical set X (also called a 2-Set) is a sequence of disjoint
sets Xn, n > 0, equipped with face maps dαi : Xn → Xn−1, α ∈ {+,−}, 1 ≤ i ≤ n,

satisfying the pre-cubical relations: dαi d
β
j = dβj−1d

α
i for i < j.

Elements of Kn are called n-cubes, those of K0 are called vertices.
(2) The geometric realization of a pre-cubical set X is the d-space

|X| =
⋃

n≥0

Xn × ~In/[dα
i
(c),x]∼[c,δα

i
(x)]

with δαi (x1, . . . , xn−1) = (x1, . . . , xi−1, sα, xi, . . . , xn−1) and sα = 0 (resp. 1) for α = −
(resp. α = +).

(3) A path p ∈ ~P (|X|) is directed if there are 0 = t0 < t1 < · · · < tk = 1, cubes ci ∈ Xni

and directed paths pi : [ti−1, ti]→ ~Ini with p(t) = [ci, pi(t)] for t ∈ [ti−1, ti].

Pre-cubical sets are the underlying structure of a Higher-Dimensional Automaton [20, 13,
14, 10]; those have moreover a coherent labelling of the 1-cubes. In this section, we consider
homotopy flows on the geometric realization |X| of a pre-cubical set X, also called a cubical
complex. We will often just write X for |X|.

3.3.2. Homotopy flows and components. Let Y ⊂ X denote a subset of a d-space X. Its past

↓Y := {x ∈ X| ∃y ∈ Y : ~P (X)yx 6= ∅} consists of all elements in X that can reach an element

in Y . Its future ↑Y := {x ∈ X| ∃y ∈ |c| : ~P (X)xy 6= ∅} consists of all elements in X that can
be reached from an element in Y . Both contain Y .

A cube c in a finite dimensional cubical complex X is called a future branch cube, resp. a
past branch cube [23] if there exist more than one maximal cube containing it as a bottom
boundary cube (iterated d−∗ ), resp. top boundary cube (iterated d+∗ ).

Proposition 3.5. (1) For every (neutral) homotopy flow on X and every future branch
cube c there exists T > 0 such that H(|c| × [0, T ]) ⊆↓|c|.

(2) For every (neutral) homotopy flow on X and every past branch cube c there exists
T > 0 such that H(|c| × [0, T ]) ⊆↑|c|.

(3) A future (resp. past) homotopy flow on |X| preserves future (resp. past) branch cubes.

Proof. Let C =
⋃

|d|, the union of all cubes d that have c as a lower face. For
every homotopy flow on X, since |c| is compact, there exists T > 0 such that
H(|c| × [0, T ]) ⊆↓ C. Assume there exists x = [c; (t1, . . . tk)] ∈ |c| and 0 < t ≤ T
such that Ht(x) ∈ |d| \ |c| for 0 < t ≤ T for a cube d containing c as a lower
face. Let e denote a maximal cube containing c but not d as a lower face. Let
y = [e, (t1, . . . , tk, ε1, . . . εn−k)] be contained in |e| \ |d|, εi > 0; we assume without
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restriction that c occupies the first k coordinates. Observe that there exists a d-path
σ from x to y. The d-path Ht(σ) starts in Ht(x) ∈ |d| \ |c| and ends in Ht(y) which
is contained in |e| \ |d| for small t. Contradiction!

The same reasoning applied to the reverse d-structur on X (d-paths replaced by
reverse d-paths) yields the result for past branch cubes.

(1)(2) is an immediate consequence of 1. and 2.
�

The following result is straightforward; it turns out to be very useful in Section 4:

Lemma 3.6. Let Y ⊆ X denote a subspace of a d-space X.

(1) A d-map f : X → X (resp. a dihomotopy H : X × I → X) that keeps Y invariant
(f(Y ) ⊆ Y , resp. H(Y × I) ⊆ Y ), keeps also invariant its closure Ȳ , its past ↓Y and
its future ↑Y .

(2) A future (resp. past) homotopy flow H : X × ~I → X keeping Y invariant keeps also
invariant the complement X\ ↓ Y of its past (resp. the complement (X\ ↑ Y ) of its
future.

(3) Intersections of invariant sets are invariant.

Corollary 3.7. (1) Any future (resp. past) homotopy flow H : X × ~I → X fixes a future
(resp. past) branch point (=0-cell) b ∈ X0.

(2) Any future homotopy flow preserves the past ↓ b = {x ∈ X|~P (X)bx 6= ∅} of a future
branch point b and its complement X\ ↓ b.

(3) Any past homotopy flow preserves the future ↑ b = {x ∈ X|~P (X)xb 6= ∅} of a past
branch point b and its complement X\ ↑ b.

(4) For any disjoint collections B1, B2 of future branch points, any future homotopy flow
preserves subsets of the form

⋂

bi∈B1
↓bi ∩

⋂

bj∈B2
(X\ ↓bj).

(5) Similarly for past homotopy flows and collections of past branch points.

For x ∈ X, divide the set B(X) ⊆ X of all future branch points into the set B1(x)
containing all those in ↑x and into B2(x) containing the remaining ones. Let

(3.8) E+(x) :=
⋂

bi∈B1(x)

↓bi ∩
⋂

bj∈B2(x)

(X\ ↓bj).

Obviously, x ∈ E+(x). Intersections over empty sets Bi(x) are interpreted as the entire space
X; in particular, E+(x) = X if B1(x) = B2(x) = ∅. Observe that the relation defined by
x ≃ y ⇔ E+(x) = E+(y) is an equivalence relation on X. If B1(x) 6= ∅, then E+(x) is
obviously path-connected.

As an immediate consequence of Corollary 3.7(4-5), we obtain:

Corollary 3.9. Let C ⊂ ~X2 denote a future component, ie an object in ~π0(X; +,F)∗∗. Let

pi : ~X2 → X, i = 1, 2, denote one of the two projections, and let x ∈ X.
If x ∈ pi(C), then pi(C) ⊂ E+(x).

Similar statements apply to past components whose projections are contained in similarly
defined sets E−(x) and to total components whose projections are contained in sets E+(x)∩
E−(x).

Remark that we did not need a psp-property (preservation of path spaces) for the result
in Corollary 3.9.
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3.3.3. Psp homotopy flows and components. The following property is an immediate conse-
quence of the definitions (for a general d-space X):

Lemma 3.10. If two pairs (x1, y1) and (x2, y2) belong to the same pair component in ~π0(X;α,F)∗∗,
then

(1) ~T (X)y1x1
and ~T (X)y2x2

are F-equivalent (ie (weakly) homotopy equivalent, homology
equivalent . . . ).

(2) Furthermore, there exist paths p and q in X connecting x1 with x2 resp. y1 with y2

such that ~P (X)
q(t)
p(t) are all F-equivalent. For α = +,−,±, these paths can be chosen

as zig-zags of d-paths.

The following easy observation is useful for many examples and replaces lr-conditions on
left/right extensions [8, 16], also called Ore conditions in [3]:

Lemma 3.11. Let H denote a future F-psp homotopy flow, x1 ∈ X,x2 := H1(x1). For every

y1 ∈ X with ~T (X)y1x1
6= ∅ there exists y2 ∈ X with ~T (X)y2x2

6= ∅ 6= ~T (X)y2y1 such that (x1, y1)
and (x2, y2) are contained in the same +F-component.
Similarly for past F-psp homotopy flows.

Proof. The F-psp property of H makes sure that ~T (Ht) : ~T (X)y1x1
→ ~T (X)Htx2

Htx1
, t ∈ I, and,

in particular, ~T (H1) : ~T (X)y1x1
→ ~T (X)y2x2

is an F-equivalence. �

3.4. Products. LetX1,X2 denote d-spaces; we will consider our constructs for their product,
the d-space X = X1 × X2. There are natural homeomorphisms ~T (X) ∼= ~T (X1) × ~T (X2)

fibered over ~X2 ∼= ~X2
1 ×

~X2
2 , giving rise to natural homeomorphisms ~T (X)

(y1,y2)
(x1,x2)

∼= ~T (X1)
y1
x1
×

~T (X2)
y2
x2

on all fibers, (x1, x2), (y1, y2) ∈ X. Hence the extension category E~T (X) is naturally

isomorphic to E ~T (X1)× E~T (X2); likewise E~π1(X) to E~π1(X1)×E~π1(X2).
A pair of endo-d-maps, f1 on X1 and f2 on X2, defines the endo-d-map f1 × f2 on X. If

the maps fi are F-psp, then so is f1 × f2. But not every (psp) d-map on X is a product. In
general, the inclusion of product maps induces monomorphisms d(X1)× d(X2) →֒ d(X) and
likewise Σα

F (X1)×Σα
F (X2) →֒ Σα

F (X). After localization and quotient formation, one obtains
from the isomorphism of categories above:

Proposition 3.12. The quotient functor

~π0(X1;α,F)
∗
∗ × ~π0(X2;α,F)

∗
∗ → ~π0(X;α,F)∗∗

is onto on objects and full on morphisms.

4. Examples

In this section, we walk through a number of simple, but key examples for which it is
possible to determine pair component categories by elementary considerations.

4.1. Intervals and hyperrectangles.
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4.1.1. An interval. Let J ⊆ R denote an interval; it may be (half-)open or closed, bounded or

unbounded. All trace spaces ~T (J)yx, (x, y) ∈ ~J2, are contractible, and hence any endo-d-map
on J is automatically psp. Moreover, any two endo-d-maps f, g : J → J are psp-d-homotopic
to max(f, g) and to min(f, g) – by convex combination. In particular, they are all inessential
with respect to every choice of α and F . In fact, the space of endo-d-maps on J is contractible.

For every two pairs (x1, y1), (x2, y2) ∈ ~J2 with x1 6= y1 there exists an endo-d-map f : J →
J with f(x1) = x2, f(y1) = y2, for example a piecewise linear map with f(t) = x2, t ≤ x1, and
f(t) = y2, t ≥ y1. Hence, any two pairs (x1, x2), (x2, y2) are contained in the same (unique)
component, and the pair component category ~π0(J ;α,F) is the trivial category with one
object and one (identity) morphism – for every choice of α and F .

4.1.2. Hyperrectangles and generalizations. A hyperrectangle is a finite product H = J1 ×
· · · × Jn of intervals. It follows from Proposition 3.12 that also the pair component category
~π0(H;α,F) is the trivial category with one object and one (identity) morphism.

Using the same reasoning as in Section 4.1.1, one can show that pair component categories
are trivial, more generally, for subspaces K ⊆ Rn satisfying the following property: For every
pair x, y ∈ K, the lines connecting x and y with max(x, y), resp. with min(x, y) are contained
in K.

4.2. Directed graphs.

4.2.1. A branching. A future branching graph is the pre-cubical set consisting of two 1-cubes
a and b and three 0-cubes d−1 (a) = d−1 (b), d

+
1 (a) and d+1 (b). Its geometric realizaton is homeo-

morphic to the subspace B = {((x, y) ∈ [0, 1]2| xy = 0} ⊂ R2 with induced directed topology.

All non-trivial path spaces are contractible. Any future homotopy flow H : B × ~I → B
has to fix the only future branch point, ie the origin O = (0, 0) (equal to its own past
↓O) as well as the path components of its complement (cf Corollary 3.7.4 and Lemma 3.1)
Bx = {(x, 0)| x ∈]0, 1]} and By = {(0, y)| y ∈]0, 1]}; note that H is automatically psp. It
is elementary to see that the future pair category ~π0(B; +,F)∗∗ (suppressing identities, and
regardless of F) of the form

(O,Bx) (Bx, Bx)
−oo

(O,O)

+
::ttttttttt

+

$$❏
❏❏

❏❏
❏❏

❏❏

(O,By) (By, By)
−oo

Each arrow represents a well-defined morphism (+ represented by an extension in the future, - by an
extension in the past). This category is isomorphic to the extension category of the (poset) category
with three objects O,Bx, By and non-reversible relations given by O < Bx and O < By.

For the past pair component category, note that every reachable pair of points can be connected
with the pair (O,O) by a past psp homotopy flow. Hence the past pair category ~π0(B;−,F)∗∗ is the
trivial category with one object and one identity morphism.

The total pair category ~π0(B;±,F)∗∗ coincides with the future past category, the neutral pair
category ~π0(B; 0,F)∗∗ is also trivial.



PAIR COMPONENT CATEGORIES FOR DIRECTED SPACES 17

4.2.2. Particular directed graphs. We will consider a directed graph G (a one-dimensional pre-cubical
set), with the property that there is at most one directed path between two vertices. Morphisms are
thus either empty or singletons, and this gives rise to a partial order ≤ on the vertices. Restrict this
partial order to the (future) branch points (out-degree > 1). For every branch point bi, consider the

subgraph Gi :=↓bi \
⋃

bj<bi
↓bj ; moreover the path-components Gtop

k of Gtop := G \
⋃

j ↓bj; the latter

correspond to top branches not including any branch point.

Lemma 4.1. The future components (objects of the future pair component category ~π0(G; +,F)∗∗) are
products of subgraphs of the form

• Gi ×Gl for bi ≤ bl
• Gi ×Gtop

k if Gtop
k is reachable from bi, or

• Gtop
k ×Gtop

k .

Morphisms are inherited from the partial order on the branch points.

Proof. It follows from Corollary 3.9 that a component must be contained in one of the products of
subgraphs described above. On the other hand, any pair of points (xi, xl) ∈ Gi×Gl can be connected
by a future homotopy flow (which is automatically psp) with (bi, bl) fixing the complement of Gi ∪Gl.

Likewise any pair of points (xi, xk) ∈ Gi × Gtop
k can be connected by a zig-zag of future homotopy

flows with any other pair in Gi ×Gtop
k . �

A similar result identifies past pair components (objects in ~π0(G;−,F)∗∗) with products of subgraphs
between past branch points or of bottom branches. For total pair components (objects in ~π0(G;±,F)∗∗),
both future and past branch points, top branches and bottom branches have to be taken into account.

For the neutral pair components (objects in ~π0(G; 0,F)∗∗), Proposition 3.5 tells us: Factors of
components arise as subgraphs arising as zig-zags of d-paths between branch-points and connecting
a past branch point with a future branch point (no intermediate future branch point) or connecting
a future branch point with a past branch point (no intermediate past branch point) by a reverse d-
path. Top branches and bottom branches are identified with a branch point and do not give rise to
components.

Example 4.2. The directed graph representing the letter M has one future branch vertex and two
past ones. M top has two path components, and −→π 0(M ; +,F)∗∗ has five pair components. M bot has
three path components; taking reachable pairs among the two branch vertices and these components
leads to nine components in −→π 0(M ;−,F)∗∗. For the total pair component category, −→π 0(M ;±,F)∗∗,
the three branch points and the four components of the complement stay invariant; this results in 15
pair components. The neutral pair component category −→π 0(M ; 0,F)∗∗ is trivial.

It is more complicated to determine components for graphs with several directed paths between
certain pairs of vertices (thus including non-directed loops). For a simple example, consult Section
4.3.1 below.

4.3. Simple cubical complexes without directed loops.

4.3.1. Boundary of a square. We consider the boundary ∂2
2 of the 2-cube 2

2. Its geometric realization
X = ∂[0, 1]2 decomposes into A = {(0, 0)}, C = {(1, 1)}, B1 = {x, 0)| x > 0} ∪ {(1, y)| y < 1} and
B2 = {(0, y)| y > 0} ∪ {(x, 1)| x < 1}; we wish to show that its component category ~π0(X ;α,F)∗∗ is
given by
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B1B1

AB1 B1C

AA AC CC

AB2 B2C

B2B2

− +

+ −

+

+

−

−

+ −

− +

The path space ~P (∂2
2)CA consists of two contractible components; all other non-empty path spaces

are contractible. In particular, every psp-homotopy flow preserves both A and C and their complement
B1 ∪ B2. The sets B1 and B2 are not connected to each other. By Lemma 3.1.2, no component can
contain sources, resp. targets from more than one Bi – since projections of connected spaces are
connected.

As a consequence, there are three one element components (A,C), (A,A) and (C,C). All other
components are contained in (A,Bi), (Bi, C), (Bi, Bi), i = 1, 2. It is easy to find a (one-zig one-zag)
psp homotopy flow connecting pairs within the given regions; for a formal justification, cf Section 5.
Morphisms that can be represented by future (resp. past) extensions are marked with + (resp. −). A
mark is in red if the extension (with target AC) does not cover a homotopy equivalence of path spaces.
The left square marked with + and the right square marked with − do not commute; the mixed top
and bottom squares do. Not surprisingly, this category is (isomorphic to) the extension category of
the graph category on a directed graph with vertices A,B1, B2, C and directed arrows from A to Bi

and from Bi to C.
For X = ∂2

2, the past pair component category and also the total pair component category are
isomorphic to the future pair component category : X is d-homeomorphic to the space with the
reverse d-path structure. Finally, also the neutral pair category yields the same result: A neutral
psp-homotopy flow has to preserve the pair (A,C) and hence A and C; the rest of the argument is as
above.

The d-space Y = I2 \ J2 with J =]j0, j1[⊂ I = [0, 1] directed intervals (ie a square from which a
minor square has been deleted, arising as model of a very simple HDA modeling mutual exclusion)
yields the same results for the pair component categories. For the neutral category (α = 0), one
may use the following argument by comparison: Consider a piecewise linear d-map f : I → I with
f(0) = f(j0) = j0, f(t) = t, j0 ≤ t ≤ j1, f(j1) = f(1) = j1. Then f2 is a psp map from Y into
X ′ := ∂[j0, j1]

2 leaving X ′ pointwise fix, and X ′ is d-homeomorphic to X . Convex combination of
idY and f2 defines a neutral psp d-homotopy between these two maps, fixing X ′ pointwise, and thus
exhibits X ′ as a directed deformation retract of Y - with isomorphic neutral pair component category.

The deformation retraction above is not given by a future nor by a past d-homotopy. But it is not
difficult to check that the pair component categories ~π0(Y ;α,F)∗∗ are all mutually isomorphic.

4.3.2. Swiss flag. The “Swiss flag” is an HDA that arises as a model for two processes only interacting
via capacity one semaphores [9, 10]. It can be described by a Euclidean cubical complex (cf Section
5.4), a pre-cubical set whose geometric realization can be embedded into a “cubical plane”, including
a deadlock D – only constant paths with that source, a “doomed region” d - every d-path starting in
d cannot leave ↓D - and an unreachable region u. It has a directed deformation retract [3] given by
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the directed graph

(4.3) Y1

u

y1 // C

U //

OO

Y2

y2

OO

X1

d

b1

>>
⑤⑤

⑤⑤⑤⑤⑤
⑤⑤⑤⑤⑤

⑤⑤⑤⑤⑤
⑤⑤

// D

A

x1

OO

x2

// X2

OO b2

>>
⑥⑥⑥⑥

⑥⑥⑥⑥⑥⑥
⑥⑥⑥⑥⑥⑥

⑥⑥⑥

with two additional 2-cubes d and u glued in – with vertices at A,X1, X2, D, resp. U, Y1, Y2, C. The
geometric realization of this 2-complex will be called S.

X1 and X2 represent the only future branch points in S. The intersection ↓ X1∩ ↓ X2 of their
pasts is given by the vertex A. The intersection ↓Xi ∩ (S\ ↓Xj) of the past of one of them with the
complement of the other’s are the half-open 1-cells xi (including Xi, excluding A). The intersection
(S\ ↓ X1) ∩ (S\ ↓ X2) of their complements has two connected components: one of them is the
complement of the entire 2-cell d; the other consists of d apart from the entire two lower 1-cells xi

(corresponding to the doomed region). All of these subspaces are preserved by any future d-homotopy
flow by Corollary 3.7.

The pair (A,C) is the only one representing a non-trivial path space. Hence, as in 4.3.1, none of
the other areas can be moved into C by a psp future homotopy flow. As a consequence, no point in
u \ y1 can be connected to a point on y1 by a psp-future homotopy flow, since such a d-homotopy
would move points on y2 into C; and similarly when exchanging y1 and y2. Somewhat surprisingly,
a psp future homotopy flow can “discover” the unreachable region, ie u apart from its upper 1-cells..
The resulting future pair component category ~π0(S; +,F)∗∗ of the “Swiss flag” S does not give rise to
further compression; it is the extension category of

(4.4) b1 ∪ y1 // C

u //

OO

b2 ∪ y2

OO

x1

==④④④④④④④④④④④④④④④④④④④④④ // d

A

OO

// x2

OO

::✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈

where xi, yi, bi are half-open 1-cells, d and u contain only upper, resp. lower boundaries, and the lower
und upper squares commute.

A similar procedure applies for the past pair component category ~π0(S;−,F)∗∗: just align bi with
xi instead of yi. For the total pair component category ~π0(S;±,F)∗∗, the (interiors of) the 1-cells bi
give rise to separate components. For the neutral pair component category ~π0(S; 0,F)∗∗, the areas
xi ∪ bi ∪ yi form one component.

4.3.3. Matchbox. The matchbox was discussed in [6] and has been a test case for various constructs
concerning homological constructions. It can be represented as the boundary ∂2

3 of a 3-box from which
the interior of a lower face 2

2 has been removed. An equivalent description is given as the product of
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∂2
2 × ~I with an additional 2-cell D glued in at the top. We will use the latter representation and we

will reuse notation from Section 4.3.1 concerning ∂2
2 in the following sense: Components from that

case are replaced by their products with the half-open interval ~[0, 1[ – and path spaces have the same
homotopy types as for ∂2

2. In particular, only the pair AC represents homotopy type S0; all other
pairs in the component category correspond to contractible path spaces. Nevertheless, compared to
∂2

2, the (entire) cell D gives rise to additional components : There is no psp homotopy flow connecting
a point from the complement of D with D itself: such a homotopy flow would push a path from A to
C (corresponding to a non-contratible path space) to a path with target in D – with a contractible
path space.

As a consequence, additional components AD,B1D,B2D,CD and DD need to be added to the
component categories of ∂2

2 from Section 4.3.1, with obvious extension morphisms relating them to
the other components and to each other.

4.3.4. Cubical “spheres” in higher dimensions. A cube in the cubical decomposition of the boundary
of an n-box ∂2

n (the “cubical (n − 1)-sphere”) corresponds to an n-tupel e := (e1, . . . , en) with
ei ∈ {0, 1, ∗}, and e 6= (∗, . . . , ∗). These n-tuples are partially ordered by the product order arising
from 0 ≤ ∗ ≤ 1 apart from (∗, · · · ∗, 0i, ∗, · · · ∗) 6≤ (∗, · · · ∗, 1i, ∗, · · · ∗). Let Pn denote the category
representing that partial order (with 3n− 1 objects). Remark that ∂2

n can be obtained as a directed
deformation retract of the Euclidean complex [−1, 1]n\]0, 1]n. Hence, as will be shown in Section 5.4,
products of (reachable) open subcubes will be contained in the same component.

The homotopy types of trace spaces in ∂2
n were determined by Ziemiański [25]: For n-tuples e ≤ f ,

let di = fi − ei (where we replace ∗ with 0.5). Let n(e, f) denote the cardinality of the set {i|di = 1}.

Lemma 4.5. [25] Let e ≤ f . Then trace space ~T (∂2
n)fe is contractible if there exists i with di = 0.5,

and homotopy equivalent to a sphere of dimension n(e, f)− 2 otherwise.

Proposition 4.6. For n > 2, the component categories ~π0(∂2
n;α,F∞)∗∗, α 6= 0, all agree with the

extension category of the partial order category Pn.

Proof. The proof relies entirely on properties of (psp) homotopy flows established in Section 3.

(1) For k > 1, a (neutral) psp homotopy flow leaves cells of the form ek = 0k∗n−k, resp. fk =
1k∗n−k (regardless of the order of the coordinates) invariant; moreover, also their closures and
complements. In fact, Lemma 4.5 shows that leaving one or both of the cells to the future (or

the past) changes the homotopy type of ~T (∂2
n)fkek

. Apply Lemma 3.1 and Lemma 3.10.

(2) Now consider k = 1 and a cell e1 of type 0∗n−1: From 1. above and Corollary 3.7, we con-
clude that every psp future homotopy flow leaves the set

⋂

↓ f in−1 invariant (with f in−1 =
(1, . . . , 1, ∗i, 1, . . . , 1)). This intersection is equal to the union of all cubes e with no 1-
coordinate at all (here we use n > 2!). But each cell of type e1 is a maximal cube in that
set with respect to the partial order. All cubes below e1 are of type ek, k > 1, and are thus
invariant; cf 1. above. Hence e1 is so, as well.

A cell of type f1 = 1∗n−1 cannot be connected by a future psp flow with any of the
(invariant) cubes in its future. Assume there is a psp future homotopy flow H connecting
one of the lower boundary cubes 10i∗n−i−1, i > 0, with f1. Then, using Lemma 3.11, H
would connect a cell of type 120∗n−3 with one of the invariant cells fk = 1k∗n−k, k > 1.
Contradiction!

(3) Now consider cubes of type e = 0i ∗j 1k, i, j, k ≥ 1. Then e is contained in the closure of
a cube of type 0i∗n−i (invariant by (1) and (2) above). We conclude from Lemma 3.6 that
a psp future homotopy flow H departing e will end in a cube of type 0i ∗j−l 1k+l, l ≥ 0. If
l > 0, then Lemma 3.11 tells us that H would connect a cube of type ∗j1i+k (invariant by 1.
and 2. above) with a different cube. Contradiction!
Likewise, a vertex e of type 0n−k1k, 1 < k < n, does not leave e under a psp homotopy flow
H with H0 = id. If so, it would have to end in a cube of type 0i ∗j 1k, j > 0. Lemma 3.11
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implies that the same psp homotopy connects a “complementary” cube of type 0j ∗i 1k with
a cube of type ∗n−k1k. This contradicts (1) and (2) above.

(4) Since all cubes of the types considered in (3) above are invariant under a psp homotopy flow,
none of them can be reached from another cube under a psp homotopy flow H departing from
a different cube in its past.

For past pair components, one may apply similar arguments - or consider the reverse d-space that is
d-homeomorphic to the original one: Just exchange 0 s and 1s! �

Remark that the components in this case correspond to products of reachable components of the
fundamental category considered in [8] (for n = 3) and for Ziemiański’s stable components [25].

4.4. Spaces with directed loops.

4.4.1. Directed circle. The directed circle ~S1 is the pre-cubical set with one 0-cell and one 1-cell.

Its geometric realization |~S1| is a circle on which directed paths proceed counter-clockwise, ie., they

are images of non-decreasing paths under the universal covering exp : ~R → |~S1|. All trace spaces
~T (~S1)yx, x, y ∈ S1, are homotopy equivalent to the discrete space indexed by the non-negative integers
N0.

A directed degree one map f : S1 → S1 homotopic to the identity induces a homotopy equivalence
~T (f) : ~T (~S1)yx → ~T (~S1)fyfx on all trace spaces if and only if it is a directed homeomorphism: Since
f ≃ id, it is onto. Assume fx = fy = z for x 6= y. One of the counter-clockwise arcs from x to y, resp.
from y to x maps to a constant path, the other (without restriction the one from y to x), to a d-path

from z to itself with winding number one. But then ~T (f) : ~T (~S1)xy → ~T (~S1)zz misses the component
given by constant maps!

For every two elements x, y ∈ S1, there is a future psp homotopy flow H of counter-clockwise
rotations (hence directed homeomorphisms) with H1(x) = y. As a result, all pairs (x, x) on the
diagonal ∆ are contained in the same component. The diagonal is of course invariant under any map.
On the other hand, we have just seen that no pair (x, y) in the complement Γ = (S1 × S1) \∆ can be
connected to an element on the diagonal by a psp d-map (a homeomorphism!).

Let (x, y), (x′, y′) denote two pairs in the complement Γ of the diagonal. After a rotation, we may
assume that x = x′. There is a directed homeomorphism (image of a piecewise linear map on R under
the exponential map) that fixes x and maps y into y′ or y′ into y.

As a result, the future pair category of ~π0(~S
1; +,F)∗∗ has two objects given by the diagonal ∆ and

its complement Γ := (S1 × S1) \∆. Endomorphisms on both objects correspond to the non-negative
integers N≥0. The morphisms Mor(∆,Γ) correspond to N≥0, as well, whereas Mor(Γ,∆) corresponds
to the positive integersN; composition corresponds to addition. Note that ∆ and Γ are not isomorphic!

All other pair component categories ~π0(~S
1;α,F)∗∗ are isomorphic among each other.

Remark. (1) The result for the directed circle is slightly different from the one obtained in [21]
where we departed from the extension category of the fundamental category and localized
weakly invertible extensions instead of d-maps.

(2) Remark, that the pair component category does distinguish between a directed interval J ⊂ R

(Section 4.1.1) and the directed circle ~S1.

4.4.2. Directed torus. Now consider the directed n-torus ~T n = (~S1)n, n ∈ N. All trace spaces ~T (~T n)
are homotopy equivalent to a discrete space indexed by Nn

≥0. Let us again verify that a psp-d-map
f homotopic to the identity is necessarily a homeomorphism. It must be onto since it preserves the
fundamental homology class. Assume f(x) = f(y) = z for x, y ∈ T n, x 6= y. Consider a d-path in T n

from x via y to x of i-degree di = 0 if xi = yi and di = 1 if xi 6= yi. The two pieces map under f to
paths of multidegree δ = (δ1, . . . , δn), ε = (ε1, . . . , εn) each; note that δi+ εi = (d1, . . . , dn). The maps
~T (f) : ~T (~T n)yx → ~T (~T n)zz and ~T (f) : ~T (~T n)xy → ~T (~T n)zz have as image subsets whose homotopy types
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correspond to δ +Nn
≥0, resp. ε +Nn

≥0. They cannot both be surjective, ie have image all homotopy
types corresponding to Nn

≥0.

Proposition 4.7. The pair component category ~π0(~T
n;α,F)∗∗ is isomorphic to the product

∏n
1 ~π0(~S

1;α,F)∗∗
This is a category with 2n objects in the set {∆,Γ}n. If one lets ∆ correspond to 0 and Γ to 1, and
hence an object to a bit vector d ∈ {0, 1}n, then Mor(d,d′) is a product of factors N≥0 and N. A
factor corresponds to N exactly for pairs (di, d

′
i) = (1, 0). Composition corresponds to coordinatewise

addition.

Proof. According to Proposition 3.12, we need only show that the quotient functor from the product
∏n

1 ~π0(~S
1;α,F)∗∗ → ~π0(~T

n;α,F)∗∗ is injective on objects, as well. To achieve this, we will show that

every inessential d-map F : ~T n → ~T n is a product of d-homeomorphisms fi : ~S
1 → ~S1, 1 ≤ i ≤ n, ie

F = f1 × · · · × fn:

Let F : ~T n → ~T n denote an inessential d-map with F (x1,x2) = (y1,y2) and F (x1,x
′
2) = (y′1,y

′
2),

x1, y1, y
′
1 ∈ S1,x2,x

′
2,y2,y

′
2 ∈ T n−1 and y1 6= y′1. (If we had an inessential map G : ~T n → ~T n

relating these pairs in the reverse direction, we may consider F = G−1 since G has to be a directed
homeomorphism). After a coordinatewise rotation, we may assume that (y1,y2) = (x1,x2) – and
y′1 6= x1. Let σ = (cx1 , σ2) denote a d-path from (x1,x

′
2) to (x1,x2), constant in the first variable.

Consider the induced diagram of trace spaces

~P (~T n)
(y′

1,y
′

2)

(x1,x2)

∗F (σ) // ~P (~T n)
(x1,x2)
(x1,x2)

�

� // Ω(T n; (x1,x2))

~P (~T n)
(x1,x

′

2)

(x1,x2)

~T (F )

OO

∗σ // ~P (~T n)
(x1,x2)
(x1,x2)

~T (F )

OO

�

� // Ω(T n; (x1,x2))

Ω(F )

OO

The image of the lower extension map ∗σ contains loops of multidegree (0,d). The image of the upper
extension map ∗F (σ) map can only contain loops of multidegree (d1,d) with d1 > 0. This contradicts
the fact that an endo map on T n that is homotopic to the identity has to preserve multidegrees. �

Remark. In contrast to what happens to previously considered component categories of the fundamen-
tal category ([8, 16]), this example shows that localized and component categories constructed from
pair categories by localizing the effects of psp-d-maps make sense also for d-spaces with non-trivial
directed loops.

We postpone the investigation of the pair component categories for the d-space corresponding to
Dubut’s example to Section 5.5.

5. Pre-cubical sets and order pair components

In general, it seems to be hard to determine the pair component categories introduced in Section
2.3.4 algorithmically. For pre-cubical sets, cf Section 3.3.1, we will now define and describe a related
finer component category that arises by inverting fewer morphisms and that is easier to comprehend
and to determine.

5.1. Interval induced maps on a pre-cubical set. The following construction is essentially con-

tained in [25]: Let h : ~I → ~I denote a reparametrization of the unit interval I, i.e, a non-decreasing
and surjective continuous map. All such reparametrizations form a convex and hence contractible
space (in the topology inherited from the compact-open topology). The homeomorphisms within the
reparametrizations (the strictly increasing ones) form likewise a convex and hence contractible sub-
space. Particular reparametrizations are of future type if h(t) ≥ t for all t ∈ I, resp. of past type if
h(t) ≤ t, t ∈ I. Algebraically, interval reparametrizations form a monoid under composition (with
those of future, resp. past type as submonoid) and homeomorphisms form a group (with subgroups of
future, resp. past type).
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Consider a pre-cubical set X . Every interval reparametrization h can be used to construct an
endo-d-map hX on the geometric realization |X | defined by [c, (t1, . . . , tn)] 7→ [c; (ht1, . . . , htn)]. By
definition, hX is a cube-preserving map. It is well-defined with respect to the boundary relations on X ;
for this to be true, in general, it is necessary to use the same reparametrization h on each coordinate.

An endo-d-map h in X will be called interval induced if it can be described as hX for a suitable
interval reparametrization h.

Remark. (1) For a Euclidean complex, cf Section 5.4, one may be less careful and select different
reparametrizations for each of the n coordinates.

(2) If h is a homeomorphic d-map with inverse h−1, then hX and (h−1)X = h−1
X are inverse

homeomophic endo-d-maps.
(3) It is clear that the interval induced endo-d-maps onX form a submonoid of the monoid d(X) of

all endo-d-maps; the interval induced endo-d-homeomorphisms on X form a subgroup Σα
I(X)

of the group of all endo-d-homeomorphisms.

Lemma 5.1. An interval induced endo-d-map hX induced by an interval homeomorphism h is neutrally
inessential. If it is of future type (resp. past type), it is future (resp. past) inessential: Σα

I (X) ⊂ Σα
F (X).

Proof. A linear reparametrization homotopy H : ~I × I → ~I arises by convex combination of the
identity map idI and the chosen reparametrization h. It consists of d-maps Ht, and it is an increas-
ing/decreasing homotopy (in the I-variable) if h is of future, resp. of past type. The homotopy H
induces the homotopy flow HX : X × I → X given by HX([c, e], t) = ([c,H(e, t)]) on X ending at hX .

If h is a homeomorphism (ie injective), it induces a neutral, future, resp. a past homotopy flow
HX : X × I → X, HX(−, t) = (Ht)X(−) that consists of d-homeomorphisms; in particular, of
homotopy equivalences. Each induced map (Ht)X : X → X induces thus homeomorphisms on path
and trace spaces (with the map induced by the inverse homeomorphism as inverse). Hence it is
F -inessential. �

Question. Is the statement in Lemma 5.1 true for general interval induced endo-d-maps?
Like in Section 2.3.4, the monoid Σα

I(X) of α-interval induced d-homeomorphisms on X , α =
+,−, 0,±, gives rise to wide subcategories (same pair objects) Σα

I(X) ⊂ Σα
F (X) ⊂ d(X) resp.

Σα
IE~π1(X) ⊂ Σα

FE~π1(X) ⊂ dE~π1(X). In the remaining part of the paper, we will focus on the
localized category Σα

IE~π1(X)[Σα
I(X)−1] and the (pair) component category, denoted ~π0(X ;α, I)∗∗.

The inclusion of inverted subcategories Σα
I(X) ⊂ Σα

F(X) gives rise to quotient functors
Σα

IE~π1(X)[Σα
I(X)−1] → Σα

FE~π1(X)[Σα
F(X)−1] between localized categories resp. ~π0(X ;α, I)∗∗ →

~π0(X ;α,F)∗∗ between quotient categories. In the following, we will show that, for a finite pre-cubical
set X , the “finer” category ~π0(X ;α, I)∗∗ has finitely many objects and conclude that this also holds
for the pair component categories ~π0(X ;α,F)∗∗.

5.2. Order equivalence and order pair components.

Definition 5.2. (1) Two vectors z = [zi], z
′ = [z′i] ∈ Rk are called order equivalent if and only if

ziRzj ⇔ z′iRz′j for all 1 ≤ i, j ≤ k and R ∈ {<,=, >}.
(2) Let x,x′ ∈ Rn, y,y′ ∈ Rm. The pairs (x,y) and (x′,y′) are called order equivalent if and

only if the vectors [x,y] and [x′,y′] ∈ Rn+m are order equivalent.

Lemma 5.3. (1) Two vectors z = [zi], z
′ = [z′i] ∈ Rk are order equivalent if and only if there

exists a d-homeomorphism h : ~I → ~I with h(zi) = z′i.
(2) Let X denote a pre-cubical set with an n-cell c and an m-cell d. Let x,x′ ∈ In,y,y′ ∈ Im

such that (x,y) and (x′,y′) are order equivalent. Then there exists an interval induced endo-
d-homeomorphism hX with hX([c,x]) = ([c,x′]) and hX([d,y]) = [d,y′].

Proof. A d-homeomorphism h produces clearly order equivalent vectors z = [zi] and z′ = [hzi]. Given
order equivalent vectors z, z′, one may choose a piecewise linear d-homeomorphism with h(zi) = z′i.
(2) follows from (1). �



24 MARTIN RAUSSEN

The following lemma concerning least upper bounds x ∨ x′ resp. greatest lower bounds x ∧ x′ is
straightforward:

Lemma 5.4. If two pairs (x,y) and (x′,y′) are order equivalent, then they are both order equivalent
to their least upper bounds (x ∨ x′,y ∨ y′) and greatest lower bounds (x ∧ x′,y ∧ y′), as well. As a
consequence

(1) There exists a (Σ+
I )-zig-zag morphism (x,y)→ (x ∨ x′,y ∨ y′)← (x′,y′).

(2) There exists a (Σ−
I )-zig-zag-morphism (x,y)← (x ∧ x′,y ∧ y′)→ (x′,y′).

Proposition 5.5. Let X denote a pre-cubical set with an n-cell c and an m-cell d. Let x,x′ ∈ In and
y,y′ ∈ Im.

(1) If the pairs (x,y) and (x′,y′) are order equivalent, then the pairs ([c,x], [d,y)]) and ([c,x′], [d,y′]))
are situated in the same component in ~π0(X ;α, I)∗∗ for all α and hence also in ~π0(X ;α,F)∗∗,

for all α and F . In particular, ~T (X)
[d,y]
[c,x] and

~T (X)
[d,y′]
[c,x′] are homeomorphic and thus homotopy

equivalent.
(2) If the pairs ([c,x], [d,y]) and ([c,x′], [d,y′]) are contained in the same component object in the

component category ~π0(X ;α, I)∗∗, then (x,y) and (x′,y′) are order equivalent.
(3) The order pair categories ~π0(X ;α, I)∗∗, α ∈ {+,−,±, 0}, agree and will be denoted just by

~π0(X ; I)∗∗.

Proof. This follows immediately from Lemma 5.3 and Lemma 5.4. �

5.3. Order subdivisions and the order pair component category. Proposition 5.5 allows to
give fairly explicit descriptions of the order pair category ~π0(X ; I)∗∗ of a pre-cubical set X : A cube
Ik subdivides into k-simplices given by inequalities 0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xik ≤ 1; there are k!
such simplices. All possible order relations between coordinates arise by replacing ≤ by either = or
by <; each replacement (ie each ordered partition) gives rise to interiors ∆̊ of subsimplices ∆ of this
subdivision. If k = n+m, inclusions [1 : n] →֒ [1 : n+m], resp. [1 : m] →֒ [1 : n+m] induce simplicial
projections In+m → In resp. In+m → Im (by restriction of a partition to n, resp. m coordinates).

To get hold on an object in the order pair category ~π0(X ; I)∗∗ of X , you need to fix a pair of cubes
c ∈ Xn, d ∈ Xm and the interior of a subsimplex ∆d

c of the simplicial subdivision of |c|×|d| ∼= In+m just

described. Furthermore, you need to make sure that there exist (s, t) ∈ ∆̊d
c such that ~P (X)

[d,t]
[c,s] 6= ∅.

By Proposition 5.5, this condition is independent of the choice of base points s, t in ∆̊d
c ; for example,

one may choose the barycenters of each subsimplex ∆d
c . But beware: These do, in general, not agree

with the pair of barycentres of its projections within In, resp. Im.

Future (extension) morphisms from ∆d
c to ∆d′

c are determined by ~π1(X)
[d′,t′]
[d,t] for (t, t′) ∈ ∆̊d′

d and

~P (X)
[d′,t′]
[d,t] 6= ∅; well-determined up to natural homeomorphisms by Lemma 5.4. Composition of future

morphisms arises from composition in the fundamental category between matching representatives; you
may have to change base point pairs by an element of ΣI(X) before representatives match! Similarly
for past morphisms.

Remark. The path space between two points in the same cube is contractible or empty; this is in
particular true for path spaces between barycenters of a subdivision simplex and a boundary simplex.
Hence, there is at most one morphism between neighbouring cells given by an extension morphism
contained in these two cells.

By construction, the functor −→π 1(X)∗∗ : dE−→π1(X) → Ho−Top from Section 2.1.3 extends to
dE−→π 1(X)[ΣI(X)−1]; its restriction to ΣIE

−→π 1(X)[ΣI(X)−1] (analogous to the construction in Section
2.3.1) factors over the quotient category−→π 0(X ; I)∗∗. The quotient functors

−→π 0(X ; I)∗∗ →
−→π 0(X ;α,F)∗∗,

α = +,−, 0,±, from Section 5.1 are all surjective on objects and full; but rarely faithful.
For a finite-dimensional pre-cubical set X , the order pair component can be “over-approximated”

by a discrete full subcategory of E ~π1(X): For an n-dimensional complex X , we choose as objects
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all pairs [c, s], [d, t] such that all coordinates si of s and tj of t are fractions l
2n+1 , 0 ≤ l ≤ 2n + 1.

This choice ensures that every subsimplex ∆d
c contains at least one such pair. The projection functor

from the arising subcategory of E~π1(X) into ~π0(X ; I)∗∗ is onto on objects and fully faithful, hence an
equivalence of categories. Using Remark 5.3 for (2) below, we conclude:

Corollary 5.6. Let X denote a finite pre-cubical set.

(1) ~π0(X ; I)∗∗ and thus all pair component categories ~π0(X ;α,F)∗∗ have finitely many objects.
(2) If X does not admit any non-trivial directed loops, then all the above mentioned categories

have finite sets of morphisms.

5.4. Euclidean cubical complexes. With the lattice of integer vectors Zn ⊂ Rn as vertices, one
forms an infinite pre-cubical set whose geometric realization is Rn. Every subcomplex X of that
complex is called a Euclidean cubical complex. By definition, such a Euclidean complex admits only
trivial directed loops.

Definition 5.7. (1) Two elements (x,x′) ∈ X will be called cube-equivalent if there exists a cube
c ⊂ X such that x,x′ are both contained in the interior of c.

(2) A d-map h = (h1, . . . , hn) : R
n → Rn with hi(x1, . . . , xi, . . . , xn) = xi for every xi ∈ Z, 1 ≤

i ≤ n, is called cube-preserving.
(3) If h(x) ≥ x (resp. h(x) ≤ x), h is said of future type, resp. of past type.
(4) A cube-preserving d-map h restricts to a cellular endo-d-map h : X → X from every subcom-

plex X into itself. These cube-preserving maps form, when restricted to X , a (contractible!)
monoid. Those of future (resp. past) type form contractible submonoids Hα

n(X).

Proposition 5.8. Let X denote a Euclidean cubical complex. Any cube preserving d-map h : X → X
of future type (resp. of past type) is +F∞ (resp. −F∞) inessential.

Proof. Cellwise convex combination between idX and h defines a homotopy flow H such that every
d-map Ht : X → X is cube-preserving, as well. It is a future (resp. past) homotopy flow if h is of
future (resp. past) type. It is therefore enough to show that an α cube-preserving map h : X → X is
F -psp; we do that for α = +:

According to Remark 2.1.5.5 (cf also [21, (5.3)]), the diagram

~T (X)yx
~T (h) //

∗H(y) $$■
■■

■■
■■

■■
■

~T (X)
h(y)
h(x)

H(x)∗

��
~T (X)

h(y)
x

is homotopy commutative for (x,y) ∈ ~X2. Hence it is enough to show that for every (x,y) ∈ ~X2 and
every d-path

(1) σ from y to y′ between cube-related elements, the map ∗σ : ~P (X)yx → ~P (X)y
′

x

(2) τ from x′ to x between cube-related elements, the map τ∗ : ~P (X)yx → ~P (X)yx′

are homotopy equivalences. (The construction makes uses of paths instead of traces, but the natural-
ization map between traces and d-paths in Euclidean complexes from [22] is a homotopy equivalence.)
We prove 1. above; the proof of 2. is similar.

A map My : ~P (X)y
′

x → ~P (X)yx is constructed by assigning to α ∈ ~P (X)y
′

x the d-path αy ∈
~P (X)yx, α

y(t) = α(t) ∧ y, ie αy
i (t) = min{αi(t), yi}. Since y and y′ are cube-related, α(t) and αy(t)

are, for every t ∈ I, contained in the same subcube of Rn, and hence αy is a d-path in X .

The composition ~P (X)yx
∗σ // ~P (X)y

′

x

My

// ~P (X)yx assigns to α ∈ ~P (X)yx the path α ∗ cy, which

is homotopic to the identity map.
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For s ∈ I, let σs denote the d-path σs(t) := σ(s+(1− s)t) from σ(s) to σ(1) = y′. We consider the

homotopy ~P (X)y
′

x × I
Mσ(s)

// ~P (X)
σ(s)
x

∗σs

// ~P (X)y
′

x (with parameter s); it deforms the map ∗σ◦My

– for s = 0 – into ∗cy′ – for s = 1. The latter map sends α ∈ ~P (X)y
′

x into α ∗ cy′ , and it is homotopic

to the identity map on ~P (X)y
′

x . �

Proceeding as in Section 5.1, the monoids from Definition 5.7 give rise to wide subcategories
Σα

Hn
(X) ⊂ d(X) ⊂ dE~π1(X), α = +,−, 0,±. We can form the localized categories Σα

Hn
E~π1(X)[Σα

Hn
(X)−1],

their quotient categories ~π0(X ;α,Hn)
∗
∗ and, using Proposition 5.8, quotient functors into ~π0(X ;α,F)∗∗,

at least for α 6= 0.
Proposition 5.5 has the following (far simpler) analogue for Euclidean cubical complexes:

Proposition 5.9. Let X denote a Euclidean complex and let (x,y), (x′,y′) ∈ ~X2.

(1) If (x,x′) and (y,y′) are cube equivalent, then (x,y) and (x′,y′) are situated in the same

component in ~π0(X ;α,Hn)
∗
∗. In particular, ~T (X)yx and ~T (X)y

′

x′ are homotopy equivalent.
(2) If the pairs (x,y) and (x′,y′) are situated in the same component object in the component

category ~π0(X ;α,Hn)
∗
∗, then (x,x′) and (y,y′) are cube equivalent.

(3) The pair categories ~π0(X ;α,Hn)
∗
∗, α ∈ {+,−,±, 0}, agree and will be denoted just by ~π0(X,Hn)

∗
∗.

There are quotient functors ~π0(X,Hn)
∗
∗ → ~π0(X ;α,F∞) for all α.

For the proof of Proposition 5.9, we need the following lemma. We will write (x,y) ∼H (x′,y′) if
they are contained in the same component; here for α = +. We shall write x << x′ if xi < x′

i for all i.

Lemma 5.10. (1) Let x,x′′ be cube-related and x′′ << x. Let (x,y) ∈ ~X2.
Then (x′′,y) ∼H (x,y).

(2) Let y,y′′ be cube-related, (x′′,y) ∈ ~X2,y′′ << y. Then (x′′,y) ∼H (x′′,y′′).

Proof. of Lemma 5.10: To show (1), we construct a cube-preserving d-map h = h1×· · ·×hn : Rn → Rn

(of future type) with h(x′′) = x and h(y) = y as product of piecewise linear d-maps hi, 1 ≤ i ≤ n,
given by

hi(t) =

{

t t ≤ ⌈xi⌉ or t ≥ max{yi, ⌈xi⌉+ 1}

x′
i t = x′′

i

;

by assumption x′′
i < yi. To show (2), a similarly constructed cube-preserving d-map fixes x′′ and sends

y into y′′. �

Proof. of Proposition 5.9:

(1) Choose x′′ << x,x′ in the interior of the same cell as x and y,y′ << y′′ in the same cell as
y. According to Lemma 5.10, we obtain the following chain of equivalences:
(x,y) ∼H (x′′,y) ∼H (x′′,y′′) ∼H (x′′,y′) ∼H (x′,y′).
A similar construction works for α = −.

(2) is obvious, since d-maps in Hn preserve (interiors of) cubes.
(3) follows from (1) and (2).

�

Corollary 5.11. Let X ⊂ Rn denote a Euclidean cubical complex.

(1) Components in ~π0(X,Hn)
∗
∗ can be indexed by reachable pairs of cubes (c, d).

(2) The category ~π0(X,Hn)
∗
∗ is isomorphic to the full subcategory of E~π1(X) the objects of which

are the pairs of barycenters of reachable cubes.
(3) Components in each of the categories ~π0(X ;α,F)∗∗ are unions of such pairs.
(4) The categories ~π0(X,Hn)

∗
∗ and hence ~π0(X ;α,F)∗∗ have finitely many objects and morphisms.
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Remark. Contrary to what happens for general cubical complexes, for Euclidean cubical complexes
we can, as in the proof of Proposition 5.9, construct inessential endo-d-maps fixing just one of the end
points and leading to inessential extension morphisms; compare Lemma 2.7.4. This is the reason why,
for these complexes, it may be unecessary to distinguish between effects of inessential d-maps and of
inessential extensions, as they were used in previous work on component categories [8, 16].

5.5. Dubut’s example revisited. Finally, we analyze component categories in the case of the cubical
complex D from Section 1.2, which is not a Euclidean complex. Nevertheless, some of the tools from
the preceeding sections come in helpful. It turns out that in this case, the αF -inessential d-maps
f : D → D have a quite specific form that we deduce for α = +: For that purpose, we have to consider
a more precise decomposition of the space D. Using natural homeomorphisms identifying the four
2-cells with I2, we define:

(1) a1 = {[A; (1, t)]| t < 1} = {[B1; (0, t)]| t < 1};
(2) a2 = {[A; (t, 1)]| t < 1} = {[B2; (t, 0)]| t < 1}; a+ = [A; (1, 1)];
(3) xA = A \ (a1 ∪ a2 ∪ a+);
(4) b1 = {[B1; (t, 1)]| t > 0}; b2 = {[B2; (1, t)]| t > 0};
(5) yB1 = B1 \ (a1 ∪ b1 ∪ a+); pB2 = B2 \ (a2 ∪ b2 ∪ a+);
(6) c1 = {[C; (1, t)]| t < 1}; c2 = {[C; (t, 1)]| t < 1}; c+ = [C; (1, 1)];
(7) xC = C \ (c1 ∪ c2 ∪ c+).

A

B2

B1

C

a2

a1

a+ b1

b2

c2

c1

c+

Figure 4. Decomposition of the cubical complex D

Proposition 5.12. A +F-inessential d-map f : D → D has the following properties:

(1) f preserves A, ai, i = 1, 2, a+, D \A,C, yB1 ∪ b1 ∪ C, pB2 ∪ b2 ∪ C.
(2) The restrictions of f to A and to C agree, ie

f([A; (x1, x2)]) = f([C; (x1, x2)]), x1, x2 ∈ I.

(3) On A, resp. on C, f = f |A = f |C is a product map f = f1× f2 for suitable d-maps fi : ~I → ~I
that satisfy t ≤ fi(t), t ∈ I.

(4) These d-maps fi are d-homeomorphisms fi : [0, 1]→ [di, 1] for some 0 ≤ di < 1.
(5) There are d-maps gi : I2 → [0, 1 + di], i = 1, 2, with g1(0, t) = 0 = g2(t, 0), g1(1, t) =

d1, g2(t, 1) = d2 and (s, t) ≤ gi(s, t), i = 1, 2, such that f([B1; (x1, x2)]) =
[B1∪C; (g1(x1, x2), f2(x2))] and f([B2; (x1, x2)]) = [B2∪C; (f1(x1), g2(x1, x2))] with f1, f2 as
in (3).

(6) f preserves xA, c+, b1 ∪ c2, b2 ∪ c1, yB1 ∪ xC, pB2 ∪ xC.
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Proof. (1) The vertex a+ is a future branch point. By Corollary 3.7.1, both that point, its past
↓a+ = A and the complement of A are preserved. Moreover, f preserves ↑ai∩ ↓a+ = ai and
C =↑C. Also the subsets yB1 ∪ b1 ∪C and pB2 ∪ b2 ∪ C are equal to their own future.

(2) For a chosen point [C; (y1, y2)], we consider the set of all points [A; (x1, x2)] in its past
↓ [C; (y1, y2)] and decompose it according to whether (x1, x2) belongs to

Q0(y1, y2): =[0, y1] × [0, y2]. For (x1, x2) ∈ Q0(y1, y2), trace space ~T (D)
[C;(y1,y2)]
[A;(x1,x2)]

has two

path components.

Q1(y1, y2): =]y1, 1] × [0, y2]. For (x1, x2) ∈ Q1(y1, y2), trace space ~T (D)
[C;(y1,y2)]
[A;(x1,x2)]

is path-

connected; all paths in it intersect B1 \{a+}, but not B2 \{a+}.

Q2(y1, y2): =[0, y1]×]y2, 1]. For (x1, x2) ∈ Q2(y1, y2), trace space ~T (D)
[C;(y1,y2)]
[A;(x1,x2)]

is path-

connected; all paths in it intersect B2 \{a+}, but not B1 \{a+}.
Let f([C, (x1, x2)]) = [C; (y1, y2)]. Since f is a psp d-map, its restriction fA to A must map
Qj(x1, x2) into Qj(y1, y2), j = 1, 2, 3. By continuity, it maps the one point set {(x1, x2)} =
Q̄1(x1, x2) ∩ Q̄2(x1, x2) into Q̄1(y1, y2) ∩ Q̄2(y1, y2) = {(y1, y2)}.

(3) The horizontal d-path from [A; (0, x2)] to [C; (0, x2)] through B1 maps under f to the horizon-
tal d-path from [A; f(0, x2)] to [C; f(0, x2)] through B1; in particular, f2(t, x2) = f2(0, x2) for
t ∈ I. Likewise for f1 using vertical d-paths through B2. The existence of a future d-homotopy
from idD to f requires t ≤ fi(t), t ∈ I.

(4) By (1) above, fi(1) = 1, i = 1, 2. Let di := fi(0) ≥ 0. Assume there exists 0 ≤ x1 < x′
1 ≤ 1

with f1(x1) = f1(x
′
1). Then, for every x2 ∈ I, the space ~T (D)

[C;(x1,x2)]
[A;(x′

1,x2)]
has one component

whereas ~T (D)
[C;(f1(x1),f2(x2))]
[A;(f1(x′

1),f2(x2))]
has two. Hence f cannot be psp.

Similarly for f2.
(5) The second component of f |B1 does not depend on x1 and is equal to f2 since

f2(x2) = f2([A; (x1, x2)]) ≤ f2([B1; (x1, x2)]) ≤ f2([C]; (x1, x2)]) = f2(x2), x1 ∈ I.
(6) Since fi is a homeomorphism, it preserves the upper boundary 1 and its complement.

�

Like in Section 5.1, but now with a coherent prescribed order on the first and second coordinate, we
may compare coordinates of start and end points by the relations =, <,>. For example, a decoration
(=<) indicates that the first coordinates of start and end point agree whereas the second coordinate
of the start point is less than the second coordinate of the end point.

Proposition 5.13. The pair component category ~π0(D; +,F) has – independently of F – objects of
the form: Reachable pairs in

(1) (xA, xA) with decorations (==), (=<), (<=) and (<<);
(2) (xA, ai), i = 1, 2; with decorations = and < in one coordinate;
(3) (xA, a+);
(4) (ai, ai), i = 1, 2, with decorations < and =;
(5) (ai, a

+), i = 1, 2;
(6) (a+, a+);
(7) (xA, xC) with decorations (<<), (<=), (=<), (==);
(8) (xA, yB1 ∪ xC) with decorations (><), (>=);
(9) (xA, pB2 ∪ xC) with decorations (<>), (=>);
(10) (xA, (b1 ∪ c2)) and (xA, (b2 ∪ c1));
(11) (xA, c+);
(12) (ai, yBi ∪ xC), i = 1, 2, with decorations = and <;
(13) (ai, b1 ∪ c2), (ai, b2 ∪ c1), (ai, c

+), i = 1, 2;
(14) (a+, b1 ∪ c2), (a

+, b2 ∪ c1), (a
+, c+);

(15) (yB1 ∪ pB2 ∪ xC, yB1 ∪ pB2 ∪ xC) – no decorations;
(16) (yB1 ∪ xC, b1 ∪ c2), yB2 ∪ xC, b2 ∪ c1);
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(17) (yB1 ∪ xC, c+), yB2 ∪ xC, c+);
(18) (b1 ∪ c2, b1 ∪ c2), (b2 ∪ c1, b2 ∪ c1);
(19) (b1 ∪ c2, c

+), (b2 ∪ c1, c
+);

(20) (c+, c+)

and the inherited extension morphisms.

Proof. Most of the distinctions follow from the fact that f |A = f |C = f1 × f2 is a product of
homeomorphisms, hence points with non-equal coordinates cannot be identified with points with equal
coordinates (unlike what may happen for a homotopy equivalence). In order to construct a psp-d-map
f : D → D establishing equivalence of pairs of points in one of the equivalence classes, one may choose
0 ≤ di < 1 and d-homeomorphisms fi : [0, 1]→ [di, 1], i = 1, 2, with t ≤ fi(t), t ∈ I and use them to
define the map f on A∪C according to Proposition 5.12(2) -(4). To extend that map to the remaining
cells, choose d-maps gi : I

2 → [0, 1+di] as in Proposition 5.12(5) and define f on B1 ∪B2 accordingly.
A linear future d-homotopy connects idD with the resulting endo map f on D. In general, a zig-zag
of such d-homotopies is needed.

It may be a bit surprising that decorations do not turn up in case (15). One may extend a map
fi : [0, 1]→ [di, 1] from Proposition 5.12(4) to d-maps gi : [−1, 1]→ [−1, 1] (for the first coordinate on
B1, resp. the second on B2); this map needs only be injective on [0, 1]. Using such maps, we establish
that two pairs [C; (c1, c2), (c1, c2)] and [C; (c1, c2), (c

′
1, c

′
2)] are F -equivalent as follows:

[C; (c1, c2), (c1, c2)] ∼ [B1; (b1, c2), (b
′
1, c2)] ∼ [C; (c1, c2), (c

′
1, c2)]

∼ [B2; (c1, b2), (c
′
1, b

′
2)] ∼ [C; (c1, c2), (c

′
1, c

′
2)].

This implies that all pairs in ~xC2 are equivalent to each other, and hence all pairs in case (15). �

Remark that inessential +F maps do not preserve all cells; hence ~π0(D; +,F) has fewer component
objects than ~π0(D,H2)

∗
∗, cf Section 5.4.

For α = −, a similar case-by-case examination exhibits components of type (C,C) with decorations;
this time, start points in A∪Bi can be fused. For α = ±, the subsets Bi cannot be fused with neither
A nor C.

6. Conclusion and future work

6.1. Summary. Inessential homotopy flows and inessential d-maps yield a coherent framework for
comparing path spaces with variable end points within a given directed space. Localizing their contri-
bution to categories with pairs of points as objects transforms them into isomorphisms; this is justified
since the trace space functor lets them correspond to isomorphisms in the homotopy category. The
resulting quotient categories were shown to have finitely many (though often a huge number of) objects
when the underlying directed space is a finite cubical complex, even if the space admits directed loops.
In many examples, in particular for the example from Section 1.2 motivating this paper in the first
place, the quotient categories retain essential information about dependence of the path/trace spaces
on their end points in a compressed way.

6.2. Future work: Relations to other constructions. As the motivating example (Section 1.2)
shows, previously studied component categories [8, 16, 10] do not always deliver categories with a
countable number of objects, even when the directed space has the nice structure of a finite cubical
complex. This paper advises a way to overcome this default - and making the constructions of so-called
“Natural homology” [5] (and its precursor in [21]) applicable in this more general setting. In contrast
to other approaches, at least in principle, the definitions are suitable also in cases where the space
admits directed loops. This option has only been investigated in detail only in a few concrete cases in
Section 4.4; further development is desirable.

Ziemiański found a different way to overcome the shortcomings of previous work on components
by defining and investigating stable components [25] that partition the directed space itself (instead
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of the space of reachable pairs). Path spaces between pairs of points within two components are, in
general, not invariant up to F -equivalence, but they become so after a stabilization process based on
a number of well-motivated axioms. Path spaces between points in a given pair of components may
vary but they stabilize when allowing large enough targets (resp. small enough sources). The resulting
stable components are easier to determine than ours. It would be interesting to find out whether
the components in this paper can be produced by partitioning reachable pairs of Ziemiański’s stable
components into smaller pieces.

In a different direction, it is a challenge to develop a directed version of Michael Farber’s topological
complexity [12]. The definitions can easily be modified by requiring directed paths, but one needs a

better understanding of the end point map e : ~P (X) → ~X2 and its partial sections. In the directed
case, this map is, in general far from being a fibration, and the (Schwarz genus) methods from the
classical theory are not available. First steps have been taken in [15]; relations to methods from this
paper might be helpful in future developments.

6.3. Future work: Functoriality. Towards directed homotopy equivalences? A d-map F :
X → Y between two d-spaces does not give rise to any relation between the spaces of endo-d-maps
~C(X,X) and ~C(Y, Y ); cf Section 2.1.4 for the notation. Instead, one needs a pair F : X → Y and

G : Y → X of d-maps giving rise to the maps (G,F )# : ~C(X,X) → ~C(X,X), f 7→ F ◦ f ◦ G and

(F,G)# : ~C(Y, Y ) → ~C(Y, Y ), g 7→ G ◦ g ◦ F . We need further properties allowing us to relate the
“homotopy dynamics” on the two d-spaces:

Definition 6.1. A pair of d-maps F : X → Y,G : Y → X is called an αF -equivalence if there exist
αF psp homotopy flows H1 : X × I → X connecting idX with G ◦ F and H2 : Y × I → Y connecting
idY with F ◦G.

In particular, for F = F∞, the map F is an ordinary weak homotopy equivalence.

Lemma 6.2. An αF-equivalence (F,G) induces F-equivalences
~T (G ◦ F ) : ~T (X)x2

x1
→ ~T (X)GFx2

GFx1
, ~T (F ◦G) : ~T (Y )y2

y1
→ ~T (Y )FGy2

FGy1
,

~T (F ) : ~T (X)x2
x1
→ ~T (Y )Fx2

Fx1
and ~T (G) : ~T (Y )y2

y1
→ ~T (X)Gy2

Gy1
, xi ∈ X, yi ∈ Y .

Proof. The first two properties follow from the definitions. For the last claims, apply the 2-out-of-6
property for (our) F -equivalences. �

It is tempting to call a d-map F : X → Y satisfying the requirements in Definition 6.1 a directed
αF equivalence; and for F = F∞ - the (weak) homotopy equivalences - a directed (weak) α homotopy
equivalence. But this definition is still not quite satisfactory. It is not clear that this notion

• satisfies a 2-out-of-3-properties
• leaves directed topological complexity [15] invariant, and
• that it behaves well with respect to components.

The follow-up paper [24] responds to these challenges with an adjustement of Definition 6.1 as point
of departure.

References

[1] T. Borceux, Handbook of Categorial Algebra I: Basic Category Theory, Encyclopedia of Mathematics and
its Applications, Cambridge University Press, Cambridge (1994).

[2] M. Bednarczyk, A. Borzyskowski, and W. Pawlowski, Generalized congruences - epimorphisms in Cat,
Theory Appl. Categ. 5(11), 266–280 (1999).

[3] J. Dubut, Directed homotopy and homology theories for geometric models of true concurrency, Ph.d.-thesis,
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