
ar
X

iv
:1

81
2.

09
53

4v
1 

 [
m

at
h.

R
A

] 
 2

2 
D

ec
 2

01
8

On the clone of aggregation functions on bounded

lattices

Radomı́r Halaš

Palacký University Olomouc, Faculty of Science, Department of Algebra and Geometry,

17. listopadu 12, 771 46 Olomouc, Czech Republic

Jozef Pócs

Palacký University Olomouc, Faculty of Science, Department of Algebra and Geometry,

17. listopadu 12, 771 46 Olomouc, Czech Republic

and

Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia

Abstract

The main aim of this paper is to study aggregation functions on lattices via
clone theory approach. Observing that the aggregation functions on lattices
just correspond to 0, 1-monotone clones, as the main result we show that
for any finite n-element lattice L there is a set of at most 2n + 2 aggrega-
tion functions on L from which the respective clone is generated. Namely,
the set of generating aggregation functions consists only of at most n unary
functions, at most n binary functions, and lattice operations ∧,∨, and all
aggregation functions of L are composed of them by usual term composition.
Moreover, our approach works also for infinite lattices (such as mostly con-
sidered bounded real intervals [a, b]), where in contrast to finite case infinite
suprema and (or, equivalently, a kind of limit process) have to be considered.

Keywords: (monotone) clone, monotone function, aggregation function,
lattice.

Email addresses: radomir.halas@upol.cz (Radomı́r Halaš), pocs@saske.sk (Jozef
Pócs)

Preprint of an article published by Elsevier in the Information Sciences 329, Pages
381-389. It is available online at:
https://www.sciencedirect.com/science/article/pii/S0020025515006933

Preprint submitted to Elsevier December 27, 2018

http://arxiv.org/abs/1812.09534v1


2000 MSC: 06A15

1. Introduction

Aggregation represents a process of merging and combining several (usu-
ally numerical) data in a single output. The mathematical theory of aggrega-
tion is based on the notion of an aggregation function describing the process
of merging.

Perhaps the most natural example of aggregation function is the arith-
metic mean, which has been widely used in physics and all experimental
sciences. In fact, aggregation functions appear in many branches of science
where the fusion of information is requested, but more generally they appear
in a pure mathematics (functional equations, theory of means and averages,
measure and integration theory), in applied mathematics (probability, statis-
tics, decision mathematics), computer and engineering sciences (artificial in-
telligence, operation research, data fusion, automatic reasoning etc.). During
last decades they were successfully applied also in social sciences, economy,
life sciences and other branches of research.

As the process of aggregation should represent in a certain sense the
”synthesis” of input data, consequently the aggregation functions cannot be
arbitrary and have to fulfill some natural minimal conditions. The statement
that the output should be the synthetic value of inputs can be translated into
the condition that the output value should lie in the same interval as the input
ones, and, additionally, the least and the greatest values should be preserved.
The second natural widely accepted condition is nondecreasing monotonicity
of the aggregation function, meaning that the increase of any of the input
values should reflect this increase, or at worst, stay constant.

The theory of aggregation functions is quite well developed in case when
the input (and, consequently, the output) values of these functions lie in a
nonempty real interval I, bounded or not. The formal definition is as follows:
An aggregation function in I

n is a function A : I
n 7→ I that

(i) is nondecreasing (in each variable)

(ii) fulfills the boundary conditions

inf {A(x) : x ∈ I
n} = inf I and sup {A(x) : x ∈ I

n} = sup I. (1)

2



The integer n represents the arity of the aggregation function. For details
one can refer the reader e.g. to the comprehensive monograph [7].

Clearly, bounded real intervals can be viewed as special instances of (lin-
early ordered) lattices. Recall that a lattice is an algebra (L;∨,∧), where L

is a nonempty set with two binary operations ∨ and ∧ representing suprema
and infima. Let us mention that lattice theory is a very well established dis-
cipline of general algebra, there are several monographs on this topic, among
them the most frequently used and quoted are the books by G. Grätzer,
[8, 9].

Modifying the definition (1) of an aggregation function on a bounded real
interval, quite recently and naturally the notion of aggregation function has
been enlarged to bounded lattices. In contrast to real valued functions, not
much is known on aggregation functions on lattices. We can mention e.g.
the paper [13] devoted to a certain classification of aggregation functions on
bounded partially ordered sets and lattices.

One of the central problems connected with aggregation functions is how
can they be constructed. We can mention several construction methods
like transformed aggregation, composed aggregation, weighted aggregation,
forming ordinal sums etc., for details we refer to the monograph [7]. Each
of the above mentioned methods typically relies on a very specific approach
and the methods usually have a quite different issue. For example, there is a
group of methods characterized by the property ”from simple to complex”.
In a classical case, the idea is based on standard arithmetical operations on
the real line and fixed real functions. Another group of aggregation functions
starts from given aggregation functions to construct the new ones.

The focus of our paper is a bit different. We start from a given lattice L

and ask the following question:

(Q) Is there some uniform construction method of aggregation functions on
L (i.e., a method not depending on L) and a certain simple uniform set
of aggregation functions on L (i.e., functions of the same kind whose
number depends only on the cardinality of the lattice L), such that
applying the uniform method to this uniform set we obtain all the
aggregation functions on L?

By our knowledge, this approach to a study of aggregation functions on lat-
tices is new and promising better understanding of their construction meth-
ods. In this paper, by using specific methods of universal algebra, we give

3



a positive answer to the above question. Moreover, our solution is construc-
tive, i.e. given a lattice L, we are able to give a concrete set of generating
aggregation functions on L from which each aggregation function on L can
be obtained by applying an uniform method.

Our approach relies on the observation that from the point of view of
universal algebra, aggregation functions on lattices form a clone (or, equiva-
lently, a composition-closed set of functions containing projections). We show
that for any finite lattice L with n elements this clone is finitely generated,
and, moreover, we present explicitly at most (2n+2)-element generating set
of aggregation functions, consisting of lattice binary operations, at most n

unary operations (certain characteristic functions) and at most n binary ag-
gregation functions (certain 0, 1-testing functions). Our construction shows
that any aggregation function on L arises as the usual term composition of
generating functions. In other words, we show that in fact there is no need
to use several quite different construction methods, but applying an uniform
one, the composed aggregation, we obtain all the aggregation functions. We
also stress the fact that our generating set of aggregations functions is very
simple one, and its cardinality grows only linearly with respect to the car-
dinality of a lattice. Moreover, as our approach does not depend on the
cardinality of L, any aggregation function on a lattice of infinite cardinality
(e.g. such as a bounded real interval [a, b]) can be obtained as (possibly in-
finite) supremum of the generating set (of the same cardinality as a lattice)
of aggregation functions.

2. Algebras, clones and near-unanimity functions

First of all, we recall some necessary concepts from universal algebra,
cf. [3] or [15]. By an algebra we mean a structure (A;F ), where A is a
nonempty set (called the support of the algebra) and F is a (possibly empty)
set of operations on A. If there is no danger of confusion, we usually do not
distinguish between the algebra and its support. To simplify expressions, if
f ∈ F is an n-ary operation and x = (x1, . . . , xn) ∈ An, the evaluation of f
in x will be denoted by f(x).

A nonempty subset B of A is called a subalgebra of (A;F ) whenever B

is closed under all operations of F , i.e. if f ∈ F is an n-ary operation, then
f(x) ∈ B for any x ∈ Bn. Clearly, then the structure (B;F ) is again the
algebra where the operations on B are just those on A but restricted to B.

4



Further, given an algebra (A;F ) and d ∈ N, by the direct d-th power of
(A;F ) we mean an algebra (Ad, F ) with the support being the Cartesian d-th
power of A, and the operations defined component-wise, i.e. for any n-ary
operation symbol f ∈ F and any n×d matrix (aij) of elements of A we have

f((a11, . . . , a1d), . . . , (an1, . . . , and)) = (f(a11, . . . , an1), . . . , f(a1d, . . . , and)).

We say that a k-ary function g on A preserves the subalgebras of the direct

d-th power (Ad, F ) if for any subalgebra B of (Ad, F ), whenever we have a
d × k matrix (bij) of elements of A all the columns of which belong to B,
then so does the d-tuple when applying g to its rows:











b11
b21
...
bd1











,











b12
b22
...
bd2











, . . . ,











b1k
b2k
...
bdk











∈ B =⇒











g(b11, b12, . . . , b1k)
g(b21, b22, . . . , b2k)

...
g(bd1, bd2, . . . , bdk)











∈ B.

The notion of a clone generalizes that of a monoid in a sense that it can
be viewed as a set of selfmaps of a set A that is closed under composition
and containing the identical mapping. For an overview of clone theory we
refer to [4], [10], [12] or [14].

Particularly, a clone on a set A is a set of (finitary) operations on A

which contains all of the projection operations on A and is closed under
the composition, where projections and composition are formally defined as
follows:
Let A be a set and n ∈ N be a positive integer. For any i ≤ n, the i-th n-ary

projection is for all x1, . . . , xn ∈ A defined by

pni (x1, . . . , xn) := xi.

Composition forms from one k-ary operation f : Ak 7→ A and k n-ary opera-
tions g1, . . . , gk : A

n 7→ A, an n-ary operation f(g1, . . . , gk) : A
n 7→ A defined

by

f
(

g1, . . . , gk
)

(x1, . . . , xn) := f
(

g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)
)

, (2)

for all x1, . . . , xn ∈ A. For k = n = 1, composition is a usual product of
selfmaps.

5



Clones as sets of functions can be viewed by another equivalent way,
namely, as the sets of (finitary) relations on A that are preserved by all of
the functions from the clone. More precisely, let ρ ⊆ Ah be an h-ary relation
on A, and f : An 7→ A an n-ary operation on A. We say that f preserves ρ

(or ρ is invariant with respect to f), if for any h × n matrix of elements of
A, if each of the n columns c1, . . . , cn of the matrix belongs to ρ, then the
application of f to the rows r1, . . . , rh of the matrix also belongs to ρ, i.e.
(f(r1), . . . , f(rh)) ∈ ρ, which fact will be denoted by f ⊳ ρ.

Clearly, ⊳ defines a binary relation between the set OA of all (finitary)
functions on A and RA, the set of all (finitary) relations on A. It is well
known that any binary relation induces a Galois connection between the
corresponding sets, i.e., for any set F ⊆ OA of functions on A and R ⊆ RA

a set of relations on A, we consider the sets

InvF := {ρ ∈ RA : f ⊳ ρ for any f ∈ F},

and
PolR := {f ∈ OA : f ⊳ ρ for any ρ ∈ R}.

In other words, the set InvF consists of relations invariant with respect to
all functions f ∈ F , and dually, PolR, called the set of polymorphisms of
R, consists of operations to which are invariant all of the relations of R. To
simplify notation, we shall write Pol ρ instead of Pol{ρ} whenever R = {ρ}
is a singleton. Consequently, combining the maps Inv and Pol, we obtain a
pair of closure operators defined on OA and RA by

F 7→ Pol InvF,

R 7→ Inv PolR.

It is well known and easy to see that the clones (of functions) are just the
closed sets with respect to the closure operator Pol Inv, i.e. C = Pol Inv C, and
thus can be viewed as sets of functions invariant with respect to appropriate
sets of finitary relations. The clone Pol InvF is the least clone containing
the set F of functions, and thus called the clone generated by F . We call
a clone finitely generated if is has a finite generating set of functions. Let
us remark that closed sets with respect to the dual closure operator Inv Pol
are called relational clones, and both the closed sets form (with respect to
set inclusion) dually isomorphic complete lattices. It is known that there are
countably many clones on a two-element set, and their lattice is completely

6



Figure 1: A poset, the monotone clone of which is not finitely generated

understood and described since the work by E. Post [16]. However, there
is a continuum clones on a set with at least of three elements and a full
description of this lattice seems to be hopeless.

Yet another definition of a clone from the point of view of universal al-
gebra: clones on A are just term operations of algebras on A. This easily
follows from the fact that by definition the terms of an algebra contain the
projections and are composed in the same way as functions in clones.

Evidently, the least clone on A (called the trivial clone on A) contains
just all the projections, the greatest one (called the full clone on A) consists
of all the functions on A, i.e. it coincides with OA. Clones which are covered
by the full clone, called maximal clones, are of a particular importance. It
has been proved that for a finite set A, any clone C 6= OA on A is contained
in a maximal one, and by famous Rosenberg classification [17], all maximal
clones on A are of the form Pol ρ for six types of single relations ρ on A.
One of these six types are bounded orders on A, i.e. for any bounded order
relation ≤ on A (i.e. with the least and the greatest element), the clone
Pol ≤ is maximal. These clones are referred to as monotone clones on A.
Clearly, for an n-ary function f on A we have f ∈ Pol ≤ if and only if for
any x,y ∈ An, x ≤ y yields f(x) ≤ f(y).

All the remaining five types of maximal clones are known to be finitely
generated, cf. [14]. For monotone clones, it is not always the case. It was
quite surprising when Tardos in 1986 [19] presented the 8-element partially
ordered set (see Figure 1) the monotone clone of which is not finitely gener-
ated.

On the other hand, clones on a finite set A containing the so-called near-

7



unanimity function are known to be finitely generated. Recall that for n ≥ 3,
an n-ary function f on A is called a near-unanimity function if

f(x, . . . , x, y, x, . . . , x) = x

for any x, y ∈ A, i.e., if any n − 1 of the n inputs coincide, the output of f
takes the same value. For n = 3 we have the identities

f(x, x, y) = f(x, y, x) = f(y, x, x) = x

for any x, y ∈ A, and these functions are called the majority functions on A.
Typically, if (L;∨,∧) is a lattice, then the functions defined by

f(x, y, z) := (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) (3a)

or
g(x, y, z) := (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z) (3b)

are apparently the monotone majority functions on L.
That the clones on finite sets containing a near-unanimity function are

finitely generated can be deduced from the following theorem by Baker and
Pixley, see [1]:

Theorem 2.1. (Baker-Pixley Theorem)
Let C be clone on a finite set A, let f ∈ OA and assume that C contains a

(d + 1)-ary near-unanimity function. Then f ∈ C if and only if f preserves

all subalgebras of the direct d-th power of the algebra (A; C).

Corollary 2.2. Let C be a clone on a finite set A containing a near-unanimity

function. Then C is finitely generated.

Proof. By Baker-Pixley Theorem, a function f ∈ OA belongs to C if and
only if f preserves all subalgebras of the direct d-th power of the algebra
(A; C). Since A is finite, there are only finitely many subalgebras of (Ad; C),
the same holds for non-subalgebras B of (Ad; C). For any such B consider a
function fB ∈ C such that fB does not preserve B. By previous arguments,
such a function must exists.

We show that the collection of all the functions fB together with a near-
unanimity function yields a finite generating set of the clone C. Indeed,
denote by D the clone generated by a near-unanimity function and by the
functions fB. Clearly, we have the inclusion D ⊆ C. We claim that the

8



algebras (Ad; C) and (Ad;D) have exactly the same subalgebras. Obviously,
as D ⊆ C, (Ad; C) has possibly less subalgebras than (Ad;D). But by the
construction of D, for any non-subalgebra B of (Ad; C) there is a function
fB ∈ D such that fB does not preserve B, i.e. B is a non-subalgebra of D as
well.

Finally, as (Ad; C) and (Ad;D) have the the same subalgebras, applying
Baker-Pixley Theorem we obtain the desired equality C = D.

Consequently, for any finite set A, monotone clones of the form C = Pol ≤,
where ≤ is a bounded lattice order on A with 0 and 1 as the least and
the greatest element, are finitely generated. The same concerns the clones
Pol{≤, 0, 1} consisting of all monotone functions of bounded lattice orders ≤
preserving the bounds 0 and 1, i.e. fulfilling the boundary conditions

f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1. (4)

This follows from the fact that the majority lattice functions given by (3a)
or (3b) satisfy the boundary conditions (4).

We will see that these clones correspond just to aggregation functions
on bounded posets, thus we refer to them as aggregation clones on bounded
posets.

It can be seen from Corollary 2.2 that although the aggregation clones on
finite bounded lattices are finitely generated, the proof of this fact does not
give any simple algorithm how to produce their generating sets, as well as it
does not yield to any a priori estimates of arities of generating functions. In
what follows we fill this gap by showing that for an n-element lattice, always
at most 2n+ 2 generating functions are enough with arities bounded by 2.

3. Aggregation functions on lattices

Recall that an agreggation function on [0, 1] is a function A : [0, 1]n →
[0, 1] which is monotone increasing, i.e. A(x) ≤ A(y) whenever x ≤ y,
(i.e., xi ≤ yi for all i ∈ {1, . . . , n}), and A(0, . . . , 0) = 0, A(1, . . . , 1) =
1. Obviously, the framework of aggregation functions can be modified by
considering functions on any closed real interval, and clearly to any partially
ordered structure with bounds (see e.g. [13]):

Definition 3.1. Let (P,≤, 0, 1) be a bounded partially ordered set (poset),
let n ∈ N. A mapping A : P n → P is called an (n-ary) aggregation function

9



(0, 0)

(0, a)

(0, 1)

(a, 0)

(1, 0)

(1, a)(a, 1)

(a, a)

(1, 1)

0

a

1

Figure 2: A binary aggregation function on a three-element chain

on P if it is monotone increasing, i.e. for any x,y ∈ P n:

A(x) ≤ A(y) whenever x ≤ y,

and it satisfies boundary conditions

A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

For a more detailed discussion on aggregation functions on posets or lat-
tices we recommend the paper by Demirci [6]. Special types of aggregation
functions on posets, especially triangular norms or conorms, are studied e.g.
in [5, 11, 18]. It is easy to see that considering P = [0, 1] to be the standard
interval of reals with the usual ordering, we obtain the classical definition
of an aggregation function. A particular example of a binary aggregation
function on a 3-element chain is schematically shown on Figure 2.

From the point of view of clone theory, aggregation functions on bounded
posets are just the members of the corresponding aggregation clone. Already
the fact that they form a clone has many important consequences: for ex-
ample, we obtain ”for free” some of their construction methods known as
composed aggregation (see e.g. the monograph [7]). These are just special
instances of that obtained from a composition of functions in a clone (2).

10



The following illustrative example modifies one of the methods called the
double aggregation:

Example 3.2. Let P be a bounded poset, let A : P 2 7→ P , B : P n 7→ P

and C : Pm 7→ P be aggregation functions on P . Then the function DA;B,C :
P n+m 7→ P defined by

DA;B,C(x1, . . . , xn+m) := A(B(x1, . . . , xn), C(xn+1, . . . , xn+m))

is an (n +m)-ary aggregation function on P .
Indeed, we may consider the functions B and C as (n+m)-ary, B depending
only on the first n variables, C depending on the last m variables. Then
applying (2) for f := A, g1 := B and g2 := C, we obtain just the function
DA;B,C.

In order to generate the aggregation clone CL of a finite lattice L, we use
the following unary and binary functions:

For any a ∈ L we define χa : L → L by

χa(x) =

{

1, if x ≥ a, x 6= 0;

0, otherwise.
(5)

Obviously, χa is an aggregation function for all a ∈ L. Moreover, it
represents a characteristic function of the principal filter F (a) = {x ∈ L :
x ≥ a} generated by a, provided a 6= 0.

Further, for b ∈ L we define a binary function ⊕b : L× L → L by

x⊕b y =











1, if x = 1, y = 1;

0, if x = 0, y = 0;

b, otherwise.

(6)

Let us note that we prefer the infix notation x ⊕b y for this family of
operations, since any of them is associative and commutative, as it can be
easily verified. Also, for any b ∈ L the function ⊕b is monotone and satisfies
the boundary conditions, i.e., it is a binary aggregation function on L. As it
is common for the associative binary operations, for a positive integer n ≥ 2
the symbol

n
⊕

i=1

b xi = x1 ⊕b x2 ⊕b · · · ⊕ xn−1 ⊕b xn

11



will denote the repeated composition (in an arbitrary order) of the operator
⊕b.

Let b ∈ L be an element such that 0 < b < 1. Then
n

⊕

i=1

b xi 6= b iff (x1, . . . , xn) = (0, . . . , 0) or (x1, . . . , xn) = (1, . . . , 1).

For a = (a1, . . . , an) ∈ Ln we denote by Ja = {1 ≤ i ≤ n : ai 6= 0} the set
of non-zero indices of a.

Let n ≥ 2 be an integer and f : Ln → L be an aggregation function. For
any a ∈ Ln with (0, . . . , 0) < a < (1, . . . , 1) (and, consequently, Ja 6= ∅) we
define the function ha : L

n → L by putting

ha(x1, . . . , xn) =
∧

i∈Ja

χai(xi) ∧
n

⊕

i=1

f(a) xi. (7)

The functions ha can be described as follows:

Lemma 3.3. The function ha is an aggregation function being composed of

some aggregation functions defined by (5) and (6), respectively. Moreover,

for all x = (x1, . . . , xn) ∈ Ln,

ha(x) =











1, if x = (1, . . . , 1);

f(a), if x ≥ a, (1, . . . , 1) 6= x 6= (0, . . . , 0);

0, if x � a or x = (0, . . . , 0).

(8)

Proof. Obviously, ha is a composition of some aggregation functions defined
by (5) and (6). This yields that ha(0, . . . , 0) = 0 as well as ha(1, . . . , 1) = 1.

Further, assume that (1, . . . , 1) 6= x ≥ a. Recall that x ≥ a if and
only if xi ≥ ai for all i ∈ Ja. In this case, χai(xi) = 1 for each index
i ∈ Ja 6= ∅, since no ai is equal to zero. Also (1, . . . , 1) 6= x 6= (0, . . . , 0)

implies
n
⊕

i=1
f(a)xi = f(a). Hence we obtain

ha(x) =
∧

i∈Ja

χai(xi) ∧
n

⊕

i=1

f(a) xi = 1 ∧ f(a) = f(a).

If x � a, then xi � ai for some index i ∈ Ja. Consequently χai(xi) = 0,
which yields

ha(x) =
∧

i∈Ja

χai(xi) ∧
n

⊕

i=1

f(a) xi = 0 ∧
n

⊕

i=1

f(a) xi = 0.

12



Denote by Ln
∗ the set of all elements between the bottom and the top

element of Ln, i.e., Ln
∗ = Ln \ {(0, . . . , 0), (1, . . . , 1)}.

Lemma 3.4. Let f : Ln → L be an aggregation function and for all a ∈ Ln
∗ ,

ha be the function defined by (7). Then

f(x) =
∨

a∈Ln
∗

ha(x) (9)

for all x ∈ Ln.

Proof. Let x ∈ Ln be an arbitrary element. By previous lemma, if x =
(0, . . . , 0) or x = (1, . . . , 1), then

∨

a∈Ln
∗

ha(x) gives the corresponding bound-

ary values. Thus we may assume that x ∈ Ln
∗ . Using (8) of Lemma 3.3 we

obtain
∨

a∈Ln
∗

ha(x) =
∨

a∈Ln
∗

a≤x

ha(x) ∨
∨

a∈Ln
∗

a�x

ha(x) =
∨

a∈Ln
∗

a≤x

f(a) ∨
∨

a∈Ln
∗

a�x

0 =
∨

a∈Ln
∗

a≤x

f(a).

Since the function f is monotone and x represents the greatest element of
the set {a ∈ Ln

∗ : a ≤ x}, it follows that f(a) ≤ f(x) for all a ∈ Ln
∗ , a ≤ x.

Hence
∨

a∈Ln
∗

ha(x) =
∨

a∈Ln
∗

a≤x

f(a) = f(x),

which completes the proof.

As a consequence of this lemma we obtain the following main result:

Theorem 3.5. Let L be a finite lattice. Then the aggregation clone CL on

L is generated by the lattice operations ∨, ∧, by functions χa, a ∈ L, defined

by (5) and by functions ⊕b, b ∈ L, defined by (6).

Let us note that the duality principle for lattices allows to describe an-
other generating set of aggregation functions. For an element a ∈ L, define
a function µa : L → L by

µa(x) =

{

0, if x ≤ a, x 6= 1;

1, otherwise.
(10)

13



For a = (a1, . . . , an) ∈ Ln we denote by Ĵa = {1 ≤ i ≤ n : ai 6= 1}.
Similarly, given an integer n ≥ 2 and f : Ln → L an aggregation function,

for any a ∈ Ln
∗ we define the function ga : L

n → L by

ga(x1, . . . , xn) =
∨

i∈Ĵa

µai(xi) ∨
n

⊕

i=1

f(a) xi. (11)

An analogous assertion to Lemma 3.3 holds for the functions ga, a ∈ Ĵa.
In this case

ga(x) =











0, if x = (0, . . . , 0);

f(a), if x ≤ a, (1, . . . , 1) 6= x 6= (0, . . . , 0);

1, if x � a or x = (1, . . . , 1),

(12)

and f can be expressed as

f(x) =
∧

a∈Ln
∗

ga(x) (13)

for all x ∈ Ln. Hence, the aggregation clone CL can be generated by the set
of functions consisting of the lattice operations and by the functions defined
by (10) and (6).

It is worth noticing that the formulae (9) and (13) remain valid also if
L is infinite. In contrast to a finite case, there are infinite suprema in (9),
and infinite infima in (13) respectively, which can be understood as a kind of
limit process. This fact is especially important when considering a classical
case, i.e. L being the unit interval of reals. Obviously, this case deserves
a much deeper study on its own and it will be the objective of the future
research.

We illustrate the proposed method of generating the aggregation clone
on the following example.

Example 3.6. Denote by f the aggregation function depicted in Figure 2.
Recall that f : L2 → L where L is the three-element chain with 0 < a < 1. In
order to generate the function f we have to define the corresponding binary
functions ha for all a ∈ L2

∗. Denoting the variables by x and y, respectively,

14



expression (7) gives the following seven functions:

h(0,a)(x, y) = χa(y) ∧ (x⊕0 y), h(a,0)(x, y) = χa(x) ∧ (x⊕0 y),

h(a,a)(x, y) = (χa(x) ∧ χa(y)) ∧ (x⊕0 y), h(0,1)(x, y) = χ1(y) ∧ (x⊕a y),

h(1,0)(x, y) = χ1(x) ∧ (x⊕a y), h(a,1)(x, y) = (χa(x) ∧ χ1(y)) ∧ (x⊕1 y),

h(1,a)(x, y) = (χ1(x) ∧ χa(y)) ∧ (x⊕1 y).

Consequently, applying Lemma 3.4, we obtain the desired expression of the
function f :

f(x, y) =
(

χa(y) ∧ (x⊕0 y)
)

∨
(

χa(x) ∧ (x⊕0 y)
)

∨
(

χ1(y) ∧ (x⊕a y)
)

∨
(

(χa(x) ∧ χa(y)) ∧ (x⊕0 y)
)

∨
(

χ1(x) ∧ (x⊕a y)
)

∨
(

(χa(x) ∧ χ1(y)) ∧ (x⊕1 y)
)

∨
(

(χ1(x) ∧ χa(y)) ∧ (x⊕1 y)
)

.

In connection with the above described generating sets, one can naturally
ask whether it is possible to generate the aggregation clone without certain
types of binary functions. We show that unary aggregation functions together
with the lattice operations do not generate CL. In particular, this implies that
at least some n-ary function, n ≥ 2, different from the lattice operations,
must be used in order to generate the full clone.

Theorem 3.7. Let L be a lattice with at least three elements. Then the set

consisting of the lattice operations and all unary aggregation functions does

not generate the aggregation clone CL.

Proof. Let L be a lattice with at least three elements. Denote by D the
clone generated by the set of all unary aggregation functions of L, together
with the lattice operations ∨ and ∧. Since D contains the lattice operations,
it follows that the majority functions given by (3a) and (3b) belong to D.
These functions represent 3-ary near-unanimity functions on L, hence by
Baker-Pixley theorem, a function f ∈ OL belongs to D if and only if f

preserves all the subalgebras of the direct square (L2;D).
Consider the subset B = {(1, 0), (0, 0)} of L2. Any unary aggregation

function fulfils the boundary conditions, thus it is easily seen that B is closed
with respect to all unary aggregation functions of L. Evidently, B is closed
with respect to lattice operations ∨ and ∧, hence B is a subalgebra of (L2;D).

Let a ∈ L be an arbitrary element with 0 < a < 1. The function ⊕a

does not preserve B: indeed, we have (1, 0), (0, 0) ∈ B and applying the
function ⊕a we obtain (1 ⊕a 0, 0⊕a 0) = (a, 0) 6∈ B. Consequently, as ⊕a is

15



x

y

z

w

Figure 3: An example of a median graph.

the aggregation function does not preserving all the subalgebras of (L2,D),
it follows that CL 6= D.

In the sequel, we try to present an application of our results in connection
with some kind of optimality functions defined on networks, represented by
median graphs. The most common problems studied in network location
theory are the p-median problems. In this type of problems there are n

customers and the objective is to locate p service facilities to minimize the
sum of n service distances, provided a customer is served only by the closest
facility.

Recall, that a graph H = (V (H), E(H)) is called a median graph, if it
is connected and for every triple of its vertices there is a unique vertex w,
called median, such that w ∈ V (H) lies simultaneously on a shortest path
between any two of them. Given a triple (x, y, z) ∈ V (H)3 of vertices, for
the corresponding unique median vertex w the expression

d(w, x) + d(w, y) + d(w, z),

involving the graph metric d, attains a minimal value. Median graphs arise
naturally in the study of networks, ordered sets and discrete distributive
lattices, with many applications in various fields, e.g., in the network location
theory or in human genetics, where they are used for an analysis of the
mitochondrial DNA. Figure 3 shows an example of a median graph. The
vertex w denotes the median of three vertices x, y and z.

Further, we recall the notion of a retract of a graph. By a retraction ϕ

of a graph G = (V (G), E(G)), we mean a homomorphism of G into itself
with the property ϕ2(u) = ϕ(u) for all vertices u ∈ V (G). The homomorphic

16



(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(1, 0, 1)

(1, 1, 1)

(0, 1, 1)

(1, 1, 0)

Figure 4: The hypercube Q3.

image of G under ϕ is called a retract. Note, that if a vertex v = ϕ(u)
belongs to the retract, then ϕ(v) = ϕ(ϕ(u)) = ϕ(u) = v, i.e., ϕ restricted to
the retract is the identity mapping.

A special class of median graphs represent hypercubes. The hypercube of
dimension r ≥ 1 is a graph, denoted by Qr, isomorphic to that whose vertex
set consists of all 0-1 vectors (v1, v2, . . . , vr), where two vertices are adjacent
if and only if they differ in precisely one coordinate. The hypercube Q3 is
depicted in Figure 4.

It is a well-known fact that median graphs can be characterized as retracts
of hypercubes, cf. [2]. From the definition of a hypercube Qr, it is easily seen
thatQr is isomorphic to the covering graph of a Boolean algebra with r atoms.
This enables to extend the median function from a median graph to a Boolean
algebra. Moreover, ifH is a retract ofQr via a retraction ϕ : Qr → H , (x, y, z)
is a triple of vertices fromH and w is the median in Qr, then w belongs to the
retract H . Indeed, since ϕ is an edge preserving mapping, for any vertices
u, v ∈ Qr it can be easily seen that d(u, v) ≥ d(ϕ(u), ϕ(v)). Hence

d(w, x) + d(w, y) + d(w, z) ≥ d(ϕ(w), ϕ(x)) + d(ϕ(w), ϕ(y)) + d(ϕ(w), ϕ(z))

= d(ϕ(w), x) + d(ϕ(w), y) + d(ϕ(w), z).

Since w is the unique vertex minimizing the distance from the three vertices
x, y, z, it follows that ϕ(w) = w, i.e., w ∈ H as well.

In the hypercube Qr, the median of the vertices x = (x1, . . . , xr), y =

17



(y1, . . . , yr) and z = (z1, . . . , zr) is computed by the “majority” rule

f(x, y, z) = w = (w1, . . . , wr), wi =

[

xi + yi + zi

3

]

,

[·] denoting the ceiling function, i.e., wi = 1 if at least two values from xi, yi
and zi are equal to 1 and wi = 0 otherwise. Considering Qr as a Boolean
algebra with the componentwise order, it is easily seen that f fulfills the
boundary conditions and it is non-decreasing in each coordinate, i.e., it is an
aggregation function.

This aggregation naturally defines a system of binary aggregation func-
tions fv : Q

2
r → Qr, v ∈ Qr, where fv(x, y) = f(v, x, y). Involving a system of

binary functions instead of one ternary can be more convenient in some appli-
cations following certain computational aims. Obviously, using the functions
fv, for v ∈ Qr can be very useful in connection with some decision problems,
e.g., in the so-called multi-facility location problems, where several types of
median functions are widely involved. However, for other purposes the usage
of the other types of aggregation functions can be more appropriate. As-
sume that also some procedures for deciding whether x ∈ Qr is above a given
v ∈ Qr are available. This represents the system of the unary functions χv,
v ∈ Qr.

Considering the functions χv, fv for v ∈ Qr and the lattice operations on
Qr as simple computation models, combining the outputs of these particu-
lar functions as inputs for other such functions, one can obtain a complex
computational model. Naturally, it is important to know which aggregation
functions on Qr can be obtained by such defined complex computational
models. Mathematically, this question is equivalent to the problem of char-
acterizing the clone generated by these functions.

Example 3.8. As an application of Theorem 3.5, we show that the set of
functions G = {χv : v ∈ Qr} ∪ {fv : v ∈ Qr} together with the lattice
operations generates the full aggregation clone on Qr. Obviously, it suffices
to show that each ⊕v, v ∈ Qr belongs to the clone generated by the set
G ∪ {∧,∨}. For this, given v ∈ Qr, consider

g = fv
(

χ0(x ∨ y), χ1(x ∧ y)
)

.

Analyzing all possibilities, one can easily see that g(x, y) = 0 if x = y = 0,
g(x, y) = 1 if x = y = 1 and g(x, y) = v otherwise, i.e., g(x, y) = x⊕v y for
all x, y ∈ Qr.

18



Consequently, the lattice operations, characteristic functions χv and the
functions fv, v ∈ Qr, form a generating basis, i.e. any aggregation function
on Qr can be obtained by (possibly iterated) composition of them.

4. Conclusion

In this paper we have shown that aggregation functions on finite lattices
form a clone of functions which is finitely generated. Moreover, we presented
an explicit description of generating sets of functions. We believe that the
proposed approach will be convenient also for an analysis of special classes
of aggregation functions on lattices or even certain posets.

In the future work we would like to extend this idea to the study of
conjunctive, disjunctive or internal aggregation functions.

Acknowledgments

The second author was supported by the ESF Fund CZ.1.07/2.3.00/30.0041
and by the Slovak VEGA Grant 2/0028/13, the first author by the interna-
tional project Austrian Science Fund (FWF)-Grant Agency of the Czech
Republic (GAČR) number I 1923-N25.

References

[1] Baker K. A., Pixley A. F., Polynomial interpolation and the chinese
remainder theorem for algebraic systems, Math. Zeitschrift 143, pp. 165-
174, 1975.

[2] Bandelt H.-J. Retracts of hypercubes, Journal of Graph Theory 8, pp.
501-510, 1984.

[3] Burris S., Sankappanavar H. P., A Course in Universal Algebra,
Springer-Verlag, 1981.

[4] Csákány B., Minimal clones - a minicourse, Algebra Universalis 54, pp.
73-89, 2005.

[5] De Baets B., Mesiar R., Triangular norms on product lattices, Fuzzy
Sets and Systems 104, pp. 61-76, 1999.

19



[6] Demirci M., Aggregation operators on partially ordered sets and their
categorical foundations, Kybernetika 42, 261-277, 2006.

[7] Grabisch M., Marichal J.-L., Mesiar R., Pap E., Aggregation Functions,
Cambridge University Press, Cambridge, 2009.

[8] Grätzer G., Lattice Theory: Foundation, Birkhäuser, Basel, 2011.

[9] Grätzer G., Wehrung F. (Eds.), Lattice Theory: Special Topics and
Applications, Vol 1, Birkhäuser, Basel, 2014.

[10] Kaarli K., Pixley A. F., Polynomial completeness in algebraic systems,
Chapman & Hall / CRC, Boca Raton, Florida, 2001.

[11] Karacal F., Mesiar R., Uninorms on bounded lattices, Fuzzy Sets and
Systems 261, pp. 33-43, 2015.

[12] Kerkhoff S., Pöschel R., Schneider F.M., A Short Introduction to Clones,
Electronic Notes in Theoretical Computer Science 303, pp. 107120, 2014.

[13] Komorńıková M., Mesiar R., Aggregation functions on bounded partially
ordered sets and their classification, Fuzzy Sets and Systems 175, pp.
48-56, 2011.

[14] Lau D., Function algebras on finite sets, Springer-Verlag, Berlin, 2006.

[15] McKenzie R., McNulty G., Taylor W., Algebras, Lattices and Varieties,
Vol. I, Wadsworth & Brooks/Cole, Monterey, California, 1987.

[16] Post E. L., The Two-Valued Iterative Systems of Mathematical Logic,
Annals of Mathematics Studies, no. 5, Princeton University Press,
Princeton, N. J., 1941.

[17] Rosenberg I. G., Über die funktionale Vollständigkeit in den mehrwer-
tigen Logiken. Struktur der Funktionen von mehreren Veränderlichen
auf endlichen Mengen, Rozpravy Československé Akad. Věd. Řada Mat.
Př́ırod. Věd 80, pp. 3-93, 1970.

[18] Saminger-Platz S., Klement E. P., Mesiar R.,On extensions of triangular
norms on bounded lattices, Indagationes Mathematicae 19(1), pp. 135-
150, 2008.

20



[19] Tardos G., A maximal clone of monotone operations which is not finitely
generated, Order 3, pp. 211-218, 1986.

21


	1 Introduction
	2 Algebras, clones and near-unanimity functions
	3 Aggregation functions on lattices
	4 Conclusion

