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Abstract

We study a combinatorial notion where given a set of lattice points
one takes the set of all sums of subsets of a fixed size, and we ask if the
given set comes from a convex lattice polytope whether the resulting set
also comes from a convex lattice polytope. We obtain a positive result in
dimension 2 and a negative result in higher dimensions. We apply this to
the corner cut polyhedron.

MSC2010: Primary 52B20, 52C05, Secondary 05E18

1 Introduction

Definition 1. Let S be a subset of Z™ and p € 7, we define the p-th distinct
sum set of S as follows:

DpS:={>_ m|T CS, #T =p}.

meT

When p = 0 we define DS as {0} where 0 denotes the origin in Z™. If p < 0
or p > #85 we define DS to be the empty set.

This is nonempty whenever 0 < p < #S5. Neither the terminology ‘distinct
sum set’, nor the notation are standard in this context, but as far as the author
knows this notion doesn’t have standard notation or terminology. I call it ‘dis-
tinct sum set’ because we are adding together p distinct points of S and taking
the set of sums obtained in this way. In [3| [6, 2] the authors are concerned
with the case where S is Z%,, for some n, and they call the convex hull of the
resulting distinct sum set a corner cut polyhedron. In [4] they call the convex
hull of DS the k-set polytope of S and they denote it Py (S). In this article we
are mainly concerned with the case where S is the set of lattice points of some
convex bounded set in R™. We investigate whether the set D,S is also the set
of lattice points of a convex set. It turns out however that there is a simple
counterexample: the set S := {(0,0), (1,0),(0,1), (—=1,—1)}.
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We get
DQS = {(717 71)7 (717 0>a (07 71)7 (L 0)7 (Oa 1)7 (L 1)}7

which is not the set of lattice points of anything convex, as (0, 0) is missing.

But it turns out the counterexamples are very limited. Before we can state
our theorem we give the following definitions.

Definition 2. By a lattice point we mean a point in Fuclidean space with
integer coordinates. A lattice polytope is the convex hull of any nonempty finite
set of lattice points in Fuclidean space. When working in the plane we speak of
a lattice polygon

Definition 3. We call two lattice polytopes P, Q) equivalent if there is an affine
transformation T : R™ — R™ with T(Z"™) = Z™ such that T(P) = Q.

By the notation ‘conv’ we will mean the convex hull of a set of points.

Theorem 4. Let P C IR? be a convex lattice polygon, not equivalent to a polygon
of the form
conv{(—1,-1),(0,1), (a,0)},

with a € Zsg.

exceptions

Then for all 0 < p < N the set D,(P N7Z?) is the set of lattice points of some
convez lattice polytope. Here N = #(P N 72).

Corollary 5. For the corner cut polyhedron P2 := convD4(N") considered in
[3] with n = 2 we have that every lattice point of Py can be written as a sum of
d distinct lattice points in N2.

Of course since R2, is unbounded, and hence not conforming to our defini-
tion of polytope, we cannot apply the theorem directly, but it easily follows as
we will show in section Bl

It turns out that in dimensions higher than two there is little hope of a pos-
itive result. In section M we give a counterexample where P is a multiple of the
standard simplex in 3D and p = 42. This will also give a counterexample for
N? in that not every lattice point in P42 can be written as a sum of 42 distinct
lattice points in N3.

The motivation of this research came from studying graded Betti tables of
toric surfaces, where each entry in the Betti table has a corresponding bidegree



table (see [Il p. 9] and [5l p. 3]), and one can ask questions about the convexity
of the set of nonzero entries in these bidegree tables.

See https://github.com/AlexanderLemmens/DistinctSumSet for an algorithm
that computes the distinct sum set.

In the next section we prove our convexity result for the two-dimensional
case. In section 3 we deal with the corner cut polyhedron with n = 2. In
section 4 we provide a counterexample in 3D.
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2 Proof of the theorem

In this section we prove theorem @l We first prove some lemmas. Henceforth we
will write D, P in stead of Dp(P NZ"). Given a finite set S C Z" we say it is
‘convex’ (with quotation marks) if it is the set of lattice points of some convex
lattice polytope.

Lemma 6. Let P be a convez lattice polytope and N = #(P N7Z?). If D,P is
‘convez’ then Dn_, P is also ‘convex’. Here 0 <p < N.

Proof. Let ug be the sum of all lattice points of P. The result follows from the
equality
Dn_pP =uo — DyP.
O

We will use this lemma to reduce to the case where p < N/2. If v is a vertex
of a polytope P we will denote by P, the convex hull of P N Z™\{v}.

Lemma 7. Let P be a convex lattice polytope and p an integer. If Dp,P, is
‘conver’ for every vertex v of P, and

convD,P = U conv D, P,

v vertex
then D, P is ‘convex’.

Proof. For a set to be ‘convex’ means that every lattice point in its convex hull
is an element of the set. So let m € conv D, P be a lattice point, we prove that
it is in D, P. By the equality m belongs to some conv D, P,. And because D, P,
is ‘convex’ it follows that m € D,P,, and so m € D, P. [l

This will be used to prove the theorem by induction on N, the number of
lattice points.



Lemma 8. Let P be an n-dimensional conver lattice polytope with N lattice
points and let 1 <p < N — 1. Suppose

ﬂ conv D, P, # 0,

v vertex

and suppose that every facet E of P with at least N —p+1 lattice points satisfies

convDe_nypE = U conv De_nypEy,

v vertex

where e = #FE N7Z", then

convD,P = U conv D, P,.

v vertex

This lemma allows us to satisfy the requirement of lemma [7]

Proof. Let u be an element of the set (), |o.tox cONV Dy, P, and let mg € conv D, P
be a point, we have to prove that mg is in some conv D, P,. Of course we can
suppose that mg is not equal to u, because then the conclusion would be obvi-
ous. We claim there exists a facet F' of conv D, P such that mg is in the convex
hull of F U {u}. To see this, project mgy away from u onto the boundary of
conv D, P. Let us call this boundary point m, so mq lies on the line segment
[u,m1]. Then m, belongs to some facet F' of conv D, P, so mg € conv({u}UF).

Let £ : R® — R be any linear map with the property that F' is the set of
points in conv D, P where ¢ attains its maximum. Call this maximum ec.
For any vertex w of F' we know that w can be written as ) _om for some
S C PNZ"™ of size p. (This is because the vertex w is an extremal point of
conv D, P and hence an element of D,P.) Let a be the minimal value that ¢
attains on S, and let b be the number of m € S with ¢(m) = a. Then every
point m’ of P NZ"™ with ¢(m') > a will be in S, otherwise taking some m € S
with ¢(m) = a and summing over the set (S U {m'})\{m} would yield a point
of conv D, P where ¢ achieves a greater value than ¢ = ¢(w). Now we have

S= (SNt *a)U U (PNZ" N e t(i)), and so

i>a+1

p=#S=b+ > #PNL"NL())
i>a+1
Since p does not depend on the choice of w, we conclude that a and b do not
depend on the choice of w either. To see this, take a different vertex w’ of F
that gives values a’, b’ and suppose for instance that a’ < a. Now note that the
equation p = b+ 7.5 #(SNL71(i)) holds. But this sum includes the term
#(SNe=1(a)), which is at least b, and b’ > 0, so this expression must be greater
than the one with a and b instead of a’ and &', which is a contradiction, because
both sums equal p. Now there are two cases.

Case 1: g is not the minimum that ¢ attains on P.
In this case let v be any vertex of P with £(v) < a (for instance one where ¢ at-
tains its minimum on P). Then all vertices w of F' are contained in conv D, P,,




and therefore so is F. (The reason w € conv D, P, is that w is the sum of points
in a set S as above and v ¢ S so S C P,, and so w € D,P,.) Since u is also
in convD,P,, and my € conv({u} U F) we conclude that my € convD,P,, as
desired.

Case 2: g is the minimum that ¢ attains on P.
In this case E := PN{~Y(a) is a face of P. Let e = #E NZ" and let u; be the
sum of all lattice points in P\E (there are N — e such points). Then

F=wu;+convDy._nE.

This follows from our analysis of vertices w of F, and it also follows that p +
e — N > 1. Since F' is n — 1-dimensional, so is F, so E is a facet. This means
we can use the hypothesis of the lemma:

convDe_nypE = U conv De_nypEy.

v vertex

The union is of course over the vertices of E. Recall from the beginning of
the proof that we projected mg to the boundary of conv Dp, yielding a point
m1 € F. Now mj1 —uy is in the left hand side of the above equation, hence it
belongs to some conv D._n1pE,. Therefore we have

my € uy +conv De_nyp B, C conv D,P,.

Since u also belongs to the right hand side of this inclusion, and mg € [m1,u],
we conclude that mg € conv D, P,, finishing the proof. (|

As a corollary we obtain

Lemma 9. If P is a convex lattice polygon with N = #(P N7Z2) > 4 and if
1 <p < N/2 is an integer such that

ﬂ conv D, P, # 0,
v vertex
then
convD,P = U conv D, P,.
v vertex

Proof. Suppose first that P is two-dimensional. Let E be a face of P with
e=#(EN7Z%) >N —p+ 1. If we can prove that

convDe_nyp B = U conv De_nypEy

v vertex

then we can apply lemma [8 and we are done. Let p’ =e— N +p, then 1 < p’ <
e — 2, by the assumptions that p < N/2 and N > 4. This also gives e > 3. Of
course F is just a line segment and it has exactly two vertices namely the end
points. Taking the sum of p’ lattice points of this line segment that aren’t end
points we find an element of [, o tex €OV Dy E,,, which is therefore non-empty.
This actually allows us to apply lemma Bl to E and p’ with n = 1. all we have
to check is that no facet of E has more than e — p’ lattice points. But of course
facets of E consist of just one point so this is fine. This also deals with the case
when P is one-dimensional as we can then apply the same reasoning to P that
we applied to E. [l



Lemma 10. Let P be a convez lattice polytope and 1 < p < N = #(PNZ")
an integer, then for any bigger polytope Q) containing P we have

N DoPoc () DuQu.

v vertex v vertex
So if the left hand side is non-empty, then so is the right hand side.

Proof. Let m € (), vortex PpPo, We prove it is in (), ertex Pp@w- Let w be
a vertex of @, we have to show that m € D,Q,. If w ¢ P then we have
m € D, P, C Dp,P C D,Q,, and we are done, so suppose w € P. Then w is a
vertex of P, so m € D,P,, C D,Q,, and we are done. O

Lemma 11. If P is a convez lattice polygon with N = #(P N7Z?) > 5 then

(| DyP. #0,

v vertex
for all integers 1 <p < N/2.

Proof. Let us call a polygon p-good if (), yertex PpPo # 0. Let us call a polygon
good if it is p-good for all integers 1 < p < N/2, so we have to prove that all
polygons with at least 5 lattice points are good. Note that if one polygon is
p-good, then any polygon containing the given one is also p-good, by lemma [T0l
So if P is a polygon with an odd number of vertices and some P, is good then
P is also good. This means it is enough to prove the lemma for polygons with
five lattice points and polygons with an even number of lattice points (at least
Six).

Note that if a polygon has at least p lattice points that aren’t vertices then
it is p-good, because the sum of p lattice points that aren’t vertices is in the
intersection (), yertex PpPo- S0 if P has at most N/2 vertices then it is good.
We now prove the lemma for polygons with five, six or eight lattice points, by
checking it explicitly for those with more than N/2 vertices. We begin with the
case N =5, at least 3 vertices.

— A © B R

Note that all of these are 1-good, as they all have at least one lattice point that
isn’t a vertex. For the first one (1,0) + (2,0) is in the intersection. For the
second one (1,0)+ (1, 1) is in the intersection. For the third one (1,0)+(1,2) =
(0,1)+(2, 1) is in the intersection, for the fourth one (1,0)+(0,2) = (0,1)+(1,1)
is in the intersection, and for the fifth one (0,1)+ (1,0) = (0,0) + (1, 1) is in the
intersection. In each case we found an element of Dy P which for any vertex v
can always be written as a sum of two distinct lattice points in P\{v}. So they
are all 2-good, and hence good. We now continue with the case N = 6 where
there are at least 4 vertices. The following is a list of all convex lattice polygons
with 6 lattice points and at least 4 vertices, up to unimodular equivalence. We
label the lattice points with letters from the alphabet.




All of these polygons are 1-good and 2-good as removing any vertex yields a
polygon with five vertices and we already checked that they are 1-good and
2-good. We now show they are all 3-good and hence good. On the top row
from left to right we have d+e+ f =d+b+a, e+d+c =b+d+ a,
b+c+e=a+c+ fand a+d+e=0b+c+e. On the bottom row from left to
right we have e +c+d=e+ f+b,a+c+e=b+c+d,a+b+ f=d+b+cand
a+c+d=e+c+b. In each case there is no vertex that appears on both sides
of the equation, so they are all 3-good, and hence good. Finally we move on to
the case N = 8. Here is a comprehensive list of all convex lattice polygons with
8 lattice points and at least 5 vertices, up to unimodular equivalence.

All of these polygons are 1-good, 2-good and 3-good, as removing two vertices
gives a polygon with six vertices, for which we already proved this. We have
to prove that they are 4-good. The polygons on the first two rows all contain
something equivalent to the polygon

aa!

which is 4-good as a+b+e+ f = b+ c+ d+ e, so on the first and the sec-
ond row all polygons are good. On the third row from left to right we have:
a+d+e+g = b+c+d+h, b+e+f+g =a+e+f+hand atct+e+g = c+d+e+f.
On the fourth row we have a+c+e+h=c+d+e+ f,b+e+ f+g=c+d+e+h



anda+c+e+h=b+d+ f+g. So they are all good.

Now we prove that all polygons with more than eight lattice points are good.
We do so by induction. So let P be a polygon with N = #(PNZ2)>9. If N
is odd then we simply remove a vertex and by induction the resulting polygon
is good so P is also good. So suppose N > 10 is even. Again by removing a
vertex and applying the induction hypothesis we conclude that P is p-good for
all 1 < p < N/2 -1, so we only have to prove that P is p-good with p = N/2.
If P has at most N/2 vertices we are done because we can then just take the
sum of p lattice points that aren’t vertices and this will be in (), Lorrex PpPo-
So suppose P has at least N/2 + 1 vertices. Then P must have at least one
edge with only two lattice points. Let E be such an edge. Take a unimodular
transformation so that £ = [(0,0), (1,0)] and P C R x R>¢. Then P contains
some point of the form (¢,1). So t € [a,a + 1] for some integer a. Applying a
transformation of the form (z,y) — (z — ay,y) we get t € [0,1]. Now either P
contains a lattice point of the form (b, ¢) with b < 0, ¢ > 1 or it contains a lattice
point of the form (b, ¢) with b,c¢ > 1. In the first case (0,1) € P, as (0,1) would
be in the convex hull of (0,0), (¢,1) and (b,c). In the second case (1,1) € P as
(1,1) would be in the convex hull of (1,0), (¢,1) and (b,c). So there exists at
least one integer b such that (b,1) € P. Let by be the smallest such integer and
b1 the greatest.

Case 1: bg < by
In this case we set

Q = conv(P N Z*\{(0,0), (1,0), (b, 1), (bo + 1,1)}),

which is a subset of P with NV — 4 lattice points, so by induction it is (N —4)/2-
good. Said differently, it is p — 2-good. Let u € (), oppox Pp—2Qv- We claim
that v/ :=u + (bo + 1,1) € (), vertex PpPo so that P is p-good and hence good.
To prove the claim, let v be any vertex of P. If v = (0,0) or v = (bg + 1,1) we
can write u’ as the sum of (1,0), (bg, 1) and u, which in turn is a sum of p — 2
distinct lattice points of @, so v’ € D,P,. If v = (1,0) or v = (bg,1) then we
can write u’ as the sum of (0,0), (bp + 1,1) and u which in turn is a sum of
p — 2 distinct lattice points of @, so v’ € D,P,. If v is none of the above then v
is in fact a vertex of @ and we can write u’ as the sum of (1,0), (bg,1) and wu,
which in turn is a sum of p — 2 distinct lattice points of @Q,, so v’ € D,P,. We
conclude that v’ € (), Lortex PpPo, 50 P is p-good and hence good.

Case 2: bg = by

In this case P has only one lattice point of the form (b,1) with b an integer.
Using the transformation (z,y) — (z+y— by, y) we can suppose that (1,1) € P.
Since (0,1) and (2, 1) are not in P the point (1,1) can’t possibly be a vertex of
P. Tt also follows that P\[(0,0), (1,0)] is contained in the region of points (, y)
satisfying 0 < z <y + 1, y > 0. Now if (1,2) ¢ P then P\[(0,0),(1,0)] is con-
tained in the region of points (z,y) satisfying x > y/2, and likewise if (2,2) ¢ P
then P is contained in the region of points (z,y) satisfying < y/2 + 1. These
can’t both be the case, because then P would be contained in such a narrow
region that it would have to be a triangle with vertices (0,0), (1,0), (¢, 2¢c — 1),
for some positive integer ¢, but this is excluded as we are assuming P to have



at least N/2 +1 > 6 vertices. So either (1,2) € P or (2,2) € P or both. Using
the transformation (z,y) — (1 +y — z,y) we can assume (1,2) € P.

Suppose (1,2) is not a vertex of P. Then we define the polygon

Q = conv(P N Z*\{(0,0), (1,0), (1,1),(1,2)})

which has N — 4 lattice points. By the induction hypothesis @ is p — 2-good
with p = N/2. Let v € (), vertox Pp—2Qv- We claim that v’ := u + (2,3) €
My vertex PpPo so that P is p-good and hence good. Let v be a vertex of P. By
our assumption and what we have seen before v cannot be (1,1) or (1,2). Now
u’ can be written as the sum of (1,1), (1,2) and w which in turn is a sum of
p — 2 lattice points of @ distinct from v. So v’ € D,P,, so P is p-good
and hence good.

v vertex

So we can assume that (1,2) is a vertex of P. If (2,2) happens to be a point
of P but not a vertex we can apply the same reasoning to conclude that P is
good, so we can also assume that (2,2) is either not in P, or it is a vertex of
P. However both cases will lead to contradiction. In the first case P will be
a quadrangle with vertices (0,0), (0,1), (1,2) and (¢,2c — 1) and in the second
case it will be a pentagon with vertices (0,0), (0,1), (1,2), (2,2) and (¢,2¢—1)
(for some positive integer ¢). Both of these contradict our assumption that P
has at least N/2 + 1 > 6 vertices. O

Proof of theorem [f] We prove this by induction on N, the number lattice points.
Note that the cases p =0 and p = 1 are always trivial, and that we can always
reduce to the case p < N/2 using lemma We begin with the case where
N < 4 but P is not the exception with four lattice points. Then P is either
a single point, a line with two lattice points, a line with three lattice points, a
line with four lattice points, something equivalent to the triangle with vertices
(0,0), (1,0), (0,1), or the triangle with lattice points (1, 1), (0,0), (1,0), (2,0),
or something equivalent to the square [0,1] x [0, 1]. In case P is a line with N
lattice points D, P is a line with (JZ ) lattice points. If P is the square then Dy P
is {(1,0),(0,1),(1,1),(1,2),(2,1)}, which is ‘convex’. If P is the triangle with
four vertices then Dy P is {(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)}. These are all
‘convex’. Everything else reduces to the case p = 1 or p = 0 using lemma
This deals with the case N < 4. We henceforth assume N > 5.

The whole idea of the proof is that given a polygon P with N > 5 and a
positive integer p < N/2 if the theorem is true for all the D, P, then the the-
orem is true for D, P. This is because by lemma [I] the condition of lemma
is satisfied which in turn means the condition of lemma [7 is satisfied. One can
always reduce to the case p < N/2 using lemma Because of this reasoning
we already know by induction that the theorem is true for polygons that don’t
contain any of the exceptional polygons.

We now prove that even for the exceptions D, P will be ‘convex’ if p ¢
{2,N —2} and N > 6. As always we assume p < N/2 and p ¢ {0,1}. Sop > 3.
We prove it by induction starting with the case N = 6,



The only case to look at is p = 3. Taking D5 of this polygon yields the set

which is ‘convex’. Now suppose N is at least seven. It is enough to prove it for
3 < p < N/2. But upon removing any vertex from conv{(—1,—-1), (0,1), (N —
3,0)} we either get something that does not contain any exceptional polygon,
for which we already proved the theorem, or we get the exceptional polygon with
N — 1 lattice points, for which we know that the D, is ‘convex’ by induction.

Now we prove the theorem for the remaining polygons. So N > 5 and P
is not equivalent to one of the exceptions. Again we work with induction and
we assume p < N/2, so that it is enough if D, P, is ‘convex’ for every vertex
v of P. This will be the case by the induction hypothesis, except when P, is
one of the exceptions. Suppose P, is one of the exceptions and assume at first
that N > 7. If P, has at least six lattice points then by the above argument
D, P, is convex if p is not 2 or N — 3. The inequalities p < N/2 and N > 7
ensure that p # N — 3. So if N > 7 the only thing left to check is that Dy P is
‘convex’. So P, = conv{(—1,—1),(0,1), (N —4,0)} and v can only be (—1,0),
(0,—1) or (1,1). Now any lattice point of convDzP belongs to 2P and can
hence be written as a sum of two lattice points of P. The only thing that can
go wrong is if those two lattice points of P are equal. So we have to show that
if m e PN7Z2 and 2m € conv D, P then 2m is the sum of two distinct points in
PN Z2 Because 2m € conv Dy P, m cannot be a vertex of P. Therefore m is
of the form (a,0) with 0 < a < N — 5, and one easily checks that regardless of
which element of {(—1,0), (0,—1),(1,1)} v is equal to, we can always write 2m
as the sum of two distinct elements of P N Z2.

All that remains to be done is to check the theorem when N < 6 in the case
where for some vertex v of P we have that P, is one of the exceptions. Up to
equivalence the following are the only possibilities for P:

The case p = 2 follows by the exact same argument as above. For the first one
this is all we have to check as N =5 and p < N/2. For the other two we also
have to check that D3P is ‘convex’. Calculating this for these two polygons we
get the following two sets,

10



and these are indeed ‘convex’. This concludes the proof. (|

3 The corner cut polyhedron
For d > 0 the 2D corner cut polyhedron is defined as
Pg = conv DgN2.

(By N we mean Z>o.) We will now prove corollary [l which says that every
lattice point of P§ is a sum of d distinct lattice points in IN2.

Proof of corollary[3. Let m be a lattice point in P§. We prove that it is in
DyN2. Let my, ..., mg be elements of DyIN? such that m € conv{my,...,ms}.
Let S be any finite subset of IN? such that each m; is a sum of d distinct
elements of S. Let P be any (bounded) convex lattice polygon contained in
RZ, that contains S. We then have that my,...,my € Dg(P N Z?), and hence
m € convDy(P N Z?). We have to take P so that it isn’t equivalent to any
of the exceptions in theorem Ml For this it is enough if P contains the points
(0,0), (0,1), (1,0) and (1,1). By the theorem we then have m € Dy(P N Z?)
and hence m € DyN2. O

4 A 3D counterexample

It turns out that in three dimensions convexity fails even for
Dy2(Z3 N conv((0,0,0), (0,0,6), (0,6,0),(6,0,0))).

To see this consider the following diagram of the lattice points in

P := conv((0,0,0), (0,0,6), (0,6,0), (6,0,0)) :

e o o o o o o e o o o o o e o o o o e o o o

The first triangle consists of the points with third coordinate equal to zero,
the second triangle consists of the points with third coordinate equal to one,
etcetera. Of the 84 points 40 are blue, 40 are olive green and 4 are red. In fact
the four red points span a plane that separates the blue points from the olive
green points. The four red points have coordinates Py := (5,0,0), P> := (1, 5,0),
Ps:=(2,2,1), Py := (0,1, 3) respectively. One can see that P, + P+ P, = 3P5,
so they indeed span a plane. In fact the simplest counterexample to convexity

11



of the distinct sum set in 2 dimensions also has four lattice points and that
configuration is equivalent to the one of the four red points in this setting.
Therefore the set Da{P1, P2, Ps, P4} is not the set of lattice points of a convex
set. Now the sum of the blue points plus Da{P1, Ps, P5, P4} will span a (2D)
facet of convDys P, and the intersection of this facet with Do P is exactly the
sum of the blue points plus Da{ Py, P2, Ps, Py }. Since Dof{ Py, Py, P53, Py} is not
‘convex’, neither is Dys P. To be specific, the sum of all the blue points plus
2P5 is in convD4o P but not in Dy P, as 2P3; can not be written as the sum
of two distinct red points. Note that when replacing P with N® the same
counterexample still works.

References

[1] Wouter Castryck, Filip Cools, Jeroen Demeyer, Alexander Lemmens, Com-
puting graded Betti tables of toric surfaces, Transactions of the AMS, 372
pp. 6869-6903, 2019

[2] Trene Miiller, Corner cuts and their polytopes, Beitrige zur Algebra und
Geometrie, 44, pp. 323-333 (2003)

[3] Shmuel Onn, Bernd Sturmfels, Cutting corners, Advances in Applied Math-
ematics, 23, pp. 29-48 (1999) Cutting dense point sets in half, Discrete
Computational Geometry, 17 pp. 243-255, (1997)

[4] Ulrich Wagner, On k-sets and applications, PhD thesis (2003)

[56] Alexander Lemmens, On syzygies of Segre embeddings of P1XP1, Commu-
nications in Algebra, 49 pp. 1235-1254, (2021)

[6] Sylvie Corteel, Gagl Rémond, Gilles Schaeffer, Hugh Thomas, The number
of plane corner cuts, Advances in Applied Mathematics, 23, pp. 49-53
(1999)

[7] Eric Babson, Shmuel Onn, Rekha Thomas, The Hilbert Zonotope and a
Polynomial Time Algorithm for Universal Gréobner Bases, Advances in ap-
plied mathematics, 30, pp. 529-544 (2003)

[8] Herbert Edelsbrunner, Pavel Valtr, and Emo Welzl

Alexander Lemmens

COSIC, Kasteelpark Arenberg 10,
B-3001 Heverlee-Leuven,

Belgium

12



	1 Introduction
	2 Proof of the theorem
	3 The corner cut polyhedron
	4 A 3D counterexample

