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Abstract

We show that given any six numbers r, s, t, u, v, w ∈ (0, 1] satisfying r ≤ s ≤ min(t, u) ≤

max(t, u) ≤ v ≤ w, it is possible to construct a compact subset of [0, 1] with Hausdorff dimension

equal to r, lower modified box dimension equal to s, packing dimension equal to t, lower box

dimension equal to u, upper box dimension equal to v and Assouad dimension equal to w.

Moreover, the set constructed is an r-Hausdorff set and a t-packing set.

1 Introduction

In this paper we consider the relations between six fundamental notions of fractal dimension, and

provide a general construction of a class of compact subsets of [0, 1] in which each of these dimensions

can take any permissible value. The dimensions we consider are: the Hausdorff dimension, denoted

by dimH; the packing dimension, denoted by dimP; the lower and upper box dimensions, denoted

by dimB and dimB, respectively; the lower modified box dimension, denoted by dimMB (we note

that there is also an upper modified box dimension, but this coincides with the packing dimension);

and the Assouad dimension, denoted by dimA. We give the exact definitions in Section 2. For a

bounded subset X of Rd, these dimensions satisfy the following chain of inequalities.

dimH X ≤ dimMBX
≤

≤

dimBX

dimP X

≤

≤
dimBX ≤ dimAX.

There are many examples in the literature of sets in which one or more of the above inequalities

are strict, see, for example, [4], [5], [12], [13], [14], [15], [16]. We particularly draw the reader’s

attention to the result of Spear [15]. In [15], it is shown that for any four numbers s, t, u, v ∈ (0, 1)

with s < min(t, u) ≤ max(t, u) < v it is possible to construct a Cantor set Y with dimH Y = s,
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dimP Y = t, dimBY = u and dimBY = v. In Spear’s construction, countably many disjoint

subintervals of [0, 1] are chosen from left to right, each of which contains a subset Yn, for n ∈ Z
+,

with dimH Yn = s and dimP Yn = t. The countable stability of the Hausdorff and packing dimensions

gives that the union Y = ∪∞

n=0Yn has dimH Y = s and dimP Y = t. However, the lack of countable

stability of the box dimensions allows the Yn sets to be arranged in such a way that the box

dimensions do not coincide with the Hausdorff and packing dimensions.

Our result could, in some ways, be thought of as a generalisation of Spear’s; however, there are

several differences between Spear’s result and ours. Firstly, the set we construct is not necessarily a

Cantor set. Furthermore, in contrast to the result in [15], we also consider the lower modified box

dimension and the Assouad dimension. In addition, we show that the set we construct has positive

and finite Hausdorff and packing measures at its Hausdorff and packing dimensions, respectively.

We now give the statement of our main result.

Theorem 1.1. Let r, s, t, u, v, w ∈ (0, 1] with

r ≤ s
≤

≤

u

t

≤

≤
v ≤ w.

Then there exists a compact set X ⊆ [0, 1] with

dimHX = r,

dimMBX = s,

dimPX = t,

dimBX = u,

dimBX = v,

dimAX = w.

Moreover, X is an r-Hausdorff set and a t-packing set.

Remark 1.1. An analogous result holds in higher dimensions too. This is the content of Theorem

6.1. We detail how the proof of Theorem 1.1 can be modified to give this result in Section 6.1.

Remark 1.2. It is possible to adapt the construction to include the case r = 0; however, in this case

Hr(X) = ∞. Moreover, if t = 0 then Pt(X) = ∞ also.

Remark 1.3. In our construction, the lower dimension (the natural dual to the Assouad dimension)

will always take value zero since the set we construct contains isolated points.

The set X = C ∪D ∪E ∪F that is constructed in the proof of Theorem 1.1 is the union of four

sets, C, D, E and F , which have dimensions as follows.
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C D E F

dimH r 0 0 0

dimMB r 0 0 s

dimP t 0 0 s

dimB r u 0 s

dimB t v 0 s

dimA t v w s

The finite stability of the Hausdorff, lower modified box, packing, upper box and Assouad dimensions

gives that the union of these four sets has the desired dimension. The lower box dimension is not

finitely stable in general, but the sets C, D, E and F are constructed in such a way that the lower

box dimension is stable under their union. The proof that X is an r-Hausdorff set and a t-packing

set follows easily from the Hausdorff and packing measures of C, D, E and F .

The paper is structured as follows. In Section 2 we give the exact definitions of each of the

dimensions we study. Then, in Section 3 we present the construction of several classes of sets, to

which the sets C, D, E and F constructed in the proof of Theorem 1.1 belong, and state their

various dimension and measure properties. The proof of Theorem 1.1 is then presented in Section

4. In Section 5 we give the proofs of the dimension and measure properties of the classes of sets

constructed in Section 3. Finally, in Section 6 we detail some further properties of the set X,

and explain how the proof of Theorem 1.1 can be adapted to give an analogous result in higher

dimensions.

2 Fractal dimensions and measures

In this section we give the definitions of each of the dimensions that we study. While the definitions of

the Hausdorff, packing and box dimensions are well known, we have nonetheless decided to include

them. There are several reasons for this: firstly, several different definitions and notations exist

in the literature, so stating the definitions precisely leaves no ambiguity for the reader; secondly,

the definitions of the Assouad and lower modified box dimensions are perhaps less well known,

and providing the definitions of all of the dimensions we study allows easier comparison of their

properties; finally, the box dimensions provide a motivation for the study of the lower modified box

dimension. We first give the definitions of the Hausdorff and packing dimensions.

2.1 Hausdorff and packing dimensions

The Hausdorff and packing dimensions are two of the most widely used notions of dimension and

are defined in terms of measures: the Hausdorff and packing measures. This measure theoretic

structure yields a number of natural properties one might expect a dimension to satisfy.
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Let X ⊆ R
d. For α ≥ 0 and δ > 0 write

Hα
δ (X) = inf

{

∑

i

(diam(Ei))
α
∣

∣

∣
X ⊆

⋃

i

Ei, diam(Ei) ≤ δ for all i

}

.

The α-dimensional Hausdorff measure of X is defined by

Hα(X) = sup
δ>0

Hα
δ (X).

The Hausdorff dimension of X is then defined by

dimH X = inf{α ≥ 0: Hα(X) = 0} = sup{α ≥ 0: Hα(X) = ∞}.

If α = dimHX, then Hα(X) could be zero, infinity, or positive and finite. A set for which 0 <

Hα(X) < ∞ is called an α-Hausdorff set.

The packing dimension is the natural dual to the Hausdorff dimension. While Hausdorff measure

is defined in terms of coverings of sets less than a given diameter, packing measure considers packings

of disjoint balls. For α ≥ 0 and δ > 0, write

P
α
δ (X) = sup

{

∑

i

(2ri)
α

∣

∣

∣

∣

{B(xi, ri)}i is a family of disjoint closed balls

with xi ∈ X and ri ≤ δ for all i

}

.

The α-dimensional packing premeasure is defined by

P
α
(X) = inf

δ>0
P

α
δ (X).

At this stage we notice a difference to the Hausdorff measure: P
α
(X) is not σ-additive, and therefore

not a measure. The packing measure is constructed from the packing premeasure by Munroe’s

Method I (see [11] for more details). Namely, the α-dimensional packing measure of X is defined

by

Pα(X) = inf

{

∑

i

P
α
(Ei)

∣

∣

∣
X ⊆

⋃

i

Ei

}

.

The packing dimension of X is then defined by

dimPX = inf {α : Pα(X) = 0} = sup {α : Pα(X) = ∞} .

In an analogous manner to the Hausdorff dimension, if α = dimPX then Pα(X) could be zero,

infinity, or positive and finite, and a set for which the latter is true is called an α-packing set.

The reader is referred to Falconer’s textbook [4] for a thorough discussion of the Hausdorff and

packing measures and dimensions.
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2.2 Box dimensions and modified box dimensions

Another two widely used notions of dimension are those of the lower and upper box dimensions.

Contrary to the definitions of the Hausdorff and packing dimensions, they are defined by considering

coverings by sets of equal diameter. For a bounded subset X of Rd, we denote by Nδ(X) the least

number of sets of diameter δ required to cover X. The lower and upper box dimensions of X are

then defined by

dimBX = lim inf
δ→0

logNδ(X)

− log δ
,

dimBX = lim sup
δ→0

logNδ(X)

− log δ
.

Box dimensions are not countably stable in general. In fact, the lower box dimension is not even

finitely stable in general. However, it is possible to obtain countably stable notions of dimension

through a slight modification of their definitions. This gives rise to the modified box dimensions.

The lower and upper modified box dimensions of a subset X of Rd are defined by

dimMBX = inf

{

sup
i

dimBEi

∣

∣

∣
X ⊆

⋃

i

Ei

}

,

dimMBX = inf

{

sup
i

dimBEi

∣

∣

∣
X ⊆

⋃

i

Ei

}

.

It is well known that the upper modified box dimension coincides with the packing dimension (a

proof can be found in [4]).

2.3 Assouad dimension

The final notion of dimension that we study is the Assouad dimension. It was introduced by Assouad

in the 1970s [1] and has received an increasing amount of attention in the literature in recent years,

for example in [5], [6].

The Assouad dimension of a subset X of Rd is defined by

dimA X = inf

{

α : there exist constants c, ρ > 0 such that,

for all 0 < r < R ≤ ρ, we have sup
x∈X

Nr

(

B(x,R) ∩X
)

≤ c

(

R

r

)α
}

;

recall that if A ⊆ R
d then Nr(A) denotes the least number of sets of diameter r required to cover

the set A.

The Assouad dimension is not countably stable in general. In our construction we exploit

this lack of countable stability to control the Assouad and box dimensions independently of the
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Hausdorff, packing and lower modified box dimensions.

3 The construction of the sets C, D, E and F

The set X = C ∪D ∪ E ∪ F that is constructed in the proof of Theorem 1.1 is the union of four

sets, C, D, E and F . In this section we present the constructions of several general classes of sets,

to which the sets C, D, E and F belong, and state their various dimension and measure properties;

this is the contents of Lemmas 3.1-3.5. In Section 4 we apply Lemmas 3.1-3.5 to prove Theorem

1.1, and then in Section 5 we give the proofs of Lemmas 3.1-3.5.

3.1 The set C = C(β, γ,n)

The first of our constructions is a central Cantor set. While the dimension and measure properties

of central Cantor sets are well known (see, for example, [2], [7]), we have decided to include the full

construction and proof since in this particular construction we introduce notation that we regularly

refer back to in the other constructions. Furthermore, we utilise properties of this construction to

simplify later proofs.

Let 0 < β ≤ γ ≤ 1 and let n = (nk)k be a strictly increasing sequence of positive integers. We

construct the set C(β, γ,n) as follows. Let (cn(β, γ,n))n be the sequence defined by

cn(β, γ,n) =







2−1/β if n2k ≤ n < n2k+1 for some k ∈ Z
+

2−1/γ if n2k+1 ≤ n < n2(k+1) for some k ∈ Z
+

. (1)

Now, let Σ2 = {0, 1}, and for each v ∈ Σ2 and n ∈ Z
+ define Sβ,γ,n

n,v : [0, 1] → [0, 1] by

Sβ,γ,n
n,v (x) = cn(β, γ,n)x + v (1− cn(β, γ,n)) . (2)

Next, for each finite binary word w = w1 . . . wn write

Iw(β, γ,n) = Sβ,γ,n
1,w1

. . . Sβ,γ,n
n,wn

([0, 1]) (3)

and for each n ∈ Z
+ write Σn

2 = {w = w1 . . . wn : wi ∈ Σ2}. Let

Cn(β, γ,n) =
⋃

w∈Σn
2

Iw(β, γ,n) (4)

and finally, define

C(β, γ,n) =

∞
⋂

n=0

Cn(β, γ,n). (5)

It is clear that the set C(β, γ,n) is compact. The following lemma states the key dimension and

measure properties of the set C = C(β, γ,n).
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Lemma 3.1. Let 0 < β ≤ γ ≤ 1 and let n = (nk)k be a strictly increasing sequence of positive

integers with nk

nk+1
→ 0 as k → ∞. Then the set C(β, γ,n) constructed in (5) satisfies

dimHC(β, γ,n) = dimMBC(β, γ,n) = dimBC(β, γ,n) = β,

dimPC(β, γ,n) = dimBC(β, γ,n) = dimAC(β, γ,n) = γ,

and

0 < Hβ(C(β, γ,n)) < ∞,

0 < Pγ(C(β, γ,n)) < ∞.

Remark 3.1. If the sequence n = (nk)k does not satisfy nk

nk+1
→ 0, then the set constructed could

have different dimensions. For example, if n = (nk)k is the sequence defined by nk = 2k, then

one can show that the set C(β, γ,n) has dimHC(β, γ,n) = dimMBC(β, γ,n) = dimBC(β, γ,n) =
3 log 2

2 log(1/β)+log(1/γ) and dimP C(β, γ,n) = dimBC(β, γ,n) = dimAC(β, γ,n) = 3 log 2
log(1/β)+2 log(1/γ) .

3.2 The set D = D(β, γ,n,k)

Our next construction could be thought of as a countable analogue of the set C(β, γ,n) constructed

in (5). For each n ∈ Z
+, we construct a set Dn(β, γ,n,k) by taking the union of a subset of the

endpoints of the component intervals of C(β, γ,n), and then take D(β, γ,n,k) to be the union of

all the Dn sets. The points that are included in each Dn(β, γ,n,k) are determined by a sequence

k = (kn)n of positive integers.

Let Σ3 = {0, 1, ∗}. For each n ∈ Z
+, let Sβ,γ,n

n,v be as defined in (2) if v ∈ {0, 1}, and let

Sβ,γ,n
n,∗ : [0, 1] → [0, 1] denote the identity map. For each finite word w = w1 . . . wn with letters in

Σ3, write

Pw(β, γ,n) = Sβ,γ,n
1,w1

. . . Sβ,γ,n
n,wn

({0, 1}). (6)

Next, for each n ∈ Z
+, define

Ωn(k) =

{

w = w1 . . . wn

∣

∣

∣

∣

wi ∈ Σ3 for all 1 ≤ i ≤ n

if wi = 1 and ki < n then wj = ∗ for all j > ki

}

.

Set

Dn(β, γ,n,k) =
⋃

w∈Ωn(k)

Pw(β, γ,n) (7)

and finally, define

D(β, γ,n,k) =

∞
⋃

n=0

Dn(β, γ,n,k). (8)

There are only finitely many points in D(β, γ,n,k) outwith any ball centred at the origin, so it

follows that the set D(β, γ,n,k) is compact.
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Lemma 3.2. Let 0 < β ≤ γ ≤ 1, let n = (nk)k be a strictly increasing sequence of positive integers

with nk

nk+1
→ 0 as k → ∞ and let k = (kn)n be a strictly increasing sequence of positive integers

with n
kn

→ 0 as n → ∞. Then the set D(β, γ,n,k) constructed in (8) satisfies

dimHD(β, γ,n,k) = dimMBD(β, γ,n,k) = dimPD(β, γ,n,k) = 0,

dimBD(β, γ,n,k) = β,

dimBD(β, γ,n,k) = dimA D(β, γ,n,k) = γ.

Remark 3.2. If we removed the dependence on the sequence k = (kn)n and simply took the union

of all the endpoints of intervals in Cn(β, γ,n), then the constructed set would have the same di-

mensions, but would not be compact.

Lemma 3.2 says that the construction of D(β, γ,n,k) can be used to control the lower and upper box

dimensions independently of the countably stable notions of dimension. In our next construction

we show that by changing the sequence k it is possible to construct sets with different dimensions.

3.3 The set E = E(γ, j)

By changing the conditions on the sequence k in D(β, γ,n,k) it is possible to construct a set for

which the Assouad dimension takes value γ, but all other dimensions are zero. Note that if β = γ,

then the set Dn(γ, γ,n,k) does not depend on the sequence n, therefore the set E = E(γ,k) that

we construct does not have a dependence on n. For this reason we can suppress the dependence on

n in the definition below. For each n ∈ Z
+, write

En(γ,k) = Dn(γ, γ,n,k) (9)

and set

E(γ,k) =

∞
⋃

n=0

En(γ,k). (10)

Lemma 3.3. Let 0 < γ ≤ 1 and let j = (jn)n be a nondecreasing sequence of positive integers with

(i) jn
n → 1 as n → ∞,

(ii) jn − n → ∞ as n → ∞.

(For example, j = (jn)n could be the sequence defined by jn =
⌊

n1+ 1
n

⌋

for all n.)

Then the set E(γ, j) defined in (10) satisfies

dimHE(γ, j) = dimMBE(γ, j) = dimP E(γ, j) = dimBE(γ, j) = dimBE(γ, j) = 0,

dimAE(γ, j) = γ.
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3.4 The set F = F (γ, a,b)

Finally, we present the construction of the set from which we control the lower modified box di-

mension. One could think of this as a modification of a construction of Tricot [16]. In Tricot’s

construction a subset of real numbers is constructed with Hausdorff dimension equal to zero and

lower modified box dimension equal to one. We adapt this construction so that the lower modified

box dimension takes the value γ.

We define an enumeration of closed intervals {Vw(γ,a,b)}w∈Σ∗

2
indexed by finite binary words,

which depend on two sequences a = (ak)k and b = (bk)k. We give the exact definitions later, but

one should note that Vε(γ,a,b) = [0, 1], any interval Vw1...wn(γ,a,b) is contained in Vw1...wm(γ,a,b)

for all m ≤ n, and any two intervals indexed by words of the same length intersect on at most one

point. For each n, let

Fn(γ,a,b) =
⋃

w∈Σn
2

Vw(γ,a,b) (11)

and finally, define

F (γ,a,b) =

∞
⋂

n=0

Fn(γ,a,b). (12)

We now turn towards the exact definitions of the component intervals Vw(γ,a,b). We require

a = (ak)k and b = (bk)k to be strictly increasing sequences of positive integers that satisfy the

following conditions.

(i) a0 = b0 = 1,

(ii) aj − ai ≤ bj − bi for all i, j ∈ Z
+ with i ≤ j,

(iii) ak
bk

→ 0 as k → ∞,

(iv) bk
ak+1

→ 0 as k → ∞.

(For example, a = (ak)k and b = (bk)k could be the sequences defined by ak = 2k
2
and bk =

(k + 1) 2k
2
for all k.)

Observe that we can define a bijection f : Σ∗

2 → Z
+ by

f(ε) = 1

f(w) = 2−n +

n
∑

i=1

wi 2
n−i for w = w1 . . . wn,

where Σ∗

2 denotes the set of all finite binary words. Hence, for each w ∈ Σ∗

2 there is a unique

positive integer k such that f−1(k) = w. We are now in a position to give the exact definition of

{Vw(γ,a,b)}w.

Let Vǫ(γ,a,b) = [0, 1] and α(γ) = 21/γ . For each w = w1 . . . wn (n ≥ 1) we define Vw(γ,a,b)

inductively as follows. If there is an m < n such that n = af−1(w1...wm) then Vw(γ,a,b) has length

9



(α(γ))
−b

f−1(w1...wm) . Otherwise Vw(γ,a,b) has length equal to (α(γ))−1 times the length of its

parent interval, Vw1...wn−1(γ,a,b). In both cases, the intervals are positioned to the extreme left (if

wn = 0) or extreme right (if wn = 1) of their parent interval.

Since every point in F (γ,a,b) is the intersection of a sequence of nested closed intervals, it

follows that F (γ,a,b) is compact.

Lemma 3.4. Let 0 < γ ≤ 1, and let a = (ak)k and b = (bk)k be strictly increasing sequences of

positive integers satisfying conditions (i)-(iv). Then the set F (γ,a,b) constructed in (12) satisfies

dimH F (γ,a,b) = 0,

dimMBF (γ,a,b) = dimP F (γ,a,b) = dimBF (γ,a,b) = dimBF (γ,a,b) = dimA F (γ,a,b) = γ.

3.5 On the lower box dimension of C ∪D ∪ E ∪ F

Our next result states that the lower box dimension of the union C ∪ D ∪ E ∪ F is equal to the

maximum of the lower box dimensions of the sets C, D, E and F .

Lemma 3.5. Let r, s, t, u, v, w ∈ [0, 1] be as in the statement of Theorem 1.1, n = (nk)k as in the

statement of Lemma 3.1, k = (kn)n as in the statement of Lemma 3.2, j = (jn)n as in the statement

of Lemma 3.3 and a = (ak)k and b = (bk)k as in the statement of Lemma 3.4. Let C = C(r, t,n),

D = D(u, v,n,k), E = E(w, j) and F = F (s,a,b), as defined in (5), (8), (10) and (12), and set

X = C ∪D ∪E ∪ F . Then dimBX = u.

We are now in a position to give the proof of Theorem 1.1. This is the content of the next

section. We return to the proofs of Lemmas 3.1-3.5 in Section 5.

4 Proof of Theorem 1.1

In this section we give the proof of our main theorem.

Proof of Theorem 1.1. Let r, s, t, u, v, w ∈ [0, 1] be as in the statement of Theorem 1.1, n = (nk)k

as in the statement of Lemma 3.1, k = (kn)n as in the statement of Lemma 3.2, j = (jn)n as in

the statement of Lemma 3.3 and a = (ak)k and b = (bk)k as in the statement of Lemma 3.4. Let

C = C(r, t,n), D = D(u, v,n,k), E = E(w, j) and F = F (s,a,b), as defined in (5), (8), (10) and

(12), and set X = C ∪D ∪ E ∪ F . It follows by Lemmas 3.1, 3.2, 3.3, and 3.4 that the dimensions

of C, D, E and F are as follows.
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C D E F

dimH r 0 0 0

dimMB r 0 0 s

dimP t 0 0 s

dimB r u 0 s

dimB t v 0 s

dimA t v w s

The finite stability of the Hausdorff, lower modified box, packing, upper box and Assouad dimensions

gives dimH X = r, dimMBX = s, dimPX = t, dimBX = v and dimAX = w, and it follows by

Lemma 3.5 that dimBX = u.

It remains to show 0 < Hr(X) ≤ Pt(X) < ∞. Lemma 3.1 gives that 0 < Hr(C) < ∞ and

0 < Pt(C) < ∞, so since C ⊆ X, it follows that Hr(X) > 0 and Pt(X) > 0 also. On the other

hand, since dimHD = dimPD = 0 and dimH E = dimP E = 0 we have Hr(D) = Pt(D) = 0 and

Hr(E) = Pt(E) = 0. In addition, since dimH F = 0 we have Hr(F ) = 0, so Hr(X) = Hr(C) < ∞.

Finally, observe that if m = (mk)k is any strictly increasing sequence of positive integers with
mk

mk+1
→ 0 as k → ∞, then F ⊆ C(s, s,m), and so Pt(F ) ≤ Pt(C(s, s,m)) ≤ Ps(C(s, s,m)) < ∞

by Lemma 3.1. Hence Pt(X) ≤ Pt(C)+Pt(F ) < ∞. This completes the proof of Theorem 1.1.

5 Proofs of Lemmas 3.1-3.5

We now give the proofs of Lemmas 3.1-3.5.

5.1 Proof of Lemma 3.1

Let 0 < β ≤ γ ≤ 1, and let n = (nk)k be as in the statement of Lemma 3.1. To ease notation, we

write cn = cn(β, γ,n), Iw = Iw(β, γ,n), Cn = Cn(β, γ,n) and C = C(β, γ,n) throughout.

Claim 1. dimBC ≤ β.

Proof of Claim 1. Observe that one interval of diameter δk =
∏n2k+1

i=n2k
ci = 2−(n2k+1−n2k)/β will

cover any component interval of Cn2k+1
. Hence Nδk(C) ≤ 2n2k+1 , so

logNδk(C)

− log δk
≤

β n2k+1 log 2

(n2k+1 − n2k) log 2
→ β;

therefore dimBC ≤ β.

Claim 2. dimA C ≤ γ.

Proof of Claim 2. Let x ∈ C and 0 < r ≤ R < 1
2 . Furthermore, let m(R) and n(r) be the

unique integers such that ln(r) ≤ r < ln(r)−1 and 1
2 lm(R)+1 ≤ R < 1

2 lm(R), where ln =
∏n

i=1 ci. Then

B(x,R) will intersect at most two intervals of Cm(R). Each contains precisely 2n(r)−m(R) intervals

11



of Cn(r), so 2n(r)−m(R)+1 intervals of diameter r will cover B(x,R) ∩ C; hence

Nr(B(x,R) ∩ C) ≤ 2n(r)−m(R)+1 = 8
(

2−(n(r)−1)/γ
)

−γ (

2−(m(R)+1)/γ
)γ

≤ 8

(

R

r

)γ

,

so we conclude that dimAC ≤ γ.

Claim 3. 0 < Hβ(C) < ∞ and 0 < Pγ(C) < ∞.

Proof of Claim 3. Define a mass distribution on C as follows. For each n ∈ Z
+ and w ∈ Σn,

let λw denote the Lebesgue measure restricted to the interval Iw, normalised such that λw(Iw) = 1.

Next, define the probability measure µn by µn = 1
2n

∑

w∈Σn λw. Then there exists a probability

measure µ such that µn converges weakly to µ.

For each x ∈ C, there is a decreasing sequence of intervals
(

Iw1...wn

)

n
such that x = ∩nIw1...wn .

By definition, each such interval carries mass 2−n and has length ln =
∏n

i=1 ci. Let r > 0, and n(r)

be the integer such that ln(r) ≤ r < ln(r)−1. Then the ball with centre at x and radius r can intersect

at most three component intervals of Cn(r)−1, so µ(B(x, r)) ≤ 3 · 2−n(r)+1. Since ci ≥ 2−1/β for all

i ∈ Z
+, we have

µ(B(x, r))

rβ
≤

3 · 2−n(r)+1

(ln(r))β
≤

3 · 2−n(r)+1

(2−n(r)/β)β
= 6

so it follows by the Mass Distribution Principle that Hβ(C) ≥ 1
6 .

On the other hand, if rk = ln2k+1
then B(x, rk) will cover the interval of Cn2k+1

that includes x,

so µ(B(x, rk)) ≥ 2−n2k+1 . Since nk

nk+1
→ 0 as k → ∞ we have ln2k+1

≈ 2−n2k+1/β for all sufficiently

large k, so
µ(B(x, rk))

r β
k

≥
2−n2k+1

(ln2k+1
)β

≈
2−n2k+1

(2−n2k+1/β)β
= 1

for large enough k. Hence we conclude by the Mass Distribution Principle that Hβ(C) ≤ 2β ≤ 2.

One can show that 0 < Pγ(C) < ∞ by similar arguments.

Proof of Lemma 3.1. It follows immediately from Claim 3 that dimHC = β and dimPC = γ.

Combining this with Claim 1 gives that dimH C = dimMBC = dimBC = β, and combining with

Claim 2 gives that dimHC = dimBC = dimAC = γ. This completes the proof of Lemma 3.1.

5.2 Proof of Lemma 3.2

Let 0 < β ≤ γ ≤ 1, and let n = (nk)k and k = (kn)n be as in the statement of Lemma 3.2. To ease

notation we write cn = cn(β, γ,n), Dn = Dn(β, γ,n,k) and D = D(β, γ,n,k) throughout.

Claim 1. dimBD ≤ β and dimA D ≤ γ.

Proof of Claim 1. We have that Dn ⊆ Cm(β, γ,n) for all m ≥ n, therefore D ⊆ C(β, γ,n) and

the result follows by monotonicity and Lemma 3.1.

Claim 2. dimBD ≥ β.

Proof of Claim 2. Let 0 < δ < 1 and k(δ) be the integer such that lk(δ)+1 ≤ δ < lk(δ), where

12



lk =
∏k

i=1 ci. Furthermore, let n(δ) be the largest integer such that kn(δ) < k(δ). Any interval of

diameter δ can intersect at most one point in Dk(δ), and there are at least 2k(δ)−n(δ) points in Dk(δ),

so Nδ(D) ≥ 2k(δ)−n(δ). Since ci ≤ 21/β for all i ∈ Z
+, it follows that

logNδ(D)

− log δ
≥

β (k(δ) − n(δ))

k(δ) + 1
≥

β k(δ)

k(δ) + 1
−

n(δ)

kn(δ)
→ β

since n(δ)
kn(δ)

→ 0 as δ → 0. Therefore dimBD ≥ β.

Claim 3. dimBD ≥ γ.

Proof of Claim 3. If, for each k ∈ Z
+, δk = ln2k−1 and m(k) is the largest integer such that

km(k) ≤ n2k, then any interval of diameter δk can intersect at most one point in Dn2k
. There are at

least 2n2k−m(k) such points, so Nδk(D) ≥ 2n2k−m(k) and it follows that

logNδk(D)

− log δk
≥

n2k −m(k)

(n2k − n2k−1)/γ + n2k−1/β
≥

n2k

n2k/γ + n2k−1/β
−

m(k)

km(k)
→ γ

since
n2k−1

n2k
→ 0 and m(k)

km(k)
→ 0. Hence dimBD ≥ γ.

Proof of Lemma 3.2. Combining Claims 1, 2 and 3 completes the proof of Lemma 3.2.

5.3 Proof of Lemma 3.3

Let 0 < γ ≤ 1, and let j = (jn)n be as in the statement of Lemma 3.3. To ease notation we write

cn = cn(β, γ,n), En = En(γ, j) and E = E(γ, j) throughout.

Claim 1. dimBE = 0.

Proof of Claim 1. Let 0 < δ < 1 and n(δ) be the integer such that ln(δ) ≤ δ < ln(δ)−1,

where ln =
∏n

i=1 ci. Since ∪∞

i=jn(δ)
Ei ⊆ [0, ln(δ)], one interval of diameter δ will cover ∪∞

i=jn(δ)
Ei.

For each nonnegative integer m, ∪
jm+1

i=jm
Ei contains 2jm−m points, so an additional

∑n(δ)−1
i=1 2ji−i ≤

(n(δ) − 1) 2jn(δ)−n(δ) intervals of diameter δ will cover the remaining points in E. Thus Nδ(E) ≤

n(δ) 2jn(δ)−n(δ) and it follows that

logNδ(E)

− log δ
≤

log n(δ)

n(δ) − 1
+

jn(δ) − n(δ)

n(δ)− 1
→ 0

since
jn(δ)

n(δ)−1 → 1. Hence dimBE = 0.

Claim 2. dimA E = γ.

Proof of Claim 2. For any sequence m = (mk)k with mk

mk+1
→ 0 as k → ∞ we have E ⊆

C(γ, γ,m), so it follows by monotonicity and Lemma 3.1 that dimA E ≤ γ. It remains to show the

reverse inequality. To this end, let A > 0 and 0 < α < γ. For each n ∈ Z
+, B(0, ln) will contain

Ejn . There are 2
jn−n points in Ejn , and any interval of length ljn can intersect at most two of them,
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so

Nljn

(

B(0, ln) ∩ E
)

≥ 2jn−n−1 =
1

2

(

ln
ljn

)γ

=
1

2

(

ln
ljn

)γ−α (

ln
ljn

)α

.

Since jn − n → ∞ as n → ∞, it follows that ln
ljn

→ ∞ also. Thus there is an N such that
(

ln
ljn

)γ−α
> 2A for all n ≥ N . Hence we conclude that dimAE ≥ γ.

Proof of Lemma 3.3. Combining Claim 1 and Claim 2 completes the proof of Lemma 3.3.

5.4 Proof of Lemma 3.4

Let 0 < γ ≤ 1, and let a = (ak)k and b = (bk)k be as in the statement of Lemma 3.4. To ease

notation, we write Vw = Vw(γ,a,b), α = α(γ), Fk = Fk(γ,a,b) and F = F (γ,a,b) throughout. In

addition, we denote by p(k) the integer such that if f(w1 . . . wn) = k then f(w1 . . . wn−1) = p(k)

(i.e. if k is the integer that indexes a given interval, then p(k) is the integer that indexes its parent

interval).

Claim 1. dimA F ≤ γ.

Proof of Claim 1. Observe that for any sequence m = (mk)k with mk

mk+1
→ 0 as k → ∞, each

component interval Vw is included in the interval Iw(γ, γ,m) defined in (3), so Fn ⊆ Cn(γ, γ,m) for

all n. Therefore F ⊆ C(γ, γ,m), so it follows by monotonicity and Lemma 3.1 that dimA F ≤ γ.

Claim 2. dimBF ≥ γ.

Proof of Claim 2. For each k ∈ Z
+, define

Ik =
{

Vw : Vw is a component interval of Fak−1 and Vw ⊆ Vf−1(k)

}

. (13)

Let W ∈ Ik. Then W ⊆ Vf−1(k), so W ⊆ Vf−1(p(k)). Hence the interval of Fap(k) that contains W

has length αbp(k) , and it follows that W has length α−lk , where lk = ak − 1− ap(k) + bp(k).

Observe that
lk−1

bp(k)
=

ak
bp(k)

−
1

bp(k)
−

ap(k)

bp(k)
+ 1 → ∞, (14)

since the first term tends to infinity and the second and third terms tend to zero. Thus there is an

integer K such that bp(k) < lk−1 for all k ≥ K.

Let 0 < δ < α−lK and let l(δ) be the unique integer such that α−l(δ)−1 ≤ δ < α−l(δ). Further-

more, let k(δ) be the unique integer such that lk(δ)−1 < l(δ) ≤ lk(δ). Now, let V be a component in-

terval of Fap(k(δ)) that is included in Vf−1(k). Then V has diameter α−b(p(k(δ)), and since k(δ) > K we

have bp(k(δ)) < l(δ) ≤ lk(δ). Thus V contains 2l(δ)−bp(k(δ)) component intervals of Fap(k(δ))+l(δ)−bp(k(δ)) ,

each of which has length α−l(δ) and contains points in F . Any interval of diameter δ can intersect

at most two such intervals, so Nδ(F ) ≥ 2l(δ)−bp(k(δ))−1 and it follows that

logNδ(F )

− log δ
≥

(l(δ) − bp(k(δ)) − 1) log 2

(l(δ) + 1) log α
≥

(

1−
bp(k(δ))

lk(δ)−1
−

1

lk(δ)−1

)

log 2

logα
→ γ
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since
bp(k(δ))
lk(δ)−1

→ 0 by (14) and log 2
logα = γ. Hence dimBF ≥ γ.

Claim 3. dimMBF = γ.

Proof of Claim 3. It suffices to show that dimB(F ∩U) = γ for all nonempty open subsets U of

F (see [4, Proposition 3.9] for more details). Moreover, it follows by a version of Baire’s Category

Theorem that it is sufficient to show that dimB(F ∩ Vw) = γ for all finite binary words w. To this

end, let w = w1 . . . wn ∈ Σ∗ and define gw : Σ∗

2 → Σ∗

2 by gw(v) = wv. Now, for each word u ∈ Σ∗

2,

define

V
′

u = Vgw(u)

a
′

u = agw(u)

b
′

u = bgw(u).

Then applying the same arguments as in Claim 2, with Vu replaced by V
′

u, au replaced by a
′

u, and

bu replaced by b
′

u gives that dimB(F ∩ Vw) = γ. Therefore we conclude that dimMBF = γ.

Claim 4. dimH F = 0.

Proof of Claim 4. We define a mass distribution on F in an analogous manner to in the proof

of Proposition 3.1. Namely, for each n ∈ Z
+ and w ∈ Σn

2 , let λw denote the Lebesgue measure

restricted to the interval Vw, normalised such that λw(Vw) = 1. Next, define the probability measure

µn by µn = 1
2n

∑

w∈Σn
2
λw. Then there exists a probability measure µ such that µn converges weakly

to µ.

Let x ∈ F . Then there is an infinite binary word w1w2 . . . such that x = ∩nVw1...wn . Let (mk)k

be the sequence of integers defined by mk = f−1(w1 . . . wk) and for each k ∈ Z
+ let vk(x) denote

the interval Vw1...wamk
. Each vk(x) has diameter α−bmk , therefore any ball with centre at x and

radius rk = αbmk can intersect at most three component intervals of Famk
. Each has mass 2−amk ,

so
log µ(B(x, rk))

log rk
≤

amk
log 2 + log 3

bmk
logα

→ 0.

Hence it follows by the Mass Distribution Principle that dimH F = 0.

Proof of Lemma 3.4. Combining Claims 1, 3 and 4 completes the proof of Lemma 3.4.

5.5 Proof of Lemma 3.5

Finally, we present the proof of Lemma 3.5. To ease notation, we write Cn = Cn(r, t,n), Dn =

D(u, v,n,k), En = En(w, j) and Fn = Fn(s,a,b), for each integer n.

Proof of Lemma 3.5. Let C, D, E and F be as in the statement of Lemma 3.5. In particular,

recall that n = (nk)k is an increasing sequence of positive integers with nk

nk+1
→ 0 as k → ∞. It

follows by monotonicity that dimBX ≥ dimBD = u, so it remains to show the reverse inequality.

To this end, for each integer k, let δk = 2−(n2k+1−n2k)/u. Then, for all β ≤ u and γ ≤ v, one

interval of diameter δk will cover any component interval of Cn2k+1
(β, γ,n). Hence Nδk(C) ≤ 2n2k+1 ,

and since Dn2k+1
(u, v,n,k) ⊆ Cn2k+1

(u, v,n) and Fn2k+1
(s,a,b) ⊆ C(s, s,n) for all k, we have
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Nδk(D) ≤ 2n2k+1 andNδk(F ) ≤ 2n2k+1 . For the bound on Nδk(E), observe that since dimBE = 0 < u

there is an integer K such that Nδk(E) ≤ δ−u
k ≤ 2n2k+1 for all k ≥ K. Hence, for k ≥ K we have

Nδk(X) ≤ Nδk(C) +Nδk(D) +Nδk(E) +Nδk(F ) ≤ 4 · 2n2k+1 , so

logNδk(X)

− log δk
≤ u

(

n2k+1 + 2

n2k+1 − n2k

)

→ u,

and we conclude that dimBX ≤ u. This completes the proof of Lemma 3.5.

6 Outlook

6.1 Higher dimensional analogues

One may ask whether an analogous result to Theorem 1.1 holds in higher dimensions. By modifying

our construction, it is in fact possible to obtain the following result.

Theorem 6.1. Let r, s, t, u, v, w ∈ (0, d] with

r ≤ s
≤

≤

u

t

≤

≤
v ≤ w.

Then there exists a compact set X ⊆ [0, 1]d with

dimHX = r,

dimMBX = s,

dimPX = t,

dimBX = u,

dimBX = v,

dimAX = w.

Moreover, X is an r-Hausdorff set and a t-packing set.

As in the proof of Theorem 1.1, the set X is constructed by taking the union of four sets C, D,

E and F , which could be thought of as higher dimensional analogues of the sets constructed in the

proof of Theorem 1.1. Instead of beginning the constructions of C and F with the unit interval we

start with the unit d-cube, and for D and E we start with the corners of the cube, as opposed to

the endpoints of the unit interval. We then construct the sets in an analogous manner, adapting

the definitions of the contraction maps accordingly to take into account the extra dimensions. The

proof follows similarly to that of Theorem 1.1, but is somewhat more notationally awkward.
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6.2 Hewitt-Stromberg measures

The so-called Hewitt-Stromberg measures provide a bridge between the Hausdorff and packing

measures of a set. They were first introduced by Hewitt and Stromberg in their classical textbook

[9, (10.51)] and have received attention in the fractal geometry community in recent years, for

example in [8], [10], [17]. For α > 0 and A ⊆ R
d we denote the α-dimensional lower and upper

Hewitt-Stromberg measures ofA by Uα(A) and Vα(A) respectively. These measures satisfyHα(A) ≤

Uα(A) ≤ Vα(A) ≤ Pα(A). The reader is referred to Edgar’s book [3] for a systematic introduction

to the Hewitt-Stromberg measures.

The lower Hewitt-Stromberg measure can be used to give an alternative characteristaion of the

lower modified box dimension, namely: dimMBA = inf{α : Uα(A) = 0} = sup{α : Uα(A) = ∞}.

Therefore, it is natural to ask whether the set X = C ∪ D ∪ E ∪ F constructed in the proof of

Theorem 1.1 satisfies 0 < Us(X) < ∞. It turns out that this is not the case in general. It can be

shown that Us(X) < ∞ through an identical argument to that used to show Pt(X) < ∞; however,

it can also be shown that Us(F ) = 0. Since Us(D) = Us(E) = 0, it follows that Us(X) > 0 if and

only if Us(C) > 0, and this is only true when s = r.

It is also known that the critical value of the upper Hewitt-Stromberg measure coincides with

the packing dimension; however, the packing measure and the upper Hewitt-Stromberg measure do

not coincide in general. Therefore one might ask whether 0 < Vt(X) < ∞. This is indeed the case.

It follows immediately from our results that Vt(X) < ∞, and it can be shown that Vt(C) > 0.

Hence X is a t-upper Hewitt-Stromberg set, where, in an analogous manner to the Hausdorff and

packing measures, a t-upper Hewitt-Stromberg set is one with positive and finite t-dimensional

upper Hewitt-Stromberg measure.

6.3 Homogeneity properties

Finally, one could ask whether our set exhibits homogeneity properties similar to those satisfied

by the set constructed by Nilsson and Wingren in [12]. In their paper, Nilsson and Wingren show

that given any three numbers r, s, t ∈ (0, d] with r < s < t, it is possible to construct a compact

subset K of Rd with dimH(K ∩ U) = r, dimB(K ∩ U) = s and dimB(K ∩ U) = t for every open

set U with K ∩ U 6= ∅. One can observe that such a result does not hold for our set. In fact, it is

not even possible to obtain such a result, in general, for all the dimensions that we consider. It is

known that if dimB(X ∩U) = α for all open sets U with X ∩ U 6= ∅, then dimMBX = dimBX = α

(there is an analogous result for the packing dimension and upper box dimension). Therefore, if

dimMBX < dimBX then it is impossible to have dimMB(X ∩U) = dimB(X ∩U) for all open sets U

that intersect X (and similarly for the packing dimension and upper box dimension).
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