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EQUIVARIANT DE RHAM COHOMOLOGY:

THEORY AND APPLICATIONS

OLIVER GOERTSCHES AND LEOPOLD ZOLLER

Abstract. This is a survey on the equivariant cohomology of Lie group actions on manifolds,
from the point of view of de Rham theory. Emphasis is put on the notion of equivariant
formality, as well as on applications to ordinary cohomology and to fixed points.
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1. Introduction

Equivariant cohomology is a topological invariant, not of spaces, but of group actions. It
encodes in a subtle way information on the topology of the space, the isotropy groups of the action,
and the orbit stratification, in particular on the fixed points of the action. In was introduced by
Borel [12] and H. Cartan [22], [23] in the 1950s and has found numerous applications wherever
symmetries of geometric objects play a role. These purpose of these notes is twofold: they try to
give a gentle introduction to this beautiful theory from the point of view of de Rham theory, and
to survey both classical and more recent applications.

In the first few sections we introduce three different types of cohomology one can associate
to a Lie group action on a manifold: cohomology of invariant forms, basic cohomology, and our
main player, equivariant cohomology. After comparing them to each other and to ordinary (de
Rham) cohomology we prove some basic results on equivariant cohomology like the homotopy
axiom and the Mayer-Vietoris sequence.

We explain how equivariant cohomology can be used to gain information on both the ordinary
cohomology of the manifold M acted on, as well as on the fixed point set of the action. The main

1

http://arxiv.org/abs/1812.09511v2


2 OLIVER GOERTSCHES AND LEOPOLD ZOLLER

tool to relate equivariant cohomology to the fixed point set is the Borel localization theorem,
which is the topic of Section 8. We explain how one uses it to show the equalities of the Euler
characteristics of M and the fixed point set MT , as well as the inequality of total Betti numbers
dimH∗(MT ) ≤ dimH∗(M), in Section 9.

Starting with Section 7 we make use of the spectral sequence of the Cartan model, as there
we introduce another main topic of this survey, the notion of equivariant formality. All necessary
knowledge on spectral sequences is contained in the appendix; in particular, there one can find
details on the relation between the equivariant cohomology and the final page of the spectral
sequence that are usually glossed over in the literature. Equivariant formality of an action is the
condition that the spectral sequence of the Cartan model degenerates at E1. In Theorem 7.3
we prove some equivalent formulations of this condition, one of which enables one to compute
ordinary from equivariant cohomology. We apply this to obtain information on the cohomology
of homogeneous spaces in Section 10, and of GKM manifolds in Section 11.

In the last sections we give a short overview on some recent developments. The choice of
material is rather biased and not meant to be exhaustive. We will explain some results surrounding
the notions of Cohen-Macaulay actions and equivariant basic cohomology.

Throughout the paper we try to present the material in an easily accessible way, sometimes
sacrificing greater generality for simplicity of the arguments. We do not give proofs for every
result, but do so whenever we were not able to find a good reference in the literature; sometimes
we provide a different proof. We will assume that the reader is familiar with the theory of actions
of compact Lie groups on differentiable manifolds.

In preparation of this paper a wealth of literature was helpful, such as the monographs
[3, 11, 54, 59], as well as [50, Appendix C] and [13].

Acknowledgements. Parts of this paper stem from the first named author’s lectures at the Uni-
versity of Hamburg in 2012, and at the Philipps University of Marburg in 2018. We would like to
thank the participants of these courses for their interest in the topic and their valuable comments.
We are grateful to Michèle Vergne for several remarks on a previous version of this paper. We are
especially indebted to Jeffrey Carlson for several enlightening discussions, as well as for a very
thorough reading of a previous version and numerous suggestions that improved the presentation
of this paper. The second named author is supported by the German Academic Scholarship
foundation.

2. Invariant and basic differential forms

Let G be a Lie group acting on a differentiable manifold M , with Lie algebra g. We denote,
for X ∈ g, the induced fundamental vector field by

Xp :=
d

dt

∣

∣

∣

∣

t=0

exp(tX) · p.

Definition 2.1. A differential form ω ∈ Ω(M) is called G-invariant if g∗ω = ω for all g ∈ G.
The space of G-invariant differential forms is denoted Ω(M)G.

The space Ω(M)G is clearly invariant under the differential d : Ω(M)→ Ω(M), i.e., (Ω(M)G, d)
is a subcomplex of (Ω(M), d) and we can consider its cohomology. However, if G is connected and
compact, this cohomology does not contain more information than the usual de Rham cohomology
because of the following theorem due to É. Cartan [21]:

Theorem 2.2. If G is a compact and connected Lie group acting on a differentiable manifold
M , then the inclusion map Ω(M)G → Ω(M) induces an isomorphism H∗(Ω(M)G)→ H∗(M) in
cohomology.

The proof of this result can be found e.g. in [72, §9]. One shows that the averaging operator
µ : Ω(M)→ Ω(M) given by

µ(ω)(v1, . . . , vn) :=

∫

G

(g∗ω)(v1, . . . , vn);

is chain homotopic to the identity. Of course, if G is not connected, then this inclusion does not
induce an isomorphism, see Examples 2.6 and 2.7 below.
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A different type of topological information is encoded in the complex of G-basic differential
forms.

Definition 2.3. Given an action of a Lie group G on a smooth manifold M , a differential form
ω ∈ Ω(M) is called (G-)horizontal if iXω = 0 for all X ∈ g. It is called G-basic if it is both
G-invariant and horizontal. The space of such differential forms is denoted ΩbasG(M).

Just like the G-invariant differential forms, also the basic differential forms comprise a sub-
complex of the de Rham complex. In fact, for ω ∈ ΩbasG(M), the form dω is again (invariant
and) horizontal because by the Cartan formula iXdω = LXω − diXω = 0. Here, L denotes the
Lie derivative.

Definition 2.4. We define the basic cohomology of the G-action to be

H∗
basG(M) := H∗(ΩbasG(M), d).

Recall that if the G-action on M is free, then the orbit space M/G is a smooth manifold, and
the projection π : M → M/G is smooth. In general, for an arbitrary action of a compact Lie
group, M/G is just a topological Hausdorff space.

Proposition 2.5. Consider a free action of a (not necessarily connected) compact Lie group
G on a smooth manifold M , and consider the projection π : M → M/G. Then π∗ defines an
isomorphism of complexes π∗ : Ω(M/G)→ ΩbasG(M). In particular,

H∗
basG(M) ∼= H∗(M/G).

Proof. If ω ∈ Ω(M/G), then π∗ω is G-invariant because for any g ∈ G we have

g∗π∗ω = (π ◦ g)∗ω = π∗ω.

At each p ∈M , we have ker dπp = TpG · p. Thus, π∗ω is horizontal as well.
If conversely η is a G-basic k-form on M , then we can define a k-form ω on M/G as follows:

if v1, . . . , vk are tangent vectors at Gp ∈ M/G, then let w1, . . . , wk be tangent vectors at p ∈ M
such that dπp(wi) = vi, and define

ω(v1, . . . , vk) = η(w1, . . . , wn)

This is independent of both the choice of p and the wi because η is G-invariant and horizontal.
Clearly, we have π∗ω = η. �

Example 2.6. Consider a finite group G acting freely on a smooth manifold M . Then being
G-basic, for a differential form ω on M , is the same as being G-invariant. So in this case
π∗ : Ω(M/G)→ Ω(M)G is an isomorphism of complexes, so that H∗(M/G) = H∗(Ω(M)G).

On the other hand, we have a well-defined action of G on cohomology: for g ∈ G and
[ω] ∈ H∗(M), we put g∗[ω] := [g∗ω]. Then the inclusion Ω(M)G → Ω(M) induces an injec-
tive homomorphism H∗(Ω(M)G)→ H∗(M) whose image lies in the G-invariant cohomology:

i∗ : H
∗(Ω(M)G) −→ H∗(M)G.

We claim that this map is indeed surjective: let [ω] ∈ H∗(M)G, i.e., that for all g ∈ G there
exists ηg ∈ Ω(M) such that g∗ω = ω + dηg. But then the average 1

|G|

∑

g∈G g
∗ω is a G-invariant

form whose cohomology class is sent by i∗ to [ω]. In total, we obtain isomorphisms

H∗(M/G) −→ H∗(Ω(M)G) −→ H∗(M)G.

Example 2.7. Let us give a concrete example: we consider the free Z2-action on the n-dimensional
sphere Sn given by sending a point to its antipodal map, with orbit space the real projective space
RPn. To understand the cohomology of RPn we therefore only have to understand the effect of
the map f(x) = −x on a volume form of Sn. A volume form on Sn is given by

ω(x1,...,xn+1) = i(x1,...,xn+1)(dx1 ∧ · · · ∧ dxn+1),

and as the radial vector field is invariant under f , it follows that f∗ω = ω for odd n, and
f∗ω = −ω for even n. The action of Z2 on Hn(Sn) = R · [ω] is thus trivial for odd n, and given
by multiplication with −1 for even n, whence

Hn(RPn) = Hn(Sn)Z2 =

{

0 n even,

R n odd.
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Remark 2.8. We even have H∗
basG(M) = H∗(M/G) for any action of a compact Lie group

G, where the right hand side is understood as the singular cohomology of M/G. As singular
cohomology is not the focus of these notes, we only refer to [69, Theorem 30.36] for the proof.
This tells us that H∗

basG(M) is, in many cases, not a very powerful invariant for group actions. For
instance, there exist many nontrivial group actions for which the orbit spaceM/G is contractible,
so that H∗

basG(M) = R, e.g., the standard action of S1 on S2 by rotation. For free actions,
however, the orbit space is again a manifold, so basic cohomology of free actions is an invariant
as powerful as de Rham cohomology for manifolds.

3. The coadjoint representation

Any Lie group G acts on its Lie algebra by the adjoint representation. This is defined as
follows: for any g ∈ G conjugation with g is denoted

cg : G −→ G; h 7−→ ghg−1.

Differentiating this at e, we obtain a map Adg : g ∼= TeG→ TeG ∼= g given by Adg := (dcg)e. In
this way we obtain a homomorphism

Ad: G −→ GL(g)

which we call the adjoint representation of G.
Dualizing this representation, we obtain the coadjoint representation of G on the dual vector

space g∗ (which consists of linear forms ξ : g→ R):

(Ad∗
g ξ)(X) := ξ(Adg−1(X))

We denote by S(g∗) the symmetric algebra on g∗, which we consider as the algebra of polynomials
on g. The coadjoint representation naturally extends to S(g∗) via (Ad∗

g f)(X) := f(Adg−1 X).

Of particular importance will be the subspace of G-invariant polynomials S(g∗)G, i.e., those
polynomials that are constant along adjoint orbits in g.

For compact and connected G, the ring of invariant polynomials is again a polynomial ring:
Chevalley’s restriction theorem, see [15, Chapitre VIII, §8.3, Théorème 1], [80, Theorem 4.9.2] or
[28] (it was mentioned by Chevalley without proof in [25, Section IV]), states that the restriction
map

S(g∗)G −→ S(t∗)W (G),

where T ⊂ G is a maximal torus and W (G) the corresponding Weyl group, is an isomorphism.
(See [28, Proposition 30] for an explicit description of the inverse map.) Here, we define the Weyl
group as the finite group NG(T )/T , where NG(T ) = {g ∈ G | gTg−1 = G} is the normalizer of T
in G. As the Weyl group acts on t∗ as a reflection group (it coincides with the algebraically defined
Weyl group of the root system of gC, see [63, Theorem IV.4.54]), the Chevalley-Shephard-Todd
theorem [60, Section 18-1] states that the ring of invariants S(t∗)W (G) is a polynomial R-algebra.

Example 3.1. Consider G = U(n), with maximal torus T given by diagonal matrices, and
correspondingWeyl group Sn, acting by permutations on the diagonal entries of t. Then S(g∗)G ∼=
S(t∗)W (U(n)) is the algebra of symmetric polynomials in n variables, which is the polynomial
algebra R[σ1, . . . , σn], generated by the elementary symmetric polynomials σi of degree i. A
direct proof of Chevalley’s restriction theorem for the case G = U(n) can be found in [50, Example
C.13].

Example 3.2. For a disconnected compact Lie group G, the G-invariant polynomials do not
necessarily form a polynomial ring. Consider, for example, the semidirect product G = T 2

⋊ϕZ2,
where ϕ(1) acts as the inverse map on T 2. Then S(g∗)G = R[x, y]Z2 , where Z2 acts on x and y
by ±1, which is the algebra of polynomials in x and y of even degree. This is not a polynomial
ring, because any generating set necessarily contains scalar multiples of x2, y2 and xy, and we
have the relation (xy)2 = x2y2.

4. The Cartan model

In this section we introduce H. Cartan’s definition of equivariant cohomology [22], [23]. Let G
be a compact Lie group acting on a differentiable manifold M . We define the space of equivariant
differential forms on M as

CG(M) := (S(g∗)⊗ Ω(M))G.
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Here, the superscript denotes taking the subspace of G-invariant objects, where S(g∗)⊗Ω(M) is
endowed with the tensor product representation: G acts on S(g∗) by the coadjoint representation
described in the previous subsection and on Ω(M) by pull-back, i.e., the following representation:

g · ω := (g−1)∗ω.

An equivariant differential form ω ∈ S(g∗)⊗ Ω(M) can be written as a finite sum

ω =
∑

i

fi ⊗ ηi,

for fi ∈ S(g∗) and ηi ∈ Ω(M). By abuse of notation, we will also denote the associated polynomial
map g→ Ω(M); X 7→

∑

i fi(X) · ηi by ω. Almost by definition, the G-invariance of the element
ω ∈ S(g∗) ⊗ Ω(M) translates to the equivariance of the polynomial map ω : g → Ω(M), i.e., to
the condition

(4.1) ω(Adg(X)) = g · (ω(X)) = (g−1)∗(ω(X))

for all g ∈ G and X ∈ g. We think of CG(M) as the space of G-equivariant polynomial maps
g→ Ω(M).

Remark 4.1. If G = T is a torus, then the (co)adjoint action of T is trivial, so CT (M) =
S(t∗)⊗ Ω(M)T . A T -equivariant differential form is nothing but a polynomial ω : t→ Ω(M)T .

Sometimes it is convenient to write equivariant differential forms in a basis: given a basis {Xi}
of the Lie algebra g, with dual basis {ui} of g∗, we can write an equivariant differential form
ω ∈ CG(M) as a finite sum

(4.2) ω = ω∅ +
∑

i

ωiui +
∑

i≤j

ωijuiuj + · · · =
∑

I

ωIuI ,

where I runs over a finite set of multiindices.
There is a natural S(g∗)G-algebra structure on CG(M): first of all note that CG(M) is a ring

with respect to the multiplication

(ω ∧ η)(X) := ω(X) ∧ η(X),

where ω and η are considered as polynomials g→ Ω(M). In other words, we give CG(M) the ring
structure from the tensor product of the rings S(g∗) and Ω(M). The S(g∗)G-algebra structure is
defined by the ring homomorphism

(4.3) i : S(g∗)G → (S(g∗)⊗ Ω(M))G = CG(M); f 7→ f ⊗ 1.

As a polynomial g→ Ω(M), the equivariant differential form f ⊗ 1 is (f ⊗ 1)(X) = f(X), where
the real number f(X) is regarded as a constant function on M .

Definition 4.2. We define the equivariant differential dG on S(g∗)⊗ Ω(M) by

dG(ω)(X) = d(ω(X))− iXω(X).

Remark 4.3. There are various sign conventions in the literature. Some authors use + instead
of − in this definition; also, some authors use a sign in the definition of the fundamental vector
field X, to make the assignment X 7→ X a Lie algebra homomorphism.

One directly verifies that dG maps CG(M) to itself. It is useful to write the equivariant
differential dGω in case ω is given explicitly as in (4.2):

Lemma 4.4. If ω =
∑

I ωIuI ∈ S(g
∗)⊗ Ω(M), then

(4.4) dGω =
∑

I

(dωI −
∑

i

iXi
ωIui)uI .

Proof. We only need to observe that for X ∈ g, we have X =
∑

i ui(X)Xi, so that iX =
∑

i ui(X)iXi
. �

Let us introduce a grading on CG(M). For any integer n ≥ 0 we define the space of equivariant
differential forms of degree n as

CnG(M) :=
⊕

2k+l=n

(Sk(g∗)⊗ Ωl(M))G.
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An element of CnG(M) will be called an equivariant differential form of degree n. Note that the
ring structure of CG(M) is graded in the sense that the product of elements in degree n and m
is of degree n+m.

Remark 4.5. If ω =
∑

I ωIuI is an equivariant differential form as in (4.2), then it is of degree n
if and only if for every I = (i1, . . . , ir) the differential form ωI is of degree n− 2(i1 + · · ·+ ir).

In the following proposition we collect a few properties of the equivariant differential. We omit
the straightforward proofs. The first item is the reason for our choice of grading on CG(M).

Proposition 4.6. (1) dG maps CnG(M) to Cn+1
G (M).

(2) For ω ∈ CnG(M) and η ∈ CmG (M) we have

dG(ω ∧ η) = (dGω) ∧ η + (−1)nω ∧ (dGη).

(3) d2G = 0.

If dGω = 0, then we say that ω is equivariantly closed, and a form of the type dGη is equivari-
antly exact.

Definition 4.7. The equivariant cohomology of the G-action on M is defined as H∗
G(M) :=

H∗(C∗
G(M), dG).

The ring structure of CG(M) passes over to H∗
G(M), and the ring homomorphism i in (4.3)

induces a well-defined homomorphism of graded rings i : S(g∗)G → H∗
G(M). Thus, via i, the ring

H∗
G(M) becomes naturally a graded S(g∗)G-algebra, in the sense that the ring homomorphism i

respects the degree. In what follows, it will be extremely important to distinguish between this
S(g∗)G-algebra structure on H∗

G(M) and the induced structure as an S(g∗)G-module.

Remark 4.8. There are other ways to introduce equivariant cohomology, most prominently the
so-called Borel model, introduced first in [12], which we now briefly explain. As was mentioned
above in Remark 2.8, we consider the cohomology of the orbit space a reasonable invariant for
free actions. In case of an arbitrary action on a topological space X , one now replaces the space
X acted on by a homotopy equivalent space with a free G-action, namely by

EG×X,

where EG is a contractible space on which G acts freely. Then, one defines the equivariant
cohomology (with coefficients R) as the cohomology of the orbit space of the diagonal action:

H∗
G(X ;R) := H∗(EG×G G;R).

It admits the structure of a H∗(BG;R)-algebra, via the natural projection EG×GX → EG/G =:
BG. The equivariant de Rham theorem [22], [23], see also [54, Section 2.5], states that for
manifolds and real coefficients, this Borel cohomology is isomorphic to the equivariant cohomology
defined above. A further important model for equivariant cohomology is the Weil model. See [68]
for a short overview of these models.

Example 4.9. Let us consider an easy, yet very important example: that of a trivial G-action
on a manifold M . In this case, any differential form on M is automatically G-invariant, so we
have

CG(M) = S(g∗)G ⊗ Ω(M).

All induced vector fieldsX are trivial, so the equivariant differential dG is nothing but the ordinary
differential: (dGω)(X) = d(ω(X)). This means that the complex (CG(M), dG) is obtained from
the ordinary de Rham complex (Ω(M), d) by tensoring with S(g∗)G. Therefore, we have an
S(g∗)G-algebra isomorphism

(4.5) H∗
G(M) ∼= S(g∗)G ⊗H∗(M),

where S(g∗)G acts only on the first factor of the right hand side. In particular, H∗
G(M) is a free

module over S(g∗)G. Particularly important is the case where M consists of a single point: we
have H∗

G(pt) = S(g∗)G.
Later we will encounter classes of actions for which (4.5) holds, but just as an isomorphism of

S(g∗)G-modules.
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One shows directly that any G-equivariant map f : M → N between G-manifolds M and
N induces a pullback homomorphism between the Cartan complexes by (f∗ω)(X) = f∗(ω(X))
which descends to an S(g∗)G-algebra morphism f∗ : H∗

G(N) → H∗
G(M). Then the following

lemma follows directly from the definitions:

Lemma 4.10. The S(g∗)G-algebra structure i : S(g∗)G → H∗
G(M) is the same as the map in

cohomology induced by the unique map M → {pt}.

Let us have a look at the zeroth and first equivariant cohomology groups.

Example 4.11. We have C0
G(M) = Ω0(M)G, the space of G-invariant smooth functions f : M →

R. For such f , the equivariant differential computes as dGf = df , and therefore, closed equivariant
0-forms are locally constant invariant functions. Hence, H0

G(M) = H0(M/G) calculates the
number of connected components of M/G. (In case G is connected, this coincides with the
number of connected components of M .)

Example 4.12. We have C1
G(M) = Ω1(M)G. For ω ∈ Ω1(M)G, the equivariant differential

computes as

(dGω)(X) = dω − iXω

(ω is considered as a constant map g→ Ω(M); X 7→ ω). Therefore, dGω = 0 if and only if dω = 0
and iXω = 0 for all X ∈ g, i.e., if ω is a closed basic form. We have computed C0

G(M) above,
which implies that the exact equivariant one-forms are the same as the exact basic one-forms.
This shows H1

G(M) = H1
basG(M).

There is the following relation between basic and equivariant cohomology:

Lemma 4.13. The ring homomorphism ΩbasG(M) → CG(M); ω 7→ 1 ⊗ ω is an inclusion of
complexes and therefore defines a homomorphism of R-algebras H∗

basG(M)→ H∗
G(M).

Proof. First of all note that ω = 1 ⊗ ω ∈ S(g∗) ⊗ Ω(M) really is an equivariant differential
form because ω is G-invariant. Therefore, the map is well-defined. Clearly, it is an R-algebra
homomorphism. Moreover, we have dG(ω) = dω because ω is horizontal, so it is a map between
complexes. �

Example 4.14. In general the natural map H∗
basG(M) → H∗

G(M) is neither injective nor sur-
jective. Non-surjectivity is clear, as the basic cohomology always vanishes for degrees above
the dimension of M/G, whereas H∗

G(M) is in general nonzero in infinitely many degrees – see
for instance Example 4.9. In degree 1, the map is an isomorphism (see Example 4.12), and in
degree 2 it is always injective: assuming that ω = dGα, for a closed basic 2-form ω and some
α ∈ C1

G(M) = Ω1(M)G, we have

ω = (dGα)(X) = dα− iXα.

This implies that iXα = 0 for all X ∈ g, which, together with the G-invariance of α says that α
is G-basic, and thus dα = ω in ΩbasG(M).

The smallest degree in which non-injectivity can occur is 3, see [50, Example C.18]: consider,
on the 4-sphere

S4 = {(a, z, w) | a2 + |z|2 + |w|2 = 1} ⊂ R× C
2 ∼= R

5

the circle action given by the product of the standard diagonal action on C
2 and the trivial

action on R. Then one computes (using the equivariant Mayer-Vietoris sequence, Theorem 6.2
below) that H3

S1(S4) = 0. On the other hand, H3
basS1(S4) = R: either using Remark 2.8, by

observing that the action is the suspension of the Hopf action on S3, so that the orbit space is
homeomorphic to the suspension of S2, which is S3. Alternatively, if one would like to avoid
using singular cohomology, one can use basic versions of the Mayer-Vietoris sequence and the
homotopy axiom.

There is also a natural map from equivariant to ordinary de Rham cohomology:

Lemma 4.15. The ring homomorphism ΩG(M)→ Ω(M); ω 7→ ω(0) is a chain map and therefore
defines a homomorphism of R-algebras H∗

G(M)→ H∗(M).

Proof. We just need to observe that (dGω)(0) = d(ω(0))− i0ω(0) = d(ω(0)). �
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This map H∗
G(M) → H∗(M) is in general not injective (for example for trivial actions) and

also not surjective (for example for nontrivial free actions). Note that the composition

H∗
basG(M) −→ H∗

G(M) −→ H∗(M)

of the two natural maps just introduced is nothing but the map induced by the inclusion
ΩbasG(M)→ Ω(M).

Example 4.16. Consider an Hamiltonian action of a compact, connected Lie group G on a
symplectic manifold (M,ω). In this situation we have a momentum map, i.e., a G-equivariant
map µ : M → g∗ such that iXω = dµX , where µX : M → R is defined by µX(p) = µ(p)(X).

The momentum map defines an equivariant linear map (which we call µ again)

µ : g −→ C∞(M); X 7−→ µX .

In particular, µ can be regarded as an equivariant 2-form on M : µ ∈ (g∗⊗C∞(M))G ⊂ C2
G(M).

For any element f ∈ (g∗ ⊗C∞(M))G we can consider the equivariant 2-form ω+ f and compute

dG(ω + f)(X) = (dGω)(X) + (dGf)(X)

= dω − iXω + dfX + iXf
X

= dfX − iXω.

This shows that ω + f is equivariantly closed if and only if f ∈ C2
G(M) is a momentum map for

the G-action.
In particular, the cohomology class [ω] ∈ H2(M) is in the image of the natural map H2

G(M)→
H2(M). It is even true that for any Hamiltonian action on a compact manifold the mapH∗

G(M)→
H∗(M) is surjective, see Example 7.9 below.

5. Locally free actions

The topic of this section is a theorem of H. Cartan [23] that says that for (locally) free actions,
equivariant cohomology is isomorphic to basic cohomology, hence (in the free case) isomorphic
to the de Rham cohomology of the orbit space. Recall Remark 2.8 which heuristically explained
that this is precisely this class of actions for which basic cohomology is a good invariant – later
we will see that equivariant cohomology is a better invariant than basic cohomology for non-free
actions.

Definition 5.1. We say that an action of a compact Lie group G on a manifold M is locally free
if all isotropy groups Gp of the action are finite.

Theorem 5.2. For a locally free action of a compact Lie group G on a manifold M the natural
map

H∗
basG(M) −→ H∗

G(M)

is an isomorphism.

Proof. There are many references for a proof of this statement. Besides the original source [23]
one can find it e.g. in [54, Section 5.1] or [71]. A generalization to other coefficients can be found
in [27, Section 1.7]. We will show the theorem only for the special case G = S1.

The main tool in the proof is the following: because the S1-action is free, Xp 6= 0 for all

p ∈ M . Thus, we find an S1-invariant 1-form α on M such that α(X) = 1. (Choose an S1-
invariant Riemannian metric on M , and define α, for any p, to be 1 on Xp, and zero on the

orthogonal complement of Xp.)
We first show surjectivity of the map H∗

basS1(M) → H∗
S1(M). Let ω ∈ CnS1(M) = R[u] ⊗

Ω(M)S
1

be a closed S1-equivariant differential form on M , and write

ω = ω0 + ω1u+ · · ·+ ωku
k,

where the ωi are S
1-invariant differential forms, with degωi = n − 2i, and ωk 6= 0. We assume

that k > 0. Closedness of ω reads as

0 = dS1ω = dω0 + (dω1 − iXω0)u+ · · ·+ (dωk − iXωk−1)u
k − iXωku

k+1.
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In particular, iXωk = 0. We now modify ω by an exact equivariant differential form:

ω + dS1((α ∧ ωk)u
k−1)

= ω0 + ω1u+ · · ·+ (ωk−1 + d(α ∧ ωk))u
k−1 + (ωk − iX(α ∧ ωk))u

k

= ω0 + ω1u+ · · ·+ (ωk−1 + d(α ∧ ωk))u
k−1

because iXα = 1 and iXωk = 0. We have thus found, in the same equivariant cohomology class,
a representative with polynomial degree one less. We can continue reducing the degree until we
are left with a representative that is an ordinary differential form, which is at the same time
equivariantly closed, i.e., closed and basic, and hence also defines an element in Hn

basS1(M).
Next, we show injectivity of the map H∗

basS1(M)→ H∗
S1(M). So assume that η ∈ ΩnbasS1(M)

is a closed basic form which is equivariantly exact, i.e., there exists ω = ω0 + ω1u + · · · + ωku
k

such that

η = dS1ω = dω0 + (dω1 − iXω0)u+ · · · (dωk − iXωk−1)u
k − iXωku

k+1.

Im particular, ωk is a basic differential form. If k > 0, then we reduce the polynomial degree of
ω successively as above, by replacing ω by ω + dS1((α ∧ ωk)uk−1). Having reduced to the case
k = 0, we are done, because then dω0 = η, i.e., η is exact as a basic differential form. �

Combining this theorem with Proposition 2.5 we obtain:

Corollary 5.3. For a free action of a compact Lie group G on a manifold M the projection map
M →M/G induces an isomorphism H∗(M/G) −→ H∗

G(M).

Remark 5.4. One should note that in the Borel model, see Remark 4.8, the proof of this theorem
is much easier, see e.g., [54, Section 1.1]: to see that H∗

G(M ;R) ∼= H∗(M/G;R) one only needs
to observe that in this case EG×GM →M/G is a fiber bundle with contractible fiber.

Remark 5.5. A more general version of this theorem states that for an action of a product G×H
on a manifold M such that the action of the subgroup G is free, the natural map

H∗
H(M/G) −→ H∗

G×H(M)

is an isomorphism. In Proposition A.23 we will give a proof of this statement in case G and H
are tori.

6. Equivariant homotopy and Mayer-Vietoris

Many standard techniques and results from ordinary cohomology theory have an equivariant
counterpart. In this section we prove two of them: the equivariant version of the homotopy axiom
and of the Mayer-Vietoris sequence.

Theorem 6.1. Assume that G acts on M and N , and let f, g : M → N be G-homotopic equi-
variant maps, i.e., there exists a smooth G-equivariant homotopy F : M × R → N such that
F (·, 0) = f and F (·, 1) = g, where we extend the G-action to M × R trivially on the second
factor. Then f∗ = g∗ : H∗

G(N)→ H∗
G(M).

Proof. Recall the usual proof of the homotopy axiom for de Rham cohomology in the nonequiv-
ariant setting: one considers the operator

Q : Ωk(M × R)→ Ωk−1(M); α 7→

∫ 1

0

i∂tαdt

and shows that it satisfies the equation

(6.1) d ◦Q ◦ F ∗ +Q ◦ F ∗ ◦ d = g∗ − f∗ : Ω(N)→ Ω(M),

i.e., that Q ◦F ∗ is a chain homotopy between f∗ and g∗, see [14, §I.4], [72, §7.5, Example 9]. We
claim that this equation is still valid equivariantly, in the sense of Equation (6.2) below. Define

A : CkG(M)→ Ck−1
G (M) by

(Aω)(X) = Q(F ∗(ω(X))).

First we need to show that A is well-defined, i.e., that Aω is again a G-equivariant differential
form. As F is a G-homotopy, we have F (gp, t) = gF (p, t) for all g ∈ G, p ∈ M and t ∈ R, i.e.,
F ◦ g = g ◦ F . Moreover, we have Q ◦ g∗ = g∗ ◦Q. Putting this together, we obtain

(Aω)(AdgX) = Q(F ∗(ω(Adg X))) = Q(F ∗((g−1)∗(ω(X)))) = (g−1)∗((Aω)(X)).
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We claim now that

(6.2) dG ◦A+A ◦ dG = g∗ − f∗ : CG(N)→ CG(M).

For any ω ∈ CG(N), we have

(dG(Aω))(X) = d((Aω)(X)) − iX((Aω)(X))

= d(Q(F ∗(ω(X))))− iX(Q(F ∗(ω(X))))

= d(Q(F ∗(ω(X)))) +Q(iX(F
∗(ω(X))))

= d(Q(F ∗(ω(X)))) +Q(F ∗(iX(ω(X)))),

where we used that F is G-equivariant in the last line. Moreover, we have

(A(dGω)(X)) = Q(F ∗(d(ω(X))− iX(ω(X))))

= Q(F ∗(d(ω(X)))) −Q(F ∗(iX(ω(X)))).

Adding up these two equations, (6.1) implies (6.2). This proves the theorem. �

It follows that if M and N are manifolds on which a compact Lie group G acts, and which are
G-homotopy equivalent, i.e., for which both f ◦ g and g ◦ f are equivariantly homotopic to the
identity map, then H∗

G(M) and H∗
G(N) are isomorphic as graded S(g∗)G-algebras (via the maps

f∗ and g∗).

Theorem 6.2 (Equivariant Mayer-Vietoris sequence). Let U, V ⊂M be open G-invariant subsets
such that U∪V =M . Denote the natural inclusions by iU : U →M , iV : V →M , jU : U∩V → U ,
jV : U ∩ V → V . Then there is a long exact sequence

· · · −→ H∗
G(M)

i∗U⊕i∗V−→ H∗
G(U)⊕H∗

G(V )
j∗U−j∗V−→ H∗

G(U ∩ V )
δ
−→ H∗+1

G (M) −→ · · ·

The maps i∗U and i∗V are S(g∗)G-algebra homomorphisms, but j∗U − j
∗
V and δ are only S(g∗)G-

module homomorphisms.

Proof. Tensoring the short exact sequence

(6.3) 0 −→ Ω(M)
i∗U⊕i∗V−→ Ω(U)⊕ Ω(V )

j∗U−j∗V−→ Ω(U ∩ V ) −→ 0

on the level of differential forms with S(g∗) preserves exactness. We take G-invariant forms in
each term and and obtain a sequence

0 −→ C∗
G(M)

i∗U⊕i∗V−→ C∗
G(U)⊕ C∗

G(V )
j∗U−j∗V−→ C∗

G(U ∩ V ) −→ 0

of which we need to show exactness. Injectivity at the first term is clear, as well as the inclusion of
the image in the kernel at the second term. Let (ω, η) ∈ ker(j∗U − j

∗
V ). We find µ ∈ S(g∗)⊗Ω(M)

such that (i∗Uµ, i
∗
V µ) = (ω, η), because the sequence (6.3), tensored with S(g∗), is exact. We

define µ̃ ∈ CG(M) as

µ̃ =

∫

G

g∗µ dg,

where g acts on S(g∗)⊗ Ω(M) diagonally, i.e.,

µ̃(X) =

∫

G

(g−1)∗µ(Adg−1 X) dg

for X ∈ g, and claim that (i∗U µ̃, i
∗
V µ̃) = (ω, η) as well. For that, we compute

i∗U µ̃(X) =

∫

G

i∗U (g
−1)∗µ̃(Adg−1 X) dg =

∫

G

(g−1)∗i∗U µ̃(Adg−1 X) dg

=

∫

G

(g−1)∗ω(Adg−1 X) dg =

∫

G

ω(X) dg = ω(X)

because ω is already G-invariant. Analogously, i∗V µ̃ = η, so we have shown exactness at the
second term.

For the surjectivity we argue similarly: we start with a possibly noninvariant preimage of an
element in C∗

G(U ∩ V ), and average (both components separately). Thus, we have an induced
long exact sequence in equivariant cohomology. �
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Example 6.3. Consider the S1-action on S2 by rotation around the z-axis. Let S2 = U ∪ V be
the covering of S2 by upper and lower hemisphere. Then U and V are S1-equivariantly homotopy
equivalent to the north respectively to the south pole, and U ∩ V is S1-equivariantly homotopy
equivalent to the equator. Therefore,

H∗
S1(U) = H∗

S1(V ) = H∗
S1(pt) = R[u]

with u in degree two, and using Theorem 5.2,

H∗
S1(U ∩ V ) = H∗

S1(S1) = R

concentrated in degree zero. We obtain an exact sequence

· · · −→ H∗
S1(S2) −→ R[u]⊕ R[u]

ϕ
−→ R −→ · · ·

where the map ϕ is given by ϕ(f, g) = f(0)−g(0). It is surjective, so the sequence is in fact short
exact and we obtain an isomorphism of R[u]-algebras

H∗
S1(S2) = {(f, g) ∈ R[u]⊕ R[u] | f(0) = g(0)}.

Note that H∗
S1(S2) is a free R[u]-module: a basis is given by (1, 1) and (u,−u).

Note also the peculiar feature of this example that the map on equivariant cohomology induced
by the inclusion of the fixed point set into the manifold is injective (the fixed point set is exactly
the union of north and south pole). It will be a consequence of the Borel Localization Theorem
that this is the case for a large class of actions.

7. Equivariant formality

Starting with this section, we will make use of the spectral sequence of the Cartan model,
which is introduced in Section A.3.

Definition 7.1. An action of a compact Lie group G on a smooth manifold M is equivariantly
formal if the spectral sequence of the Cartan model collapses at the E1-term.

Remark 7.2. The term equivariant formality was introduced twenty years ago in [47]. In the
context of the Borel model, see Remark 4.8, the Serre spectral sequence of the (Borel) fibration
EG ×G M → BG at and after E2 is equivalent to the spectral sequence of the Cartan model
at and after E2. Since E1 = E2 in the Cartan model (see Remark A.11, the collapse of the
Serre spectral sequence at the E2-term is equivalent to equivariant formality of the action. This
collapse is, in turn, equivalent to the surjectivity of the map induced in cohomology by the fiber
inclusion (cf. Theorem 7.3 below), which is usually described by saying that the fiber is totally
nonhomologous to zero, or that the fibration itself is totally nonhomologous to zero, abbreviated
TNHZ, see e.g. [16], [3], or [30]. Instead of the term equivariant formality many authors thus
just speak about M being (totally) nonhomologous to zero in the Borel fibration. This condition
already appears in [12, Chapter XII].

It was shown in [47, Theorem 1.5.2] that equivariant formality implies formality properties of
certain differential graded modules, which explains the choice of terminology. One might argue
though that this nomenclature is not optimal as the formality aspect is just a consequence of
the much stronger condition of equivariant formality and there are not many connections to the
notion of formality from the point of view of rational homotopy theory. One such connection
was given in [19] where the authors prove that if the isotropy action of a homogeneous space is
equivariantly formal, then the space is formal. Note that the other implication is not valid, see
e.g. [19, Example 4.2].

The following theorem collects some equivalent formulations of equivariant formality, as well
as some justification of its relevance: Condition (5) says that for equivariantly formal actions
the ordinary de Rham cohomology of M is determined by the equivariant cohomology algebra.
Note that the equivalence of (1) and (3) is not trivial: by Proposition A.8 the E1-term of the
spectral sequence is S(g∗)G ⊗H∗(M), so equivariant formality tells us directly that H∗

G(M) ∼=
S(g∗)G ⊗H∗(M), but this isomorphism is only one of graded vector spaces. In general, H∗

G(M)
and E∞ are not isomorphic as S(g∗)G-modules – see Section A.7 for a counterexample.

Theorem 7.3. The following conditions are equivalent, for an action of a compact, connected
Lie group G on a compact manifold M :
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(1) The G-action is equivariantly formal.
(2) The canonical map H∗

G(M)→ H∗(M) is surjective.
(3) There is an isomorphism of graded S(g∗)G-modules

H∗
G(M) ∼= S(g∗)G ⊗H∗(M).

(In particular H∗
G(M) is a free module over S(g∗)G.)

If these conditions are satisfied, then also the following statements hold true:

(4) The kernel of the canonical map H∗
G(M) → H∗(M) is the ideal generated by the image

of S+(g∗)G → H∗
G(M), i.e.,

S+(g∗)G ·H∗
G(M) =

{

∑

i

fi[ηi] | fi ∈ S
+(g∗)G, [ηi] ∈ H

∗
G(M)

}

.

Here, S+(g∗)G denotes the positive degree elements in S(g∗)G.
(5) We have an isomorphism of R-algebras

(7.1) H∗(M) ∼=
H∗
G(M)

S+(g∗)G ·H∗
G(M)

.

Proof. We first show that (1) and (2) are equivalent. Assuming (1), we consider a cohomology

class in Hn(M), represented by a G-invariant differential form ω0. As dGω0 ∈ C2,n−1
G (M) we

have ω0 ∈ A
0,n
2 and can consider the element [ω0] ∈ E

0,n
2 , where we use the notation from Section

A.2. The latter is annihilated by the differential d2, because d2 : E2 → E2 is the zero map by
assumption. Thus dGω0 lies in dG(A

1,n−1
1 )+A3,n−2

1 . Consequently we find ω1 ∈ C
1,n−1
G (M) with

dGω1+dGω0 ∈ C
3,n−2
G (M). Now the element ω0+ω1 lies in A0,n

3 and induces an element of E0,n
3 .

Using now that d3 = 0 we inductively construct an element ω = ω0 + . . .+ωn with dGω = 0 and
ω(0) = ω0. We have shown that H∗

G(M)→ H∗(M) is surjective.
Assume now that (2) holds, i.e., that we can extend any closed G-invariant form ω0 to a closed

equivariant differential form ω0 + ω1 + · · · . But again by definition of the higher differentials in
the spectral sequence this means that all dr, r = 1, 2, . . ., vanish. (Inductively; first they vanish
on E0,∗

r , but because the Er are modules over S(g∗)G, and the dr are S(g∗)G-linear, they vanish
completely.) Thus, (1) holds.

We next show that (2) implies (4) and (5). It is clear that S+(g∗)G · H∗
G(M) is contained

in the kernel of the canonical map H∗
G(M) → H∗(M). So let ω = ω0 + ω1 + · · · ∈ H∗

G(M)
be an element in the kernel, where we use the same notation as above: the index i refers to
the polynomial degree of ωi. Being in the kernel means that ω0 = dβ0 is exact as an ordinary
invariant differential form. By replacing ω by ω−dGβ0 we can assume that ω0 = 0. Now consider
ω1. Because dω1 = 0, and the E1-term is S(g∗)G ⊗ H∗(M), we can (by adding an appropriate
exact form) assume that ω1 ∈ S1(g∗)G⊗Ω(M)G, i.e., ω1 =

∑

j fjγj , for G-invariant linear forms

fj , and closed G-invariant forms γj . Now, because H
∗
G(M)→ H∗(M) is surjective, we can extend

the γj to equivariantly closed differential forms γ̃j , and subtract
∑

j fj γ̃j from ω to obtain an
element in the kernel of the form ω2 + ω3 + · · · . By continuing in the same way, we have shown
the desired expression for the kernel, i.e., (4). Statement (5) follows directly by combining (2)
with (4).

Using this implication, we next show that (1) and (2) imply (3): we construct a module
isomorphism H∗

G(M) ∼= S(g∗)G ⊗ H∗(M). More precisely, we fix a vector space basis {[αi]}
of H∗(M), and preimages [βi] of the [αi] under the canonical map H∗

G(M) → H∗(M), which
exist by (2). In other words, the βi are equivariant differential forms whose polynomial parts are
cohomologous to αi. We wish to show that H∗

G(M) is a free S(g∗)G-module with basis {[βi]}.
Let us show that the [ηi] span H∗

G(M) as a module over S(g∗)G. We proceed by induction
on the degree. For degree zero this is true, because H0

G(M) = H0(M). So take an arbitrary
class [ω] ∈ H∗

G(M). We write [ω(0)] =
∑

i ai[αi], for ai ∈ R. By subtracting
∑

i ai[βi] from [ω]
we thus obtain an element in the kernel of H∗

G(M) → H∗(M). By (4), this element is a linear
combination

∑

i fi[ηi], for some fi of positive degree. By induction, the [ηi] are contained in the
span of the [βi], and hence also [ω].

Finally, we consider the S(g∗)G-module homomorphism

S(g∗)G ⊗H∗(M) −→ H∗
G(M)
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given by f ⊗ [αi] 7−→ f [βi]. We have shown that it is surjective. But by the collapse of the
spectral sequence (condition (1)), for every n the degree n part of the left and the right hand
side are isomorphic (as abstract vector spaces). Because they are also finite-dimensional (we
assumed that M is a compact manifold, and we know also that the polynomial ring S(t∗)G is
finite-dimensional in each degree) this map has to be an isomorphism. We have shown (3).

To conclude, we observe that (3) implies (1): ifH∗
G(M) ∼= S(g∗)G⊗H∗(M), then by Proposition

A.8, H∗
G(M) and the E1-term of the spectral sequence are isomorphic as graded S(g∗)G-modules,

and in particular as graded vector spaces. As both vector spaces are finite-dimensional in ev-
ery degree, this forces all differentials of the spectral sequence to vanish, i.e., the action to be
equivariantly formal. �

Remark 7.4. Using more results from the appendix, one can shorten the argument. Without
taking the detour through (4) and (5), the equivalent conditions (1) and (2) imply (3) using
Lemma A.17: a vector space basis of H∗(M) is a module basis of E∞

∼= E1
∼= S(g∗)G ⊗H∗(M),

which induces by Lemma A.17 a set of generators of the S(g∗)G-module H∗
G(M) of the same

cardinality. Then the same argument as in the proof above shows that this generating set is in
fact a basis.

Having shown in this way that (1), (2) and (3) are equivalent, the implication of (4) and (5)
is immediate: S+(g∗)G ⊗ H∗(M) ⊂ S(g∗)G ⊗ H∗(M) ∼= H∗

G(M) is a subspace of codimension
dimH∗(M), contained in the kernel of the surjection H∗

G(M)→ H∗(M). Thus, S+(g∗)G ·H∗
G(M)

equals the kernel.

Example 7.5. Any trivial action is equivariantly formal. For a trivial action, we have H∗
G(M) =

S(g∗)G ⊗H∗(M) even as an algebra over S(g∗)G.

Example 7.6. More generally, in Corollary A.10 we show that the spectral sequence of the
action collapses at the E1-term whenever Hodd(M) vanishes. Thus any Lie group action on such
a manifold is equivariantly formal.

Example 7.7. The simplest nontrivial example of an action on a compact manifold with van-
ishing odd-dimensional cohomology is the standard circle action on the 2-sphere. In Example 6.3
we identified its equivariant cohomology as

H∗
S1(S2) ∼= {(f, g) ∈ R[u]⊕ R[u] | f(0) = g(0)}.

Any element (f, g) ∈ H∗
S1(S2) can be written in the form

(f, g) =
1

2
(f + g, f + g) +

1

2
(f − g, g − f) =

1

2
(f + g)(1, 1) +

f − g

2u
(u,−u),

where we note that because f(0) = g(0), the polynomial f − g is divisible by u. Moreover, the
elements (1, 1) and (u,−u) are linearly independent over R[u]. Thus, H∗

S1(S2) is a free module
over R[u], with basis {(1, 1), (u,−u)}. Note that H∗(S2) is a graded vector space, with one-
dimensional components in degree 0 and 2, which are precisely the degrees of the elements (1, 1)
and (u,−u).

By Theorem 7.3 we can recover the ordinary cohomology of S2 from the equivariant one:

H∗(S2) ∼=
H∗
S1(S2)

u · R[u] · (1, 1)⊕ u · R[u] · (u,−u)

As a vector space, H∗(S2) is spanned by the cosets of (1, 1) and (u,−u). The ring structure is
the obvious one, where (1, 1) is the unit.

The same argument works in full generality: if one is able to determine a basis e1, . . . , ek of
H∗
G(M) as an S(g∗)G-module, for any equivariantly formal G-action, then H∗(M) is, as a vector

space, isomorphic to the real vector space with the ei as basis. The multiplicative structure is
encoded in the abstract quotient (7.1).

Corollary 7.8. Consider an equivariantly formal action of a compact, connected Lie group G
on a manifold M . Then, for any compact, connected Lie subgroup H ⊂ G, the induced H-action
on M is equivariantly formal as well.

Proof. Restiction of an equivariant differential form ω : g→ Ω(M) to h defines a natural morphism
CG(M) → CH(M) which descends to a map H∗

G(M) → H∗
H(M). Then the statement follows
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directly from Theorem 7.3 because the canonical mapH∗
G(M)→ H∗(M) factors throughH∗

H(M).
�

Many important classes of actions are equivariantly formal.

Example 7.9. Consider an action of a torus T on a compact manifold M . If there exists a T -
invariant Morse-Bott function f : M → R such that the critical set of f is equal to the fixed point
set MT , then the action is equivariantly formal. Although not using precisely this formulation,
the arguments to show this were given simultaneously by several authors, in [29], [7], [36], and
[62]. Roughly, one shows, using an equivariant Thom isomorphism, that for every critical value
κ of f one has a short exact sequence

0 −→ H∗
T (M

κ+ε,Mκ−ε) −→ H∗
T (M

κ+ε) −→ H∗
T (M

κ−ε) −→ 0

in (Borel) equivariant cohomology, where for any a we denote the respective sublevel set by
Ma = {p ∈ M | f(p) ≤ a}. This implies, inductively, that all H∗

T (M
a) are free S(t∗)-modules.

It was observed in [44] that the same argument goes through in the context of Cohen-Macaulay
actions, see Section 12 below, for Morse-Bott functions whose critical set is the union of b-
dimensional orbits, where b is the lowest occurring orbit dimension.

For example, given any Hamiltonian torus action on a compact symplectic manifold, a generic
component of the moment map µ : M → t∗ is a Morse-Bott function with this property, thus
showing that any Hamiltonian torus action on a compact symplectic manifold is equivariantly
formal.

Example 7.10. A natural class of actions is given by isotropy actions of homogeneous spaces,
i.e., the action of a connected Lie group H on a homogeneous space of the form G/H . If G
and H are of equal rank, then even the G-action on G/H is equivariantly formal, see Theorem
10.3 below, so the H-action is, by Corollary 7.8, equivariantly formal as well. (In fact, in this
case Hodd(G/H) vanishes, see again Theorem 10.3, so that any action on G/H is automatically
equivariantly formal.)

In general it is an open question for which homogeneous spaces G/H the isotropy action is
equivariantly formal. This question was considered by Shiga and Shiga–Takahashi in [76, 77],
where they found several sufficient conditions for equivariant formality of isotropy actions (see
also [18, Section 2.1] for a summary of these results). It was shown in the affirmative for symmetric
spaces [37], more generally for spaces such that H is the connected component of the fixed points
of any automorphism of G [38], and for Z2 × Z2-symmetric spaces in [56]. Some examples of
homogeneous spaces whose isotropy action is not equivariantly formal were given in [77] and [76],
and the equivariantly formal homogeneous spaces with H ∼= S1 were classified in [18]. In [19] it
was shown that equivariant formality of the isotropy action of G/H implies that G/H is formal
in the sense of rational homotopy theory.

8. Borel localization

Is this section, as well as the next, we consider only actions of tori on compact manifolds.
Recall that for an equivariant smooth map f : N →M between T -manifolds, we can consider its
induced map f∗ : H∗

T (M)→ H∗
T (N) in equivariant cohomology. Both its kernel and its cokernel,

coker f∗ = H∗
T (N)/ im f∗, are naturally S(t∗)-modules. Our goal in this section is to prove the

following theorem (see [47, Section (1.7)] for information on the history of localization theorems):

Theorem 8.1 (Borel localization theorem). Consider, for an action of a torus T on a compact
manifold M , the restriction map

H∗
T (M) −→ H∗

T (M
T ).

Its cokernel is a torsion module, and its kernel is the torsion submodule of H∗
T (M).

The proof we give is a version of the proof in [54, Section 11], somewhat simplified by avoiding
the usage of equivariant cohomology with compact support and the notion of support of a module.
Note that there exist far more general versions of the Borel localization theorem, see e.g. [3,
Chapter 3] or [59, Chapter 3, §2].

Recall the notion of localization from commutative algebra [8, Chapter 3]. For a multiplica-
tively closed subset S of a commutative ring with unit R we denote the localized ring by S−1R,
and the localization of an R-module A by S−1A. We will need the fact that localization is an
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exact functor, see [8, Proposition 3.3]. In case A is a finitely generated module over an integral
domain, and S = R \ {0}, the localization S−1A is a finite-dimensional vector space over the field
S−1R, and we call its dimension the rank of A, denoted rankR A.

With this notion the statement in the Borel localization theorem that both kernel and cokernel
of the restriction map are torsion can be reformulated as follows:

Corollary 8.2. For any action of a torus T on a compact manifold, the localized map

S−1H∗
T (M) −→ S−1H∗

T (M
T ),

where S = S(t∗) \ {0}, is an isomorphism. The rank of the S(t∗)-module H∗
T (M) is

rankS(t∗)H
∗
T (M) = dimH∗(MT ).

Before embarking on the proof, we need to calculate the equivariant cohomology of an orbit
Tp = T/Tp. (Here we consider only tori – a more general statement about the equivariant
cohomology of transitive actions is shown below in Proposition 10.1.) Let t′ ⊂ t be a complement
of tp in t such that exp(t′) is a subtorus T ′ of T . Then S(t∗) = S(t∗p) ⊗ S(t

′∗). The Cartan
complex CT (T/Tp) can be written as

CT (T/Tp) = S(t∗p)⊗ S(t
′∗)⊗ Ω(T/Tp)

T ,

and because Tp acts trivially on all of T/Tp, the T -invariance of a differential form on T/Tp is
equivalent to the T ′-invariance. Therefore, we have

CT (T/Tp) = S(t∗p)⊗ (S(t′∗)⊗ Ω(T/Tp)
T ′

).

The equivariant differential dT on CT (T/Tp) acts as dT = 1 ⊗ dT ′ , because the Tp-fundamental
vector fields are zero on T/Tp. Thus,

H∗
T (T/Tp) = S(t∗p)⊗H

∗
T ′(T/Tp).

Because the T ′-action on T/Tp is locally free and transitive, we have H∗
T ′(T/Tp) = H∗({pt}) = R.

Thus,
H∗
T (T/Tp) = S(t∗p)

as S(t∗)-algebras, where the S(t∗)-algebra structure is induced by the natural restriction S(t∗)→
S(t∗p).

In particular, we see that if tp 6= t (i.e., if p is not a T -fixed point), then H∗
T (T/Tp) is a torsion

module: Let f ∈ S(t∗) be a nonzero linear form on t that vanishes on tp; then multiplication with
f is the zero map on H∗

T (T/Tp).

Lemma 8.3. Let M be a (not necessarily compact) manifold that admits a T -equivariant map
ϕ : M → Tp, where p ∈M is not a fixed point of the T -action. Then H∗

T (M) is a torsion module.

Proof. We consider the maps

M
ϕ
−→ Tp −→ {pt}.

In equivariant cohomology they induce homomorphisms

S(t∗) −→ H∗
T (Tp)

ϕ∗

−→ H∗
T (M).

Because of Lemma 4.10, the S(t∗)-algebra structure of H∗
T (M) is induced from the unique map

to a point, which thus factors through H∗
T (Tp). Above, we computed H∗

T (Tp)
∼= S(t∗p), where the

S(t∗)-algebra structure is given by the natural restriction map. Every f ∈ S(t∗) with f |tp = 0
thus annihilates H∗

T (M), because it already defines the zero element in H∗
T (Tp). �

Any tubular neighborhood U of an orbit Tp admits a T -equivariant (retraction) map to Tp,
so Lemma 8.3 applies to any open T -invariant subset of U .

Proof of Theorem 8.1. The idea of the proof is to use the equivariant Mayer-Vietoris sequence
for a cover M = U ∪ V , where U is a tubular neighborhood of MT , and V an open T -invariant
subset of M \MT , with the following property: both V and U ∩ V can be covered by finitely
many T -invariant open neighborhoods to which Lemma 8.3 applies, in the sense that they admit
an equivariant map to an orbit in M \MT . Let us first construct this covering: we choose two
tubular neighborhoodsMT ⊂ U ′ ⊂ U with U ′ ⊂ U . We put V :=M \U ′. As M \U ′ is compact,
it can be covered by finitely many tubular neighborhoods of orbits in M \MT (none of which
intersects M \MT ). This finite cover restricts to finite covers of V and U ∩ V . The open sets in
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this cover are open subsets of tubular neighborhoods of orbits of points in M \MT , so Lemma
8.3 applies to them.

Now, consider any open subset W ⊂ M which is a finite union W = W1 ∪ · · · ∪ Wr of
open T -invariant open neighborhoods Wi that admit an equivariant map fi : Wi → Tpi, where
pi ∈ M \MT . By Lemma 8.3 we have that H∗

T (Wi) is a torsion module for all i. Put Yj :=
W1∪· · ·∪Wj−1, so that Yj+1 = Yj ∪Wj . It follows by induction that H∗

T (Yj) is a torsion module,
using the portion

H∗
T (Yj ∩Wj) −→ H∗

T (Yj+1) −→ H∗
T (Yj)⊕H

∗
T (Wj)

of the equivariant Mayer-Vietoris sequence. Note that we used that with Wj also the intersection
Yj ∩Wj admits an equivariant map to an orbit in M \MT , hence Lemma 8.3 also applies to this
set. We have thus shown that H∗

T (W ) is a torsion module as well.
This observation in particular applies to the sets V and U ∩V from the open coverM = U ∪V

constructed above. Using that H∗
T (U) ∼= H∗

T (M
T ), the equivariant Mayer-Vietoris sequence of

this cover reads

· · · −→ H∗
T (U ∩ V ) −→ H∗

T (M)
(i∗,j∗)
−→ H∗

T (M
T )⊕H∗

T (V ) −→ H∗
T (U ∩ V ) −→ · · · ,

where j : V →M is the natural inclusion map. Localizing this exact sequence at S = S(t∗) \ {0},
the terms S−1H∗

T (U ∩ V ) and S−1H∗
T (V ) vanish, so that we obtain an isomorphism

S−1H∗
T (M) −→ S−1H∗

T (M
T )

as in the formulation in Corollary 8.2. That the kernel of the restriction map H∗
T (M)→ H∗

T (M
T )

contains the torsion submodule of H∗
T (M) is clear because H∗

T (M
T ) is a free module. �

Remark 8.4. In case the T -action has no fixed points, MT = ∅. By convention, we understand
H∗
T (∅) = 0.

Corollary 8.5. H∗
T (M) is a torsion module if and only if the T -action has no fixed points.

Proof. If the T -action has no fixed points, then we have just observed that H∗
T (M) is torsion

(see Remark 8.4). If there are fixed points, then 1 ∈ H∗
T (M) is mapped to 1 6= 0 ∈ H∗

T (M
T ).

Because H∗
T (M

T ) is a free and hence torsion-free S(t∗)-module, 1 is also not a torsion element in
H∗
T (M). �

Example 8.6. The Borel localization theorem is wrong without any assumptions on the space
acted on. Consider the Borel model (see Remark 4.8) of the free action of a torus T on the
contractible space ET . As the projection

ET ×T ET −→ BT

on the first factor is a homotopy equivalence (it is a fibration with contractible fiber ET ), the
map

H∗(BT ;R) −→ H∗
T (ET ;R)

defining the H∗(BT ;R)-algebra structure is an isomorphism. In particular, the equivariant co-
homology H∗

T (ET ;R) is a free H∗(BT ;R)-module although the T -action has no fixed points.

Corollary 8.7. For an equivariantly formal action of a torus on a compact manifold M , the
inclusion MT →M induces an injective S(t∗)-algebra homomorphism

H∗
T (M) −→ H∗

T (M
T ) = S(t∗)⊗H∗(MT ).

One can therefore try to understand the equivariant cohomology of an equivariantly formal
action by understanding its image in H∗

T (M
T ).

Example 8.8. We did this already for the standard circle action on S2, with fixed point set the
north and south pole N,S, see Example 6.3, in which we confirmed ad hoc that the inclusion
H∗
S1(S2)→ H∗({N,S}) = R[u]⊕R[u] is injective, and has as image the R[u]-subalgebra {(f, g) |

f(0) = g(0)}.

We will give an example with nondiscrete fixed point set below (see Example 9.8).
In Example 7.6 we observed that any action on a manifold with vanishing odd-dimensional

cohomology is equivariantly formal. If the fixed point set of the torus action is finite, then this is
even an equivalence.
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Proposition 8.9. Consider an equivariantly formal action of a torus T on a compact manifold
M . If the fixed point set of the action is finite, then Hodd(M) = 0.

Proof. By Corollary 8.7 we have an injection H∗
T (M) → S(t∗) ⊗ H∗(MT ). As MT is a finite

set, H∗(MT ) is concentrated in degree zero. The polynomial ring S(t∗) is concentrated in even
degrees, so that Hodd

T (M) = 0. But by equivariant formality we have

H∗
T (M) ∼= S∗(t∗)⊗H∗(M),

so necessarily Hodd(M) = 0 as well. �

9. Consequences for the fixed point set

Recall that the Euler characteristic of a manifold M with finite-dimensional cohomology
H∗(M) is defined as

χ(M) := dimHeven(M)− dimHodd(M).

More generally, one can define the Euler characteristic for any finite-dimensional Z2-graded vector
space V , i.e., a vector space of the form V = V even ⊕ V odd, where we call the elements of V even

and V odd even and odd elements.

Definition 9.1. Let V = V even ⊕ V odd be a finite-dimensional Z2-graded vector space. Then
the Euler characteristic of V is

χ(V ) = dimV even − dimV odd.

A fundamental property of the Euler characteristic is that it is preserved under taking coho-
mology. We omit the (standard) proof.

Lemma 9.2. Let V = V even ⊕ V odd be a finite-dimensional vector space over a field K, and
d : V → V a K-linear map that

(1) is a differential, i.e., d2 = 0, and
(2) is an odd endomorphism, i.e., restricts to maps deven : V even → V odd and dodd : V odd →

V even.

Then
χ(V ) = χ(H(V, d)),

where H(V, d) = ker d/ imd (which naturally is a Z2-graded vector space).

The following theorem was originally shown by Kobayashi [64] without the usage of equivariant
cohomology. We present it here as a corollary of the Borel localization theorem.

Theorem 9.3. Consider the action of a torus T on a compact manifold M . Then

χ(M) = χ(MT ).

Proof. By Corollary 8.2 we have an isomorphism

S−1H∗
T (M) −→ S−1H∗

T (M
T ),

where S = S(t∗) \ {0}. The localized equivariant cohomology is not Z-graded anymore, but the
dichotomy between even and odd degree elements survives after localization. This isomorphism
thus restricts to isomorphisms of the respective even and odd parts. As H∗

T (M
T ) = S(t∗) ⊗

H∗(MT ), we therefore have (writing R = S(t∗))

χ(MT ) = dimRH
even(MT )− dimRH

odd(MT )

= dimS−1R S
−1R⊗Heven(MT )− dimS−1R S

−1R ⊗Hodd(MT )

= dimS−1R S
−1Heven

T (MT )− dimS−1R S
−1Hodd

T (MT )

= dimS−1R S
−1Heven

T (M)− dimS−1R S
−1Hodd

T (M).

We now use the the spectral sequence of the Cartan model to relate this to χ(M). As observed in
Section A.5 each page Er of the spectral sequence naturally is an R-module, and the differentials
are R-linear. We now forget the bigrading of the Er, and keep only the total degree. The
differential dr, which was of bidegree (r,−r + 1), is then an ordinary differential which increases
degree by one. Localizing each page of the spectral sequence, we then obtain Z2-graded vector
spaces Er , and the differentials dr : Er → Er become odd endomorphisms. Then, each Er+1 is
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the cohomology of (Er, dr), in the category of Z2-graded vector spaces. Applying Lemma 9.2
multiple times (noting that there can only be finitely many nontrivial differentials), we compute

χ(M) = dimRH
even(M)− dimRH

odd(M)

= dimS−1R S
−1R⊗Heven(M)− dimS−1R S

−1R⊗Hodd(M)

= dimS−1R S
−1Eeven

1 − dimS−1R S
−1Eodd

1

= dimS−1R S
−1Eeven

∞ − dimS−1R S
−1Eodd

∞ ,

where we used Proposition A.8 for the third equality sign. This equals the result of the first chain
of equations above, because the ranks of the even and odd parts of H∗

T (M) and E∞ agree, as we
show in Corollary A.19. �

Example 9.4. For any torus action with finitely many fixed points, their number is exactly
χ(M). For example, consider orientable closed surfaces: any nontrivial circle action on the two-
sphere has two fixed points, and any nontrivial circle action on the two-dimensional torus has no
fixed points at all. Surfaces of higher genus do not admit any nontrivial circle actions.

Example 9.5. By Example 7.6, any torus action on a manifold M with Hodd(M) = 0 is equiv-
ariantly formal. For example, this is the case for CPn.

As a concrete example, consider the T 2-action on CP 2 given by

(t0, t1) · [z0 : z1 : z2] := [t0z0 : t1z1 : z2].

Because dimH∗(CP 2) = 3, we know that if this action has finitely many fixed points, then their
number has to be equal to 3. Indeed, we see that the fixed points are given by [1 : 0 : 0], [0 : 1 : 0]
and [0 : 0 : 1].

Proposition 9.6. For any action of a torus T on a compact manifoldM , we have dimH∗(MT ) ≤
dimH∗(M). Moreover, the action is equivariantly formal if and only if dimH∗(MT ) = dimH∗(M).

Proof. By the Borel Localization theorem we have

rankH∗
T (M) = rankH∗

T (M
T ) = rankH∗(MT )⊗ S(t∗) = dimH∗(MT ).

On the other hand we know that rankH∗
T (M) ≤ dimH∗(M): the spectral sequence of the

Cartan model has E1 = S(t∗) ⊗H∗(M), which has rank H∗(M). As submodules and quotients
of a module cannot have greater rank than the original, we deduce that rank(E∞) ≤ dimH∗(M).
Now the first claim follows by Corollary A.19.

If the action is equivariantly formal, then H∗
T (M) is, as an S(t∗)-module, isomorphic to

H∗(M) ⊗ S(t∗), hence its rank is equal to dimH∗(M). If the action is not equivariantly for-
mal, then there exists a nontrivial differential; let dr be the first of these. As Er ∼= E1 is a free
S(t∗)-module, it follows that Er+1 has rank strictly smaller than Er. As by Corollary A.19 the
ranks of H∗

T (M) and E∞ are equal, it follows that dimH∗(MT ) = rankH∗
T (M) = rankE∞ <

rankE1 = dimH∗(M). �

Example 9.7. Consider the action of a compact, connected Lie group G on itself by conjugation.
The action, restricted to a maximal torus T ⊂ G (of dimension r = rankG), has T as fixed point
set. Therefore we have 2r = dimH∗(GT ) as the total dimension of the cohomology of the fixed
point set. But on the other hand it is known that also dimH∗(G) = 2r: A classical theorem
of Hopf, see e.g. [30, Theorem 1.3.4], states that the de Rham cohomology of G is an exterior
algebra on generators of odd degree. The fact that the number of generators equals the rank
of G can be proven by various means; see [30, Theorem 3.33] for an argument using rational
homotopy theory, or [31] for a more elementary argument using the degree of the squaring map
G→ G; g 7→ g2. It follows that the T -action on G by conjugation is equivariantly formal.

Example 9.8. Consider, as a special case of Example 9.7, the case G = SU(2), with maximal
torus S1 ⊂ SU(2). As the action by conjugation is equivariantly formal, the inclusion S1 → SU(2)
induces an injection

H∗
S1(SU(2)) −→ H∗

S1(S1) = R[u]⊗H∗(S1).

By equivariant formality we know that, as an R[u]-module, H∗
S1(SU(2)) is generated by two

elements in degree 0 and 3. As Hn
S1(S1) is only one-dimensional for n = 0, 3 (in fact for all n),
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this implies that the restriction map induces an isomorphism of R[u]-algebras

H∗
S1(SU(2)) ∼= R[u]⊕ α · uR[u],

where α is a generator of H1(S1).

Corollary 9.9. Consider an equivariantly formal action of a torus T on a compact manifold M ,
and H ⊂ T a subtorus. Then the T -action on (every component of) MH is again equivariantly
formal.

Proof. By 7.8 the subtorus H acts equivariantly formally on M . Thus, by Proposition 9.6,
dimH∗(MH) = dimH∗(M). Now, the fixed point set of the T -action onMH is againMT ⊂MH ,
and by equivariant formality of the T -action on M , we have

dimH∗(MT ) = dimH∗(M) = dimH∗(MH).

Applying Proposition 9.6 again, we conclude that the T -action on MH is equivariantly formal.
Finally, a torus action on a disconnected manifold is equivariantly formal if and only if the

action on every connected component is equivariantly formal. �

Example 9.10. Corollary 9.9 in particular says that for an equivariantly formal torus action,
every component of a fixed point submanifold MH , where H ⊂ T is a subtorus, contains a fixed
point of the action. Let us give an example of a torus action with fixed points where this property
is not satisfied, taken from [1, Example 2].

Consider S1, embedded in S3 = SU(2) as a maximal torus, as well as S2 = S1 × [0, 1]/∼,
where we collapse the boundary circles to points. Elements of S2 will thus be written as [z, t],
with z ∈ S1, and t ∈ [0, 1]; for t = 0, 1 the elements [z, t] are identical for all z. As S3 is simply-
connected, we find a homotopy h : S1× I → S3 such that h(z, 0) = 1 (the identity element in S3)
and h(z, 1) = z, for all z ∈ S1 ⊂ S3.

Define an action of T 2 = S1 × S1 on M := S2 × S3 by

(w1, w2) · ([z, t], g) := ([zw−1
1 , t], h(zw−1

1 , t)w2h(z, t)
−1gw−1

2 ).

One directly verifies that this really defines an action. On the copy of S3 where t = 0 we have

(w1, w2) · ([z, 0], g) = ([z, 0], w2gw
−1
2 ),

so the action is conjugation by w2. On the copy of S3 where t = 1 we have

(w1, w2) · ([z, 1], g) = ([z, 1], zw−1
1 w2z

−1gw−1
2 ) = ([z, 1], w−1

1 w2gw
−1
2 ),

so the action is conjugation by w2, followed by left multiplication with w−1
1 . We picture the whole

action as an interpolation between these two actions.
The fixed point set of the full T -action is MT ∼= S1, where S1 is the maximal torus in S3

embedded at t = 0. The restricted action of the subcircle H = {(w2, w)} ⊂ T 2 is given by

(w2, w) · ([z, t], g) = ([zw−2, t], h(zw−2, t)wh(z, t)−1gw−1).

For t 6= 0, 1 there cannot occur any H-fixed points, as zw−2 cannot equal z for all w. For t = 0
again only the maximal torus is contained in MH . For t = 1 we have

(w2, w) · ([z, 1], g) = ([z, 1], w−1gw−1),

and because w−1gw−1 = g is equivalent to gwg−1 = w−1 we can only have w−1gw−1 = g for
all w ∈ S1 if g is in the normalizer NSU(2)(S

1). This normalizer is the union S1 ∪ A · S1, where

A =

(

0 1
−1 0

)

. For elements in the centralizer this equality is not satisfied, but it is satisfied

for all elements in A · S1, so we have found another circle in the fixed point set. In total, MH

has two connected components, each of which is diffeomorphic to a circle, and only one of them
contains T -fixed points.

Concerning equivariant formality, this implies that the H-action on M is equivariantly formal
(as the total dimension of the cohomology H∗(MH) is 4, which is the same as the dimension of
H∗(M)), but the whole T -action is not.
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10. Cohomology of homogeneous spaces

In this section we will apply equivariant cohomology theory to obtain information on the
cohomology of homogeneous spaces G/H , mostly for the case that the ranks of G and H are
equal.

Proposition 10.1. Given any two compact, connected Lie groups H ⊂ G, the equivariant coho-
mology of the G-action on G/H by left multiplication is given by

H∗
G(G/H) ∼= S(h∗)H ;

its algebra structure S(g∗)G → H∗
G(G/H) = S(h∗)H is given by restriction of polynomials.

Proof. Applying Theorem 5.2, or rather the generalization described in Remark 5.5, twice gives
isomorphisms

H∗
G(G/H) ∼= H∗

G×H(G) ∼= H∗
H(pt) = S(h∗)H

of graded R-algebras. One needs to confirm that the S(g∗)G-algebra structure is as claimed. To
this end, we consider these isomorphisms on the level of equivariant differential forms:

(S(g∗)⊗ Ω(G/H))G −→ (S(g∗)⊗ S(h∗)⊗ Ω(G))G×H ←− S(h∗)H

where both maps are induced by the natural projection maps. On order to understand where a
G-invariant polynomial on g is mapped to on the level of cohomology, one needs a chain homotopy
inverse of the map on the right, the so-called Cartan map, which is described explicitly in [54,
Theorem 5.2.1] or [68, Section 7]. One needs to fix the (in this case unique) connection one-form
θ of the principal G-bundle G → pt, which is essentially given by the Maurer-Cartan form of G
(but note that G acts by left multiplication on G here). Then, for Y ∈ h acting on G from the
right, we compute

θg(Y g) = θg(dlg(Y e)) = θg(drg(Adg Y e)) = −Adg Y,

where lg and rg denote left and right multiplication with g ∈ G, respectively. Thus, the H-
equivariant curvature 2-form F θH = dHθ +

1
2 [θ, θ] ∈ C

2
H(G)⊗ g is given by

F θH(Y )(g) = Adg Y,

for every Y ∈ h and g ∈ G, because θ satisfies dθ + 1
2 [θ, θ] = 0. Thus, for any G-invariant

polynomial f ∈ S(g∗)G, replacing the g-variable by F θH is the same as restricting the polynomial
to h. �

Remark 10.2. In [27, Théorème 24], the proposition is proved under relaxed conditions. Also,
just as it is the case with Theorem 5.2, the proof is much easier in the Borel model. We have

EG×G G/H = EG/H = BH,

inducing an isomorphism H∗
G(G/H) = S(h∗)H . When identifying EG ×G G/H = BH , the

projection map EG ×G G/H → BG becomes the natural map BH = EG/H → EG/G = BG,
thus showing the claim about the algebra structure.

Theorem 10.3. For a homogeneous space G/H, where G is a compact, connected Lie group and
H ⊂ G a connected closed subgroup, the G-action on G/H is equivariantly formal if and only if
rankG = rankH. In this case we have an R-algebra isomorphism

H∗(G/H) ∼=
S(h∗)H

(S+(g∗)G)

and H∗(G/H) vanishes in odd degrees.

Proof. If the G-action is equivariantly formal, then also a maximal torus in G acts in an equiv-
ariantly formal fashion, by Corollary 7.8. But the action of a maximal torus in G on G/H by left
multiplication can only have fixed points if the ranks of H and G are equal.

Conversely, we consider first the case that H = T is a maximal torus of G. In this case G/T
admits a CW structure with only even-dimensional cells, by the classical Bruhat decomposition
– see e.g. [66, Section 7] (for a nice overview) and references therein, e.g. [65, Theorems 5.1.3
and 5.1.5]. Thus, the odd cohomology of G/T vanishes. By Example 7.6 the G-action on G/T is
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equivariantly formal, and combining the description of the equivariant cohomology in Proposition
10.1 with Theorem 7.3 we obtain

H∗(G/T ) ∼=
S(t∗)

(S+(g∗)G)
.

For a general equal-rank homogeneous space G/H we claim that the fibration

H/T −→ G/T −→ G/H

satisfies that the map H/T → G/T induces a surjection in de Rham cohomology. Indeed, this
map is the natural projection

S(t∗)

(S+(g∗)G)
−→

S(t∗)

(S+(h∗)H)

which is clearly surjective. Thus, the Leray-Hirsch theorem implies that the cohomology of G/H
also vanishes in odd degrees. Thus, in the same way as for G/T , the G-action on G/H is
equivariantly formal, and the desired description of the cohomology of G/H follows. �

Remark 10.4. There are various other ways to obtain this theorem, without using the Bruhat
decomposition. Given a homogeneous space G/H of equal rank, all isotropy groups of the G-
action on H have the same rank as that of G. For such actions equivariant formality is automatic,
see [43, Proposition 3.7]. Then, Proposition 10.1 and Theorem 7.3 imply the description of the
cohomology ring. The vanishing of the odd cohomology then follows directly from the fact S(h∗)H

is concentrated in even degrees, or equally directly from Proposition 8.9, because by Lemma 10.7
below, the equivariantly formal action of a maximal torus T ⊂ G on G/H has finite fixed point
set.

Alternatively, one may also argue entirely algebraically and use that S(t∗) is a free module
over S(g∗)G (see e.g. [60, Section 18.3]) to prove equivariant formality of the G-action.

Remark 10.5. By Corollary 5.3 we have, for any connected closed subgroup H ⊂ G of a compact,
connected Lie group G of equal rank, that H∗

H(G) = H∗(G/H), where H acts (freely) on G by
right multiplication. We claim that the S(h∗)H -algebra structure of this equivariant cohomology

S(h∗)H −→ H∗
H(G) ∼= H∗(G/H) ∼=

S(h∗)H

(S+(g∗)G)

is given by the canonical projection map. To see this, we consider the following commutative
diagram, whose upper horizontal isomorphisms are those from the proof of Proposition 10.1, and
whose vertical maps are given by restriction of the acting group:

S(h∗)H

**❚❚
❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

∼=
// H∗

H(pt)
∼=

// H∗
G×H(G)

∼=
//

��

H∗
G(G/H)

��

H∗
H(G)

∼=
// H∗(G/H)

∼=
// S(h∗)H

(S+(g∗)G)

Note that the square in the middle commutes because the inverses of the two horizontal maps are
induced by the canonical projection G→ G/H . The claim follows because traversing the diagram
from the top left to the bottom right via the upper path results in the canonical projection map.

Corollary 10.6. Consider a homogeneous space G/H, where H ⊂ G are compact, connected Lie
groups. Then χ(G/H) ≥ 0. Moreover, the following conditions are equivalent:

• rankG = rankH
• χ(G/H) > 0
• Hodd(G/H) = 0.

Proof. In Theorem 10.3 we showed that for homogeneous spaces with rankG = rankH the odd
degree cohomology vanishes, and hence also the Euler characteristic is positive.

Let us show that whenever rankG > rankH the Euler characteristic is zero. Then, as we
always have cohomology in degree zero, the odd cohomology cannot vanish either. To see this,
we construct a circle action on G/H without fixed points, and apply Theorem 9.3: We choose
a maximal torus TH ⊂ H , as well as a maximal torus TG ⊂ G containing TH . We can choose
a circle S1 ⊂ TG which is not G-conjugate to a subgroup of H . (If this was not the case, then
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choose a sequence of subcircles {exp(tXn)}, with Xn → X ∈ g, such that {exp(tX)} is dense
in G. If there existed gn such that Adgn Xn ∈ h, then we could find a subsequence, converging
to g ∈ G, and this element would satisfy AdgX ∈ h. But then, by continuity, gGg−1 ⊂ H , a
contradiction.) Then, this circle cannot fix any point gH ∈ G/H , as the G-isotropy of this point
is gHg−1 – if it fixed gH , then it would be conjugate to a subgroup of H .

We thus have found a circle action without fixed points, which shows that the Euler charac-
teristic is zero. �

We now neglect the ring structure of the cohomology of equal-rank homogeneous spaces ob-
tained in Theorem 10.3, and concentrate on their Betti numbers. We first obtain a formula for
the total Betti number in Proposition 10.8, and then describe explicitly the Poincaré polynomials
in Proposition 10.11.

Lemma 10.7. Consider a homogeneous space G/H, where H and G are compact, connected Lie
groups of equal rank, and T ⊂ H a maximal torus. Then the inclusion NG(T ) → G induces an
injection

W (G)/W (H) ∼= NG(T )/NH(T ) −→ G/H

whose image is precisely the fixed point set of the T -action on G/H.

Proof. We observe that an element gH ∈ G/H is fixed by T if and only if g−1Tg ⊂ H , i.e., by
the conjugacy of maximal tori in H , if and only if there exists h ∈ H such that h−1g−1Tgh = T .
As ghH = gH , this means that the T -fixed point set is precisely the image of the composition
NG(T )→ G→ G/H of the natural inclusion with the natural projection. �

Proposition 10.8. For an equal-rank homogeneous space G/H, we have

(10.1) dimH∗(G/H) =
|W (G)|

|W (H)|
.

Proof. This follows from Proposition 9.6 because the action of a maximal torus T ⊂ H is equiv-

ariantly formal and has precisely |W (G)|
|W (H)| fixed points. �

Remark 10.9. The equality dimH∗(G/T ) = |W (G)| follows also because the CW structure on
G/T given by the Bruhat decomposition has precisely |W (G)| cells. Proposition 10.8 is then
immediate from the observations on the fibration H/T → G/T → G/H given in the proof of
Theorem 10.3.

Example 10.10. For the complex Grassmannian of k-planes in Cn

Grk(C
n) = U(n)

/

U(k)×U(n− k)
we obtain

dimH∗(Grk(C
n)) =

|W (U(n))|

|W (U(k))| · |W (U(n− k))|
=

n!

k!(n− k)!
=

(

n

k

)

.

Proposition 10.11. Consider a homogeneous space G/H of compact, connected Lie groups H ⊂
G of equal rank r. If

S(g∗)G ∼= R[σ1, . . . , σr]

and
S(h∗)H ∼= R[ψ1, . . . , ψr]

with deg σi = pi and degψi = qi (usual degree of polynomials), then

Pt(H
∗(G/H)) =

r
∏

i=1

1− t2pi

1− t2qi
,

where Pt(H
∗(G/H)) =

∑dimG/H
n=0 bn(G/H)tn is the Poincaré polynomial of G/H.

Proof. In Theorem 10.3 we observed that the transitive G-action on G/H is equivariantly formal.
Using Proposition 10.1 and Theorem 7.3 we conclude that

(10.2) S(h∗)H ∼= H∗
G(G/H) ∼= S(g∗)G ⊗H∗(G/H);

here we need these isomorphisms only as one of graded vector spaces (but note that as elements of
equivariant cohomology, the σi and ψi have twice the degree they inherited from the polynomial
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rings). This equality helps to compute the Betti numbers of G/H : the Poincaré series of S(h∗)H

and S(g∗)H (for a graded vector space V =
⊕

n≥0 Vn with dimVn < ∞ for all n, this is the

formal power series
∑∞

n=0 t
n dimVn) are

Pt(S(h
∗)H) =

r
∏

i=1

1

(1− t2qi)
, Pt(S(g

∗)G) =
r
∏

i=1

1

(1− t2pi)
.

Then (10.2) implies that

Pt(S(h
∗)H) = Pt(S(g

∗)G) · Pt(H
∗(G/H)),

so that

Pt(H
∗(G/H)) =

r
∏

i=1

1− t2pi

1− t2qi
.

�

Example 10.12. In the special case that H = T is a maximal torus of G, the cohomology
H∗(G/T ) is, as an R-algebra, generated by the elements in H2(G/T ). The Poincaré polynomial
is

Pt(H
∗(G/T )) =

r
∏

i=1

1− t2pi

1− t2
=

r
∏

i=1

(1 + t2 + t4 · · ·+ t2pi−2).

In particular, the total Betti number of G/T is

dimH∗(G/T ) = P1(H
∗(G/T )) =

r
∏

i=1

pi.

Comparing this with Equation (10.1), i.e., dimH∗(G/T ) = |W (G)|, we obtain the following
general formula for the order of the Weyl group of G in terms of the generators of the cohomology
of G:

|W (G)| =
r
∏

i=1

pi.

Example 10.13. Consider the complex Grassmannian Grk(C
n) of k-planes in Cn as in Example

10.10. In Example 3.1 we computed that for G = U(n) we have S(g∗)G = R[σ1, . . . , σn], where
deg σi = i. Thus, Proposition 10.11 gives

Pt(Grk(C
n)) =

(1 − t2) · · · (1− t2n)

(1− t2) · · · (1− t2k)(1 − t2) · · · (1− t2(n−k))

=
(1− t2k+2) · · · (1− t2n)

(1− t2) · · · (1− t2(n−k))
.

For more information on the cohomology of homogeneous spacesG/H , where rankG > rankH ,
we only refer to the literature, e.g. [48].

11. Computing H∗(M) via H∗
T (M)

In Theorem 7.3 we have seen that for an equivariantly formal G-action on M we have an
isomorphism of R-algebras

H∗(M) ∼=
H∗
G(M)

S+(g∗)G ·H∗
G(M)

.

This means that whenever we know the equivariant cohomology H∗
G(M) as an S(g∗)G-algebra,

we can use this isomorphism to compute the ordinary cohomology H∗(M).
For an equivariantly formal torus action, the Borel localization theorem 8.1 states that the

restriction map

H∗
T (M) −→ H∗

T (M
T ) = S(t∗)⊗H∗(MT )

is injective, so one can try to compute H∗
T (M) by understanding its image under this map.

This is achieved by the Chang–Skjelbred Lemma, which describes the image only in terms of
the 1-skeleton M1 := {p ∈ M | dimT · p ≤ 1} of the action, see [24, Lemma 2.3]. The original
formulation used the Borel model; asM1 is not a manifold, the formulation in terms of the Cartan
model reads slightly differently – see [54, Section 11.5] for the proof.
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Theorem 11.1 (Chang-Skjelbred Lemma). The image of the natural restriction map i∗ : H∗
T (M)→

H∗
T (M

T ) is given by

(11.1)
⋂

H⊂T

i∗H(H∗
T (M

H)),

where H runs through all codimension-one subtori of T and iH : MT →MH is the inclusion.

Note that for almost all codimension-one subtori H ⊂ T we have MH = MT ; these H are
irrelevant for the intersection. The only relevant groups H are the connected components of
those isotropy groups of the T -action that are of codimension one – of these there are only
finitely many. The one-skeleton M1 of the action is the union of all the MH , where H runs
through the codimension-one subtori as above.

Example 11.2. Consider the T 2-action on CP 2 from Example 9.5. The orbit space of this action
is a triangle. The one-skeleton of the action is the preimage of the boundary of this triangle under
the projection to the orbit space. It is the union of three 2-spheres, any two of which meet in a
single point.

One important special case in which this theorem yields explicitly computable results is that of
so-called GKM actions, named after a paper by Goresky, Kottwitz, and MacPherson [47]. There,
one assumes that the structure of the one-skeleton is as simple as possible:

Definition 11.3. We call an action of a torus T on a compact, connected manifold M a GKM
action if the following conditions are satisfied:

(1) The action is equivariantly formal.
(2) The fixed point set of the action is finite.
(3) The one-skeleton M1 is a finite union of T -invariant two-spheres.

Given the second condition, we know that the first one is equivalent to demanding that the
odd cohomology groups of M vanish, see Proposition 8.9. Easy examples of GKM actions are
the standard circle action on S2, or the T 2-action on CP 2 (see Example 11.2). These can be
generalized to the following class of examples:

Example 11.4. All toric symplectic manifolds are GKM. Indeed, toric symplectic manifolds have
vanishing odd cohomology groups [9, Theorem VII.3.5] and finite fixed point set, and at each fixed
point the weights of the isotropy representation form a basis of t∗: if M is 2n-dimensional, then
there are precisely n weights of the isotropy representation at any given fixed point, which have
to be linearly independent, as otherwise the common kernel of the weights would determine a
positive-dimensional subtorus acting trivially on M .

Let p ∈ MT be a fixed point of a GKM action. Then the isotropy representation at p de-
composes into two-dimensional irreducible subrepresentations. If α is a weight of the isotropy
representation – which is a linear form on t, well-defined up to sign – with weight space Vα, and
Tα ⊂ T the subtorus with Lie algebra kerα, then Vα is tangent to MTα ⊂ M1. The condition
that M1 is a finite union of two-dimensional submanifolds, is equivalent to the condition that
the weights of the isotropy representation, at any fixed point, are pairwise linearly independent.
Thus, for a GKM action on a manifold of dimension 2n, in any given fixed point there meet
precisely n invariant two-spheres.

To any GKM action one associates, as follows, a labelled graph Γ, called the GKM graph of
the action: the vertices V (Γ) are given by the fixed points of the action, and we draw an edge
(i.e., an element of the edge set E(Γ)) for any invariant 2-sphere connecting two fixed points.
The argument above shows that this graph, for M of dimension 2n, is n-valent. Additionally, we
label the edge as follows: the tangent space of an invariant two-sphere in one of the two fixed
points is a two-dimensional invariant submodule of the isotropy representation, and there is a
codimension-one subtorus H ⊂ T that acts trivially on it. We put any nonzero linear form α ∈ t∗

that vanishes on h as a label of the corresponding edge.

Example 11.5. A classical result of Atiyah [6] and Guillemin–Sternberg [53] states that the image
of the momentum map µ : M → t∗ of an Hamiltonian torus action on a symplectic manifold M
is a convex polytope. For a toric symplectic manifold M , the dimension of an orbit T · p is
precisely the smallest dimension of a face containing µ(p). It follows that the GKM graph of a
toric symplectic manifold is precisely the one-skeleton of the polytope µ(M).
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Example 11.6. Consider a homogeneous space G/H , with rankG = rankH , equipped with
the action of a maximal torus T ⊂ H by left multiplication. We showed in Section 10 that this
action is equivariantly formal, and that the fixed point set of this action is given by the finite
set W (G)/W (H). In [52] it was observed that the T -action is GKM, and the GKM graph was
determined explicitly in terms of the root systems of G and H (see [52, Theorem 2.4]).

The equivariant cohomology of a GKM action is encoded in the GKM graph:

Theorem 11.7. Consider a GKM action of a torus T on a compact, connected orientable man-
ifold M . Then

H∗
T (M) ∼=

{

(fp) ∈
⊕

p∈MT

S(t∗)
∣

∣

∣
fp − fq ∈ (α) if there is an edge from p to q labelled α

}

.

Here, (α) denotes the principal ideal generated by α.

Proof. By Theorem 11.1 the image of the (injective) natural restriction map H∗
T (M)→ H∗

T (M
T )

is
⋂

H

i∗H(H∗
T (M

H)),

where H runs through the codimension one subgroups of T , and iH : MT →MH is the inclusion.
As observed before, under our assumptions each component N of one of the MH is either a single
fixed point or a two-sphere S2 with an action of T/H ∼= S1. To compute the equivariant cohomol-
ogy of N , we generalize Example 6.3 slightly: take N = U∪V , where U and V are T -equivariantly
homotopy equivalent to a fixed point. (Modulo the ineffective kernel, N is equivariantly diffeo-
morphic to S2 with the standard circle action. This follows from the theory of cohomogeneity-one
actions, as such actions are determined by their group diagram.) So H∗

T (U) = H∗
T (V ) = S(t∗).

Moreover, U ∩ V is homotopy equivalent to an invariant circle, whose isotropy Lie algebra is h,
so H∗

T (U ∩ V ) = S(h∗). We thus obtain an exact sequence

· · · −→ H∗
T (N) −→ S(t∗)⊕ S(t∗)

ϕ
−→ S(h∗) −→ · · · ,

where the map ϕ is given by ϕ(f, g) = f |h − g|h. We thus obtain that

H∗
T (N) ∼= {(f, g) ∈ S(t∗)⊕ S(t∗) | f |h = g|h}.

Now, the condition that f |h = g|h is equivalent to the condition that the polynomial f − g is in
the kernel of the restriction map S(t∗) → S(h∗). This kernel is a principal ideal, generated by
any nonzero linear form that vanishes on h. This is precisely the relation prescribed by the edge
corresponding to N . �

Example 11.8. Consider the action of T 2 on CP 2. We already understand the one-skeleton
of the action, which consists of three invariant two-spheres. They are given by {[z : w : 0]},
{[z : 0 : w]} and {[0 : z : w]}, whose isotropy groups are {(t, t) | t ∈ S1}, {1} × S1, and S1 × {1},
respectively. Choosing {u, v} as the dual basis to the standard basis of t ∼= R2, the labels of the
graph (which is a triangle) are given by u, v, and u − v. The equivariant cohomology is thus

u v

u-v

Figure 1. GKM graph of CP 2

given by

H∗
T 2(CP 2) ∼=

{

(f, g, h) ∈ R[u, v]3
∣

∣

∣
f − g ∈ (u), f − h ∈ (v), g − h ∈ (u− v)

}

,
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with the S(t∗)-algebra structure induced from the equivariant cohomology of the fixed point set,
i.e., componentwise multiplication.

From this, we can now determine the graded ring structure of the ordinary cohomology of
CP 2. One checks that

(1, 1, 1), (v, v − u, 0), (uv, 0, 0)

are R[u, v]-module generators of the equivariant cohomology (which have degree 0, 2, 4 as predicted
by Theorem 7.3). To understand the ring structure we have to multiply

(v, v − u, 0) · (v, v − u, 0) ≡ (v2, (v − u)2, 0)

≡ (v2, v2 − 2uv + u2, 0)− v(v, v − u, 0) + u(v, v − u, 0)

≡ (uv, 0, 0)

where we compute modulo S+(t∗) ·H∗
T 2(CP 2), i.e., in the quotient H∗

T 2(CP 2)/S+(t∗) ·H∗
T 2(CP 2).

Also, (v, v − u, 0)3 ≡ 0. It follows that

H∗(CP 2) ∼= R[ω]/(ω3),

where ω is of degree 2 (which we of course knew before).

A detailed introduction to GKM theory with many explicit computations can be found in [79].
One can not only apply GKM theory to concrete computations, but also to obtain structural

results on certain classes of actions. For instance, in [46] it was shown that all known examples
of even-dimensional positively curved Riemannian manifolds admit isometric GKM actions, and
described their GKM graphs. The graphs that occur are simplices and the complete bipartite
graph K3,3, with possibly all edges doubled or quadrupled. As an example, see Figure 2 (which is
taken from [46]) for the GKM graph of the action of the maximal torus of Spin(8) on F4/Spin(8)
by left multiplication. Restricting to GKM3-actions (i.e., actions for which the two-skeleton of

Figure 2. GKM graph of F4/Spin(8)

the action is the union of four-dimensional submanifolds) one obtains the following theorem.

Theorem 11.9. Let M be a compact, connected, positively curved, orientable Riemannian man-
ifold. If M admits an isometric GKM3 torus action, then M has the real cohomology ring of a
compact rank one symmetric space.

To prove this theorem we determined all possible GKM graphs under the given curvature
assumption, using the classification of four-dimensional positively curved T 2-manifolds by Grove
and Searle [49].

Finally, we mention that GKM theory allows for various generalizations. One possibility
to generalize is to allow a nonisolated fixed point set. This was considered in the context of
Hamiltonian actions on symplectic manifolds [51], and for equivariantly formal torus actions with
one-dimensional fixed point set [58]. In He’s paper an important feature of the class of actions he
considers is that the one-skeleton of the action is the union of (three-dimensional) submanifolds
each containing an arbitrary number of fixed point components, contrary to the the classical
case in which the invariant two-spheres always contain exactly two fixed points. GKM theory
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for actions without fixed points was considered in [42], for a certain class of Cohen-Macaulay
torus actions (see Section 12 below). Instead of the one-skeleton of the action one describes the
equivariant cohomology of the action in terms of the b + 1-skeleton Mb+1 of the action, where
b is the lowest occurring dimension of an orbit. The class of actions considered in [42] has the
property thatMb+1 is the union of submanifolds, each containing exactly two components ofMb.
It is also possible to generalize GKM theory to actions of arbitrary compact Lie groups [41], as
well as to possibly infinite-dimensional equivariant cell complexes [57]. One can also abstract
from torus actions on manifolds and consider GKM graphs as objects of independent interest (see
e.g. [55]).

12. Algebraic generalizations of equivariant formality

An important property of equivariant formality of a torus action is that the restriction map

(12.1) H∗
T (M) −→ H∗

T (M
T )

is injective. Because the kernel of this map is the torsion submodule by the Borel Localization
Theorem 8.1, this property is in fact equivalent not to the freeness of H∗

T (M) but to its torsion-
freeness. One can therefore ask the question how different equivariantly formal actions are from
actions whose equivariant cohomology is torsion-free.

It was shown in [1] that for smooth actions of at most two-dimensional tori, torsion-freeness
of the equivariant cohomology is equivalent to equivariant formality. The first example of a
non-equivariantly formal torus action whose equivariant cohomology is torsion-free was given in
[33].

Recently, Allday–Franz–Puppe interpolated between torsion-freeness and freeness of the equi-
variant cohomology, by using the notion of syzygies [2]: already Atiyah [5, Lecture 7] and Bredon
[17, Main Lemma] observed that equivariantly formal actions satisfy a stronger property than
the Chang-Skjelbred Lemma, Theorem 11.1, namely the exactness of the so-called Atiyah-Bredon
sequence

0→ H∗
T (M)→ H∗

T (M
T )→ H∗+1

T (M1,M
T )→ · · · → H∗+k

T (Mk,Mk−1)→ 0,

where Mi is the union of the T -orbits of dimension at most i. Here, we use relative equivariant
cohomology in the Borel model (cf. Remark 4.8) to give meaning to the cohomologies occurring in
the sequence. In [34] it was shown that exactness of this sequence is even equivalent to equivariant
formality. More precise information was given in [2], where the authors showed that exactness of
this sequence at the first i positions is equivalent to H∗

T (M) being an ith syzygy. Examples of
torus actions whose equivariant cohomologies vary among all possible syzygy orders are given by
so-called big polygon spaces [32].

A different way in which one can generalize the notion of equivariant formality is that of a
Cohen-Macaulay action, introduced in [44]. The relevance of the Cohen-Macaulay property was
already observed in [5].

Definition 12.1. We say that an action of a compact Lie group G on a compact manifold M is
Cohen-Macaulay if H∗

G(M) is a Cohen-Macaulay module over S(g∗)G.

To motivate this notion, let us restrict to the action of a torus T . (Note as well that the Cohen-
Macaulay property for the action of a compact, connected Lie group G is equivalent to that of
the restriction of the action to a maximal torus, see [43, Proposition 2.9].) It turns out that the
Cohen-Macaulay property is equivalent to the exactness of an Atiyah-Bredon-type sequence

0→ H∗
T (M)→ H∗

T (Mb)→ H∗+1
T (Mb+1,Mb)→ · · · → H∗+k

T (Mk,Mk−1)→ 0,

where b is the lowest occurring orbit dimension, see [44] or [35, Section 5]. In particular, the
equivariant cohomology algebra, for Cohen-Macaulay actions, is computable as for equivariantly
formal actions, by determining the image of the restriction map H∗

T (M) → H∗
T (Mb). Note

however that the natural map H∗
T (M) → H∗(M) is not surjective for Cohen-Macaulay actions,

which is why this notion is less useful for computing the ordinary cohomology of a T -manifold
(however, one may divide both the acting torus and the manifold by a locally freely acting b-
dimensional subtorus to obtain an equivariantly formal action for which the considerations of
Section 11 hold true).
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For torus actions with fixed points, or more generally for G-actions with points with maxi-
mal isotropy rank the notion of being Cohen-Macaulay coincides with equivariant formality [43,
Proposition 2.5].

Many geometrically important classes of actions are Cohen-Macaulay. Besides the already
known classes of equivariantly formal actions, like Hamiltonian actions on symplectic manifolds,
see Example 7.9, they include:

(1) G-actions for which all points have the same isotropy rank [43, Corollary 4.3], in partic-
ular, transitive G-actions.

(2) Actions of cohomogeneity one [40]. One can also determine the multiplicative structure
of the equivariant cohomology of cohomogeneity one manifolds explicitly, see [20]. Note
that cohomogeneity-two actions are not necessarily Cohen-Macaulay; an easy example is
a T 2-action on (S1×S3)#(S2×S2) with exactly 2 fixed point (see [73] and [40, Example
4.3]).

(3) The action of the closure of the Reeb flow of a K-contact manifold [42].
(4) Hyperpolar actions on symmetric spaces [39].

13. Actions on foliated manifolds

The main algebraic ingredient of the construction of the Cartan model is the structure of
a G-differential graded algebra on Ω(M) induced by a G-action on M . That is, the G-action
induces contraction operators iX and Lie derivative operators LX , for every X ∈ g, on Ω(M).
It was Cartan’s original approach to abstract from the concrete geometric setting, and consider
equivariant cohomology of abstract G-differential graded algebras, see [22, Section 4].

In [45] this was applied this to foliated manifolds, using the notion of transverse action from
[4, Section 2]:

Definition 13.1. A transverse action of a finite-dimensional Lie algebra g on a foliated manifold
(M,F) is a Lie algebra homomorphism

g −→ l(M,F).

Here, l(M,F) = L(M,F)/Ξ(F) is the Lie algebra of transverse fields : L(M,F) is the Lie
algebra of foliate fields, i.e., vector fields whose flows send leaves to leaves, which is the same as
the normalizer of the subalgebra of vector fields Ξ(F) tangent to F in the Lie algebra Ξ(M) of
all vector fields on M . For the trivial foliation by points, a transverse action is the same as an
ordinary infinitesimal action on M .

Recall that on a foliated manifold (M,F) the F -basic forms

Ω(M,F) = {ω ∈ Ω(M) | iXω = LXω = 0 for all X ∈ Ξ(F)}

define, in the same way as the G-basic forms introduced in Definition 2.3, a subcomplex of the
de Rham complex of M , thus yielding the F-basic cohomology H∗(M,F). This cohomology was
first considered by Reinhart [74].

A transverse action of a finite-dimensional Lie algebra g on a foliated manifold (M,F) in-
duces the structure of a g-differential graded algebra, thus yielding a notion of equivariant basic
cohomology [45] for transverse actions. Explicitly, one defines on

Ωg(M,F) := (S(g∗)⊗ Ω(M,F))g

an equivariant differential dg in the same way as in Definition 4.2, and obtains H∗
g (M,F) as the

cohomology of this complex.
The main example for which this variant of equivariant cohomology was investigated was the

Molino action of a Killing foliation [70] (see [45, Section 4.1] for a short summary): this is an
action of an abelian Lie algebra a whose orbits are the leaf closures of the foliation. Imitating
classical results on the fixed point sets of torus actions as in Section 9, one can use this theory to
obtain results about the set of closed leaves of a Killing foliation. For example, one obtains the
following generalization of Proposition 9.6 [45]:

Theorem 13.2. For any transversely oriented Killing foliation F on a compact manifold M , the
union C ⊂M of closed leaves of M satisfies

dimH∗(C,F) ≤ dimH∗(M,F),

and equality holds if and only if the Molino action is equivariantly formal.



EQUIVARIANT DE RHAM COHOMOLOGY 29

On the other hand, there are criteria for equivariant formality of the Molino action, similar to
the classical setting. For example we have the following generalization of Example 7.9 [45]:

Theorem 13.3. If F is a transversely oriented Killing foliation on a compact manifold M , and
f : M → R a basic Morse-Bott function whose critical set is the union of closed leaves of F , then
the Molino action is equivariantly formal.

This criterion was applied to concrete geometric situations such as contact [42] or cosymplectic
geometry [10] to count closed Reeb orbits. In contact geometry, the existence of a momentum
map is automatic, and just as in the symplectic setting, a generic component of the momentum
map is a Morse-Bott function. As its critical set is the correct one we can apply Theorem 13.3 to
the foliation given by the Reeb vector field (we need M to be K-contact in order for the foliation
to be Riemannian):

Theorem 13.4. Let M be a compact K-contact manifold, and C ⊂M the union of closed Reeb
orbits. Then

dimH∗(C,F) = dimH∗(M,F).

In particular, if the number of closed Reeb orbits is finite, then it is given by dimH∗(M,F).

On a compact K-contact manifold (M,α) of dimension 2n+ 1, the elements 1, [dα], . . . , [dα]n

are nonzero in H∗(M,F); in this way we obtain an alternative proof of the statement due to
Rukimbira [75, Corollary 1] that the Reeb flow of any compact K-contact manifold has at least
n+ 1 closed Reeb orbits. Moreover, by an easy application of the Gysin sequence, we find:

Theorem 13.5. Let M be a compact K-contact manifold of dimension 2n+ 1 with only finitely
many closed Reeb orbits. Then the number of closed Reeb orbits is n + 1 if and only if M is a
real cohomology sphere,

Similar results can be derived in other geometries where there naturally appears a Riemannian
foliation, such as K-cosymplectic geometry (see [10, Section 8]).

Appendix A. Spectral sequences and the module structure on equivariant

cohomology

We present the basics of the spectral sequence of a filtration and apply them to the Cartan
model of equivariant cohomology. By also paying attention to the multiplicative structure on
spectral sequences, this tool allows us to derive some fundamental properties of the S(g∗)G-
module structure on H∗

G(M): it is finitely generated and its rank agrees with that of the final
page of the spectral sequence associated to a certain filtration. Also, we use spectral sequences
to prove the torus case of Remark 5.5. Finally we give an example where E∞ and H∗

G(M) are
not isomorphic as S(g∗)G-modules, a point which is in several places unclear in the literature.

Before we start, we want to point out that the goal here is not to give a complete introduction
to spectral sequences but rather to provide the reader with all the algebraic background that is
needed for our (and many other topological) applications. In particular, we avoid the finer details
of convergence by restricting to first-quadrant spectral sequences. For an in-depth introduction
we recommend, e.g., Chapter 5 of [81].

A.1. Basic definitions. Let R be a commutative ring. When applying algebraic results to
equivariant cohomology we will always take R = R.

Definition A.1. A (cohomology) spectral sequence is a sequence {(Er, dr)}r≥0 of bigraded R-
modules Er =

⊕

p,q∈Z
Ep,qr with R-linear differentials dp,qr : Ep,qr → Ep+r,q−r+1

r satisfying dr◦dr =

0 and isomorphisms Ep,qr+1
∼= (ker dp,qr )/(im dp−r,q+r−1

r ).

A spectral sequence is often compared to a book, where for turning the rth page Er one takes
cohomology to arrive at the next page Er+1

∼= H∗(Er, dr). The advantage of spectral sequences
is that they can be used to approximate the cohomology of a cochain complex by breaking down
the transition (C∗, d)  H∗(C∗, d) into smaller steps. Let us now make this idea precise by
defining a suitable notion of convergence.

A first-quadrant spectral sequence is a spectral sequence (Er, dr) where Ep,qr = 0 whenever
p < 0 or q < 0. Note that if we fix a bidegree (p, q) and start turning through the pages, the
differentials dp,qr (resp. dp−r,q+r−1

r ) eventually leave (resp. come from outside) the first-quadrant
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and thus are trivial. This implies that Ep,qr
∼= Ep,ql for all l ≥ r. This stable value is denoted

by Ep,q∞ and the the bigraded R-module E∞ is called the final page of the spectral sequence.
If for some r we have di = 0 for i ≥ r, or equivalently Er = E∞, we say that the spectral
sequence collapses at Er. While we will solely be interested in first-quadrant spectral sequences,
the definition of E∞ is not limited to this special case and makes sense whenever the pointwise
limit exists.

Definition A.2. A filtration of a (graded) R-module H is a sequence of (graded) submodules

. . . ⊂ F pH ⊂ F p−1H ⊂ . . .

We say that the spectral sequence (Er , dr) converges to a graded module H∗ if there is a filtration
of H∗ such that in any degree n we have

0 = F sHn ⊂ . . . ⊂ F pHn ⊂ F p−1Hn ⊂ . . . ⊂ F tHn = Hn

for some s, t ∈ Z and Ep,q∞
∼= F pHp+q/F p+1Hp+q.

Note that when working with R-coefficients (or over any field) there is a highly non-canonical
isomorphism of vector spaces Hn =

⊕

p F
pHn/F p+1Hn =

⊕

p+q=nE
p,q
∞ . In particular H∗ ∼= E∞

as graded vector spaces when we consider Ep,q∞ to be of degree p+ q.

A.2. Spectral sequence of a filtration. As hinted at above, the usefulness of spectral se-
quences stems from the fact that they can be used to break the process of taking cohomology
down into several steps. Consider, e.g., the Cartan model CG(M) = (S(g∗) ⊗ Ω(M))G with its
differential dG = 1⊗d+ δ where δ is the component which raises the degree in S(g∗) and d is just
the differential on Ω(M). Algebraically speaking, CG(M) is a huge and complicated object, but
its cohomology under the differential 1⊗ d is much smaller (see Prop. A.8 below). Consequently,
when analysing HG(M), it can be helpful to take cohomology with respect to 1 ⊗ d first, and
then worry about the rest of dG. This process of singling out the 1 ⊗ d component is achieved
via a suitable filtration and the associated spectral sequence.

Definition A.3. A filtration of a cochain complex (C, d) of R-modules is a family

. . . ⊂ F pC ⊂ F p−1C ⊂ . . .

of subcomplexes of C. The filtration is said to be canonically bounded if F 0C = C and Fn+1Cn =
0.

Remark A.4. A filtration of a complex (C, d) induces a filtration F ∗H∗(C, d) of H∗(C, d), where
F pHn(C, d) is the image of the map Hn(F pC, d)→ Hn(C, d).

Theorem A.5. Let (C, d) be a cochain complex and F ∗C a canonically bounded filtration.
Then the construction below gives rise to a first-quadrant spectral sequence (Er, dr) converging to
H∗(C, d). More precisely we have

Ep,q∞
∼= F pHp+q(C, d)/F p+1Hp+q(C, d),

where F pHn(C, d) is defined as above.

In the construction we, for the moment, forget about the cohomological degree and focus purely
on the filtration degree. The second component of the bidegree will be added in the end. We
start by setting

Ep0 = F pC/F p+1C.

This carries a differential induced by d and E0 =
⊕

p E
p
0 is known as the associated graded chain

complex. Its cohomology E1 is a first approximation of the cohomology of (C, d), where cocycles
are represented by elements whose filtration degree increases under the differential. Note that
there is a subquotient of E0 that is a much better approximation of the cohomology, namely
E∞ =

⊕

pE
p
∞ where

Ep∞ =
ker d ∩ F pC + F p+1C

im d ∩ F pC + F p+1C
.

To interpolate between the two we introduce the approximate cycles

Apr = {x ∈ F
pC | dx ∈ F p+rC}
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whose filtration degree increases by r under the differential. Now set

Epr =
Apr + F p+1C

d(Ap−r+1
r−1 ) + F p+1C

∼=
Apr

d
(

Ap−r+1
r−1

)

+Ap+1
r−1

.

The usefulness of these interpolations stems from the fact that Er+1 can be computed from Er:
by definition d induces a map dr : E

p
r → Ep+rr and one can identify Er+1 with H(Er, dr) (see [81,

Theorems 5.4.1] for details).
The bigrading in the spectral sequence arises from additionally considering the grading on C.

We want the latter to correspond to the total degree of the bigrading so we set Ap,qr = Apr ∩C
p+q ,

which naturally induces a bigrading on Er. Explicitly we have

Ep,qr =
Ap,qr

d
(

Ap−r+1,q+r−2
r−1

)

+Ap+1,q−1
r−1

.

Since dr raises the total degree by one and the filtration degree by r, it is of bidegree (r,−r+1).
To construct the isomorphism Ep,q∞

∼= F pHp+q(C, d)/F p+1Hp+q(C, d), note that d vanishes on
Ap,qr for r > q + 1 because the filtration is canonically bounded. Thus Ep,qr is represented by
cocycles from ker(d)∩F pCp+q. The isomorphism is then defined by just mapping those cocycles
onto their image in F pHp+q(C, d)/F p+1Hp+q(C, d). For further details like well-definedness of
the last map we again refer to [81, Theorems 5.4.1 and 5.5.1].

A.3. The spectral sequence of the Cartan model. From now on let G be a compact, con-
nected group acting on a manifold M . Recall from the definitions in Section 4 that the Cartan
model CG(M) ⊂ S(g∗)⊗ Ω∗(M) inherits a bigrading via

(S(g∗)⊗ Ω∗(M))
p,q

= S
p

2 (g∗)⊗ Ωq(M),

whenever p is even and Cp,qG (M) = 0 when p is odd. In particular, S(g∗) is concentrated in even

degrees when considered as the subalgebra C∗,0
G . We also assign a total degree via CnG(M) =

⊕

p+q=n C
p,q
G (M). The Cartan differential is dG = 1⊗ d+ δ with d just the regular differential in

Ω∗(M) and (δω)(X) = −iX(ω(X)). Note that 1⊗d and δ are themselves differentials of bidegree
(0, 1) and (2,−1).

Remark A.6. Doing a suitable degree shift one can achieve that the bidegrees of the differentials
are (0, 1) and (1, 0). With this grading CG(M) becomes a double complex in the classical sense and
the spectral sequence we construct below is (up to degree shifts) the spectral sequence associated
to this double complex (c.f. [54]). As the degree shift will not simplify our presentation of the
material and the original bigrading is more in line with the topological conventions, we decide to
stick to the original one.

In what follows we will write C instead of CG(M). The filtration we consider on C is defined
by

F pC := C≥p,∗ =
⊕

l≥p,q≥0

Cl,q.

It is canonically bounded as

F pCn =

n
⊕

l=p

Cl,n−l.

The differential dG restricts to the F pC, so this is indeed a filtration by subcomplexes and we
have an associated spectral sequence to which we just refer as the spectral sequence of C. Let us
now explicitly compute the first pages.

We have Ep,q0 = F pCp+q/F p+1Cp+q, which is canonically isomorphic to Cp,q via the projection

onto this summand. The differential d0 : E
p,q
0 → Ep,q+1

0 is just the one induced by dG on the
quotient. The composition with the isomorphisms

Cp,q ∼= F pCp+q/F p+1Cp+q
dG−−→ F pCp+q+1/F p+1Cp+q+1 ∼= Cp,q+1

is precisely the its bidegree (0, 1) component 1 ⊗ d. Thus we see that (E0, d0) is isomorphic to
(C, 1 ⊗ d) as a cochain complex.
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Remark A.7. The following observation will become relevant when discussing multiplicative as-
pects in Section A.4. In fact the above isomorphism (C, 1 ⊗ d) ∼= (E0, d0) is one of commutative
differential graded algebras (cdga, see Section A.4) with respect to the product

F pC/F p+1C ⊗ F qC/F q+1C → F p+qC/F p+q+1C

on E0 which is induced by multiplication in C. The cohomology of a cdga is naturally a commuta-
tive graded algebra. Morphisms between cdgas, i.e. multiplicative maps that respect the grading
and commute with the differential, induce multiplicative maps in cohomology. The isomorphism
in the following proposition is of this form and hence respects the algebra structure.

Proposition A.8. If G is a compact, connected Lie group acting on a compact differentiable
manifold, then the E1-term in the spectral sequence associated to the Cartan complex is

E1
∼= S(g∗)G ⊗H∗(M).

Proof. We just need to compute the cohomology of (E0, d0). Consider the inclusion of complexes

(A.1) (C, 1 ⊗ d) = ((S(g∗)⊗ Ω(M))G, 1⊗ d) −→ (S(g∗)⊗ Ω(M), 1⊗ d).

With regards to Remark A.7 note that it is an inclusion of cdgas. We obtain the induced map
on cohomology

i : H∗(C, 1 ⊗ d) −→ S(g∗)⊗H∗(M).

Let us show first that it is injective. Assume that ω ∈ C is such that ω = (1 ⊗ d)(σ) for some
σ ∈ S(g∗) ⊗ Ω(M). As ω is G-invariant and 1 ⊗ d commutes with the diagonal G-action on
S(g∗)⊗ Ω(M), we have (1 ⊗ d)(g∗σ) = ω for all g ∈ G. But then also

(1⊗ d)

(
∫

G

g∗σ dg

)

=

∫

G

(1⊗ d)g∗σ dg =

∫

G

ω dg = ω.

Because
∫

G
g∗σ dg ∈ C, it follows that [ω] = 0 ∈ H∗(C, 1 ⊗ d).

We next claim that the map i takes values in S(g∗)G⊗H∗(M), which means that for every [ω]
on the left hand side, the element i[ω] is G-invariant when considered as a polynomial function
with values in H∗(M). For g ∈ G the diffeomorphism g−1 : M →M is homotopic to the identity,
because G is connected. Then, for any X ∈ g we have [ω(AdgX)] = [(g−1)∗ω(X)] = [ω(X)].

Finally we show that i : H∗(C, 1⊗d)→ S(g∗)G⊗H∗(M) is surjective. For this we precompose
(A.1) with the inclusion

(S(g∗)G ⊗ Ω(M)G, 1⊗ d) −→ (C, 1 ⊗ d).

In cohomology we obtain the composition

S(g∗)G ⊗H∗(Ω(M)G, d) −→ H∗(C, 1 ⊗ d)
i
−→ S(g∗)G ⊗H∗(M)

which, by Theorem 2.2, is an isomorphism. Thus i is surjective. �

Remark A.9. Note that the proof is simpler in case of a torus action: in this case the coadjoint
action on S(t∗) is trivial, so the isomorphism E1 = S(t∗)⊗H∗(M) follows directly from Theorem
2.2.

Corollary A.10. If the cohomology of M is concentrated in even degrees, i.e., Hn(M) = 0
whenever n is odd, then the spectral sequence of the Cartan model degenerates at the E1-term.

Proof. Under the hypothesis we know that Ep,q1 vanishes whenever p or q is odd. Thus d1 vanishes
for degree reasons. The same argument applies to all subsequent pages. �

Remark A.11. The differential dr on Er vanishes whenever r ≥ 1 is odd, because S(g∗)G is
concentrated in even degrees. In particular, the spectral sequence collapses at E1 if and only if
it collapses at E2.

Example A.12. Consider the diagonal action of S1 ⊂ C on the unit sphere S2n+1 ⊂ Cn+1.
The Weyl-invariant polynomials are just R[u], where u is the dual of some generator X of the
Lie algebra of S1. The E1 term of the spectral sequence is isomorphic to R[u] ⊗H∗(S2n+1), so

it consists just of two copies of R[u], embedded as E∗,0
1 and E∗,2n+1

1 . A differential can only be
nonzero if it maps from the (2n + 1)st row to the 0th row. Consequently we have dr = 0 for
1 ≤ r ≤ 2n + 1 and E1

∼= E2n+2. By the same reasoning we have dr = 0 for r ≥ 2n + 3 and
E2n+3 = E∞. All that remains to understand is what the differential d2n+2 does on E2n+2:
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2n+ 1 R 0 R · · ·

...

0 R 0 R · · · R 0 R · · ·

0 1 2 2n+ 2

d2n+2

Often spectral sequence arguments can work entirely without knowing the explicit definition
of the differentials if one adds an extra ingredient. In this case for example, we know by Theorem
5.2 that E∞ is the cohomology of a 2n-dimensional manifold and vanishes in degrees above 2n.
This knowledge implies that no elements of greater (total) degree must survive the transition
from E2n+2 to E2n+3. Consequently d2n+2 : E

p,2n+1
2n+2 → Ep+2n+2,0

2n+2 has to be an isomorphism for
every p ≥ 0. All that remains on the page E2n+3 = E∞ is therefore R[u]/(un+1) in the 0th row.
We have shown that H∗(CPn) ∼= HS1(S2n+1) ∼= R[u]/(un+1) as graded vector spaces. With the
help of the discussion of the R[u]-module and algebra structures from the subsequent sections,
one can deduce that this isomorphism is actually one of R[u]-algebras. However, this is false in
general and only holds because in the example, E∞ is concentrated in a single row, implying
there is only one step in the filtration of HS1(S2n+1).

Finally, let us examine explicitly the generator of E0,2n+1
2n+2

∼= H2n+1(S2n+1). Let ω0 be a
S1-invariant volume form on S2n+1. Other than suggested by the isomorphism, ω0 does not
represent a generator of E0,2n+1

2n+2 because dS1ω0 = uiXω0 has filtration degree 2. So ω0 is not an
element of A0,2n+1

2n+2 . However, we find a form ω1 such that iX(ω0) = dω1 because H
2n(S2n+1) = 0.

Now dG(ω0 + uω1) = u2iXω1 lies in filtration degree 4. Inductively we construct a zigzag ω =
ω0+ · · ·+unωn such that dGω is a multiple of un+1. So ω lies in A0,2n+1

2n+2 and induces an element
of E0,2n+1

2n+2 . Using the fact that the bidegree-(0, 2n+ 1) component of ω, which is precisely ω0,
does not lie in the the projection im d of im dG to the (0, 2n+1) component, we conclude that ω
descends to a generator.

A.4. Multiplicative structure.

Definition A.13. A graded R-algebra is an R-algebra A =
⊕

k∈Z
Ak (where Ak are R-modules)

such that the multiplication map respects the grading, i.e., Ap · Aq ⊂ Ap+q. It is called commu-
tative if xy = (−1)|x||y|yx for homogeneous elements x, y of degrees |x|, |y|. If d : A → A is an
R-linear map which raises the degree by 1 and satisfies d2 = 0 as well as the graded Leibniz rule

d(xy) = dx · y + (−1)|x|x · dy,

we call (A, d) a commutative differential graded algebra (cdga). A filtration F ∗A of A (as a graded
R-module) is called multiplicative if F pA · F lA ⊂ F p+lA.

Remark A.14. The cohomology H∗(A, d) of any cdga (A, d) inherits an algebra structure which
turns it into a commutative graded algebra. If F ∗A is a multiplicative filtration of (A, d) by
subcomplexes, then the induced filtration on H∗(A, d) (see Remark A.4) is multiplicative with
respect to the induced algebra structure. In this case we have well defined product maps

F pHn

F p+1Hn
⊗

F lHm

F l+1Hm
−→

F p+lHn+m

F p+l+1Hn+m
,

where we write Hk for Hk(A, d).

Example A.15. The differential forms (Ω(M), d) and the Cartan model (CG(M), dG) are cdgas
with the total degree which is the sum of both components of the bidegree. The filtration of the
Cartan model as defined in the previous section is a multiplicative filtration.

We have seen that for a suitably filtered complex (C, d) the last page of the associated spectral
sequence carries information on H∗(C, d) and the two are even abstractly isomorphic as vector
spaces if we use field coefficients. It is natural to ask if in case of a cdga (A, d), E∞ carries
information on the algebra structure onH∗(A, d). While we cannot expect to haveE∞

∼= H∗(A, d)
as algebras, the algebra structure does indeed leave its mark on E∞ in the following manner.
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Theorem A.16. Let (A, d) be a cdga with a canonically bounded multiplicative filtration F ∗A.
Then the spectral sequence from Theorem A.5 carries a multiplicative structure, i.e., for any r
there exist multiplication maps µr : E

p,q
r ⊗ E

s,t
r → Ep+s,q+tr with the following properties:

• (Er, dr) is a cdga with respect to the total degree of the bigrading.
• The multiplication µr+1 is induced by µr under the isomorphism Er+1

∼= H(Er , dr).

In particular we get an induced multiplication on E∞. Under the isomorphism

Ep,q∞ = F pHp+q(A, d)/F p+1Hp+q(A, d),

this product coincides with the one described in Remark A.14.

Details of the proof are given e.g. in [67, Section 2.3]. Let us just quickly demystify the
products µr by giving their definition: in the explicit construction of Ep,qr from Section A.2 one
easily checks that multiplication in A restricts to Ap,qr ⊗A

s,t
r → Ap+s,q+tr and that this descends

to quotients inducing the map µr : E
p,q
r ⊗ Es,tr → Ep+s,q+tr from the above theorem. Finally we

want to draw the reader’s attention to Remark A.7, where we argue that

E1
∼= S(g∗)G ⊗H∗(M)

as algebras.

A.5. On the module structure of the equivariant cohomology. One of the interesting
features of equivariant cohomology is that it is not only an algebra over R but over S(g∗)G. As
we have seen, multiplicative structures carry over to the spectral sequence, so we can use the
latter to analyse the S(g∗)G-module structure on H∗

G(M).
As the differential dG of the Cartan model vanishes on S(g∗)G ⊗ 1, we have Sp(g∗)G ⊂ A2p,0

r

for all r. The degreewise projection onto E2p,0
r yields a map

S(g∗)G → Er

whose image is the zeroth row E∗,0
r . On the page E1

∼= S(g∗)G ⊗ H∗(M) (see Prop. A.8) it
is just the inclusion of S(g∗)G ⊗ R. Note that we also obtain an induced map S(g∗)G → E∞.
These maps are easily checked to be morphisms of algebras. Thus, the Er carry the structure of
S(g∗)G-modules.

For degree reasons the differentials dr vanish on E∗,0
r for r ≥ 1 so by the Leibniz rule we have

dr(fx) = fdr(x) for any f ∈ S(g∗)G, x ∈ Er. The module structure on Er+1 is just the one that
H(Er, dr) inherits from the differential graded S(g∗)G-module (Er, dr).

Lemma A.17. Let x1, . . . , xk ∈ E∞ be homogeneous elements (with respect to the bigrading)
that generate E∞ as an S(g∗)G-module. Choose representatives y1, . . . , yk ∈ H∗

G(M) via the
isomorphisms

Ep,q∞
∼= F pHp+q

G (M)/F p+1Hp+q
G (M).

Then the yi generate H
∗
G(M) as an S(g∗)G-module.

Proof. Let c0 ∈ H
l
G(M) be any element. It is contained in some F pH l

G(M), so we may consider
its image c0 ∈ Ep,l−p∞ . We find elements f1, . . . , fk ∈ S(g∗)G such that

c0 =
∑

fixi.

Recall that the multiplication in E∞ respects the bigrading. We may therefore choose the fi in
such a way that they are homogeneous and if xi ∈ Ep−m,l−p∞ , we have |fi| = m (in the grading
inherited from the Cartan model) or fi = 0. This ensures that

∑

i fiyi lies in F pH l
G(M). Now

by the description of the multiplicative structure on E∞ from Theorem A.16 one verifies that
∑

i fiyi projects to c0 in Ep,l−p∞ . In particular

c1 = c0 −
∑

fiyi

projects to 0 and thus lies in F p+1H l
G(M). Now we repeat this process for c1 until eventually

cl−p+1 ∈ F l+1H l
G(M) = 0. We have written c0 as a linear combination of the yi. �

The following proposition applies in particular to compact manifolds. The proof is taken from
[3, Prop. 3.10.1]

Proposition A.18. If dimH∗(M) <∞, then H∗
G(M) is finitely generated as an S(g∗)G-module.
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Proof. By Lemma A.17, it suffices to show that E∞ is finitely generated. We have seen that E1 is
the free module S(g∗)G⊗H∗(M). The cohomologyH∗(M) is finite-dimensional and in particular
E1 is finitely generated as an S(g∗)G-module. The ring S(g∗)G is is a polynomial ring (see
Section 3). In particular it is Noetherian, which implies that submodules and quotients of finitely
generated S(g∗)G-modules are again finitely generated, see [8, Prop. 6.5]. Thus if Er is finitely
generated, the same is true for Er+1 = H(Er, dr): the differential respects the module structure
so the cohomology is a quotient of the submodule ker dr. As the spectral sequence collapses after
a finite number of pages (at most dimM), we conclude that E∞ is finitely generated. �

Note that, since S(g∗)G is concentrated in even degrees, the module structure preserves even
and odd degree elements. With regard to the resulting decomposition we have the following

Corollary A.19. If dimH∗(M) <∞, then the ranks of the S(g∗)G-modules Eeven
∞ (resp. Eodd

∞ )
and Heven

G (M) (resp. Hodd
G (M)) coincide.

Proof. For a finitely generated graded module M over the polynomial ring S(g∗)G, the rank
is encoded in its Hilbert-Poincaré series HM (t) =

∑

i dim(M i) ti: the latter takes the form

f(t)
∏r
i=1(1 − t

ki)−1 for some f ∈ Z[t], where r is the number of variables of S(g∗)G and the ki
are their degrees [8, Thm. 11.1]. The rank is then precisely f(1) (check this for a free module
first and then deduce it for general M via a free resolution). As we have already seen, E∞ and
H∗
G(M) are isomorphic as graded vector spaces, so the claim follows. �

Remark A.20. In the corollary above, it is tempting to argue that a basis of a free submodule in
H∗
G(M) projects down to the basis of a free submodule of E∞. However this is false in general.

A.6. Naturality and the comparison theorem. We briefly discuss maps between spectral
sequences and the important comparison Theorem. The latter enables us to prove Remark 5.5
in case G and H are tori. Also, a construction made in said proof is needed in the next and final
section.

Definition A.21. A morphism of spectral sequences (Er, dr)→ (E′
r, d

′
r) is a family of morphisms

fr : Er → E′
r, defined for large r, that preserve the bigrading, commute with the differentials,

and have the property that fr+1 is the map induced by fr in cohomology.

In particular, if E∞ is defined, we obtain a map f∞ : E∞ → E′
∞. Morphisms of spectral

sequences associated to filtrations arise naturally via filtration-preserving maps: Suppose (C, d)
and (C′, d′) are canonically bounded filtered cochain complexes and f : C → C′ is a filtration-
preserving chain map. Then f maps Ap,qr (see the construction in Section A.2) to A′p,q

r and
induces maps fr : Er → E′

r for r ≥ 0. One checks directly via the definitions that this is a
morphism of spectral sequences. For proofs of this and the theorem below we refer to [81, Thm.
5.5.11].

Theorem A.22 (comparison theorem). If, in the above setting, one of the fr is an isomorphism,
then so are all subsequent fr and f induces an isomorphism in cohomology.

To illustrate the usefulness of the above theorem, we prove Remark 5.5 in the case of tori:

Proposition A.23. Let a torus T = T ′ × T ′′ act on M in such a way that the restricted action
of the T ′′-factor is free. Then there is a map CT ′(M/T ′′) → CT (M) of cdgas inducing an
isomorphism in cohomology.

Proof. It suffices to prove the proposition in case T = T ′×S1. Then the general case T n = T l×T r

follows by induction. Consider now an action of T = T ′×S1 onM with the S1 factor acting freely.
Via the above product decomposition the Lie algebra of T decomposes as t⊕ t1. In Corollary 5.3
it was proved that Ω(M/S1) ∼= Ωbas S1(M) → CS1(M) induces an isomorphism on cohomology.

Note that if we restrict this map to Ω(M/S1)T
′

, it will take values in S(t∗1) ⊗ ΩT (M). We want
to argue that in the diagram

Ω(M/S1)T
′ ψ1

//

ψ2

��

S(t∗1)⊗ Ω(M)T

ψ3

��

Ω(M/S1)
ψ4

// CS1(M)
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the map ψ1 induces an isomorphism in cohomology. By Theorem 2.2 and Corollary 5.3 (applied
to the proved S1 case) we know that ψ2 and ψ4 induce isomorphisms. Consequently, if we show
that ψ3 induces an isomorphism, the same will hold for ψ1.

Filter both complexes, S(t∗1) ⊗ ΩT (M) and CS1(M), by the degree of S(t∗1) as we did for
the construction of the spectral sequence for CS1(M) (see Section A.3). As ψ3 is S(t∗1)-linear it
respects the filtration and induces a morphism of spectral sequences. As argued before, the 0th
pages of the spectral sequences are isomorphic to the respective filtered complexes S(t∗1)⊗ΩT (M)
and CS1(M) and one quickly checks that the map between the 0th pages is just ψ3. On both
0th pages, the differential d0 is 1 ⊗ d, with d the exterior derivative on Ω(M). The inclusion

Ω(M)T → Ω(M) factors through Ω(M)S
1

→ Ω(M) and both induce isomorphisms in cohomology

by Theorem 2.2. Consequently the inclusion i : Ω(M)T → Ω(M)S
1

induces an isomorphism as
well and we deduce that ψ3 = idS(t∗

1
)⊗ i induces an isomorphism on E1 = H(E0, d0). Now by

the Comparison Theorem A.22, ψ3 induces an isomorphism in cohomology.
The final step is to show that the map

ϕ : CT ′(M/S1) = S(t∗)⊗ Ω(M/S1)T
′

−→ S(t∗)⊗
(

S(t∗1)⊗ Ω(M)T
)

= CT (M)

defined as idS(t∗
l
)⊗ψ1 induces an isomorphism in cohomology. To see this one proceeds anal-

ogously to before: Filter both complexes by the degree of S(t∗). Then the 0th pages will be
isomorphic to CT ′(M/S1) and CT (M) (the bigrading on the latter is not the usual one!) and ϕ
induces a morphism of spectral sequences which on E0 is just ϕ itself. The differentials d0 are
1 ⊗ d and 1 ⊗ dS1 . In particular ϕ induces an isomorphism on the cohomology E1 because ψ1

does so on the right tensor factor. Another application of Theorem A.22 yields the result. �

A.7. A counterexample. In [78] it was shown that under certain topological conditions, e.g. for
compact manifolds, the equivariant cohomology of a S1-action and the final page of the spectral
sequence are isomorphic as S(t∗)-modules. For tori of greater dimension this is no longer true. We
construct here a T 2-action on a compact manifold such that the final page of the spectral sequence
associated to the Cartan model is not isomorphic as a graded S(t∗)-module to the equivariant
cohomology.

Consider the standard action of the diagonal maximal torus T 3 of SU(4) by left multiplica-
tion, where we identify (s, t, u) with the diagonal matrix with entries (stu, s, t, u). The maximal
diagonal torus of SU(2) is a circle and together they yield a product action of T 4 = S1 × T 3 on
SU(2)×SU(4). We pull back this action along the homomorphism T 3 → T 4, (s, t, u) 7→ (s, s, t, u).
Now we take the quotient of the first circle factor of T 3 and consider the action of the middle
and right circle factors to obtain an action of T 2 on the space

M := (SU(2)× SU(4))/S1.

This action has the desired properties as we will now show. In what follows the Lie algebra of
the r-torus will be denoted tr.

As it is our goal to show that H∗
T 2(M) and E∞ are not isomorphic let us begin by pointing

out the structural difference in the two modules.

Claim. In E∞ there exists a nontrivial degree 2 element which is torsion with respect to some
linear polynomial in S(t∗2). The same does not hold for H∗

T 2(M).

To analyse H∗
T 2(M) we will use that it is isomorphic to H∗

T 3(N), where N = SU(2) × SU(4)
with the aforementioned T 3-action. The isomorphism is induced by the cdga morphism

ϕ : CT 2(M) = S(t∗2)⊗ Ω(M)T
2

−→ S(t∗2)⊗
(

S(t∗1)⊗ Ω(N)T
3
)

= CT 3(N)

which was constructed in the proof of Proposition A.23, where we decompose t3 as t2⊕t1 in such a
way that t1 corresponds to the subcircle of T 3 such that M = N/S1. In the proof we also argued
that ϕ induces an isomorphism between the E∞-term of the spectral sequence of CT 2 (M) and
the final page E′

∞ of the spectral sequence obtained by filtering CT 3(N) by the degree of S(t∗2).
This allows us to work with the latter spectral sequence when analysing the E∞-term. Note that
under the isomorphisms HT 2(M) ∼= HT 3(N) and E∞

∼= E′
∞, the S(t∗2)-module structure on the

left side corresponds to the pullback of the S(t∗3)-module structure on the right side along the
inclusion S(t∗2)→ S(t∗3).
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Now let X,Y, Z ∈ t∗3 be the dual basis of the standard basis of t3, with X in the t∗1 summand
of the decomposition t∗3 = t∗2 ⊕ t∗1.

Lemma A.24. The map S(t∗3)→ H∗
T 3(N) is injective in degrees up to 3 and its kernel in degree

4 is generated by X2 and X2 +XY + Y 2 + Y Z + Z2 + ZX.

Proof. Let (Er, dr) denote the spectral sequence of CT 3(N). The map Sp(t∗3)→ H2p
T 3(N) factors

as

Sp(t∗3)→ E2p,0
∞
∼= F 2pH2p

T 3(N) ⊂ H2p
T 3(N),

where we have used that F 2p+1H2p
T 3(N) = 0 (see the definition of the isomorphism at the end of

Section A.2). In particular the kernels of S(t∗3)→ E∞ and S(t∗3)→ H∗
T 3(N) coincide.

We have E1 = S(t∗3) ⊗H
∗(SU(2) × SU(4)). By the Künneth formula, H∗(SU(2) × SU(4)) is

trivial in degrees 1 and 2. For degree reasons, no elements in E2,0
1 can be hit by a differential, and

thus they live to infinity. This shows injectivity. Elements in E4,0
1 live to E4,0

3 , where they can

potentially be hit by d3 : E
0,3
3 → E4,0

3
∼= H3(SU(2)×SU(4)). This is the only nonzero differential

entering this position and thus the kernel in degree 4 corresponds to the image of d3 in E4,0
3 . In

particular it is at most 2-dimensional because dimH3(SU(2) × SU(4)) = 2. It remains to show
that the polynomials from the lemma actually lie in the kernel in which case they will span it.

Recall that the T 3-action is defined as a pullback of the product T 4-action on N along a
homomorphism which on Lie algebras is given by i : t3 → t4, (x, y, z) 7→ (x, x, y, z) where we use
the standard bases. We have a commutative diagram

S(t∗4)
//

��

H∗
T 4(N)

��

S(t∗3) // H∗
T 3(N)

induced by the pullback map i∗ : CT 4(N) → CT 3(N). Let W,X, Y, Z denote the dual basis of
the standard basis of t4, where W corresponds to the circle factor acting on SU(2) and X,Y, Z
correspond to the maximal torus of SU(4). Note that N is actually a Lie group and that the
T 4-action is the action of a maximal torus of N . By Remark 10.5, the kernel of S(t∗4)→ H∗

T 4(N)
consists of the Weyl-invariant polynomials which in (cohomological) degree 4 are p1 = W 2 and
p2 = X2 + XY + Y 2 + Y Z + Z2 + ZX . Hence the elements i∗(p1), i

∗(p2) lie in the kernel of
S(t∗3)→ H∗

T 3(N). They are precisely the polynomials from the lemma because i∗ maps W to X
and X,Y, Z to themselves. �

As we see from the spectral sequence of CT 3(N), the elementsX,Y, Z induce a basis ofH2
T 3(N).

No element of the degree-4 part of ker(S(t∗3)→ H∗
T 3(N)) is divisible by a linear polynomial from

S(t∗2). Indeed, for an element of the form aY + bZ to divide a nonzero element of the form
cX2 + d(X2 +X(Y + Z) + Y 2 + Y Z + Z2) it is certainly necessary that c = −d and a = b. But
Y +Z does not divide X(Y +Z)+Y 2+Y Z+Z2. This proves the claim that no nonzero element
of H2

T 2(M) is sent to 0 by multiplication with a linear polynomial from S(t∗2).

On the contrary, consider the element X ∈ E′0,2
∞ induced by X in the spectral sequence

obtained by filtering CT 3(N) by the degree in R[Y, Z] (recall that E′
∞ is isomorphic to the final

page associated to CT 2(M)). By the lemma, X(Y + Z) + Y 2 + Y Z + Z2 is a coboundary. But
this shows that X(Y + Z) is a coboundary up to elements of filtration degree 4 and therefore

becomes trivial in E′2,2
∞ . Thus X(Y + Z) = 0. We have shown that E∞ and H∗

T 2(M) are not
isomorphic as graded modules.
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