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FEIGIN AND ODESSKII’S ELLIPTIC ALGEBRAS

ALEX CHIRVASITU, RYO KANDA, AND S. PAUL SMITH

Abstract. We study the elliptic algebras Qn,k(E, τ) introduced by Feigin and Odesskii as a general-
ization of Sklyanin algebras. They form a family of quadratic algebras parametrized by coprime integers
n > k ≥ 1, an elliptic curve E, and a point τ ∈ E. We consider and compare several different definitions
of the algebras and provide proofs of various statements about them made by Feigin and Odesskii. For
example, we show that Qn,k(E, 0), and Qn,n−1(E, τ) are polynomial rings on n variables. We also show
that Qn,k(E, τ + ζ) is a twist of Qn,k(E, τ) when ζ is an n-torsion point. This paper is the first of several
we are writing about the algebras Qn,k(E, τ).
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1. Introduction

1.1. Notation and conventions. Throughout this paper we use the notation e(z) = e2πiz for z ∈ C.
We fix relatively prime integers, n > k ≥ 1, and write k′ for the unique integer such that n > k′ ≥ 1

and kk′ = 1 in Zn = Z/nZ.
We fix a point η ∈ C lying in the upper half-plane, the lattice Λ = Z + Zη, and the elliptic curve

E = C/Λ. We write E[n] for the n-torsion subgroup, 1
n
Λ/Λ, of E.

We always work over the field C of complex numbers unless otherwise specified. For a complex
algebraic variety X , x ∈ X means x is a closed point of X .

1.2. The algebras Qn,k(E, τ). In 1989, Feigin and Odesskii defined a family of graded C-algebras
Qn,k(E, τ) depending on the data (n, k, E) and a point τ ∈ C − 1

n
Λ. The algebras appear first in

their manuscript [FO89] archived with the Academy of Science of the Ukrainian SSR (which we refer
to as “the Kiev preprint”) and, almost simultaneously, in their published paper [OF89]. They defined
Qn,k(E, τ) to be the free algebra C〈x0, . . . , xn−1〉 modulo the n2 homogeneous quadratic relations1

(1-1) rij = rij(τ) =
∑

r∈Zn

θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
xj−rxi+r

where the indices i and j belong to Zn and θ0, . . . , θn−1 are certain theta functions of order n, also
indexed by Zn, that are quasi-periodic with respect to the lattice Λ. The quasi-periodicity properties
imply that if λ ∈ Λ, then rij(τ + λ) is a non-zero scalar multiple of rij(τ) whence Qn,k(E, τ) depends
only on the image of τ in E; thus, for fixed (n, k, E) the algebras provide a family parametrized by
E − E[n].

When τ ∈ 1
n
Λ, θkr(τ) = 0 for some r so the relations no longer make sense. In §3.3 we will show how

to define Qn,k(E, τ) for all τ ∈ C (Definition 3.11). Using that definition, Proposition 5.1 shows that
Qn,k(E, 0) is a polynomial ring on n variables for all n and k.

A lot is known about the algebras Qn,1(E, τ). In [TVdB96], Tate and Van den Bergh showed that
Qn,1(E, τ) is a noetherian domain having the same Hilbert series and the same homological properties
as the polynomial ring on n variables. The algebras Q3,1(E, τ) and Q4,1(E, τ) are well understood due
to the work of Artin-Tate-Van den Bergh ([ATVdB90, ATVdB91]), Smith-Stafford [SS92], Levasseur-
Smith [LS93], and Smith-Tate [ST94]. For the most part though, the representation theory of Qn,1(E, τ)
remains a mystery when n ≥ 5.

Although the algebras Qn,k(E, τ) were defined thirty years ago they have not been studied much
since then (with the exception of the case k = 1). The algebras Q4,1(E, τ) were discovered by Sklyanin
[Skl82] almost 40 years ago when he was studying questions arising from quantum physics. We endorse
a sentiment he expressed in that paper:

During our investigation it turned out that it is necessary to bring into the picture
new algebraic structures, namely, the quadratic algebras of Poisson brackets and the
quadratic generalization of the universal enveloping algebra of a Lie algebra. The theory
of these mathematical objects is surprisingly reminiscent of the theory of Lie algebras,
the difference being that it is more complicated. In our opinion, it deserves the greatest
attention of mathematicians.

In investigating the algebras Qn,k(E, τ) one encounters an interesting mix of topics. A few examples:

• The origin of these algebras in the study of elliptic solutions of the quantum Yang-Baxter equa-
tion is evident in the appearance and prevalence of R-matrices with spectral parameter defining
the relations of Qn,k(E, τ).
• Theta functions and the sometimes mysterious identities they satisfy pervade the subject.
• When regarded as parametrized by τ , the family Qn,k(E, τ) “integrates” a natural Poisson struc-
ture on a moduli space of bundles on E of rank k and degree n [FO98, Pol98].

1The original definition uses xk(j−r)xk(i+r) instead of xj−rxi+r ; see §3.1.1.
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• Understanding the point scheme for Qn,k(E, τ) is heavily reliant on the intricacies of the theory
of holomorphic bundles on abelian varieties.

We believe that this wide array of topics speaks to the depth of the subject and its richness as a source of
problems, questions and perhaps answers. For that reason, we echo Sklyanin’s opinion that the algebras
Qn,k(E, τ) deserve considerable attention.

1.3. The contents of subsequent papers. This is the first of several papers in which we examine
the algebras Qn,k(E, τ). For the most part they can be read independently of one another. One of them
examines the characteristic variety Xn/k for Qn,k(E, τ), which is a subvariety of Pn−1. Another will show
that a certain quotient category of graded Qn,k(E, τ)-modules contains a “closed subcategory” that is
equivalent to Qcoh(Xn/k), the category of quasi-coherent sheaves on Xn/k. This is proved by exhibiting
a homomorphism from Qn,k(E, τ) to a “twisted homogeneous coordinate ring” of Xn/k (defined in
[AVdB90]). In many cases, Xn/k is the g-fold product, Eg, of copies of E where g is the length of a
certain continued fraction expression for the rational number n/k. For example, if f0 = f1 = 1 and
fi+1 = fi + fi−1 and (n, k) = (f2g+1, f2g−1), then Xn/k

∼= Eg. If k = 1, then g = 1 and Xn/1
∼= E. If

n ≥ 5 and k = 2, then g = 2 and Xn/k
∼= S2E the 2nd symmetric power of E. If (n, k) = (n, n − 1),

then g = n− 1 and Xn/k
∼= P

n−1.
It is stated in [Ode02, §3] that, for generic τ ∈ E, the dimensions of the homogeneous components of

Qn,k(E, τ) are the same as those of the polynomial ring on n variables, and it is conjectured that this
is true for all τ . When k = 1, this was proved by Tate and Van den Bergh [TVdB96]. In [CKS20], we
will show this is true for all Qn,k(E, τ) when τ + Λ is not a torsion point in E.

1.4. The contents of this paper. The present paper is a prerequisite for our later papers.
In section 2 (see (2-6)) we specify a particular basis θ0, . . . , θn−1 for a space Θn(Λ) of order-n theta

functions that are quasi-periodic with respect to Λ. We use this basis in the rest of this paper and
in our subsequent papers. Theta functions are notorious for the fact that notation for them varies
considerably from one source to another.2 Even when the same symbol appears in two different sources
the reader must be alert to the possibility that the functions they denote are not the same. That is the
case in Feigin and Odesskii’s various papers. For that reason, §2.2 makes a careful comparison of their
various definitions and describes exactly how our θ0, . . . , θn−1 relate to their functions labeled by the
same symbols. We then discuss the action of the Heisenberg group Hn of order n3 on Θn(Λ) and the
canonical morphism E = C/Λ → P(Θn(Λ)

∗) to the projective space of 1-dimensional subspaces of the
dual space Θn(Λ)

∗.
In section 3 we examine various definitions of Qn,k(E, τ) and explain why they produce the same

algebra. In §3.1 we compare different definitions given in terms of generators and relations.
In §3.2, we focus on the case k = 1. We use results of Feigin and Odesskii to give three alternative

definitions of Qn,1(E, τ) for all τ ∈ C. The first is based on their elliptic analogue of the usual shuffle
product for the symmetric algebra. The second, based on the theta function identity (3-11) = (3-12) in
the proof of Proposition 3.4, declares that Qn,1(E, τ) is the algebra whose defining (quadratic) relations
are the image an explicit injective linear map Alt2Θn(Λ) → Θn(Λ)

⊗2 where Alt2 Θn(Λ) denotes the
space of anti-symmetric functions in Θn(Λ)

⊗2. This is essentially the way Tate and Van den Bergh
defined Qn,1(E, τ) in [TVdB96, (4.1)] (see §3.2.6). The third, in §3.2.5, is of a geometric nature: the
relations are defined as the subspace of H0(E × E,L ⊠ L), where L is a certain invertible OE-module
of degree n, consisting of those sections g such that (g)0, its divisor of zeros, has certain symmetry
properties. This definition allows one to define Qn,1(E, τ) for arbitrary base fields (see [TVdB96]).

In §3.3, we define Qn,k(E, τ) for all τ ∈ C and show that different definitions produce the same algebra
under reasonable hypotheses. To discuss this we define, for τ ∈ C− 1

n
Λ,

reln,k(E, τ) := span{rij(τ) | i, j ∈ Zn},

2Regarding the various notations for theta functions, the final paragraph of [AS64, §16.27] provides this warning:
“There is a bewildering variety of notations . . . so that in consulting books caution should be used”.
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We examine three ways of defining Qn,k(E, τ) for all τ ∈ C.

(1) (§3.3.1) If rij(τ) 6= 0, let Lij(τ) denote the point C.rij(τ) in P
(

V ⊗2
)

and extend the holomorphic

map C− 1
n
Λ→ P

(

V ⊗2
)

, τ 7→ Lij(τ), to C→ P
(

V ⊗2
)

and define Lij(τ) for all τ to be the image
of τ under the extension; then define

reln,k(E, τ) := the linear span of all the Lij(τ)’s.

(2) (§3.3.2) In (3-24) we introduce, for τ ∈ C − 1
n
Λ, a linear operator Rτ (τ) : V ⊗2 → V ⊗2 whose

image is span{rij(τ) | i, j ∈ Zn}; we then show that the holomorphic map τ 7→ Rτ (τ) extends in
a unique way to a holomorphic map C→ EndC(V

⊗2); Proposition 3.15 shows for all τ ∈ C that

the image of Rτ (τ) = reln,k(E, τ).

(3) (§3.3.3) In [CKS20], we will show that dim reln,k(E, τ) =
(

n
2

)

for all τ ∈ C − 1
2n
Λ; the mor-

phism E − E[2n] → Grass
((

n
2

)

, V ⊗2
)

, τ 7→ reln,k(E, τ), extends uniquely to a morphism

E → Grass
((

n
2

)

, V ⊗2
)

; one might then define reln,k(E, τ) to be the image of τ + Λ under this
extension.

In §3.4, we show that Qn,k(E, τ) ∼= Qn,k′(E, τ) where k
′ is the unique integer such that n > k′ ≥ 1

and kk′ = 1 in Zn. Feigin and Odesskii state this but leave its proof to the reader. Feigin and Odesskii
state several results without indicating how they might be proved. Some, like this isomorphism, are
straightforward but we have had difficulty proving others. For that reason, and because the definition
of the θα’s in one of their papers is not always the same as in others, we often provide more detail than
strictly necessary. The extra detail will provide a solid foundation for the future study of Qn,k(E, τ).

For example, the statement that the only isomorphisms among the Qn,k(E, τ)’s are those in the first
sentence of the previous paragraph, [OF89, §1, Rmk. 3], requires more precision because, for example,
Proposition 5.5 shows that Qn,n−1(E, τ) is a polynomial ring for all τ . Furthermore, Proposition 3.22
provides another isomorphism when τ is replaced by−τ ; indeed, Qn,k(E, τ) ∼= Qn,k(E,−τ) = Qn,k(E, τ)

op.
More isomorphisms appear in §§3.4.1 and 4.2.1. We do not have a complete understanding of all iso-
morphisms among the Qn,k(E, τ)’s.

In section 4 we show that Qn,k(E, τ + ζ) is isomorphic to a “twist” of Qn,k(E, τ) for all ζ ∈ E[n].3

The Heisenberg group Hn acts as degree-preserving algebra automorphisms of Qn,k(E, τ). There is a
surjective homomorphism Hn → E[n] ∼= Zn×Zn and the twist just referred to is induced by any one of
the automorphisms in Hn that is a preimage of ζ . Since Qn,k(E, 0) is a polynomial ring on n variables
(Proposition 5.1) this confirms Feigin and Odesskii’s statement [OF89, §1.2, Rmk. 1] that Qn,k(E, ζ) is
isomorphic to an algebra of “skew polynomials” though they don’t define that term.

In section 5, we provide a proof of the assertion in [OF89, §1.2, Rmk. 1] and [Ode02, §3] thatQn,k(E, 0)
is a polynomial ring on n variables.

In Appendix A we state and prove a lemma (a“standard” result in complex analysis) that allows us
to define what we mean by a theta function (in one variable) and establishes two fundamental results
about such a function, the number of its zeros in a fundamental parallelogram and the sum of those
zeros. This lemma will also be used in our subsequent papers.

1.5. Acknowledgements. The authors are particularly grateful to Kevin De Laet for several useful
conversations and for allowing us to include his result in Proposition 3.24. Proposition 5.5 and the
observation in §2.5 are also based on his work.

A.C. was partially supported through NSF grant DMS-1801011.
R.K. was a JSPS Overseas Research Fellow, and supported by JSPS KAKENHI Grant Numbers

JP16H06337, JP17K14164, and JP20K14288, Leading Initiative for Excellent Young Researchers, MEXT,
Japan, and Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Cen-
ter on Mathematics and Theoretical Physics JPMXP0619217849). R.K. would like to express his deep

3The “twist” construction is quite general. Given any Z-graded ringA and a degree-preserving automorphism φ : A→ A

the twistAφ is the graded vector space A endowed with multiplication a∗b := φm(a)b when b ∈ Am. There is an equivalence
Gr(A) ≡ Gr(Aφ) between their categories of graded left modules.
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gratitude to Paul Smith for his hospitality as a host researcher during R.K.’s visit to the University of
Washington.

2. Theta functions in one variable

In this section we collect some results on theta functions.
The results are “standard” but we could not find a single source that states them in the way we need

them; for that reason we have included them here. Proofs are given in more detail than strictly necessary
because the calculations are often prone to error and the material will be new for some readers.

2.1. The spaces Θn(Λ) and the functions ϑ(z | η) and θ(z). We fix an integer n ≥ 1 and a point
c ∈ C.4 We adopt the notation in Odesskii’s survey article [Ode02, Appendix A], and at [HP18, p. 1025],
and write Θn,c(Λ) for the set of holomorphic functions f on C satisfying the quasi-periodicity conditions

f(z + 1) = f(z),

f(z + η) = e
(

− nz + c+ n
2

)

f(z).

Functions in Θn,c(Λ) are called theta functions of order n with respect to the lattice Λ. They have n
zeros (always counted with multiplicity) in each fundamental parallelogram for Λ and the sum of those
zeros is equal to c modulo Λ (see Appendix A).

Proposition 2.1. Θn,c(Λ) is a vector space of dimension n.

Proof. This follows from the Fourier expansions for elements in Θn,c(Λ). See [Mum07, I.§1], for example.
�

In keeping with the notation in the Kiev preprint [FO89, p. 32], and in the first Odesskii-Feigin paper
[OF89, §1.1], we will always use the notation

Θn(Λ) := Θn,n−1
2
(Λ).

When c = n−1
2

the second quasi-periodicity condition becomes f(z + η) = −e(−nz)f(z).

2.1.1. All theta functions in this paper will be defined in terms of the holomorphic functions

ϑ(z | η) :=
∑

n∈Z

e
(

nz + 1
2
n2η
)

and θ(z) = ϑ(z − 1
2
− 1

2
η | η) in (2-1). Both ϑ and θ have order one, meaning they have a single zero in

each fundamental parallelogram. The Fourier expansion for θ(z) is given by (2-1).

Lemma 2.2. The function

(2-1) θ(z) :=
∑

n∈Z

(−1)ne
(

nz + 1
2
n(n− 1)η

)

has the following properties:

(1) it is a basis for Θ1,0(Λ);
(2) θ(z + 1) = θ(z) and θ(z + η) = −e(−z)θ(z);
(3) θ(−z) = −e(−z)θ(z);
(4) θ(z) = 0 if and only if z ∈ Λ. Each zero has order 1.

Proof. Statement (1), and hence (2), follows from the fact that ϑ(z | η) is a basis for Θ1,− 1
2
− 1

2
η(Λ), which

can be found in [Mum07, §I.1].

4Usually n is the integer fixed in §1.1 but we also allow n = 1 here.
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It follows from the definition of θ that

θ(−z) =
∑

n∈Z

(−1)ne(−nz + 1
2
n(n− 1)η)

=
∑

n

(−1)−ne(−nz + 1
2
(−n)(−n + 1)η)

=
∑

m

(−1)m−1e(mz − z + 1
2
(m− 1)mη) (after setting m = −n + 1)

= − e(−z)
∑

m

(−1)me(mz + 1
2
m(m− 1)η)

= − e(−z)θ(z)

as claimed in (3).
Statement (4) follows from [Mum07, Lem. 4.1]: it is shown there that the zeros of ϑ00(z) = ϑ(z | η)

are the points in 1
2
+ 1

2
η + Λ and those zeros have order 1. Thus the zeros of θ(z) = ϑ(z − 1

2
− 1

2
η | η)

are the points in Λ and they too have order 1. �

2.1.2. Remarks. Assume c, d ∈ C, r ∈ Z, f ∈ Θn,c(Λ), and fi ∈ Θni,ci(Λ) for i = 1, 2.

(1) Θn,c+r(Λ) = Θn,c(Λ).

(2) The function z 7→ f1(z)f2(z) belongs to Θn1+n2,c1+c2(Λ).

(3) The function z 7→ f(z + d) belongs to Θn,c−nd(Λ).

(4) ϑ(z | η) ∈ Θ1, 1
2
(1+η)(z).

(5) The function z 7→ f(rz) belongs to Θ
r2n, rc+

r(1−r)n
2

η
(Λ).

2.2. The standard basis for Θn(Λ). In their various papers Feigin and Odesskii use a basis for Θn,c(Λ)
that is labeled θ0, . . . , θn−1. The functions they call θα in one paper are not always the same as those
called θα in another paper. Nevertheless, in [FO89, OF89, Ode02] the zeros of θα always belong to

{

1
n
(−αη +m) | 0 ≤ m ≤ n− 1

}

+ Λ = − α
n
η + 1

n
Z+ Zη.

In particular, θα has n distinct zeros in the fundamental parallelogram

[0, 1) + (−1, 0]η = {a+ bη | 0 ≤ a < 1, −1 < b ≤ 0},

each zero having multiplicity 1. Furthermore, their θα’s, α ∈ Zn, always have the properties

θα(z +
1
n
) = e

(

α
n

)

θα(z),

θα(z +
1
n
η) = Ce(−z)θα+1(z),

where C is a non-zero constant independent of α.
Since θ has a unique zero in the fundamental parallelogram, namely a simple zero at z = 0, the

function

(2-2) θ
(

z + α
n
η
)

θ
(

z + 1
n
+ α

n
η
)

· · · θ
(

z + n−1
n

+ α
n
η
)

has exactly n zeros in the fundamental parallelogram, namely { 1
n
(−αη +m) | 0 ≤ m ≤ n− 1}, each of

which has order one. Thus, Feigin and Odesskii’s functions θα, α ∈ Zn, are multiples of the functions
in (2-2) by nowhere vanishing holomorphic functions.

Lemma 2.3. For each α ∈ Z let [α] ∈ C be an arbitrary complex number.5 The functions

(2-3) θα(z) := e(αz + [α])

n−1
∏

m=0

θ
(

z + m
n
+ α

n
η
)

,

indexed by α ∈ Z, have the following properties:

5Later we will make a judicious choice of [α]. See (2-6) for the “standard” definition.
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(1) θα ∈ Θn(Λ),
(2) θα(z + 1) = θα(z) and θα(z + η) = −e(−nz)θα(z),
(3) θα(z +

1
n
) = e

(

α
n

)

θα(z),

(4) θα(z +
1
n
η) = e

(

α
n
η + [α]− [α + 1]

)

e(−z)θα+1(z),

(5) θα(−z) = −e
(

− nz + αη + [α]− [−α]
)

θ−α(z), and
(6) θα+n(z) = −e([α + n]− [α]− αη)θα(z).

Proof. (1) It follows from §2.1.2 that the function in (2-2) belongs to Θn,−n−1
2

−αη(Λ) and hence θα
belongs to Θn,−n−1

2
(Λ) = Θn,n−1

2
(Λ).

(2) This is a restatement of (1).
(3) Since θ(z + 1) = θ(z),

θα(z +
1
n
) = e(α(z + 1

n
) + [α])

n−1
∏

m=0

θ
(

z + 1+m
n

+ α
n
η
)

= e(α
n
)e(αz + [α])θ

(

z + 1
n
+ α

n
η
)

. . . θ
(

z + n−1
n

+ α
n
η
)

θ
(

z + n
n
+ α

n
η
)

= e(α
n
)e(αz + [α])

n−1
∏

m=0

θ
(

z + m
n
+ α

n
η
)

= e(α
n
)θα(z),

as claimed.
(4) Similarly,

θα(z +
1
n
η) = e(α(z + 1

n
η) + [α])

n−1
∏

m=0

θ
(

z + m
n
+ 1+α

n
η
)

= e(α(z + 1
n
η) + [α])e(−(α + 1)z − [α + 1])θα+1(z)

= e(α
n
η + [α]− [α + 1])e(−z)θα+1(z),

as claimed.
(5) Since θ(−z) = −e(−z)θ(z),

θα(−z) = e(−αz + [α])

n−1
∏

m=0

θ
(

−z + m
n
+ α

n
η
)

= e(−αz + [α])

n−1
∏

m=0

(−1)e(−z + m
n
+ α

n
η)θ
(

z − m
n
− α

n
η
)

= (−1)ne(−αz + [α])e(−nz + αη)e( 1
n
+ · · ·+ n−1

n
)

n−1
∏

m=0

θ
(

z − m
n
− α

n
η
)

.

The expression before the product symbol in the last formula is

p(z) = (−1)ne(−αz + [α])e(−nz + αη)e(1
2
(n− 1))

= (−1)ne(−αz + [α])e(−nz + αη)(−1)n−1

= −e(−nz + αη + [α])e(−αz).
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Since

n−1
∏

m=0

θ
(

z − m
n
− α

n
η
)

=
n−1
∏

m=0

θ
(

z + n−m
n
− α

n
η
)

= θ
(

z + n
n
− α

n
η
)

θ
(

z + n−1
n
− α

n
η
)

· · · θ
(

z + 1
n
− α

n
η
)

= e(αz − [−α])θ−α(z),

θα(−z) = p(z)

n−1
∏

m=0

θ
(

z − m
n
− α

n
η
)

= −e(−nz + αη + [α])e(−αz)e(αz − [−α])θ−α(z)

= −e(−nz + αη + [α]− [−α])θ−α(z),

as claimed.
(6) Since θ(z + η) = −e(−z)θ(z),

θα+n(z) = e((α + n)z + [α + n])
n−1
∏

m=0

θ
(

z + m
n
+ α+n

n
η
)

= e(nz + [α+ n]− [α])e(αz + [α])
n−1
∏

m=0

(−1)e
(

− z − m
n
− α

n
η
)

θ
(

z + m
n
+ α

n
η
)

= (−1)ne(nz + [α + n]− [α])e(αz + [α])e
(

− nz − 1
n
− 2

n
· · · − n−1

n
− αη

)

n−1
∏

m=0

θ
(

z + m
n
+ α

n
η
)

= (−1)ne([α + n]− [α])(−1)n−1e(−αη)θα(z)

= −e([α + n]− [α]− αη)θα(z),

as claimed. �

Lemma 2.4. The set {θ0, . . . , θn−1} in (2-3) is a basis for Θn(Λ).

Proof. Since θα is an eigenvector with eigenvalue e
(

α
n

)

for the linear transformation f(z) 7→ f(z + 1
n
),

the functions θ0, . . . , θn−1 are linearly independent. But dimΘn(Λ) = n, so they form a basis for it. �

In §2.2.1 we consider how to choose [α] and hence θα. We then devote a single subsection to the
definition of the functions θα in each of the following papers of Feigin and Odesskii: the Kiev preprint
[FO89]; their first published paper [OF89]; Odesskii’s survey [Ode02]. Finally, in §2.2.5, we fix particular
[α]’s and define the θα’s that will be used in the rest of this paper and in our subsequent papers.

We advise the reader to jump to §2.2.5 on a first reading.

2.2.1. We now consider the choice of [α]. First, we want the coefficient e(α
n
η + [α] − [α + 1]) in

Lemma 2.3(4) to be a constant C independent of α. Second, we want equalities θα+n = θα for all α ∈ Z.
Third, since adding a constant to [α] corresponds to multiplying all the θα’s by a common scalar, we
normalize the function α 7→ [α] by requiring [0] = 0. In summary, we will choose the [α]’s so the
following three conditions hold:











e(α
n
η + [α]− [α + 1]) = C,

−e([α + n]− [α]− αη) = 1,

[0] = 0.
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Taken together, the first and the third of these conditions imply that

Cα =
α−1
∏

i=0

e
(

i
n
η + [i]− [i+ 1]

)

= e
(

α(α−1)
2n

η − [α]
)

and

Cα =
−1
∏

i=−α

e
(

i
n
η + [i]− [i+ 1]

)

= e
(

− (−α)(−α−1)
2n

η + [−α]
)

for all integers α > 0. Hence

e([α]) = C−αe
(

α(α−1)
2n

η
)

for all α ∈ Z. Substituting this into the second condition, implies that

1 = − e([α + n]− [α]− αη) = −C−ne
(

(α+n)(α+n−1)
2n

η − α(α−1)
2n

η − αη
)

= C−ne
(

−1
2
+ n−1

2
η
)

.

Therefore C = e
(

r
n
− 1

2n
+ n−1

2n
η
)

for some integer r. It follows that

e([α]) = e
(

α(1−2r)
2n

+ α(α−n)
2n

η
)

.

Parts (4) and (5) of Lemma 2.3 now become

θα(z +
1
n
η) = e

(

−z + 2r−1
2n

+ n−1
2n
η
)

θα+1(z),

θα(−z) = −e
(

−nz + α(1−2r)
n

)

θ−α(z).

The next result summarizes these discussions.6

Lemma 2.5. Let r ∈ Z be any integer. The functions

(2-4) θα(z) := e
(

αz + α(1−2r)
2n

+ α(α−n)
2n

η
)

n−1
∏

m=0

θ
(

z + m
n
+ α

n
η
)

,

indexed by α ∈ Z, have the following properties:

(1) θα+n = θα,
(2) {θ0, . . . , θn−1} is a basis for Θn(Λ),
(3) θα(z +

1
n
) = e

(

α
n

)

θα(z),

(4) θα(z +
1
n
η) = e

(

− z + 2r−1
2n

+ n−1
2n
η
)

θα+1(z), and

(5) θα(−z) = −e
(

− nz + α(1−2r)
n

)

θ−α(z).

The key point in each of the next three subsections is how to choose the integer r (modulo n) so the
functions θα have the properties that Feigin and Odesskii ask of them.

2.2.2. The appendix of the Kiev preprint [FO89] says that when n is odd Θn(Λ) has a basis {θα | α ∈
Zn} such that

(1) θα(z +
1
n
) = e

(

α
n

)

θα(z),

(2) θα(z +
1
n
η) = −e

(

− z + n−1
2n
η
)

θα+1(z),
(3) θα(−z) = e(−nz)θ−α(z), and
(4) θα(z) is zero exactly at the points in −α

n
η + 1

n
Z+ Zη.

This is false. There is no integer r such that the functions θα defined by (2-4) have these four properties:

if there were, then (3) together with Lemma 2.5(5) would imply that α(1−2r)
n

+ 1
2
is an integer, which is

not the case when α = 0, for example.
If (2) held, then Lemma 2.5(4) would imply that the number s := 2r−1

2n
− 1

2
is an integer so r =

n+1
2

+ ns = n+1
2

(mod n) which implies that n is odd. If n is odd and r = n+1
2
, then the functions θα

in (2-4) satisfy (1), (2), (4), and θα(−z) = −e(−nz)θ−α(z); in §2.5 we denote these functions by ψα

6We note that e([α]) depends only on the image of r in Zn.



10 ALEX CHIRVASITU, RYO KANDA, AND S. PAUL SMITH

(only when n is odd). It is likely that the θα’s in the Kiev preprint are the ψα’s and the statement that
θa(−z) = e(−nz)θ−α(z) in its appendix is a typo. In §3.1.4, we make some additional comments about
the θα’s in the Kiev preprint.

2.2.3. Let 2p be the largest power of 2 dividing n. The paper [OF89, §1.1] says that Θn(Λ) has a basis
{θα | α ∈ Zn} such that

(1) θα(z +
1
n
) = e

(

α
n

)

θα(z),

(2) θα(z +
1
n
η) = e

(

− z − 2−p−1 + n−1
2n
η
)

θα+1(z),
(3) θα(−z) = −e(−nz)θ−α(z) if n is odd,
(4) θα(−z) = −e(−nz + 2−pα)θ−α(z) if n is even, and
(5) θα(z) is zero exactly at the points in −α

n
η + 1

n
Z+ Zη.

If the functions θα defined by (2-4) satisfy these five properties, then (2) implies that the number
s := 2r−1

2n
− (−2−p−1) is an integer and r = 1

2
(− n

2p
+ 1) + ns = 1

2
(− n

2p
+ 1).

Conversely, set r = 1
2
(− n

2p
+1), which is always an integer.7 Since 1−2r

n
= 2−p, the function θα in (2-4)

now has the property that

(2-5) θα(−z) = − e(−nz + 2−pα)θ−α(z).

Hence conditions (3) and (4) are satisfied, and so are (1), (2), and (5). We also note that

e([α]) = e
(

2−p−1α + α(α−n)
2n

η
)

in this case.

2.2.4. Odesskii’s survey [Ode02, Appendix A] says Θn(Λ) has a basis {θα | α ∈ Zn} such that

(1) θα(z +
1
n
) = e

(

α
n

)

θα(z),

(2) θα(z +
1
n
η) = e

(

− z − 1
2n

+ n−1
2n
η
)

θα+1(z), and

(3) θα(z) = e(αz + α
2n

+ α(α−n)
2n

η)
∏n−1

m=0 θ
(

z + m
n
+ α

n
η
)

.

If the functions θα in (2-4) satisfy (2), then r is divisible by n. If r is divisible by n, then the functions
θα in (2-4) have properties (1), (2), and (3).

2.2.5. The “standard” definition of θα. From now on, unless otherwise stated, θα denotes the function
in (2-4) with r = 0 modulo n.8 We repeat this definition in (2-6) below. As remarked in §2.2.4, the
function θα in (2-6) is the same as the function θα defined in Odesskii’s survey [Ode02, Appendix A].

Proposition 2.6. The functions

(2-6) θα(z) := e
(

αz + α
2n

+ α(α−n)
2n

η
)

n−1
∏

m=0

θ
(

z + m
n
+ α

n
η
)

,

indexed by α ∈ Z, have the following properties:

(1) θα+n = θα.
(2) {θ0, . . . , θn−1} is a basis for Θn(Λ).
(3) θα(z +

1
n
) = e

(

α
n

)

θα(z).

(4) θα(z +
1
n
η) = e

(

− z − 1
2n

+ n−1
2n
η
)

θα+1(z).

(5) θα(−z) = −e
(

− nz + α
n

)

θ−α(z).

(6) The zeros of θα are the points in −α
n
η + 1

n
Z+ Zη and all of them have multiplicity one.

(7) For all r ∈ Z, θα(z +
r
n
η) = e

(

− rz − r
2n

+ rn−r2

2n
η
)

θα+r(z).

Proof. All of this, with the exception of part (7) has been proved before. The formula in (7) is first
proved by induction for all r ≥ 0, then, by replacing α by α − r and z by z − r

n
η in the formula, one

sees that it holds for all r ∈ Z. �

7If we write n = 2p(2l + 1) as in [OF89], then r = −l modulo n.
8The function in (2-4) only depends on r modulo n.



ELLIPTIC ALGEBRAS 11

The basis θ0 for Θ0(Λ) is the function θ defined in (2-1).

2.2.6. A basis for Θn,c(Λ) can be constructed from the basis θα for Θn(Λ) = Θn,n−1
2
(Λ).

Proposition 2.7. For α ∈ Z, let θα be the function defined in (2-6). The functions

θα,c(z) := θα(z −
1
n
c+ n−1

2n
)

have the following properties:

(1) θα+n,c = θα,c.
(2) {θ0,c, . . . , θn−1,c} is a basis of Θn,c(Λ).
(3) θα,c(z +

1
n
) = e(α

n
)θα,c(z).

(4) θα,c(z +
1
n
η) = −e(−z + 1

n
c+ n−1

2n
η)θα+1,c(z).

(5) θα,n−1
2
(z) = θα(z).

Proof. It is clear that (5) holds.
The properties (1), θα,c(z+1) = θα,c(z), and θα,c(z+

1
n
) = e(α

n
)θα,c(z) follow from the same properties

of θα. Let d := 1
n
c− n−1

2n
. Then

θα,c(z + η) = θα(z + η − d)

= −e(−nz + nd)θα(z − d)

= −e(−nz + c− n−1
2
)θα,c(z)

= (−1)ne(−nz + c)θα,c(z).

Hence θα,c ∈ Θn,c(Λ). Since the θ0,c, . . . , θn−1,c are eigenvectors for the linear operator f(z) 7→ f(z + 1
n
)

with different eigenvalues and the dimension of Θn,c(Λ) is n, they are a basis for Θn,c(Λ).
Statement (4) holds because

θα,c(z +
1
n
η) = θα(z +

1
n
η − d)

= e(−z + d− 1
2n

+ n−1
2n
η)θα+1(z − d)

= e(−z + 1
n
c− 1

2
+ n−1

2n
η)θα+1,c(z)

= −e(−z + 1
n
c+ n−1

2n
η)θα+1,c(z).

The proof is now complete. �

In [Ode02, Appendix A], Odesskii considered another basis {θα(z −
1
n
c− n−1

2n
) | α ∈ Zn} for Θn,c(Λ).

It is a basis because

θα(z −
1
n
c− n−1

2n
) = θα(z −

1
n
c+ n−1

2n
− 1 + 1

n
)

= e(α
n
)θα(z −

1
n
c+ n−1

2n
)

= e(α
n
)θα,c(z).

2.3. Θn(Λ) as a representation of the Heisenberg group. Fix d ∈ C. Let S and T be the operators
on the space of meromorphic functions on C defined by

(S · f)(z) = f
(

z + 1
n

)

,

(T · f)(z) = e(z + d)f
(

z + 1
n
η
)

.

Both S and T are invertible and satisfy ST = e( 1
n
)TS.
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It is clear that Θn(Λ) is stable under the action of S and T and that Sn acts as the identity on Θn(Λ).
When d = 1

2n
− n−1

2n
η the operator T n also acts as the identity on Θn(Λ) because

(T n · f)(z) = e(z + d)(T n−1 · f)
(

z + 1
n
η
)

= e(z + d)e(z + 1
n
η + d)(T n−2 · f)

(

z + 2
n
η
)

= · · ·

= e(z + d)e(z + 1
n
η + d) · · · e(z + n−1

n
η + d)f

(

z + n
n
η
)

= e(nz + nd+ n−1
2
η)f
(

z + η
)

= − e(nd+ n−1
2
η)f(z)

= f(z).

This leads to a representation of the Heisenberg group of order n3 on Θn(Λ). This group is

(2-7) Hn := 〈S, T, ǫ | Sn = T n = ǫn = 1, ǫ = [S, T ], [S, ǫ] = [T, ǫ] = 1〉.

Lemma 2.8. The space Θn(Λ) is an irreducible representation of Hn via the actions

(S · f)(z) = f
(

z + 1
n

)

,

(T · f)(z) = e
(

z + 1
2n
− n−1

2n
η
)

f
(

z + 1
n
η
)

.

The action on the θα’s in (2-6) is

S · θα = e
(

α
n

)

θα,

T · θα = θα+1.

Proof. The action of S and T on the θα’s is as claimed because θα
(

z + 1
n

)

= e
(

α
n

)

θα(z) and

(T · θα)(z) = e
(

z + 1
2n
− n−1

2n
η
)

θα
(

z + 1
n
η
)

= e
(

z + 1
2n
− n−1

2n
η
)

e
(

− z − 1
2n

+ n−1
2n
η
)

θα+1(z)

= θα+1(z).

Because the θα’s are S-eigenvectors with different eigenvalues, every subspace of Θn(Λ) that is stable
under the action of S is spanned by some of the θα’s. Since T · θα = θα+1 the only non-zero subrepre-
sentation of Θn(Λ) is Θn(Λ) itself. Hence Θn(Λ) is an irreducible representation of Hn. �

2.4. Embedding E in Pn−1 via Θn(Λ). Evaluation at a point z ∈ C provides a surjective linear map
Θn(Λ)→ C. The kernel of this evaluation map depends only on the coset z+Λ so there is a well-defined
map from C/Λ to the set of codimension-one subspaces of Θn(Λ) or, what is essentially the same thing,
a holomorphic map

(2-8) ι : E −→ P(Θn(Λ)
∗)

to the projective space of 1-dimensional subspaces of Θn(Λ)
∗. Since E and P(Θn(Λ)

∗) are smooth
projective varieties, ι is a morphism of algebraic varieties [GH78, p. 170].

Since the θα’s are a basis for Θn(Λ) they form a system of homogeneous coordinate functions on
P(Θn(Λ)

∗). With respect to this system of homogeneous coordinates the map in (2-8) is

z 7→ (θ0(z), . . . , θn−1(z)).

Suppose n ≥ 3. Since the pullback ι∗O(1) of the twisting sheaf O(1) on P(Θn(Λ)
∗) has degree n,

[Har77, Cor. IV.3.2] implies that ι∗O(1) is very ample. Hence ι is a closed immersion. We will often
identify E with its image under ι. Each linear form on P(Θn(Λ)

∗) vanishes at exactly n points of E
counted with multiplicity and the sum of those points is the image of n−1

2
in E. Conversely, if p1, . . . , pn

are points on E whose sum is the image of n−1
2

there is a function f ∈ Θn(Λ), unique up to non-zero
scalar multiples, that vanishes exactly at p1, . . . , pn modulo Λ, counted with multiplicity.
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Since Θn(Λ) is a representation of Hn, its dual Θn(Λ)
∗ becomes a representation of Hn with respect

to the contragredient action (g · ϕ)(f) = ϕ(g−1 · f) for g ∈ Hn, ϕ ∈ Θn(Λ)
∗, and f ∈ Θn(Λ). Thus Hn

acts as linear automorphisms of P
(

Θn(Λ)
∗
)

. For example, if z ∈ E, then

S · (θ0(z), . . . , θn−1(z)) =
(

θ0
(

z − 1
n

)

, . . . , θn−1

(

z − 1
n

))

.

Since the commutator [S, T ] acts on Θn(Λ) as multiplication by e
(

1
n

)

, it acts trivially on P
(

Θn(Λ)
∗
)

.
Thus, the action of Hn factors through the quotient of Hn by the subgroup generated by [S, T ]. This
quotient is isomorphic to Zn × Zn.

2.5. Another basis for Θn(Λ) when n is odd. As we explained in §2.2.2, the characterization of
the basis for Θn(Λ) in the Kiev preprint [FO89] is not compatible with (2-4) and, even after removing
condition (3) in §2.2.2, it is only compatible when n is odd, and in that case, the integer r (modulo n),
and hence the definition of the basis, coincides with that of [OF89] described in §2.2.3.

We denote that basis by ψ0, . . . , ψn−1. Explicitly, we assume that n is odd, and the ψα’s are the
functions in (2-4) with r = n+1

2
(modulo n); i.e.,

ψα(z) = e
(

−α(n+1)
2n

)

θα(z).

The bases {θα} and {ψα} coincide if and only if n = 1.
The transformation properties of the {ψα}’s are given by Lemma 2.5.
For some purposes the ψα’s are a “better” basis than the θα’s. Define ν ∈ Aut(Pn−1) by

ν(x0, x1, . . . , xn−1) := (x0, xn−1, . . . , x1)

as in [Fis10, Lem. 3.5]. By property (3) in §2.2.3, ψα(−z) = − e(−nz)ψ−α(z). The closed immersion
ψ : E → Pn−1 given by ψ(z) = (ψ0(z), . . . , ψn−1(z)) therefore fits into the commutative diagram

E Pn−1

E Pn−1

ψ

[−1] ν

ψ

where [−1] : E → E is the automorphism that sends z to −z; i.e., if ψ(z) = (x0, x1, . . . , xn−1), then
ψ(−z) = (x0, xn−1, . . . , x1)

The only other places in this paper where the functions ψα appear are §§2.2.2 and 3.1.4.

3. Definitions and basic properties of Qn,k(E, τ)

From now on, n > k ≥ 1 are relatively prime integers.
For the remainder of this paper the θα’s are the functions defined in (2-6).

3.1. The definition of Qn,k(E, τ) and reln,k(E, τ) when τ /∈ 1
n
Λ.

Fix τ ∈ C− 1
n
Λ, and let V be a C-vector space with basis {xi | i ∈ Zn}.

Definition 3.1. Qn,k(E, τ) is the quotient of the free algebra TV = C〈x0, . . . , xn−1〉 by the n2 relations

(3-1) rij = rij(τ) :=
∑

r∈Zn

θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
xj−rxi+r, i, j ∈ Zn.

The space of quadratic relations is denoted

reln,k(E, τ) := span{rij(τ) | i, j ∈ Zn} ⊆ V ⊗ V.

For τ ∈ 1
n
Λ, reln,k(E, τ) and Qn,k(E, τ) will be defined in Definition 3.11.
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3.1.1. Although our definition of Qn,k(E, τ) differs from that in [OF89, OF93, OF95, FO98, Ode92],
our Qn,k(E, τ) = their Qn,k(E, τ).

In [OF89, OF93, OF95, FO98, Ode92] the term xj−rxi+r in (3-1) is replaced by xk(j−r)xk(i+r). This
is just a change of variables: our xi is their xki. Proposition 3.21 below shows there is an isomorphism
Qn,k(E, τ) → Qn,k′(E, τ) given by xi 7→ xki. Thus, the algebra we call Qn,k(E, τ) with ordered basis
x0, . . . , xn−1 is the same as the algebra Qn,k′(E, τ) with ordered basis x0, . . . , xn−1 in loc. cit.

3.1.2. When k = 1, our relation rij = 0 is identical to that at [Ode02, (18), p. 1143]; that definition of
Qn,1(E, τ) is used in Odesskii’s subsequent papers [OR08, ORTP11a, ORTP11b].

3.1.3. Suppose k = 1. Then rii = 0 for all i because θ0(0) = 0. Thus, whenever we speak of rij when
k = 1 we will assume that i 6= j. (When k 6= 1, rij(τ) is non-zero for all i, j and all τ ∈ C− 1

n
Λ.) When

i 6= j all the structure constants in rij have the same numerator so rij can be replaced by the relation

(3-2)
∑

r∈Zn

xj−rxi+r
θj−i−r(−τ)θr(τ)

= 0.

3.1.4. Relations for Qn,1(E, τ) when n is odd. In the Kiev preprint [FO89, §3], Qn,1(E, τ) is defined for
odd n ≥ 3 as the free algebra C〈x0, . . . , xn−1〉 modulo the n(n− 1) relations

(3-3)
x2i

θj(τ)θ−j(τ)
+

xi−1xi+1

θ1+j(τ)θ1−j(τ)
+ · · · +

xi−(n−1)xi+n−1

θn−1+j(τ)θn−1−j(τ)
= 0

indexed by (i, j) ∈ Zn × (Zn − {0}). These relations do not hold in our Qn,1(E, τ) because our θα’s are
not the same as those in [FO89]. If n is odd and ω = e( 1

n
), then the relations

(3-4)
x2i

θj(τ)θ−j(τ)
+ ω

xi−1xi+1

θ1+j(τ)θ1−j(τ)
+ · · · + ωn−1 xi−(n−1)xi+n−1

θn−1+j(τ)θn−1−j(τ)
= 0, (i, j) ∈ Zn× (Zn−{0}),

hold in Qn,1(E, τ). If n is odd and ψa(z) = e
(

− α(n+1)
2n

)

θα(z), as in §2.5, then

(3-5)
x2i

ψj(τ)ψ−j(τ)
+

xi−1xi+1

ψ1+j(τ)ψ1−j(τ)
+ · · · +

xi−(n−1)xi+n−1

ψn−1+j(τ)ψn−1−j(τ)
= 0

in Qn,1(E, τ). It is likely that the θα’s in the Kiev preprint (for n odd) are the ψα’s.
Proposition 3.24 provides relations for Qn,k(E, τ) that are similar to those in (3-4) in the sense that

the indices on the x’s involve i but not j and the indices on the θα’s involve j but not i.

3.2. Extending the definition of Qn,k(E, τ) to all τ ∈ C when k = 1. Feigin and Odesskii provide
three ways to extend the definition of Qn,1(E, τ) to all τ ∈ C. The results in this section are theirs: we
make some of their implicit statements explicit, fill in some details, and explain some incompatibilities
between their conventions.

3.2.1. Conventions. IfW is a finite dimensional C-vector space we will write SymdW and AltdW for the
subspaces ofW⊗d on which the symmetric group of order d! acts via the trivial and sign representations,
respectively.

Let W be a finite dimensional C-vector space of C-valued functions on a set X . We adopt the
convention that W⊗d acts as functions on Xd by (w1⊗ · · · ⊗wd)(x1, . . . , xd) = w1(x1) · · ·wd(xd). Thus,
SymdW (resp., AltdW ) consists of symmetric (resp., anti- or skew-symmetric) functions Xd → C.

Lemma 3.2. Fix c ∈ C. By the above convention, Θn,c(Λ)
⊗d is identified with the space of holomorphic

functions f on Cd such that f is a function in Θn,c(Λ) in each variable. SymdΘn,c(Λ) and AltdΘn,c(Λ)
are identified with those functions that are symmetric and anti-symmetric, respectively.
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Proof. Let f : Cd → C be a holomorphic function that is a function in Θn,c(Λ) in each variable. Since
the function zd 7→ f(z1, . . . , zd) belongs to Θn,c(Λ) for each (z1, . . . , zd−1) ∈ Cd−1, there are unique
functions ρα : Cd−1 → C, α ∈ Zn, such that

f(z1, . . . , zd) =
∑

α∈Zn

ρα(z1, . . . , zd−1)θα,c(zd)

as functions of zd, where {θα,c | α ∈ Zn} is the basis for Θn,c(Λ) defined in Proposition 2.7. The
quasi-periodicity of f with respect to z1, . . . , zd−1 implies that the ρα’s have the same quasi-periodicity
properties.

We will now show that ρα is a holomorphic function. Since {θ0,c, . . . , θn−1,c} is linearly independent,

span{(θ0,c(z), . . . , θn−1,c(z)) | z ∈ C} = C
n.

Thus, for fixed β ∈ Zn, there is a finite set of points (ti, xi) ∈ C
2 such that

∑

i tiθα,c(xi) = δα,β, the
Kronecker delta. Hence

ρβ(z1, . . . , zd−1) =
∑

α∈Zn

ρα(z1, . . . , zd−1)δα,β

=
∑

α∈Zn

∑

i

ρα(z1, . . . , zd−1)tiθα,c(xi)

=
∑

i

tif(z1, . . . , zd−1, xi)

is a holomorphic function on Cd−1. Therefore ρα is a function in Θn,c(Λ) in each variable.
Applying this procedure to ρα inductively, we deduce that f is a linear combination of the functions

of the form θα1 ⊗ · · · ⊗ θαd
, and the uniqueness of ρα in each step implies that the coefficients of

θα1 ⊗ · · · ⊗ θαd
’s are unique. This proves the first statement. The second statement follows. �

3.2.2. Definition of Qn,k(E, τ) via an “elliptic” shuffle product. The symmetric algebra SV := TV/(Alt2 V )
is naturally isomorphic as a graded C-algebra to

SymV :=

∞
⊕

d=0

Symd V ⊆ TV

when SymV is endowed with the shuffle product. Feigin and Odesskii proved an “elliptic” analogue of
this result. We now follow [Ode02, §2] and [FO01, §1] with some small changes that we will comment
on later.

Let c = n−1
2
. For d ≥ 1, by Lemma 3.2, the space SymdΘn,c+(1−d)nτ (Λ) is identified with the space of

symmetric holomorphic functions f(z1, . . . , zd) on Cd such that

f(z1 + 1, z2, . . . , zd) = f(z1, z2, . . . , zd)

f(z1 + η, z2, . . . , zd) = e(−nz1 + c+ (1− d)nτ + n
2
) f(z1, z2, . . . , zd).

with the convention Sym0 = C. We now define the graded vector space

F = Fn(E, τ) :=

∞
⊕

d=0

SymdΘn,c+(1−d)nτ (Λ).

Note that F0 = C and F1 = Θn,c(Λ) = Θn(Λ). Since dimΘm,c(Λ) = m for all c ∈ C and all m ≥ 1,

dimFd =
(

n+d−1
d

)

, which is the same as the dimension of the degree-d component of the polynomial ring
on n variables.

For α, β ∈ Z≥0, let Sα+β denote the group of permutations of {1, . . . , α + β} and define

Sα|β := {σ ∈ Sα+β | σ(1) < · · · < σ(α) and σ(α + 1) < · · · < σ(α + β)}.



16 ALEX CHIRVASITU, RYO KANDA, AND S. PAUL SMITH

Proposition 3.3. [Ode02, p. 1137 and Prop. 10, p. 1142]9 The space Fn(E, τ) is a graded C-algebra
with respect to the multiplication ∗ defined as follows: if f ∈ Fα and g ∈ Fβ, then

(f ∗ g)(z1, . . . , zα+β)(3-6)

:=
1

α!β!

∑

σ∈Sα+β

cα,β,σ(z)f(zσ(1), . . . , zσ(α))g(zσ(α+1) + 2ατ, . . . , zσ(α+β) + 2ατ)(3-7)

=
∑

σ∈Sα|β

cα,β,σ(z)f(zσ(1), . . . , zσ(α))g(zσ(α+1) + 2ατ, . . . , zσ(α+β) + 2ατ)(3-8)

where

cα,β,σ(z) = cα,β,σ(z1, . . . , zα+β) =
∏

1≤i≤α
α+1≤j≤α+β

θ(zσ(i) − zσ(j) + nτ)

θ(zσ(i) − zσ(j))
.

If τ /∈ 1
n
Λ, the map xi 7→ θi extends to a homomorphism of graded C-algebras, Qn,1(E, τ)→ Fn(E, τ).

Proof. It is proved in [Ode02, Prop. 5, p. 1137] that f ∗ g is holomorphic on C
α+β . A straightforward

computation shows that ∗ is associative.
To prove that the map xi 7→ θi extends to a homomorphism we must show that

(3-9)
∑

r∈Zn

1

θj−i−r(−τ)θr(τ)

(

θj−r ∗ θi+r
)

(x, y) = 0

for all i, j ∈ Zn and all (x, y) ∈ C2. If f, g ∈ F1 = Θn(Λ), then

(3-10) (f ∗ g)(x, y) = f(x)g(y + 2τ)
θ(x− y + nτ)

θ(x− y)
+ f(y)g(x+ 2τ)

θ(y − x+ nτ)

θ(y − x)

so we must show that
∑

r∈Zn

1

θj−i−r(−τ)θr(τ)
×

(

θ(x− y + nτ)

θ(x− y)
θj−r(x)θi+r(y + 2τ) +

θ(y − x+ nτ)

θ(y − x)
θj−r(y)θi+r(x+ 2τ)

)

= 0.

After changing notation, equation (30) in [Ode02] (see also [CKS19, Cor. 5.10]) says that

θ(−nτ + x− y)

θ(x− y)

(

θi(x+ τ)θj(y + τ)− θi(y + τ)θj(x+ τ)
)

(3-11)

= d
∑

r∈Zn

1

θj−i−r(−τ)θr(τ)
θj−r(x)θi+r(y + 2τ)(3-12)

where d = 1
n
θ( 1

n
) · · · θ(n−1

n
) θ(−nτ)θj−i(0). So we must show that (3-13) + (3-14) = 0 where

(3-13)
θ(x− y + nτ)

θ(x− y)
d−1 θ(−nτ + x− y)

θ(x− y)

(

θi(x+ τ)θj(y + τ)− θi(y + τ)θj(x+ τ)
)

and

(3-14)
θ(y − x+ nτ)

θ(y − x)
d−1 θ(−nτ + y − x)

θ(y − x)

(

θi(y + τ)θj(x+ τ)− θi(x+ τ)θj(y + τ)
)

.

However, θ(−z) = −e(−z)θ(z), so

θ(x− y + nτ)

θ(x− y)
d−1 θ(−nτ + x− y)

θ(x− y)
=

θ(y − x+ nτ)

θ(y − x)
d−1 θ(−nτ + y − x)

θ(y − x)
.

It follows that (3-13) + (3-14) = 0. �

9See also [FO98, Prop., p. 37].
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Proposition 3.3 should be compared to Proposition 10 in Odesskii’s survey [Ode02, p. 1142] which says
that the map xi 7→ θi extends to an algebra isomorphism Qn,1(E, τ)→ Fn(E,−τ); this is not correct—
the last sentence on p. 1142 is not true. Indeed, when z1−z2 = nτ , that sentence (with η replaced by τ)
and (3-11) = (3-12) imply that θi(z1−nτ +τ)θj(z1−3τ)−θi(z1−3τ)θj(z1−nτ +τ) = 0 for all i, j, z1, τ .
However, if z1 = 3τ − i

n
η, then θi(z1 − 3τ) = 0 so that we obtain θi(3τ −

i
n
η − nτ + τ)θj(−

i
n
η) = 0 for

all i, j, τ ; this is clearly false. A corrected version of Proposition 10 would say that the map x−i 7→ θi
extends to an algebra homomorphism Qn,1(E, τ)→ Fn(E,−τ) (by Proposition 3.22). We have not been
able to verify whether this is an isomorphism when τ /∈ 1

n
Λ. For example, to show this map is surjective

one would have to show that Fn(E, τ) is generated by its degree-one component and we have not been
able to verify that.

Since cα,β,σ(z) = 1 when τ = 0, the multiplication on Fn(E, 0) = SymΘn(Λ) is the usual shuffle
product.

3.2.3. A definition of reln,1(E, τ) as a space of the holomorphic functions on C2. This subsection makes
no use of the material in §3.2.2.

In this subsection we identify the degree-one component of Qn,1(E, τ) with Θn(Λ) via xi ↔ θi.
With this convention, reln,1(E, τ) is a subspace of Θn(Λ)

⊗2 and elements of reln,1(E, τ) are holomorphic
functions C2 → C (see the convention in §3.2.1).

Proposition 3.4. Assume τ /∈ 1
n
Λ. The map

ψ : Alt2Θn(Λ) −→ reln,1(E, τ)

given by

(3-15) ψ(f)(x, y) :=
θ(x− y + (2− n)τ)

θ(x− y + 2τ)
f(x+ τ, y − τ)

is an isomorphism of vector spaces. Therefore

dim reln,1(E, τ) =
(

n
2

)

.

Proof. Since dimΘn(Λ) = n, the dimension of Alt2Θn(Λ) is
(

n
2

)

. Thus the final conclusion of the
proposition follows from the first.

Let Ψ be the automorphism of the field of C-valued meromorphic functions on C2 defined by the same
formula as (3-15). Since ψ is a restriction of Ψ, it suffices to show that Ψ(Alt2Θn(Λ)) = reln,1(E, τ).

Since the θα’s form a basis for Θn(Λ), the domain Alt2Θn(Λ) of ψ is the linear span of the functions

(3-16) fi,j(x, y) := θi(x)θj(y)− θi(y)θj(x), i, j ∈ Zn.

Define

(3-17) hi,j(x, y) := d
∑

r∈Zn

1

θj−i−r(−τ)θr(τ)
θj−r(x)θi+r(y)

where d = 1
n
θ( 1

n
) · · · θ(n−1

n
)θ(−nτ)θj−i(0). Because we are identifying V with Θn(Λ) via xi ↔ θi,

V ⊗2 ∋ ri,j ←→ d−1θj−i(0)hi,j ∈ Θn(Λ)
⊗2.

Thus, reln,1(E, τ) = span{hi,j | (i, j) ∈ Z2
n}.

The identity (3-11) = (3-12) says that Ψ(fi,j)(x, y + 2τ) = hi,j(x, y + 2τ) so Ψ(fi,j) = hi,j. Therefore
Ψ(Alt2Θn(Λ)) = reln,1(E, τ). �

In §3.2.6, we describe the relation between Proposition 3.4 and the description of reln,1(E, τ) that is
used in Tate and Van den Bergh’s paper [TVdB96].

If we view hi,j(x, y) as a meromorphic function of (x, y, τ) ∈ C3, then the singularities at C2× 1
n
Λ are

removable.

Lemma 3.5. Fix (i, j) ∈ Z2
n. The function hi,j(x, y), viewed as a function of (x, y, τ) defined on

C2 × (C− 1
n
Λ), extends uniquely to a holomorphic function on C3.
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Proof. Assume τ ∈ 1
n
Λ. Since nτ ∈ Λ, θ(−nτ) = 0. If only one of θj−i−r(−τ) and θr(τ) is zero, the

potential pole at τ is canceled by the vanishing of θ(−nτ).
If θj−i−r(−τ) = θr(τ) = 0, then −τ ∈ − j−i−r

n
η + 1

n
Z + Zη and τ ∈ − r

n
η + 1

n
Z + Zη. It follows that

0 ∈ − j−i
n
η + 1

n
Z+ Zη, whence θj−i(0) = 0; thus hi,j(x, y) is identically zero. �

We also write hi,j(x, y) for the holomorphic extension of hi,j(x, y) to C3 and define, for all τ ∈ C,

(3-18) reln,1(E, τ) := span{hi,j | (i, j) ∈ Z
2
n}

and

(3-19) Qn,1(E, τ) :=
T (Θn(Λ))

(reln,1(E, τ))
.

The isomorphism ψ in Proposition 3.4 makes sense for all τ ∈ C so, for all τ ∈ C,

dim reln,1(E, τ) =
(

n
2

)

.

3.2.4. Comparing conventions and results in [OF89] with those in this paper. The next result “disagrees”
with the implicit assertion in [OF89, §2] that the quadratic relations for Qn,1(E, τ) are the functions in
Θn(Λ)

⊗2 that satisfy the properties (a) and (b) at [OF89, pp. 210–211] (with s = 2); condition (a) says
that the the quadratic relations for Qn,1(E, τ) vanish on {(x, x+ (n− 2)τ) | x ∈ C}.

Lemma 3.6. The function hij vanishes on the line {(x, x+ (2− n)τ) | x ∈ C} in C2.

Proof. By (3-15), ψ(fij) vanishes on this line. The conclusion follows because ψ(fij) = hij . �

The disagreement is apparent rather than real because Odesskii and Feigin are using a different
(unstated) convention than the one we adopted just before Proposition 3.4. In [OF89, §2] they use the
convention that (f ⊗g)(x, y) = f(y)g(x). That is appropriate because if U and V are finite dimensional
vector spaces one should identify (U ⊗ V )∗ with V ∗⊗U∗, not with U∗⊗ V ∗.10 Nevertheless, we will use
the convention stated just before Proposition 3.4.

3.2.5. A geometric definition of reln,1(E, τ). Fix arbitrary points pi = qi+Λ ∈ E = C/Λ, 1 ≤ i ≤ n, such
that p1+ · · ·+pn = n−1

2
+Λ and define L := OE(D), where D = (p1)+ · · ·+(pn). As mentioned in §2.4,

there is s ∈ Θn(Λ), unique up to non-zero scalar multiples, that vanishes exactly at q1, . . . , qn modulo Λ,
counted with multiplicity. There is an isomorphism of vector spaces Θn(Λ)→ H0(E,L), g 7→ g/s, and
hence an identification between Θn(Λ)

⊗2 and H0(E × E,L⊠ L). Each g ∈ reln,1(E, τ) ⊆ Θn(Λ)
⊗2 can

therefore be considered as a global section of L⊠L and as such it has a divisor of zeros that we denote by
(g)0 (when g 6= 0). By Lemma 3.6, (g)0 contains the shifted diagonal ∆(2−n)τ := {(x, x+(2−n)τ)} ⊆ E2.

The fixed locus of the involution (x, y) 7→ (y − 2τ, x+ 2τ) on E2 is ∆2τ := {(x, x+ 2τ)}.
For non-zero g ∈ H0(E × E,L⊠ L), we define the following conditions:

(a′) (g)0 −∆(2−n)τ is an effective divisor; i.e., g vanishes along ∆(2−n)τ .
(b1′) (g)0 −∆(2−n)τ is stable under the involution (x, y) 7→ (y − 2τ, x+ 2τ) on E2.
(b2′) (g)0 −∆(2−n)τ contains ∆2τ with even, possibly zero, multiplicity.

Condition (a′) is the analogue of (a) at [OF89, pp. 210–211] for s = 2. Conditions (b1′) and (b2′) are
the analogues of the first and the second assertions of (b), respectively, when s = 2. Lemma 3.6 says
that the quadratic relations for Qn,1(E, τ) satisfy condition (a′).

Let

D′
2 := {functions in Θn(Λ)

⊗2 that satisfy (a′), (b1′), and (b2′)} ∪ {0}.

Thus, D′
2 is the analogue of Odesskii and Feigin’s space D2 defined at [OF89, p. 210].

Lemma 3.7. Let 0 6= g ∈ reln,1(E, τ) ⊆ Θn(Λ)
⊗2. Then g satisfies (b1 ′) and (b2 ′).

10That this is the “right” convention is apparent when U and V are finite dimensional modules over a C-algebra A: if
U is a right A-module and V a left A-module, then U∗ becomes a left A-module and V ∗ becomes a right A-module and
there is a natural map V ∗ ⊗A U∗ → (U ⊗A V )∗ (one can not reverse the order of the tensorands in this situation).
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Proof. (b1′) If ψ is the isomorphism in Proposition 3.4, then g = ψ(f) for some f ∈ Alt2Θn(Λ). Let
p(x, y) be the numerator of the fraction in (3-15) and let q(x, y) := g(x, y)/p(x, y). The zero locus of
g is the union of the zero loci of p and q, counted with multiplicity. The zero locus of p is the inverse
image of ∆(2−n)τ under the projection C→ E. Since

q(y − 2τ, x+ 2τ) =
f(y − τ, x+ τ)

θ(y − x− 2τ)

=
− f(x+ τ, y − τ)

− e(y − x− 2τ)θ(x− y + 2τ)

=
q(x, y)

e(y − x− 2τ)
,

the zero locus of q is stable under the involution (x, y) 7→ (y − 2τ, x+ 2τ) on C2. Thus g satisfies (b1′).
(b2′) Write g = ψ(f) as before. Since f is an anti-symmetric function, the zero locus of f contains

the diagonal ∆ = {(x, x)} with odd multiplicity. Suppose τ /∈ 1
n
Λ. Since the denominator of the

fraction in (3-15) has zeros along ∆2τ with multiplicity one and the zero locus of the numerator does
not contain ∆2τ , the zero locus of g = ψ(f) contains ∆2τ with even multiplicity. If τ ∈ 1

n
Λ, then

the theta functions in the numerator and the denominator of (3-15) cancel each other so g(x, y) =
ψ(f)(x, y) = f(x + τ, y − τ) whence (g)0 contains ∆2τ with odd multiplicity ≥ 1. Hence (g)0 − ∆2τ

contains ∆2τ with even multiplicity. �

Lemma 3.8. For all τ ∈ C, reln,1(E, τ) = D′
2.

Proof. By Lemmas 3.6 and 3.7, reln,1(E, τ) ⊆ D′
2. For each g ∈ D

′
2, define

ϕ(g)(x, y) :=
θ(x− y)

θ(x− y − nτ)
g(x− τ, y + τ).

It suffices to show that ϕ(g) ∈ Alt2Θn(Λ) because having done that the (obvious) fact that ψϕ = id
then implies that D′

2 ⊆ reln,1(E, τ).
Since g satisfies (a′), ϕ(g) is holomorphic on C

2 and hence belongs to Θn(Λ)
⊗2. Condition (b1′)

implies that (ϕ(g))0 is stable under the action (x, y) 7→ (y, x) on C2. Since the functions ϕ(g)(x, y) and
ϕ(g)(y, x) have the same divisor of zeros, their ratio is a nowhere vanishing holomorphic function on C2

that is doubly periodic with respect to both x and y, and therefore constant. So ϕ(g)(x, y) = aϕ(g)(y, x)
for some non-zero a ∈ C. Since ϕ(g)(x, y) = aϕ(g)(y, x) = a2ϕ(g)(x, y), a = ±1; hence ϕ(g) is either
symmetric or anti-symmetric. Condition (b2′) implies that (ϕ(g))0 contains ∆ with odd multiplicity, so
ϕ(g) is anti-symmetric. �

Proposition 3.9. Assume τ /∈ 1
n
Λ. The map xi 7→ θi extends to an isomorphism

(3-20) Qn,1(E, τ)
∼
−→

T (Θn(Λ))

(D′
2)

.

Proof. This is an immediate consequence of Lemma 3.8. �

We could use the right-hand side of (3-20) to define Qn,1(E, τ) for all τ ∈ C. That definition would
agree with that in (3-19).

Since we are identifying Θn(Λ) with H
0(E,L), the isomorphism in (3-20) can be written as

(3-21) Qn,1(E, τ) ∼=
T (H0(E,L))

(D′′
2)

where D′′
2 is the subspace of H0(E2,L ⊠ L) consisting of the sections satisfying conditions (a′), (b1′),

and (b2′). We could therefore use the right-hand side of (3-21) as a definition of Qn,1(E, τ).
The virtue of using the right-hand side of (3-21) as a definition of Qn,1(E, τ) is that it allows one to

define Qn,1(E, τ) for any base field and any E having a line bundle of degree n [TVdB96, §4.1]. It would
be very useful to have a similar “geometric” definition of Qn,k(E, τ) when k > 1.
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3.2.6. Comparison with Tate-Van den Bergh’s construction of Qn,1(E, τ). Denote by τ the translation
automorphism x 7→ x+ τ of E. In [TVdB96, §4.1], Tate and Van den Bergh considered an isomorphism

φ : (1, τ−2)∗((τ ∗L⊠ τ ∗L)(−∆)) −→ (L⊠ L)(−∆(2−n)τ )

where (1, τ−2)(x, y) = (x, y − 2τ), and defined the space of quadratic relations for Qn,1(E, τ) to be
φ
(

(1, τ−2)∗(Alt2H0(E, τ ∗L))
)

.11 We will now describe the relation between φ and the isomorphism

ψ : Alt2Θn(Λ)→ reln,1(E, τ) in Proposition 3.4.
The domain (1, τ−2)∗((τ ∗L⊠ τ ∗L)(−∆)) of φ equals (τ ∗L⊠ (τ−1)∗L)(−∆2τ ) and φ is the composition

(3-22) (τ ∗L⊠ (τ−1)∗L)(−∆2τ )
ε

// (L⊠ L)(−∆)
δ

// (L⊠ L)(−∆(2−n)τ )

where ε(f)(x, y) := f(x− τ, y + τ) and

δ(f)(x, y) :=
s(x+ τ)s(y − τ)

s(x)s(y)

θ(x− y + (2− n)τ)

θ(x− y + 2τ)
f(x+ τ, y − τ)

where s ∈ Θn(Λ) is the function identified in the first paragraph of §3.2.5. The map δ is the global
version of the isomorphism ψ in Proposition 3.4; the terms involving s in the definition of δ occur
because we are identifying Θn(Λ) and H

0(L) via g 7→ g/s.
Thus H0 applied to (3-22) induces isomorphisms

(1, τ−2)∗(Alt2H0(E, τ ∗L))
H0(ε)

// Alt2H0(L)
H0(δ)

// reln,1(E, τ)

where the last isomorphism H0(δ) is equal to ψ via the identification Θn(Λ) ∼= H0(L).

3.3. Extending the definition of reln,k(E, τ) and Qn,k(E, τ) to all τ ∈ C when k ≥ 1. In this
subsection we consider three ways of defining reln,k(E, τ) for all τ ∈ C, and show they produce the same
space in “good” situations.

3.3.1. The first method. If τ ∈ C− 1
n
Λ and rij(τ) 6= 0, we define

Lij(τ) := Crij(τ).

In Proposition 3.10 we use a standard result in projective algebraic geometry to define Lij(τ) for all
τ ∈ C; in Definition 3.11 we then define reln,k(E, τ) to be the linear span of these Lij(τ)’s. We do not
define rij(τ) for all τ .

Proposition 3.10. Fix (i, j) ∈ Z2
n such that rij(τ) is not identically zero on C− 1

n
Λ. When τ ∈ C− 1

n
Λ,

let Lij(τ) be the 1-dimensional subspace of V ⊗ V spanned by the element rij(τ) in (3-1). The map

(3-23) Lij : E − E[n] −→ P(V ⊗ V ), τ 7→ Lij(τ),

is a morphism of algebraic varieties and extends uniquely to a morphism E → P(V ⊗V ) that we continue
to denote by Lij.

Proof. Since the zeros of the θα’s belong to 1
n
Λ, the hypothesis that τ is not in 1

n
Λ ensures that the

coefficient of every xj−r ⊗ xi+r in rij(τ) is a well-defined number. By hypothesis, at least one of those
coefficients is non-zero so rij(τ) 6= 0 for all τ ∈ E − E[n]. As remarked in §3.1, the subspace Lij(τ)
depends only the image of τ in E − E[n]. Hence Lij is a well-defined map from E −E[n].

Since the map E → P
n−1 given by z 7→ (θ0(z), . . . , θn−1(z)) is a morphism of algebraic varieties, the

ratios θα(z)/θβ(z) are rational functions on E and therefore regular functions on E −E[n]. Thus, since
θα(−τ) = −e(−nτ +

α
n

)

θ−α(τ), the ratio of any two of the coefficients of rij(τ) is a regular function on
E − E[n]. Hence Lij is a morphism of algebraic varieties.

Since E is a non-singular curve, Lij extends uniquely to a morphism E → P(V ⊗V ) by using [Har77,
Prop. I.6.8] repeatedly. �

11The automorphisms σ and θ in [TVdB96, §4.1] are our τ−1 and τ2, respectively.
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If rij(τ) is not identically zero on C− 1
n
Λ, we will abuse notation and define, for all τ ∈ C,

Lij(τ) := Lij(the image of τ in E) ⊆ V ⊗2.

Definition 3.11. For all τ ∈ C, we define

reln,k(E, τ) := the subspace of V ⊗2 spanned by the Lij(τ)’s ,

Qn,k(E, τ) :=
C〈x0, . . . , xn−1〉

(reln,k(E, τ))
.

When k = 1, this definition agrees with the definition of reln,1(E, τ) in (3-18) (Proposition 3.16).

Proposition 3.12. For all τ ∈ C, Q2,1(E, τ) = C[x0, x1], a polynomial ring on two variables.

Proof. First we consider the case τ /∈ 1
2
Λ. Since θ0(0) = 0, r00 = r11 = 0. The other relations in (3-1)

are

r01 = θ1(0)

(

x1x0
θ1(−τ)θ0(τ)

+
x0x1

θ0(−τ)θ1(τ)

)

, and

r10 = θ1(0)

(

x0x1
θ1(−τ)θ0(τ)

+
x1x0

θ0(−τ)θ1(τ)

)

in C〈x0, x1〉. Since n = 2,

θα(−z) = −e(−2z + α
2
) θ−α(z).

In particular, θ0(−z) = −e(−2z)θ0(z) and θ1(−z) = e(−2z)θ1(z) so

r01 = −
θ1(0)

e(−2τ)θ0(τ)θ1(τ)
(x0x1 − x1x0) = −r10.

Let (i, j) = (0, 1) or (1, 0). The morphism Lij : E − E[2] → P(V ⊗ V ) is constant with value
C.(x0x1 − x1x0) so it extends to the constant morphism E → P(V ⊗ V ) sending every point in E to
C.(x0x1 − x1x0). Therefore rel2,1(E, τ) = C.(x0x1 − x1x0) and Q2,1(E, τ) = C[x0, x1]. �

3.3.2. The second method. For each τ ∈ C − 1
n
Λ, and each z ∈ C, we define the linear operator

Rτ (z) : V
⊗2 → V ⊗2 by the formula

(3-24) Rτ (z)(xi ⊗ xj) :=
θ0(−z) · · · θn−1(−z)

θ1(0) · · · θn−1(0)

∑

r∈Zn

θj−i+r(k−1)(−z + τ)

θj−i−r(−z)θkr(τ)
xj−r ⊗ xi+r

for all (i, j) ∈ Z2
n. The fact that τ /∈ 1

n
Λ ensures that θkr(τ) 6= 0 for all r ∈ Zn whence z 7→ Rτ (z) is a

holomorphic function C→ EndC(V
⊗2).

If τ ∈ C− 1
n
Λ, then the term before the Σ symbol in (3-24) is non-zero at z = τ so Rτ (τ)(xi ⊗ xj) is

a non-zero scalar multiple of rij(τ) and reln,k(E, τ) = the image of Rτ (τ).
The term θ1(0) · · · θn−1(0) before the Σ sign is a normalization factor which ensures that Rτ (0) is

the identity operator on V ⊗2. The importance of this becomes apparent in one of our later papers
when we exploit the fact that Rτ (z) is a solution to the quantum Yang-Baxter equation (with spectral
parameter). The normalization factor plays no role in this paper.

As a function of τ , Rτ (τ) is holomorphic on C− 1
n
Λ and its singularities at 1

n
Λ are removable:

Lemma 3.13. The function τ 7→ Rτ (τ) extends uniquely to a holomorphic function on C, which we
also denote by Rτ (τ).

12

12We warn the reader that R0(0), which is defined to be limτ→0Rτ (τ), does not equal limτ→0Rτ (−τ) (see [CKS20,
§5]).
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Proof. If the two theta functions in the denominator of one of the summands in the expression

(3-25) Rτ (τ)(xi ⊗ xj) =
θ0(−τ) · · · θn−1(−τ)

θ1(0) · · · θn−1(0)

∑

r∈Zn

θj−i+r(k−1)(0)

θj−i−r(−τ)θkr(τ)
xj−r ⊗ xi+r

both vanish at τ , then −τ ∈ − j−i−r
n

η+ 1
n
Z+Zη and τ ∈ −kr

n
η+ 1

n
Z+Zη so 0 ∈ − j−i+(k−1)r

n
η+ 1

n
Z+Zη,

whence θj−i+r(k−1)(0) = 0. Each summand therefore has at most a pole of order 1 at τ which is canceled
out by the order-one zero at τ that appears in the term before the Σ sign. �

Lemma 3.14. For all τ ∈ C,

C.Rτ (τ)(xi ⊗ xj) =

{

0 if τ = a
n
+ b

n
η for some a, b ∈ Z and i− j = (k′ − 1)b in Zn,

Lij(τ) otherwise.

Proof. Suppose Rτ (τ)(xi ⊗ xj) 6= 0. There is a neighborhood U ⊆ E of τ + Λ on which the function
z 7→ C.Rz(z)(xi ⊗ xj) is a non-vanishing continuous function U → P(V ⊗ V ). Since this function
agrees with the function z 7→ Lij(z) on U ∩ (E − E[n]), these two functions agree on U . Hence
C.Rτ (τ)(xi ⊗ xj) = Lij(τ).

Now we assume that Rτ (τ)(xi ⊗ xj) = 0.
If τ /∈ 1

n
Λ, then rij(τ) would be non-zero and Rτ (τ)(xi ⊗ xj) would be a non-zero scalar multiple

of rij(τ); but this is not the case, so we conclude that τ = a
n
+ b

n
η for some a, b ∈ Z. Since the term

before the Σ sign in (3-24) has a zero of order 1 at z = a
n
+ b

n
η, θj−i+r(k−1)(0) must be 0 whenever

θj−i−r(−τ)θkr(τ) = 0; i.e., j − i + r(k − 1) = 0 when j − i − r = b and when kr = −b (in Zn); i.e.,
j − i+ (j − i− b)(k − 1) = j − i− k′b(k − 1) = 0; hence j − i+ (k′ − 1)b = 0. �

The next proof uses two results that are proved in later sections.

Proposition 3.15. For all τ ∈ C,

reln,k(E, τ) = the image of Rτ (τ).

Proof. If τ /∈ 1
n
Λ, then C.Rτ (τ)(xi ⊗ xj) = Lij(τ) for all i and j for which rij is not identically zero on

C− 1
n
Λ so imRτ (τ) = reln,k(E, τ). It therefore remains to prove the result when τ = a

n
+ b

n
η for some

a, b ∈ Z. For the rest of the proof we assume that is the case.
If i− j 6= (k′ − 1)b, then C.Rτ (τ)(xi ⊗ xj) = Lij(τ). Hence

reln,k(E, τ) = imRτ (τ) +
∑

i,j∈Zn

i−j=(k′−1)b

Lij(τ).

We will complete the proof by showing that the Lij(τ)’s for which i− j = (k′− 1)b are contained in the
sum of the Li′j′(τ)’s for which j

′ − i′ + (k′ − 1)b 6= 0.
With that goal in mind, assume i− j = (k′ − 1)b. By Lemma 4.2,

Lij(τ) = (1⊗ S−k−1)a(Lij(
b
n
η))

= (1⊗ S−k−1)a(1⊗ T−k′−1)b(Li+b,j+k′b(0))

= (1⊗ S−k−1)a(1⊗ T−k′−1)b(Li+b,i+b(0)).

By Proposition 5.1(2), Li+b,i+b(0) is contained in the sum of the Lαβ(0)’s for which α 6= β. Thus Lij(τ)
is contained in

∑

α6=β

(1⊗ S−k−1)a(1⊗ T−k′−1)b(Lαβ(0)) =
∑

α6=β

Lα−b,β−k′b(τ).

Set i′ := α− b and j′ := β − k′b. Then α 6= β implies j′ − i′ + (k′ − 1)b 6= 0. �

Proposition 3.16. When k = 1, the space reln,k(E, τ) defined in Definition 3.11 is equal to reln,1(E, τ)
defined in (3-18).
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Proof. In this proof, reln,1(E, τ) denotes the space defined in (3-18). We will show that reln,1(E, τ) =
rel′n,1(E, τ). Recall that reln,1(E, τ) is the subspace of Θn(Λ)

⊗2 spanned by hij ’s defined in (3-17) via
the identification xi ↔ θi. Hence

hij = 1
n
θ( 1

n
) · · · θ(n−1

n
)θ1(0) · · · θn−1(0)g(τ)Rτ (τ)(xi ⊗ xj)

where

g(τ) :=
θ(−nτ)

θ0(−τ) · · · θn−1(−τ)
.

Since both the numerator and denominator of g(τ) have zeros exactly at 1
n
Λ with multiplicity one, g is a

nowhere vanishing holomorphic function on C. Thus the linear span of hij is equal to that of Rij(xi⊗xj)
for all τ . �

3.3.3. The third method. We write Grass(d,W ) for the Grassmannian of d-dimensional subspaces of a
finite dimensional vector space W .

In [CKS20], we will show that Qn,k(E, τ) has the same Hilbert series as the polynomial ring on n
variables when τ is not a torsion point of E. The first step towards this is to determine the dimension
of reln,k(E, τ). (The results in this paper do not give any information about this, except in some special
cases.) In [CKS20], we will show that dim reln,k(E, τ) =

(

n
2

)

when τ /∈ E[2n].13

Once we know that dim reln,k(E, τ) =
(

n
2

)

outside a finite set S ⊆ E, the map τ 7→ reln,k(E, τ)

becomes a morphism E−S → Grass
((

n
2

)

, V ⊗2
)

; that morphism extends in a unique way to a morphism

f : E → Grass
((

n
2

)

, V ⊗2
)

so we could use f(τ) in place of reln,k(E, τ). In this subsection we fill in
the details of this argument and check that reln,k(E, τ) is contained in f(τ) (with equality whenever
dim reln,k(E, τ) =

(

n
2

)

).
Although the next two results are “standard” we include proofs for the convenience of the reader. In

them we work over an algebraically closed field k.

Proposition 3.17. [Sal99, Prop. 13.4] Let W and W ′ be finite dimensional k-vector spaces. Let d :=
dimW . Let X be a variety over k and g : X → Homk(W,W

′) a morphism of varieties. If r := rank g(x)
is the same for all x ∈ X, then the maps

(1) X → Grass(r,W ′), x 7→ im g(x), and
(2) X → Grass(d− r,W ), x 7→ ker g(x),

are morphisms.

Proof. (1) Fix a basis {e1, . . . , ed} for W . For each r-element subset I ⊆ {1, . . . , d}, let

UI := {x ∈ X | {g(x)(ei) | i ∈ I} is linearly independent}.

The UI ’s provide an open cover of X .

Let p : Grass(r,W ′)
p
−→ P(

∧rW ′) be the Plücker embedding, p(span{v1, . . . , vr}) := v1 ∧ · · · ∧ vr.

The composition UI −→ Grass(r,W ′)
p
−→ P(

∧rW ′),

x 7→ span
{

g(x)(ei) | i ∈ I} = im g(x) 7→
∧

i∈I

g(x)(ei),

is a morphism; the morphisms UI → Grass(r,W ′) agree on their intersections so glue to give a morphism
X → Grass(r,W ′).

(2) The linear map Hom(W,W ′)→ Hom(W ′∗,W ∗), T 7→ T ∗, is a morphism so its composition with

g; i.e., the map g∗ : X → Hom(W ′∗,W ∗), g∗(x) := g(x)∗, is a morphism. Since ker g(x) =
(

im g∗(x)
)⊥

,
the map x 7→ ker g(x) is the composition

(3-26) x 7→ g∗(x) 7→ im g∗(x) 7→
(

im g∗(x)
)⊥
.

13Corollary 5.2 below shows that dim reln,k(E, τ) =
(

n
2

)

for all τ ∈ E[n].
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The right-most map in (3-26) is given by the map Grass(r,W ′) → Grass(d − r,W ′∗), W0 7→ W⊥
0 ; this

map is an isomorphism of algebraic varieties (see [Has07, (11.8)], for example) so the map in (3-26) is
a morphism, as claimed. �

Lemma 3.18. Let X be a variety over an algebraically closed field k. Let V be a k-vector space with
basis {v1, . . . , vn}. Fix an integer m ≥ 0 and let λij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, be regular functions on X.
For each closed point x ∈ X, define

ri(x) :=
n
∑

j=1

λij(x)vj

for 1 ≤ i ≤ m, R(x) := span{ri(x) | 1 ≤ i ≤ m}, and d := max{dimR(x) | x ∈ X}.

(1) U := {x ∈ X | dimR(x) = d} is a non-empty Zariski-open subset of X.
(2) The map f : U → Grass(d, V ), x 7→ R(x), is a morphism of algebraic varieties.
(3) If X is a non-empty Zariski-open subset of a non-singular curve X, then f extends uniquely to

a morphism X → Grass(d, V ).

Proof. (1) Let Mm,n(k) denote the space of all m × n matrices, and let M(x) := (λij(x)) ∈ Mm,n(k).
Since R(x) is essentially the image of the map “left-multiplication by M(x)”, the dimension of R(x) is
the rank of M(x). Since the rank of a matrix is < s if and only if all its s× s minors vanish, the set of
matrices having rank < s is a Zariski-closed subset of Mm,n(k). Since the map X → Mm,n(k) given by
x 7→M(x) is a morphism of algebraic varieties, the sets

Zs := {x ∈ X | rankM(x) < s}

= {x ∈ X | dimR(x) < s}

are Zariski-closed subsets of X . The sets Us := {x ∈ X | dimR(x) ≥ s} are therefore open subsets of
X . Since dimk(V ) <∞, max{dimR(x) | x ∈ X} exists and U = Ud is a non-empty open subset of X .

(2) The map x 7→ M(x) is a morphism U → Mm,n(k). Since R(x) “is” the image of the map
“multiplication by M(x)”, the result follows from Proposition 3.17(1).

(3) See [Har77, Prop. I.6.8]. �

Proposition 3.19. Let S ⊆ E be a finite subset, let d := max{dim reln,k(E, τ) | τ ∈ E − S}, and let
U = {τ ∈ E − S | dim reln,k(E, τ) = d}.

(1) The function U → Grass(d, V ⊗2), τ 7→ reln,k(E, τ), extends in a unique way to a morphism
f : E → Grass(d, V ⊗2).

(2) For all τ ∈ E, reln,k(E, τ) ⊆ f(τ).
(3) The set U is a non-empty Zariski-open subset of E.

Proof. (1) The existence and uniqueness of f follows from Lemma 3.18 applied to X = E−S ⊆ E = X ,
the function τ 7→ reln,k(E, τ) ⊆ V ⊗2, and the integer d. That lemma also tells us that U is a non-empty
Zariski-open subset of E − S and hence of E, thus proving (3).

(2) It suffices to prove that Lij(τ) ⊆ f(τ) for all τ ∈ E and (i, j) such that rij is not identically zero.

Write W := V ⊗2. Let Y be the zero locus in P((
∧dW )⊗W ) of the linear map

(

∧dW
)

⊗W →
∧d+1W, ω ⊗ v 7→ ω ∧ v.

The set Z := {τ ∈ E | Lij(τ) ⊆ f(τ)} is the inverse image of Y with respect to the composition

E Grass(d,W )× P(W ) P

(

∧dW
)

× P(W ) P

((

∧dW
)

⊗W
)

(f, Lij) p×id ι

where p and ι are the Plücker and Segre embeddings, respectively. Thus Z is a Zariski-closed subset of
E. If τ ∈ U ∩ (E − S), then

Lij(τ) ⊆ reln,k(E, τ) = f(τ)

so Z ⊇ U ∩ (E − S). Since U ∩ (E − S) is a Zariski-dense subset of E − S, Z = E. �
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The extension f does not depend on the choice of S: if S ′ were another finite subset and f ′ the
associated extension, then f would equal f ′ because f and f ′ agree on the dense open subset E−(S∪S ′).

Corollary 3.20. If dim reln,k(E, τ) =
(

n
2

)

for all τ ∈ E, then the morphism f in Proposition 3.19 is
τ 7→ reln,k(E, τ).

Proof. This follows from Proposition 3.19 with S = ∅ and d =
(

n
2

)

since the inclusion reln,k(E, τ) ⊆ f(τ)
in Proposition 3.19(2) must be an equality. �

3.4. Isomorphisms and anti-isomorphisms. The next result is stated in [OF89, §1, Rmk. 3]. Pol-
ishchuk sketches a proof of it at [Pol98, p. 696]; he views the isomorphism in it as a “quantization” of
an isomorphism between certain moduli spaces of vector bundles on E.

The next two proofs use special cases of the equality

(3-27)
θα+β(z1 + z2)

θα(z1)θβ(z2)
= −

θ−α−β(−z1 − z2)

θ−α(−z1)θ−β(−z2)

(which follows from the fact that θα(−z) = −e(−nz +
α
n
)θ−α(z)).

Recall that k′ is the unique integer such that n > k′ ≥ 1 and kk′ = 1 in Zn = Z/nZ.

Proposition 3.21. For all τ ∈ C, there is an isomorphism Φ : Qn,k(E, τ) → Qn,k′(E, τ) given by
Φ(xi) = xki.

Proof. Let Φ be the automorphism of C〈x0, . . . , xn−1〉 defined by Φ(xi) = xk′i for all i ∈ Zn. We will
show that Φ sends the relations for Qn,k(E, τ) bijectively to the relations for Qn,k′(E, τ).

Assume τ ∈ C− 1
n
Λ. For all i, j, r ∈ Zn, let

cijkr(τ) =
θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
and rijk(τ) =

∑

r∈Zn

cijkr(τ)xj−rxi+r.

Let i′ = kj, j′ = ki, and r′ = −k(j − i− r). Then

cijkr(τ) =
θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)

= −
θ−(j−i+(k−1)r)(0)

θ−(j−i−r)(τ)θ−kr(−τ)
by (3-27)

= −
θj′−i′+(k′−1)r′(0)

θj′−i′−r′(−τ)θk′r′(τ)

= − ci′j′k′r′(τ).

Hence

Φ(rijk(τ)) =
∑

r∈Zn

cijkr(τ)xk(j−r)xk(i+r)

= −
∑

r′∈Zn

ci′j′k′r′(τ)xj′−r′xi′+r′

= − ri′j′k′(τ).

Denote by Lijk the morphism Lij : E → P(V ⊗ V ) for Qn,k(E, τ). Thus Lijk is the unique morphism
such that

Lijk(the image of τ in E) = C.rijk(τ)

when τ ∈ C− 1
n
Λ. The above computation shows that Lijk(τ) = Li′j′k′(τ) when τ ∈ C− 1

n
Λ whence Lijk =

Li′j′k′ as morphisms from E. Therefore Φ descends to an isomorphism Qn,k(E, τ)→ Qn,k′(E, τ). �
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Proposition 3.22. Let N ∈ GL(V ) be the map N(xα) = x−α. For all τ ∈ C, N extends to algebra
isomorphisms Qn,k(E, τ)→ Qn,k(E,−τ) and Qn,k(E, τ)→ Qn,k(E, τ)

op. In particular,

Qn,k(E, τ) ∼= Qn,k(E, τ)
op = Qn,k(E,−τ).

Proof. Assume τ ∈ C− 1
n
Λ. By definition, Qn,k(E, τ)

op is C〈x0, . . . , xn−1〉 modulo the relations

ropij (τ) :=
∑

r∈Zn

θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
xi+rxj−r, (i, j) ∈ Z

2
n.

We have

rij(−τ) =
∑

s∈Zn

θj−i+(k−1)s(0)

θj−i−s(τ)θks(−τ)
xj−sxi+s

= −
∑

s∈Zn

θ−j+i−(k−1)s(0)

θ−j+i+s(−τ)θ−ks(τ)
xj−sxi+s by (3-27)

= −
∑

r∈Zn

θi−j+(k−1)r(0)

θi−j−r(−τ)θkr(τ)
xj+rxi−r by r := −s

= − ropji (τ).

Hence Qn,k(E,−τ) = Qn,k(E, τ)
op for all τ ∈ C− 1

n
Λ.

To show that the map N : V → V , N(xα) = x−α, extends to an isomorphism Qn,k(E, τ) →
Qn,k(E,−τ) we must show that reln,k(E,−τ) = span{N(rij(τ))}. This is true because

N(rij(τ)) =
∑

r∈Zn

θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
N(xj−r)N(xi+r)

= −
∑

r∈Zn

θ−j+i−(k−1)r(0)

θ−j+i+r(τ)θ−kr(−τ)
x−j+rx−i−r by (3-27)

= −
∑

s∈Zn

θ−j+i+(k−1)s(0)

θ−j+i−s(τ)θks(−τ)
x−j−sx−i+s by s := −r

= − r−i,−j(−τ).

Therefore N extends to an isomorphism Qn,k(E, τ)→ Qn,k(E,−τ) for all τ ∈ C− 1
n
Λ.

Let σ be the automorphism of P(V ⊗ V ) that sends C.xα ⊗ xβ to C.xβ ⊗ xα. The equality rij(−τ) =
ropji (τ) implies that the morphisms E → P(V ⊗ V ) given by τ 7→ Lij(−τ) and τ 7→ σ(Lji(τ)) agree on
E − E[n]. Since the locus where two morphisms agree is closed, Lij(−τ) = σ(Lji(τ)) for all τ ∈ E.
Hence Qn,k(E,−τ) = Qn,k(E, τ)

op for all τ ∈ E.
The isomorphism N induces an automorphism N⊗2 of P(V ⊗V ) that sends C.xα⊗xβ to C.x−α⊗x−β .

The equality N⊗2(rij(τ)) = −r−i,−j(−τ) can be interpreted as saying that N⊗2(Lij(τ)) = L−i,−j(−τ) on
E −E[n] so, by the same reasoning as before, this equality holds for all τ ∈ E. Hence N⊗2(reln,k(τ)) =
reln,k(−τ). �

3.4.1. The previous result was proved by Tate and Van den Bergh [TVdB96, Prop. 4.1.1, Rmk. 4.1.2]
when k = 1. They also observe in their Proposition 4.1.1 that Qn,1(E, τ) ∼= Qn,1(E, µ(τ)) when µ : E →
E is an automorphism given by complex multiplication.

3.5. The Heisenberg group acts as automorphisms of Qn,k(E, τ). As observed in Lemma 2.8, the
Heisenberg group generators act on the basis for Θn(Λ) as S · θα = e

(

α
n

)

θα, and T · θα = θα+1, and the
commutator ǫ = [S, T ] acts as multiplication by

ω := e
(

1
n

)

.
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We now identify the vector space V = span{x0, . . . , xn−1} generating Qn,k(E, τ) with Θn(Λ) by identi-
fying xα with θα. Thus, V also becomes a representation of Hn with the action given by (3-28) below.
We extend the action of Hn on V to TV in the natural way.

Proposition 3.23. The Heisenberg group Hn acts as degree-preserving C-algebra automorphisms of
Qn,k(E, τ) by

(3-28) S · xi = ωixi, T · xi = xi+1, ǫ · xi = ωxi.

Proof. It is easy to show that S · rij = ωi+jrij and T · rij = ri+1,j+1. Hence reln,k(E, τ) is an Hn-
subrepresentation of V ⊗ V for all τ ∈ E and therefore Hn acts as degree-preserving C-algebra auto-
morphisms of TV/(reln,k(E, τ)). �

3.6. Another set of relations for Qn,k(E, τ). One drawback to the presentation of Qn,k(E, τ) via the
relations in (3-1) is that both i and j appear in the indices of the monomials xj−rxi−r and in the indices
of the structure constants that are the coefficients of those monomials. In particular, if j − i = j′ − i′,
then rij and ri′j′ involve the same monomials but it is not immediately clear which coefficients occur
before the same monomial; for example, if j − i = j′ − i′ = 0 some calculation is required to compare
the coefficients of x20 in each relation. There is, however, a different set of relations for Qn,k(E, τ) with
the property that the new relation indexed by (i, j) has the following property: only i is involved in
indices of the structure constants and only j is involved in the indices of the quadratic monomials
xαxβ . Ultimately, one sees there are row vectors A0, . . . , An−1 in Cn and column vectors B0, . . . , Bn−1

of quadratic monomials such that the new relation indexed by (i, j) is the product AiBj.
We are grateful to Kevin De Laet for allowing us to include the next result.

Proposition 3.24 (De Laet). Assume τ ∈ C− 1
n
Λ. For each (i, j) ∈ Z2

n, let

(3-29) Rij :=
∑

r∈Zn

e
(

r
n

) θ−(k+1)i+(k−1)r(0)

θr+i(τ)θk(r−i)(τ)
xj−rxj+r

and

(3-30) R′
ij :=

∑

r∈Zn

e
(

r
n

) θk−(k+1)i+(k−1)r(0)

θr+i(τ)θk(r−i+1)(τ)
xj−rxj+r+1.

(1) (S ⊗ S)(Rij) = e(2j
n
)Rij and (S ⊗ S)(R′

ij) = e(2j+1
n

)R′
ij.

(2) (T ⊗ T )(Rij) = Ri,j+1 and (T ⊗ T )(R′
ij) = R′

i,j+1.
(3) If n is odd, then reln,k(E, τ) = span{Rij | i, j ∈ Zn} = span{R′

ij | i, j ∈ Zn}.
(4) If n is even, then reln,k(E, τ) = span{Rij, R

′
ij | i, j ∈ Zn}.

(5) If n is even, then Ri+n
2
,j+n

2
= −Rij and R

′
i+n

2
,j+n

2
= −R′

ij.

Proof. If v and w are non-zero scalar multiples of each other we write v ≡ w.
Statements (1) and (2) are immediate.
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Since θα(−z) = −e
(

− nz + α
n

)

θ−α(z),

ri,−i =
∑

r∈Zn

θ−2i+(k−1)r(0)

θ−2i−r(−τ)θkr(τ)
x−i−rxi+r

=
∑

r∈Zn

θ−2i+(k−1)r(0)

−e(−nτ − 2i+r
n

)θ2i+r(τ)θkr(τ)
x−i−rxi+r

≡
∑

r∈Zn

e
(

r
n

) θ−2i+(k−1)r(0)

θ2i+r(τ)θkr(τ)
x−i−rxi+r

=
∑

r′∈Zn

e
(

r′−i
n

) θ−(k+1)i+(k−1)r′(0)

θr′+i(τ)θk(r′−i)(τ)
x−r′xr′ (after setting r′ = i+ r)

≡ Ri0.

Using (2) and T · rij = ri+1,j+1, we obtain Rij = T j · Ri0 ≡ T j · ri,−i = rj+i,j−i. Therefore

span{Rij | i, j ∈ Zn} = span{rj+i,j−i | i, j ∈ Zn}

= span{rα,β | α, β ∈ Zn, α + β ∈ 2Zn}.

Similarly,

ri,1−i =
∑

r∈Zn

θ1−2i+(k−1)r(0)

θ1−2i−r(−τ)θkr(τ)
x1−i−rxi+r

=
∑

r∈Zn

θ1−2i+(k−1)r(0)

−e
(

−nτ − −1+2i+r
n

)

θ−1+2i+r(τ)θkr(τ)
x1−i−rxi+r

≡
∑

r∈Zn

e
(

r
n

) θ1−2i+(k−1)r(0)

θ−1+2i+r(τ)θkr(τ)
x1−i−rxi+r

=
∑

r′∈Zn

e
(

r′−i+1
n

) θk−(k+1)i+(k−1)r′(0)

θr′+i(τ)θk(r′−i+1)(τ)
x−r′xr′+1 (after setting r′ = i+ r − 1)

≡ R′
i0

which implies that R′
ij = T j · R′

i0 ≡ T j · ri,1−i = rj+i,j−i+1 and

span{R′
ij | i, j ∈ Zn} = span{rj+i,j−i+1 | i, j ∈ Zn}

= span{rα,β | α, β ∈ Zn, α + β + 1 ∈ 2Zn}.

If n is odd, then 2Zn = Zn so span{Rij} = span{R′
ij} = reln,k(E, τ). If n is even, then span{Rij , R

′
ij} =

reln,k(E, τ). Hence (3) and (4) hold.
(5) Assume n is even. The relation Rij is a linear combination of terms of the form xj−rxj+r,

r ∈ Zn, and Ri+n
2
,j+n

2
is a linear combination of terms of the form xj+n

2
−r′xj+n

2
+r′, r

′ ∈ Zn. Now
xj−rxj+r = xj+n

2
−r′xj+n

2
+r′ if and only if r′ = r + n

2
. Let r′ = r + n

2
. The coefficient of xj−rxj+r in

Ri+n
2
,j+n

2
is

e
(

r′

n

) θ−(k+1)(i+n
2
)+(k−1)r′(0)

θr′+i+n
2
(τ)θk(r′−i−n

2
)(τ)

= − e
(

r
n

) θ−(k+1)i+(k−1)r(0)

θr+i(τ)θk(r−i)(τ)

which is equal to the coefficient of xj−rxj+r in −Rij . Thus Ri+n
2
,j+n

2
= −Rij as claimed. A similar

argument shows that R′
i+n

2
,j+n

2
= −R′

ij . �
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4. Twisting Qn,k(E, τ)

4.1. Twists. Given a degree-preserving automorphism φ : A→ A of a Z-graded algebra over a field k,
the the twist, Aφ, is the graded vector space A endowed with the associative multiplication

a ∗ b = φm(a)b

when b ∈ Am. There is an equivalence Gr(A) ≡ Gr(Aφ) between their categories of graded left modules
[ATVdB91, Cor. 8.5].

Suppose A = TV/a is the tensor algebra of a vector space V modulo a graded ideal a in TV . The
restriction of φ to V extends to a degree-preserving automorphism of TV that we also denote by φ.
Since φ descends to A, φ(a) = a.

The next result gives a presentation of Aφ.

Lemma 4.1. Let φ′ : TV → TV be the linear map idV ⊗φ ⊗ · · · ⊗ φ
m−1 on each V ⊗m. The identity

map I : V → V extends to a graded algebra isomorphism

TV

φ′(a)
−→

(

TV

a

)φ

.

Proof. Since (TV/a)φ is generated by V as a k-algebra, the identity V → V extends to a graded algebra
homomorphism ρ : TV → (TV/a)φ. We show that ker(ρ) = φ′(a).

Let f ∈ V ⊗m and write f =
∑

i
cixi1 · · ·xim where ci ∈ k for each i = (i1, . . . , im). The image of f by

ρ is

g :=
∑

i

ci · xi1 ∗ · · · ∗ xim ∈ (TV/a)φ.

Thus ρ(f) = 0 if and only if g ∈ a, that is, if and only if
∑

i

ciφ
m−1(xi1)φ

m−2(xi2) · · ·φ(xim−1)xim ∈ a.

Since a is stable under φ, this is equivalent to the statement that a contains

φ−(m−1)

(

∑

i

ciφ
m−1(xi1)φ

m−2(xi2) · · ·φ(xim−1)xim

)

=
∑

i

cixi1φ(xi2) · · ·φ
m−2(xim−1)φ

m−1(xim)

= (I ⊗ φ⊗ · · · ⊗ φm−1)−1(f).

Therefore ker(ρ) = φ′(a). �

Consider, for example, a degree-preserving automorphism, φ, of the polynomial ring C[x0, . . . , xn−1]
with its standard grading. If a and b are homogeneous elements of degree 1, then

a ∗ φ(b) = φ(a)φ(b) = φ(b)φ(a) = b ∗ φ(a)

so C[x0, . . . , xn−1]
φ is the free algebra C〈x0, . . . , xn−1〉 modulo the ideal generated by the elements

xi ⊗ φ(xj) − xj ⊗ φ(xi) for 0 ≤ i < j ≤ n− 1.

4.2. The twists of Qn,k(E, τ) induced from translations by n-torsion points. In this subsection,
we prove that for each ζ ∈ E[n], Qn,k(E, τ + ζ) is a twist of Qn,k(E, τ) with respect to an automorphism
that is in the image of the map Hn → Aut(Qn,k(E, τ)) (see Proposition 3.23).

For a degree-preserving automorphism φ : Qn,k(E, τ)→ Qn,k(E, τ), the automorphism 1⊗φ : V⊗V →
V ⊗ V descends to an automorphism 1⊗ φ : P(V ⊗ V )→ P(V ⊗ V ).

Lemma 4.2. For all τ ∈ C, define Lij(τ) and reln,k(E, τ) as in Definition 3.11.

(1) Lij
(

τ + 1
n

)

= (1⊗ S−k−1)(Lij(τ)) and Qn,k(E, τ +
1
n
) = Qn,k(E, τ)

S−k−1
.

(2) Lij
(

τ + 1
n
η
)

= (1⊗ T−k′−1)(Li+1,j+k′(τ)) and Qn,k(E, τ +
1
n
η) = Qn,k(E, τ)

T−k′−1
.
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Proof. First we assume τ ∈ C − 1
n
Λ. In this case, Lij(τ) is spanned by rij(τ) unless rij is identically

zero.
Since

rij(τ +
1
n
) =

∑

r∈Zn

θj−i+(k−1)r(0)

e(− j−i−r
n

)θj−i−r(−τ)e(
kr
n
)θkr(τ)

xj−r ⊗ xi+r

=
∑

r∈Zn

e
(

j−i−(k+1)r
n

) θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
xj−r ⊗ xi+r

= e
(

ki+j
n

)

∑

r∈Zn

e
(

− (k+1)(i+r)
n

) θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
xj−r ⊗ xi+r

= e(ki+j
n

)(1⊗ S−k−1)

(

∑

r∈Zn

θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
xj−r ⊗ xi+r

)

= e(ki+j
n

)(1⊗ S−k−1) (rij(τ)) ,

statement (1) holds for all τ ∈ C− 1
n
Λ. The first step towards proving (2) is the calculation

rij(τ +
1
n
η) =

∑

r∈Zn

θj−i+(k−1)r(0)

e(−τ − 1
n
η + 1

2n
− n−1

2n
η)θj−i−r−1(−τ)e(−τ −

1
2n

+ n−1
2n
η)θkr+1(τ)

xj−r ⊗ xi+r

= e(2τ + 1
n
η)
∑

r∈Zn

θj−i+(k−1)r(0)

θj−i−r−1(−τ)θkr+1(τ)
xj−r ⊗ xi+r.

Given (i, j, r), there is a unique solution (i′, j′, r′) to the system of equations










j − i− r − 1 = j′ − i′ − r′,

kr + 1 = kr′,

j − r = j′ − r′,

namely (i′, j′, r′) = (i+ 1, j + k′, r + k′). Hence

θj−i+(k−1)r(0)

θj−i−r−1(−τ)θkr+1(τ)
xj−r ⊗ xi+r =

θj′−i′+(k−1)r′(0)

θj′−i′−r′(−τ)θkr′(τ)
xj′−r′ ⊗ xi′+r′−k′−1.

Therefore

rij(τ +
1
n
η) = e

(

2τ + 1
n
η
)

(1⊗ T−k′−1)ri+1,j+k′(τ).

Hence (2) holds for all τ ∈ C− 1
n
Λ.

The argument in the proof of Proposition 3.22 then shows that (1) and (2) hold for all τ ∈ C. �

Let ψ : Hn →
1
n
Λ be the group homomorphism defined by

(4-1) ψ(S) := − 1
n
, ψ(T ) := − k

n
η, ψ(ǫ) := 0.

It induces an isomorphism Hn/ǫHn → E[n] = 1
n
Λ/Λ.

Theorem 4.3. Assume τ ∈ E. For all σ ∈ Hn,

Qn,k(E, τ + ψ(σ)) = Qn,k(E, τ)
σk+1

.

If a, b ∈ Z, then Qn,k(E, τ +
a
n
+ b

n
η) is the twist of Qn,k(E, τ) by the automorphism

T−(k′+1)bS−(k+1)a : xi 7→ e(− (k+1)ai
n

)xi−(k′+1)b.
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Proof. Let σ = T bSa in Hn/ǫHn. By Lemma 4.2,

Qn,k(E, τ + ψ(σ)) = Qn,k(E, τ −
a
n
− bk

n
η)

= Qn,k(E, τ)
T−bk(−k′−1)S−a(−k−1)

= Qn,k(E, τ)
(T bSa)k+1

= Qn,k(E, τ)
σk+1

.

(Here we can use either T bSa or SaT b because the twist by ǫ does not change the algebra.) The second
statement in the proposition is obtained from the first with σ = T−bk′S−a. �

4.2.1. More isomorphisms. Note that k+1 is a unit in Zn if and only if k′+1 is since k′+1 = k′(k+1).
Assume k+ 1 is not a unit in Zn. It follows from the second sentence in Theorem 4.3 that if a, b ∈ Z

are such that (k + 1)a = (k′ + 1)b = 0 in Zn, then

Qn,k(E, τ +
a
n
+ b

n
η) = Qn,k(E, τ).

In Proposition 5.1 we will show that Qn,k(E, 0) is a polynomial ring on n variables for all (n, k). Thus,
if a, b ∈ Z are such that (k + 1)a = (k′ + 1)b = 0 in Zn, then Qn,k(E,

a
n
+ b

n
η) is a polynomial ring on n

variables. For example, Q35,4(E,
1
5
+ 2

5
η) and Q35,6(E,

3
7
+ 1

7
η) are polynomial rings on 35 variables.

We will see in Proposition 5.5 that Qn,n−1(E, τ) = C[x0, . . . , xn−1] for all τ . In that case k+ 1 = 0 in
Zn so adding an n-torsion point to τ does not change the relations. However, twisting C[x0, . . . , xn−1]
by S (or T ) does change the relations.

5. Qn,k(E, τ) for some special k’s and τ ’s

In this section, we use the definition of reln,k(E, τ) as the linear span of the lines Lij(τ) ⊆ V ⊗2.
In Proposition 5.1 we prove the assertion in [OF89, §1.2, Rmk. 1] and [Ode02, §3] that Qn,k(E, 0) is a

polynomial ring on n variables. It follows from this and Theorem 4.3 that Qn,k(E, τ) is a twist of that
polynomial ring when τ ∈ E[n]. In particular, dim reln,k(E, τ) =

(

n
2

)

when τ ∈ E[n].

5.1. Qn,k(E, 0) is a polynomial ring.

Proposition 5.1.

(1) If i 6= j, then Lij(0) = C.[xi, xj ].
(2) If rii(τ) is not identically zero on E − E[n], then

Lii(0) = C.

⌈n
2
⌉−1
∑

r=1

θ(k−1)r(0)

θ−r(0)θkr(0)
[xi−r, xi+r].

(3) Qn,k(E, 0) = C[x0, . . . , xn−1].

Note that

⌈n
2
⌉ − 1 =

{

n−1
2

if n is odd,
n
2
− 1 if n is even.

Proof. When taking limits in this proof, we give E, V ⊗ V , and P(V ⊗ V ) the analytic topologies.
(1) Assume i 6= j. We first show that

(5-1) lim
τ→0

θ0(τ)rij(τ) = −[xi, xj ]

in V ⊗ V .
Let τ ∈ C− 1

n
Λ. If α ∈ Zn, then θα(0) = 0 if and only if α = 0. Among the terms

θ0(τ)
θj−i+(k−1)r(0)

θj−i−r(−τ)θkr(τ)
xj−rxi+r
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appearing in θ0(τ)rij(τ), we only have to look at those with r satisfying θj−i−r(0) = 0 or θkr(0) = 0,
or equivalently, with r = 0 or r = j − i, since all other terms approach zero as τ → 0. Therefore the
left-hand side of (5-1) is equal to

lim
τ→0

θ0(τ)

(

θj−i(0)

θj−i(−τ)θ0(τ)
xjxi +

θk(j−i)(0)

θ0(−τ)θk(j−i)(τ)
xixj

)

= lim
τ→0

(

θj−i(0)

θj−i(−τ)
xjxi +

θ0(τ)

−e(−nτ)θ0(τ)
·
θk(j−i)(0)

θk(j−i)(τ)
xixj

)

= −[xi, xj ].

Here we used θα(−z) = −e
(

− nz + α
n

)

θ−α(z).
Since [xi, xj ] 6= 0 in V ⊗V and θ0(τ) 6= 0 on a punctured open neighborhood of 0, we can rephrase (5-1)

as Lij(τ)→ C.[xi, xj] in P(V ⊗V ) as τ → 0 in E. On the other hand, the morphism Lij : E → P(V ⊗V )
in Proposition 3.10 is continuous with respect to the analytic topologies so Lij(τ) → Lij(0) as τ → 0.
The uniqueness of the limit implies the desired conclusion.

(2) Assume rii(τ) is not identically zero. In a similar way to (1), it suffices to prove

lim
τ→0

rii(τ) =

⌈n
2
⌉−1
∑

r=1

θ(k−1)r(0)

θ−r(0)θkr(0)
[xi−r, xi+r]

in V ⊗ V . By definition,

rii(τ) =
∑

r∈Zn

θ(k−1)r(0)

θ−r(−τ)θkr(τ)
xi−rxi+r.

Since θ0(0) = 0, the r = 0 summand in rii(τ) is zero on a punctured open neighborhood of 0. When
r 6= 0, the limit as τ → 0 of that summand is obtained by substituting τ = 0.

Assume n is even. Since k is coprime to n, k is odd and (k − 1)n
2
= 0 in Zn; the r =

n
2
summand is

therefore zero.
Therefore, in general, limτ→0 rii(τ) is equal to

⌈n
2
⌉−1
∑

r=1

(

θ(k−1)r(0)

θ−r(0)θkr(0)
xi−rxi+r +

θ(k−1)(−r)(0)

θ−(−r)(0)θk(−r)(0)
xi−(−r)xi+(−r)

)

=

⌈n
2
⌉−1
∑

r=1

(

θ(k−1)r(0)

θ−r(0)θkr(0)
xi−rxi+r +

−e(− (k−1)r
n

)θ(k−1)r(0)

(−e( r
n
))θ−r(0)(−e(−

kr
n
))θkr(0)

xi+rxi−r

)

=

⌈n
2
⌉−1
∑

r=1

θ(k−1)r(0)

θ−r(0)θkr(0)
[xi−r, xi+r].

(3) This is immediate from (1) and (2). �

5.2. reln,k(E, τ) and Qn,k(E, τ) when τ ∈ E[n].

Corollary 5.2. If ζ ∈ E[n], then Qn,k(E, ζ) is the twist of the polynomial ring C[x0, . . . , xn−1] by the
automorphism σk+1 where σ is an arbitrary element of ψ−1(ζ) ⊆ Hn and ψ is the homomorphism, in
(4-1).

Proof. This is a consequence of Theorem 4.3 and Proposition 5.1. �

Corollary 5.3. For all k and all τ ∈ 1
n
Λ, dim reln,k(E, τ) =

(

n
2

)

.
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5.3. Qn,n−1(E, τ) is a polynomial ring for all τ . In Proposition 5.5 we apply Propositions 5.1 and 5.4
to prove the assertions in [OF89, §1.2, Rmk. 1] and [Ode02, §3] that Qn,n−1(E, τ) is a polynomial ring
in n variables for all τ .

Proposition 5.4. For all τ ∈ C, reln,k(E, τ) and reln,n−k(E, τ) have the same dimension.

Proof. This is true when τ ∈ 1
n
Λ (Corollary 5.3) so we assume that τ ∈ C− 1

n
Λ. Now Proposition 3.24

applies: the relation spaces are the spans of the Rij and R
′
ij described in that result.

Assume n is odd. For a fixed j ∈ Zn, the coefficients in (3-29) are the matrix entries for the linear
operator Tj on span{xaxb | a + b = 2j ∈ Zn} ⊆ V ⊗ V , with respect to the basis {xj−ixj+i | i ∈ Zn},
given by the formula

Tj(xj−ixj+i) :=
∑

r∈Zn

e
(

r
n

) θ−(k+1)i+(k−1)r(0)

θr+i(τ)θk(r−i)(τ)
xj−rxj+r.

The dimension of reln,k(E, τ) is
∑

j∈Zn

rankTj ,

so we will be done once we show that switching between k and n − k does not alter the ranks of the
operators Tj . To see this, observe that once the e

(

r
n

)

factors (which only scale the rows of the matrix)
have been removed, the left-over matrix with respective (r, i)-entries

θ−(k+1)i+(k−1)r(0)

θr+i(τ)θk(r−i)(τ)

is simply transposed by the passage from k to −k.
The argument is similar for even n, the only difference being that for the coefficients

Cr,i :=
θk−(k+1)i+(k−1)r(0)

θr+i(τ)θk(r−i+1)(τ)

in (3-30) (again, after eliminating the exponential factors) the transformation k ↔ −k ∈ Zn translates
to Cr,i ↔ Ci−1,r+1. Once more, this does not affect the rank of the matrix with entries Cr,i. �

Proposition 5.5. For all τ ∈ C, Qn,n−1(E, τ) = C[x0, . . . , xn−1].

Proof. By Proposition 3.4 and Corollary 5.2, dim reln,1(E, τ) = dimAlt2 V for all τ ∈ C. By Proposition 5.4,
the same holds for reln,n−1(E, τ). Thus, to prove the proposition is suffices to show that

(5-2) reln,n−1(E, τ) ⊆ Alt2 V.

We will now do this.
If τ ∈ 1

n
Λ, then Corollary 5.2 implies that reln,n−1(E, τ) = Alt2 V , so we assume that τ ∈ C− 1

n
Λ for

the rest of the proof.
Suppose n is odd. The relations Rij in Proposition 3.24 are

Rij =
∑

r∈Zn

e
(

r
n

) θ−2r(0)

θi+r(τ)θi−r(τ)
xj−rxj+r.

Since θ0(0) = 0, the coefficient of x2j in Rij is equal to 0. The coefficient of xj+rxj−r is

e
(

− r
n

) θ2r(0)

θi−r(τ)θi+r(τ)
= − e

(

r
n

) θ−2r(0)

θi+r(τ)θi−r(τ)

which is the negative of the coefficient of xj−rxj+r. Hence Rij ∈ Alt2 V .
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Suppose n is even. As in the odd case, the coefficient of x2j in Rij is zero and so is the coefficient of

x2n
2
+j. The “same” computation shows that Rij ∈ Alt2 V . The coefficient of xj−rxj+r+1 in R′

ij is

e
(

r
n

) θ−2r−1(0)

θi+r(τ)θi−r−1(τ)

and the coefficient of xj+r+1xj−r = xj−(−r−1)xj+(−r−1)+1 is

e
(

−r−1
n

) θ−2(−r−1)−1(0)

θi+(−r−1)(τ)θi−(−r−1)−1(τ)
= e

(

−r−1
n

) θ2r+1(0)

θi−r−1(τ)θi+r(τ)

= − e
(

−r−1
n

) e
(

2r+1
n

)

θ−2r−1(0)

θi−r−1(τ)θi+r(τ)

= − e
(

r
n

) θ−2r−1(0)

θi−r−1(τ)θi+r(τ)
.

Hence R′
ij ∈ Alt2 V . This concludes the proof of (5-2) and therefore that of the proposition. �

5.4. The relations reln,1(E, τ) and the structure of Qn,1(E, τ) when τ ∈ E[2]. Since Qn,k(E, 0) is
a polynomial ring for all (n, k, E) one might expect that Qn,k(E, τ) is only moderately non-commutative
when τ is a 2-torsion point on E. Kevin De Laet proved a decisive result in this direction when k = 1:
if n is an odd prime and τ ∈ 1

2
Λ, then Qn,1(E, τ) is a Clifford algebra [De 14]. The first step towards

that result is part (1) of the following observation.

Proposition 5.6.

(1) If n is odd and τ ∈ 1
2
Λ− Λ, then reln,1(E, τ) ⊆ span{xαxβ + xβxα | α, β ∈ Zn}.

(2) If n is even and τ ∈ 1
2
Λ, then Qn,1(E, τ) is a polynomial ring.

Proof. (1) The hypothesis ensures that τ /∈ 1
n
Λ. Hence, by §3.1.3, Qn,1(E, τ) is defined by the relations

(5-3)
∑

r∈Zn

xj−rxi+r
θj−i−r(−τ)θr(τ)

= 0, i 6= j.

Let λ ∈ Λ be such that −τ = τ + λ.
Fix α, β ∈ Zn. The word xαxβ appears in the left-hand side of (5-3) if and only if there is an r ∈ Zn

such that j − r = α and i + r = β, i.e., if and only if j − α = β − i; i.e., if and only if α + β = i + j.
Thus xαxβ appears in the left-hand side of (5-3) if and only if xβxα does.

For the rest of the proof assume α + β = i + j. Let r, r′ ∈ Zn be such that xαxβ = xj−rxi+r and
xβxα = xj−r′xi+r′ ; then r = j − α and r′ = j − β, so r + r′ = j − i. To prove the lemma it suffices to
show that the coefficients of xj−rxi+r and xj−r′xi+r′ in (5-3) are the same.

The reciprocals of those coefficients are θj−i−r(−τ)θr(τ) and θj−i−r′(−τ)θr′(τ), respectively. But
θj−i−r′(−τ)θr′(τ) = θr(−τ)θj−i−r(τ), so the coefficients are the same if and only if

θj−i−r(τ + λ)θr(τ) = θr(τ + λ)θj−i−r(τ)

i.e., if and only if
θj−i−r(τ + λ)

θr(τ + λ)
=
θj−i−r(τ)

θr(τ)
.

These are equal: since θj−i−r and θr belong to Θn(Λ),

θj−i−r
θr

is a well-defined (meromorphic) function on E.
(2) There are integers a and b such that τ = a

n
+ b

n
η and 2a = 2b = 0 in Zn. In particular,

(k + 1)a = (k′ + 1)b = 0 so, as noted in §4.2.1, Qn,1(E, τ) is a polynomial ring. �
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Appendix A. Quasi-periodic functions

A function f satisfying the hypotheses of the following lemma is called a theta function of order cη1−aη2
with respect to Λ. Thus a theta function of order r has exactly r zeros (counted with multiplicity) in
every fundamental parallelogram for Λ.

Lemma A.1. Assume Λ = Zη1 + Zη2 is a lattice in C such that Im(η2/η1) > 0, and suppose f is a
non-constant holomorphic function on C. If there are constants a, b, c, d ∈ C such that

f(z + η1) = e−2πi(az+b)f(z) and

f(z + η2) = e−2πi(cz+d)f(z),

then

(1) cη1 − aη2 ∈ Z≥0, and
(2) f has cη1 − aη2 zeros (counted with multiplicity) in every fundamental parallelogram for Λ, and
(3) the sum of those zeros is 1

2
(cη21 − aη

2
2) + (c− a)η1η2 + bη2 − dη1 modulo Λ.

Proof. Since f is holomorphic, and not identically zero, it has finitely many zeros in every compact
region of C. Hence we can, and do, choose a fundamental parallelogram for Λ such that no zeros of f lie
on its boundary. Because Im(η2/η1) > 0, the vertices of such a parallelogram can be labeled A,B,C,D
in a counterclockwise direction with A = r, B = r + η1, C = r + η1 + η2, and D = r + η2.

The number of zeros of f in the parallelogram ABCD is 1
2πi

∫

ABCD
f ′(z)
f(z)

dz. It follows from the trans-

lation properties of f that

f ′(z + η1)

f(z + η1)
=

f ′(z)

f(z)
− 2πia

and

f ′(z + η2)

f(z + η2)
=

f ′(z)

f(z)
− 2πic.

Hence

∫

AB

f ′(z)

f(z)
dz +

∫

CD

f ′(z)

f(z)
dz =

∫ r+η1

r

(

f ′(z)

f(z)
−
f ′(z + η2)

f(z + η2)

)

dz

= 2πicη1

and

∫

AD

f ′(z)

f(z)
dz +

∫

CB

f ′(z)

f(z)
dz =

∫ r+η2

r

(

f ′(z)

f(z)
−
f ′(z + η1)

f(z + η1)

)

dz

= 2πiaη2.

The number of zeros of f in the parallelogram ABCD is therefore cη1 − aη2.
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The sum of these zeros is 1
2πi

∫

ABCD
z f

′(z)
f(z)

dz. Now
∫

DA

z
f ′(z)

f(z)
dz +

∫

BC

z
f ′(z)

f(z)
dz =

∫ r+η2

r

(

−z
f ′(z)

f(z)
+ (z + η1)

f ′(z + η1)

f(z + η1)

)

dz

=

∫ r+η2

r

(

−z
f ′(z)

f(z)
+ (z + η1)

(

f ′(z)

f(z)
− 2πia

))

dz

=
[

η1 log f(z)− 2πiaη1z − πiaz
2
]r+η2

r

= η1 log
(

f(r+η2)
f(r)

)

− 2πiaη1η2 − πia(2rη2 + η22)

= −2πi(cr + d)η1 − πia(2η1η2 + 2rη2 + η22)

and, similarly,
∫

AB

z
f ′(z)

f(z)
dz +

∫

CD

z
f ′(z)

f(z)
dz = 2πi(ar + b)η2 + πic(2η1η2 + 2rη1 + η21).

Hence the sum of the zeros is 1
2
(cη21 − aη

2
2) + (c− a)η1η2 + bη2 − dη1 modulo Λ. �
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