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CANONICAL ALMOST COMPLEX STRUCTURES ON

ACH EINSTEIN MANIFOLDS

YOSHIHIKO MATSUMOTO

Abstract. On asymptotically complex hyperbolic (ACH) Einstein manifolds, we consider

a certain variational problem for almost complex structures compatible with the metric, for

which the linearized Euler–Lagrange equation at Kähler-Einstein structures is given by the

Dolbeault Laplacian acting on (0, 1)-forms with values in the holomorphic tangent bundle. A

deformation result of Einstein ACH metrics associated with critical almost complex structures

for this variational problem is given. It is also shown that the asymptotic expansion of a

critical almost complex structure is determined by the induced (possibly non-integrable) CR

structure on the boundary at infinity up to a certain order.

1. Introduction

Asymptotically complex hyperbolic (ACH) Einstein spaces, the complex analog of asymptot-

ically hyperbolic (AH) Einstein spaces, has been studied by some authors. The main issue is to

describe the interplay between the space itself and the induced Cauchy–Riemann (CR) structure

on the boundary (the conformal infinity). The fundamental problems are such as to determine

all the CR structures on the boundary that are induced by some ACH Einstein metric and to

describe analytic/geometric properties of ACH Einstein spaces in terms of the conformal infinity.

The AH setting, in which the role of CR structures is instead played by conformal structures,

has been enthusiastically pursued—partly because of physical interest in AdS/CFT correspon-

dence. By contrast, the ACH setting, which is mathematically one step more intricate, needs

further attention. Moreover, these two settings can be seen as the first two instances of “asymp-

totically symmetric” spaces (see Biquard [1,2] and Biquard–Mazzeo [5]); hence the study of ACH

spaces serves as an attempt at a fuller appreciation of this general perspective.

While our subject can be placed in such a context, it can also be seen as a generalization

of the classical studies of complete Kähler-Einstein metrics on bounded strictly pseudoconvex

domains in complex manifolds of dimension n ≥ 2. Fefferman [12] pioneered the field, and then

the global existence of such metrics (on domains in Stein manifolds) was proved by Cheng and

Yau [9]. Significant applications for those Kähler-Einstein metrics are made possible by the fact

that their asymptotic behavior at the boundary can be analyzed fairly well in terms of the CR

structure of the boundary, which was actually the point made in [12].

In this article, we consider the problem of introducing an almost complex structure to a given

arbitrary ACH Einstein space that extends the CR structure on the boundary in an appropriate

sense and in a canonical manner. Doing so generalizes the Cheng–Yau situation described above.

The significance of this idea is recognized by, for example, recalling the work of Burns and

Epstein [6]. They studied renormalized integrals of the Chern forms of the Cheng–Yau complete

Kähler-Einstein metric, and they were able to express such an integral as the sum of a CR

invariant of the boundary and a topological term. (This construction was recently revisited and
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made more accessible by Marugame [21].) Because the Chern forms are concerned, it is crucial

for this construction that the domain carries not only a metric but also a complex structure,

which is, in this case, naturally inherited from the ambient complex manifold. This is the first

obstacle to extending the Burns–Epstein construction to general ACH Einstein spaces.

In 4-dimensional spaces, Biquard and Herzlich [4] resolved the issue by constructing a formal

asymptotic expansion of a complex structure with respect to which the metric is asymptotically

Kähler. This approach makes sense because any almost CR structure on 3-dimensional boundary

automatically satisfies the formal integrability condition. In higher dimensions, the conformal

infinities of ACH spaces are not necessarily integrable but just compatible almost CR structures

adapted to a contact structure (the definition is given in Section 4.1), and because of this, one

has to find another condition on almost complex structures that replaces Kählerness.

To obtain an appropriate condition, we want to use some functional of almost complex struc-

tures J . More precisely, we consider those J that are compatible with a given ACH metric g (in

the sense that g is Hermitian with respect to J) and are extensions of the conformal infinity of

g (whose meaning is made precise later), in which case we call the pair (g, J) an ACH almost

Hermitian structure. Our functional should be defined in the space of J for which (g, J) is an

ACH almost Hermitian structure.

Then, there is one functional that serves our purpose:

(1.1) Eg[J ] =
∫

X

(

|N |2 + 1

2
|τ |2
)

dVg .

Here, N is the Nijenhuis tensor, and τ is the trace of T , where T is the (2, 1)-part of the exterior

derivative of the fundamental 2-form F (·, ·) = g(J ·, ·) (see Section 2 for our normalization). It

should be noted that the right-hand side of (1.1) diverges in general in our setting and it has to be

taken as a formal expression. However, the associated Euler–Lagrange equation makes sense, and

in terms of the canonical Hermitian connection ∇ on (X, g, J) called the Ehresmann–Libermann

connection, the equation is given by

(1.2) Sij := i

(

(∇k + τk)N[ij]k +
1

2
∇[iτj] +

1

2
N[i|kl T

kl
|j] − 1

4
Nkij τ

k +
1

4
T k

ij τk

)

= 0,

where i, j, k, and l are holomorphic indices and Einstein’s summation convention is observed.

It is obvious that J is a critical point of Eg if (g, J) is Kähler, or more generally, if N = 0 and

τ = 0 are satisfied, in which case (g, J) is called semi-Kähler by Gauduchon [13].

Our choice of the functional makes the linearization PS of the mapping J 7→ S, which can be

regarded as an operator acting on anti-Hermitian 2-forms (i.e., 2-forms A satisfying A(J ·, J ·) =
−A(·, ·))

PS : Γ(X,∧2
aH) → Γ(X,∧2

aH),

a Laplace-type differential operator. Let us focus on the linearization at Kähler-Einstein struc-

tures for more specificity. In this case, if we identify Γ(X,∧2
aH) with a subspace of the set of

(0, 1)-forms with values in the holomorphic tangent bundle T 1,0 by the duality induced by the

metric, then PS is identical to the Dolbeault Laplacian ∆∂ : if Ric(g) = λg (where λ = −(n+ 1)

for ACH Kähler-Einstein metrics), then

(1.3) (PSA)ij =
1

2
(∆∂A)ij = −1

2
(∇k∇kAij + λAij).

This is an important property of our Eg, without which our construction of solutions of (1.4) will

be much more complicated, if not impossible. This property is also preferable from an aesthetic

viewpoint because, on closed complex manifolds, the set of infinitesimal deformations of complex
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structures is identified with the space of harmonic T 1,0-valued (0, 1)-forms, or equivalently, with

the cohomology group H1(X,Θ), Θ being the sheaf of germs of holomorphic vector fields (see,

e.g., Kodaira [18]).

We now formulate our first result in this paper, which is a perturbative global existence for

the system

(1.4) Ric(g) = −(n+ 1)g, S = 0.

Recall the result of Roth [26] and Biquard [2] (see also the English translation [3]) on deforma-

tions of Einstein ACH metrics: an Einstein ACH metric g can be deformed into a family of such

metrics parametrized by the conformal infinity when the L2 kernel ker(2) PÊ of the linearized

gauged Einstein operator PÊ = ∇∗
g∇g− 2R̊g acting on symmetric 2-tensors vanishes (here, ∇g is

the Levi-Civita connection, and R̊g is the pointwise linear action of the curvature tensor). Our

claim in the theorem below is its variation, and is roughly the following: if what is given in the

beginning is not only a metric but an ACH almost Hermitian structure that is Kähler-Einstein

(or an ACH Kähler-Einstein structure for short), then under the same assumption on PÊ , one

can similarly construct a family of deformed ACH almost Hermitian structures satisfying (1.4).

To state the theorem precisely, let C2,α
H be the set of all almost CR structures of class C2,α

compatible with a contact distribution H . For δ ∈ (0, 1], the set of ACH metrics (resp. ACH

almost Hermitian structures) of “class C2,α
δ ” is denoted by M2,α

δ (resp. M̃2,α
δ ), whose definition

and the notion of smooth families of elements thereof are discussed in detail in Section 4. It is

always assumed that n ≥ 2 in the sequel, and α ∈ (0, 1) is arbitrarily fixed.

Theorem 1.1. Let X be a compact smooth manifold-with-boundary of dimension 2n whose

boundary ∂X is equipped with a contact distribution H. Suppose that (g, J) ∈ M̃2,α
δ is an ACH

Kähler-Einstein structure on the interior X satisfying ker(2) PÊ = 0, whose conformal infinity γ0
belongs to C2,α

H . Then, for a sufficiently small C2,α-neighborhood U of γ0 in C2,α
H , there exists a

family (gγ , Jγ) of elements of M̃2,α
δ smoothly parametrized by the conformal infinity γ ∈ U with

the following properties:

(i) (gγ0 , Jγ0) = (g, J).

(ii) (gγ , Jγ) satisfies (1.4) for each γ ∈ U .
Moreover, the family can be constructed in such a way that, for each γ, there exists a C2,α

δ -

neighborhood V of (gγ , Jγ) in M̃2,α
δ , such that if (g′, J ′) ∈ V satisfies (1.4), then there exists

Φ ∈ Diff(X) ∩ Homeo(X) for which Φ|∂X = id∂X and Φ∗(g′, J ′) = (gγ , Jγ).

It is well known that the assumption ker(2) PÊ = 0 is satisfied when g has negative sectional

curvature; see [26, Proposition 4.8] and the comment following [2, Définition I.1.6]. Also, the

author proved in [24] that the Cheng–Yau metric on any smoothly bounded strictly pseudoconvex

domain in a Stein manifold of complex dimension n ≥ 3 actually satisfies ker(2) PÊ = 0, which

provides an abundant amount of ACH Kähler-Einstein spaces to which Theorem 1.1 is applicable.

For future applications, knowing the asymptotic expansion of (g, J) that (approximately)

solves (1.4) is also important. This is achieved by our second result below. Note that the

assertion regarding the metric g is contained in [23,22], and our focus here lies on the expansion

of J .

Let CH denote the set of all smooth almost CR structures compatible with H .

Theorem 1.2. Let X be a compact smooth manifold-with-boundary of dimension 2n whose

boundary is equipped with a contact distribution H. Then, for any prescribed conformal infinity
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γ ∈ CH , in a neighborhood of ∂X there exists an ACH almost Hermitian structure (g, J) that is

smooth up to the boundary satisfying

Ric(g) = −(n+ 1)g +O(x2n) and S = O(x2n),

where x is any boundary defining function of X. Up to the action of diffeomorphisms near the

boundary that restricts to the identity on ∂X, such (g, J) is uniquely determined up to an O(x2n)

ambiguity, in such a way that the local geometry of γ determines (g, J) locally.

The remainder of this article is organized as follows. Basic facts regarding the Ehresmann–

Libermann connection are summarized in the first half of Section 2, and in its second half we

discuss the integration-by-parts formula expressed in terms of this connection and the variations

of the torsion for deformations of almost complex structures. In Section 3, we explicitly derive the

Euler–Lagrange equation of the functional Eg and compute its linearization at Kähler-Einstein

structures (that is, we verify (1.3)). It is worth noting that there is also a way to obtain

(1.3) without writing down the Euler–Lagrange equation itself (see Remark 3.3). Section 4 is

devoted to our precise definitions regarding ACH metrics and ACH almost Hermitian structures.

Moreover, we offer here a slightly modified version of the Fredholm theorem of [26] and [2]

regarding geometric linear differential operators, and we calculate the indicial roots of PS . Then,

Theorems 1.1 and 1.2 are proved in Sections 5 and 6, respectively. We conclude the article by

discussing a partial characterization of our functional in Section 7.

I am thankful to Rafe Mazzeo and Olivier Biquard for fruitful discussions. I would also like

to express my gratitude to the anonymous reviewer for careful reading of my manuscript and

valuable comments, based on which I was able to correct several mistakes and to improve the ex-

position. Most part of this work was carried out during the author’s visit to Stanford University,

which I thank for its warm and helpful working environment. This work was partially supported

by JSPS KAKENHI Grant Number JP17K14189 and JSPS Overseas Research Fellowship.

2. Ehresmann–Libermann connection

The Ehresmann–Libermann connection ∇ on almost Hermitian manifolds is a natural gen-

eralization of the Chern connection on Hermitian manifolds. It is the unique linear connection

that respects the almost Hermitian structure whose torsion has vanishing (1, 1) part.

In order to study this connection, we begin by constructing the Lichnerowicz connection,

another canonical connection on almost Hermitian manifolds. Then we describe the Ehresmann–

Libermann connection ∇ in terms of it. This makes the relation between ∇ and the Levi-Civita

connection clear, which is useful for deriving the integration-by-parts formula in the latter part

of this section. We will also establish variational formulae of the torsion of ∇.

The main references for this section are Gauduchon [14], Kobayashi [17], and Tosatti–Weinkove–

Yau [28].

2.1. Lichnerowicz connection. Let (g, J) be an almost Hermitian structure on a manifold of

dimension 2n, that is, a pair of a Riemannian metric g and an almost complex structure J such

that g(J ·, J ·) = g(·, ·). Take the eigendecomposition TC = T 1,0⊕T 1,0 of the complexified tangent

bundle, and let π1,0 : TC → T 1,0 be the natural projection. The Lichnerowicz connection of (g, J)

is the Hermitian connection ∇L given by, for any vector field V and any (1, 0) vector field W ,

∇L VW = π1,0( ∇∗ VW ),

where ∇∗ is the Levi-Civita connection of g. Note that ∇L is uniquely extended to a connection

of TC by claiming that it is a real connection.
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We can also express the definition in terms of the connection forms as follows. Take a local

frame {Zi } of T 1,0, and set Zi = Zi so that {Zi, Zi } is a local frame of TC. The components of

the Levi-Civita connection form ω∗ with respect to this frame are classified into four types,

ω∗ j
i , ω∗ j

i , ω∗ j

i
, ω∗ j

i
,

satisfying

ω∗ j

i
= ω∗ j

i and ω∗ j

i
= ω∗ j

i .

Then, the Lichnerowicz connection form ωL j
i is given by ωL j

i = ω∗ j
i .

Let { θi } be the dual coframe of {Zi }. The first structure equation of the Levi-Civita con-

nection reads

dθi = θj ∧ ω∗ i
j + θj ∧ ω∗ i

j
.

This implies that the torsion form of the Lichnerowicz connection is given by

(2.1) ΘL i = θj ∧ ω∗ i
j
.

In particular, ΘL i has no (2, 0) component.

We define the Nijenhuis tensor N by setting

(2.2) [Zi, Zj] = −Nk
ij Zk mod T 1,0.

Then, we derive the following∗:

(2.3) ΘL k(Zi, Zj) = dθk(Zi, Zj) = −θk([Zi, Zj ]) = Nk
ij .

We define the tensor T by

(2.4) ΘL k(Zi, Zj) =
1

2
T k
i j
.

(The order of the indices looks bizarre, but this will ultimately be a good convention; see (2.7).)

We will raise/lower the indices of various tensors using the metric g, as T k
ij

= glkg
mi
T m
l j

, for

example. Furthermore, any tensor that shows up in this article is real unless otherwise stated.

Hence, for example, T k
ij is automatically set to be the complex conjugate of T k

ij
.

Obviously, Nk
ij is skew-symmetric in i and j. This is also the case for T k

ij :

(2.5) T k
ij = −T k

ji .

In fact, (2.1) implies that Γ∗ k
ij
= − 1

2T
k

i j
, where Γ∗ k

ij
is the Levi-Civita connection coefficient,

and hence (2.5) follows from the metric compatibility of the Levi-Civita connection.

Let a, b, and c be indices running through { 1, 2, . . . , n, 1, 2, . . . , n }. We introduce the index

notation for the torsion by setting

ΘL c =
1

2
ΘL c

abθ
a ∧ θb

and requiring that ΘL c
ab is skew-symmetric in a and b. Hence, ΘL k

ij
= Nk

ij
, ΘL k

ij
= 1

2T
k

i j
,

and ΘL k
ij = 0.

∗Our convention is such that (α ∧ β)(V,W ) = α(V )β(W ) − β(V )α(W ) for 1-forms α and β.
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2.2. Ehresmann–Libermann connection. We can construct the Ehresmann–Libermann con-

nection ∇ by adding correction terms to ∇L as follows (cf. the proof of [17, Theorem 2.1]). If

the connection forms of ∇ and ∇L with respect to {Zi, Zi } are written as

ω j
i = Γj

kiθ
k + Γj

ki
θk and ωL j

i = ΓL j
kiθ

k + ΓL j

ki
θk,

then Γ should be set as

(2.6) Γj
ki = ΓL j

ki −
1

2
T j

ik , Γj

ki
= ΓL j

ki
+

1

2
T j

i k
.

Let the torsion be expressed as Θc = 1
2Θ

c
abθ

a ∧ θb, as before. Then,

Θk
ij
= ΘL k

ij
− 1

2
T k
i j

= 0,

which is the requirement for the Ehresmann–Libermann connection. (This computation also

shows that ∇ is characterized among almost Hermitian connections by the fact that Θk
ij

= 0.)

The compensation is that the (2, 0) component of the torsion is generally non-vanishing:

(2.7) Θk
ij = ΘL k

ij −
1

2
T k

ji +
1

2
T k

ij = T k
ij .

The (0, 2) component of the torsion remains unchanged: Θk
ij
= Nk

ij
.

The trace of T is denoted by τ :

τi = T j
ij .

Furthermore, we write |N |2 = NijkN
ijk and |τ |2 = τiτ

i. Now the functional (1.1) makes sense.

We remark the following fact regarding the fundamental 2-form (cf. [17, Section 6]). The first

equality below justifies our explanation of T in the introduction.

Proposition 2.1. Let F be the fundamental 2-form associated with an almost Hermitian struc-

ture (g, J), i.e., F (·, ·) = g(J ·, ·). Then,

(2.8) dF = −i(Nijk θ
i ∧ θj ∧ θk − T

ijk
θi ∧ θj ∧ θk + T

ijk
θi ∧ θj ∧ θk −N

ijk
θi ∧ θj ∧ θk)

and

(2.9) d∗F = −i(τi θi − τ
i
θi).

Proof. Note that F = ig
ij
θi ∧ θj . By the first structure equation dθi = θj ∧ ω i

j + Θi and the

metric compatibility, we obtain

dF = i(dg
ij
∧ θi ∧ θj + g

ij
dθi ∧ θj − g

ij
θi ∧ dθj) = ig

ij
(Θi ∧ θj − θi ∧Θj),

and (2.8) follows. The proof of (2.9) is deferred to the next subsection. �

The curvature 2-form Ω j
i = dω j

i − ω k
i ∧ ω j

k of the Ehresmann–Libermann connection will

be needed in Section 7. We express its coefficients as Ω j
i = 1

2R
j
i abθ

a ∧ θb, where R j
i ab is

skew-symmetric in a and b, whence

Ω j
i = R j

i kl
θk ∧ θl + 1

2
R j

i klθ
k ∧ θl + 1

2
R j

i kl
θk ∧ θl.

Note that our convention for R j
i ab amounts to saying that

(∇Za
∇Zb

−∇Zb
∇Za

−∇[Za,Zb]
)Zi = R j

i abZj,

or in the index notation,

(2.10) (∇a∇b −∇b∇a)V
i = R i

j abV
j −Θc

ab∇cV
i.
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We write R
ij
= R k

k ij
and R = R i

i = R i j
i j , and moreover define R

ij
= R

ij
as usual. Because

∇ is a Hermitian connection, it follows that R
ij
= R

ji
.

The first Bianchi identity reads

R i
{j kl} = ∇{jT

i
kl} + T i

p{j T
p
kl} ,(2.11a)

R i
j kl

−R i
k jl

= ∇
l
T i

jk +N i
ql
N q

jk ,(2.11b)

R i
j kl

= ∇jN
i
kl

+Np

kl
T i

pj ,(2.11c)

0 = ∇
{j
N i

kl}
+N i

p{j
T p

kl}
,(2.11d)

where { · · · } denotes the cyclic summation (see [28, Equations (2.8)–(2.11)]; the coefficients are

modified in accordance with our normalization).

2.3. Integration by parts. Here, for simplicity, we assume that we are in a setting in which

boundary terms do not appear. The content here is discussed by Streets and Tian [27, Lemma

10.10] for Hermitian manifolds (i.e., for integrable almost complex structures).

Suppose that α is a (1, 0)-form (so α
i
= 0). Then, by (2.6)

∇iαi = ∇∗ iαi −
1

2
T ji
i αj = ∇∗ iαi −

1

2
τ iαi,

where ∇∗ is the Levi-Civita connection. Moreover, since Γ∗ k
ij
= − 1

2T
k

i j
by (2.1),

∇∗ iα
i
= ∇iα

i
+

1

2
T ij

i
αj =

1

2
τ iαi.

Therefore, the Levi-Civita divergence of α equals −(∇iαi + τ iαi), and hence

(2.12)

∫

(∇i + τ i)αidVg = 0.

We can use this formula in various ways. The simplest application is the following: if α is a

1-form and f is a function, then by applying (2.12) to fαi, we obtain
∫

αi∇if dVg = −
∫

((∇i + τi )α
i)f dVg.

Likewise, if β is a 2-tensor and α is a 1-form, then
∫

βij∇iαj dVg = −
∫

((∇i + τi )β
ij)αj dVg

(the index j can also be replaced with j). Similar operations are applicable to higher-rank tensors

as well.

We can now show (2.9). Let us compute the divergence of a real (1, 1)-form β = β
ij
θi ∧ θj

in general. If α = αaθ
a is a real 1-form, then because the torsion of ∇ has vanishing (1, 1)-part,

the (1, 1)-part of dα is given by

(dα)(1,1) = (∇iαj
−∇

j
αi)θ

i ∧ θj .

Therefore,

(α, d∗β) = (dα, β) =

∫

(∇jαi −∇iαj)β
ij
dVg =

∫

(−((∇j + τ j)β
ij
)αi + ((∇i + τ i)β

ij
)αj)dVg .

This implies (d∗β)i = −(∇j + τ j)β
ij
. We obtain (2.9) as a special case.
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2.4. Variations. Suppose that Jt is a smooth one-parameter family of almost complex struc-

tures compatible with a Riemannian metric g. We write J = J0 and J̇ = (dJt/dt)|t=0. By

differentiating J2
t = −1, we see that J̇ is an anti-Hermitian section of the endomorphism bundle

End(T ), and the metric compatibility of Jt implies that g(J̇ ·, ·) is skew-symmetric. We set

(2.13) g(J̇ ·, ·) = A(·, ·).

Then A is an anti-Hermitian 2-form. Using a local (1, 0) coframe { θi } and its complex conjugate

{ θi }, we can write

A =
1

2
Aijθ

i ∧ θj + 1

2
A

ij
θi ∧ θj ,

where A
ij
= Aij , and Aij is skew-symmetric in i and j. Then, (2.13) is expressed as J̇ k

i gjk = Aij ,

or simply as J̇ij = Aij .

Let∇t be the Ehresmann–Libermann connection of (g, Jt). As an intermediate step toward the

variational formulae of the torsion, we express the derivatives of the connection coefficients Γc
ab

of ∇t in terms of Aij . In the computation that follows, Γc
ab will be the connection coefficients of

∇t with respect to a fixed local frame {Zi, Zi } and the dual coframe { θi, θi }, where Zi are (1, 0)

vector fields with respect to the original almost complex structure J (and Zi = Zi). We also

remark that Γ̇abc, which appears below, can be understood either as gadΓ̇
d
bc or as the derivative

of gadΓ
d
bc, because g is independent of t.

We begin with generalities that apply to all almost Hermitian connections. It follows from

the metric compatibility that Γ̇cab+Γ̇bac = 0. The compatibility with almost complex structures

implies ∇cJ̇
b

a − Γ̇d
caJ

b
d + Γ̇b

cdJ
d

a = 0. Therefore, we get

∇iA
k

j + 2iΓ̇k
ij = 0 and ∇

i
A k

j + 2iΓ̇k
ij
= 0,

and hence,

(2.14a) Γ̇k
ij =

i

2
∇iA

k
j , Γ̇k

ij
=
i

2
∇

i
A k

j .

Next, we use the definition of the Ehresmann–Libermann connection. Its torsion Θ has van-

ishing (1, 1) component, which means Θc
ab+J

d
a J e

b Θc
de = 0. Since Θ̇c

ab = 2Γ̇c
[ab] = Γ̇c

ab− Γ̇c
ba,

this implies

Γ̇c
[ab] + J d

a J e
b Γ̇c

[de] +
1

2
J̇ d
a J e

b Θc
de +

1

2
J d
a J̇ e

b Θc
de = 0.

Consequently, we obtain

Γ̇k
ij
− Γ̇k

ji
+
i

2
Nk l

j
Ail +

i

2
T k l

i Ajl
= 0

and hence, by the second equality of (2.14a),

(2.14b) Γ̇k
ij
=
i

2
(∇jA

k
i
+Nk l

i
Ajl + T k l

j Ail
).

Then, since Γ̇
kij

= −Γ̇
jik

, we also obtain

(2.14c) Γ̇k
ij = − i

2
(∇kAij −N l

ji A
k
l
− T kl

j Ail).

Thus we have obtained the complete formula of Γ̇c
ab.
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We now turn to the torsion. Recall once again that Θ̇c
ab = 2Γ̇c

[ab]. Since N c
ab = 1

2 (Θ
c
ab +

J d
b J c

e Θe
ad) and T

c
ab = 1

2 (Θ
c
ab − J d

b J c
e Θe

ad), by a straightforward computation we obtain

Ṅk
ij = − i

2
N l

ijA
k
l
,(2.15a)

Ṅk
ij

= − i

2
Nk l

j
Ail,(2.15b)

Ṅk
ij

= −i
(

∇
[i
A k

j]
− 1

2
T l

ij
Ak

l

)

(2.15c)

and

Ṫ k
ij = −i

(

∇kAij +N l
[ij] A

k
l
+ T kl

[i Aj]l −
1

2
N l

ijA
k
l

)

,(2.16a)

Ṫ k
ij

= − i

2
T k

ilA
l

j
,(2.16b)

Ṫ k
ij

= − i

2
T l

ij
Ak

l
.(2.16c)

Furthermore, it follows from (2.16a) that

(2.17) τ̇i = −i
(

∇jAij +
1

2
N jk

i A
jk

+
1

2
T jk
i Ajk +

1

2
τ jAij

)

.

3. The functional and the Euler–Lagrange equation

Suppose a Riemannian metric g is fixed, and consider the set Jg of compatible almost complex

structures. In this section, we first assume that our space is a closed manifold, and we define the

functional Eg on Jg by (1.1); that is,

Eg = EN
g +

1

2
Eτ
g ,

where

EN
g [J ] =

∫

|N |2dVg and Eτ
g [J ] =

∫

|τ |2dVg.

We shall compute the Euler–Lagrange equation of Eg. Then, the equation itself also makes

sense on noncompact manifolds (or, on noncompact manifolds, we can interpret this as we are

considering the relative values of the functional under compactly supported variations).

Let Jt be a one-parameter smooth family of elements of Jg and define the tensor A by (2.13).

We write

d

dt
Eg[Jt]

∣

∣

∣

∣

t=0

=

∫

((Ėg)ijAij + (Ėg)ijAij
)dVg =

∫

2Re((Ėg)ijAij)dVg ,

where Ėg is skew-symmetric, and we introduce ĖN
g and Ėτ

g similarly. The symbol g will be omitted

from the notation when there is no fear of confusion.

Proposition 3.1. Under the notation above,

ĖN
ij = i

(

(∇k + τk)N[ij]k +
1

2
N[i|kl T

kl
|j]

)

,(3.1)

Ėτ
ij = i

(

∇[iτj] −
1

2
Nkij τ

k +
1

2
T k

ij τk

)

.(3.2)

Thus Ėij = ĖN
ij + 1

2 Ėτ
ij equals Sij in equation (1.2).
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Proof. These are consequences of (2.15) and (2.17). First,

d

dt
EN [Jt]

∣

∣

∣

∣

t=0

=

∫

2Re(NkijṄkij )dVg =

∫

Im(Nkij(−∇iAjk +∇jAik + T l
ij Akl))dVg ,

and, using (2.12), we obtain

d

dt
EN [Jt]

∣

∣

∣

∣

t=0

=

∫

Im(((∇i + τi )N
kij)Ajk − ((∇j + τj )N

kij)Aik +NkijT l
ij Akl)dVg

=

∫

2 Im

(

((∇k + τk )N
ijk)Aij +

1

2
N iklT j

klAij

)

dVg.

That is,

(ĖN )ij = −i
(

(∇k + τk )N
[ij]k +

1

2
N [i|klT

|j]
kl

)

.

Then, we obtain (3.1) by taking the complex conjugate. Similarly,

d

dt
Eτ [Jt]

∣

∣

∣

∣

t=0

=

∫

2Re(τ iτ̇i )dVg

=

∫

Re(τ i(−2i∇jAij − iN jk
i A

jk
− iT jk

i Ajk − iτ jAij))dVg

=

∫

Im(2τ i∇jAij − τkN ij

k
Aij + τkT ij

k Aij + τ iτ jAij)dVg

=

∫

Im(−2((∇j + τ j)τ i)Aij −N ij

k
τkAij + T ij

k τkAij + τ iτ jAij)dVg

=

∫

Im(2(∇iτ j)Aij −N ij

k
τkAij + T ij

k τkAij)dVg,

where the last equality is because of the skew-symmetry of Aij . Hence

(Ėτ )ij = −i
(

∇[iτ j] − 1

2
N ij

k
τk +

1

2
T ij
k τk

)

,

and this implies (3.2). �

Next, we compute the linearization of the tensor S with respect to J . Because of our formu-

lation of Theorem 1.1, we are exclusively concerned with the linearization at Kähler structures,

for which N = 0 and T = 0. (Note that, in this case, the Levi-Civita, Lichnerowicz, and

Ehresmann–Libermann connections coincide.) By (2.15) and (2.17),

ËN
ij = i∇kṄ[ij]k = −1

2
∇k(∇[jAk]i −∇[iAk]j) = −1

2
(∇k∇kAij −R k

[i Aj]k +∇[i∇kAj]k),

Ëτ
ij = i∇[iτ̇j] = ∇[i∇kAj]k

and therefore,

(3.3) Ṡij = −1

2
(∇k∇kAij −R k

[i Aj]k).

The operator PS : A 7→ Ṡ has a close connection to the Dolbeault Laplacian ∆∂ = ∂∗∂ + ∂ ∂∗

acting on (0, 1)-forms with values in the holomorphic tangent bundle T 1,0. If we identify the
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anti-Hermitian 2-form A with A j

i
θi ⊗ Zj, then

(∂∗∂A) j

i
= −2∇k∇

[k
A j

i]
= −∇k∇

k
A j

i
+∇k∇

i
A j

k
,

(∂ ∂∗A) j

i
= −∇

i
∇kA j

k
,

and hence

(3.4) (∆∂A)
j

i
= −(∇

k
∇kA j

i
+R j

k A
k
i
).

This means that Ṡ is (if also regarded as a T 1,0-valued (0, 1)-form) half of the skew-symmetric

part of ∆∂A. In particular, we obtain (1.3), which we reproduce below.

Proposition 3.2. If (g, J) is Kähler-Einstein, with Ric(g) = λg, then the operator

(3.5) PS : Γ(X,∧2
aH) → Γ(X,∧2

aH), A = J̇ 7→ Ṡ

is given by

(3.6) (PSA)ij = −1

2
(∇k∇kAij + λAij).

If A and PSA are regarded as T 1,0-valued (0, 1)-forms, then

(3.7) PSA =
1

2
∆∂A.

Remark 3.3. The claim Ṡ = 1
2 (∆∂A)skew for Kähler structures has the following alternative

proof, which does not depend on the explicit formula (1.2) of S. Note that, if A, N , τ are

understood as the (0, 1)-, (0, 2)-, (0, 0)-forms with values in T 1,0 given by

A k
i
θi ⊗ Zk,

1

2
Nk

ij
θi ∧ θj ⊗ Zk, τkZk,

respectively, then at Kähler structures, (2.15) and (2.17) may be written as

Ṅ = − i

2
∂A, τ̇ = −i ∂∗A.

This implies that Nt = − i
2 t ∂A+O(t2) and τt = −it ∂∗A+O(t2), and hence

E [Jt] =
1

2
t2((∂A, ∂A) + (∂∗A, ∂∗A)) +O(t3) =

1

2
t2(∆∂A,A) +O(t3).

Consequently,

d

dt
E [Jt] = t(∆∂A,A) +O(t2) = t

∫

(∆∂A)
j

i
Ai

jdVg +O(t2) = t

∫

Re((∆∂A)
j

i
Ai

j)dVg +O(t2).

This implies that Ṡ = 1
2 (∆∂A)skew.

4. ACH almost Hermitian structures

In this section, we first describe our basic definitions regarding ACH metrics, and then we

define ACH almost Hermitian structures. They are followed by the Fredholm theorem for geo-

metric differential operators, which is a modification of the one considered by Roth [26] and

Biquard [2]. Lee [19] gives another useful reference on this matter in the AH setting, which is

also referred to to discuss the details here. Finally, we compute the indicial roots of the operator

PS . This is a requisite to applying the Fredholm theorem in the next section.
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4.1. Compatible almost CR structures. Let (M,H) be a contact manifold of dimension

2n− 1, where n ≥ 2. An almost CR structure γ on the contact distribution H means a smooth

section of End(H) satisfying γ2 = − idH . We say that γ is compatible when the Levi form with

respect to a contact 1-form θ,

(4.1) hθ,γ(V,W ) := dθ(V, γW ), V, W ∈ H,

is symmetric and has definite signature. The condition is irrelevant to the choice of the 1-form

θ because hfθ,γ = fhθ,γ .

The Levi form is symmetric if and only if

(4.2) [Γ(T 1,0
γ M),Γ(T 1,0

γ M)] ⊂ Γ(T 1,0
γ M ⊕ T 1,0

γ M),

where HC = T 1,0
γ M ⊕T 1,0

γ M is the eigendecomposition of the complexification of H with respect

to γ, as is easily seen from dθ(V, γW ) = −θ([V, γW ]). In particular, the Levi form is always

symmetric for integrable almost CR structures. Condition (4.2) is called the partial integrability

in the literature (e.g., [7, 8, 23, 25, 24]), but it must be noted that the partial integrability is

determined pointwisely.

On the other hand, the definiteness of hθ,γ is usually referred to as the strict pseudoconvexity

of γ. Therefore our “compatible almost CR structures” are the same as “strictly pseudoconvex

partially integrable almost CR structures.” Our new terminology is meant for brevity and to

avoid possible confusion. Compatible almost CR structures are generically non-integrable if

n ≥ 3.

In what follows, when γ is a compatible almost CR structure, we always (implicitly) choose θ

so that hθ,γ is positive definite. For each fixed γ, there is a one-to-one correspondence between

such contact forms and representative metrics of the conformal class [hθ,γ ] of metrics of H .

A contact form θ determines the Reeb vector field T , which is transverse to H , by the following

conditions: dθ(T, ·) = 0 and θ(T ) = 1.

4.2. ACH metrics. Let X be a compact smooth manifold-with-boundary of dimension 2n,

where n ≥ 2, and let X be its interior. The boundary is denoted by ∂X . We assume that ∂X is

equipped with a contact distribution H , and the set of smooth (resp. Ck,α) compatible almost

CR structures of H is denoted by CH (resp. Ck,α
H ).

The most general definition of ACH metrics can be stated as follows. Note that, for technical

reasons, when we simply refer to an ACH metric g in this paper, we allow g not to be a smooth

Riemannian metric on X (see also Definition 4.4).

Definition 4.1. For γ ∈ Ck,α
H and a contact form θ, we define the metric gθ,γ on ∂X× (0, ε)x by

(4.3) gθ,γ =
1

2

(

4
dx2

x2
+
θ2

x4
+
hθ,γ
x2

)

,

where we extend hθ,γ to T∂X by setting hθ,γ(T, ·) = 0 for the Reeb vector field T . A Riemannian

metric g on X is called an ACH metric with conformal infinity γ when g is asymptotic to gθ,γ for

some contact form θ, in the sense that there exists a diffeomorphism Φ from an open neighborhood

U of ∂X ⊂ X to ∂X × [0, ε)x such that the following are satisfied:

(i) Φ|∂X is the identity map on ∂X , where ∂X × { 0 } ⊂ ∂X × [0, ε) is identified with ∂X .

(ii) |g − Φ∗gθ,γ|Φ∗gθ,γ uniformly tends to zero as x→ 0.

We call such Φ an admissible collar neighborhood diffeomorphism of an ACH metric g with respect

to θ.
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Remark 4.2. When g is an ACH metric, an admissible collar neighborhood diffeomorphism exists

for any choice of θ. This is because, for θ and θ̂ = e2uθ, the model metrics gθ,γ and gθ̂,γ are

asymptotic to each other in the sense that, if we identify neighborhoods of the boundaries of

two copies of ∂X × [0, ε) by a certain diffeomorphism that restricts to id∂X , then the difference

between gθ,γ and gθ̂,γ tends to 0 uniformly. Namely, a diffeomorphism

Ψ = Ψ(q, x) = (ψ(q, x), x̂(q, x)) : U → Û ,

where U and Û are open neighborhoods of the boundary of ∂X × [0, ε), has the desired property

if and only if

(4.4) ψ(·, 0) = id∂X ,
∂x̂

∂x

∣

∣

∣

∣

∂X×{ 0 }

= eu,

and

(4.5) (dψ)(q,x)(∂x) = xY +O(x2) for some Y ∈ Hq.

Such a diffeomorphism Ψ certainly exists—for example, we can take Ψ(q, x) = (q, xeu(q)).

Let { Y1, . . . , Y2n−2 } be any local frame of H . The conditions (4.4) and (4.5) imply that the

functions describing the change of basis from (the push-forward of) { x∂x, x2T, xY1, . . . , xY2n−2 }
to { x̂∂x̂, x̂2T̂ , x̂Y1, . . . , x̂Y2n−2 }, where T and T̂ are the Reeb vector fields of θ and θ̂, respectively,

are smooth up to the boundary, and the boundary values are given by














1

1

eu

. . .

eu















.

This implies that the set { x∂x, x2T, xY1, . . . , xY2n−2 } of vector fields spans a vector bundle over

X that does not depend on θ nor Φ. It is the underlying Θ-tangent bundle of an ACH manifold,

which is due to Epstein, Melrose, and Mendoza [10].

We also need subtler definitions of some classes of ACH metrics. We first introduce the notion

of ACH metrics that are smooth up to the boundary. In the definition below, { Y1, . . . , Y2n−2 }
is any local frame of H .

Definition 4.3. An ACH metric g on X with conformal infinity γ ∈ CH is said to be smooth

up to the boundary when, for some θ, if T is the Reeb vector field of θ and Φ: U → ∂X × [0, ε)x
is an admissible collar neighborhood diffeomorphism with respect to θ, then the components of

(Φ−1)∗g with respect to { x∂x, x2T, xY1, . . . , xY2n−2 } are smooth up to the boundary.

Remark 4.2 implies that, if g is smooth up to the boundary as an ACH metric, then the

required smoothness of the components holds for any θ and any Φ. Simply put, such an ACH

metric is a smooth metric of the Θ-tangent bundle.

Next, let E = Sym2 T ∗X be the bundle of symmetric 2-tensors over X . Given an ACH metric

g that is smooth up to the boundary, Ck,α(X,E) denotes the Hölder space of Ck sections of E

with bounded Ck,α norm with respect to g. We may alternatively use the ACH version of Möbius

charts [26, Section 2.5] to define the Hölder norm (this approach is taken by Lee [19, Chapters

2 and 3] in the AH setting), which in particular implies that the norms are equivalent for any

choice of g that accepts the same admissible collar neighborhood diffeomorphism Φ.
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For δ ∈ R, the weighted Hölder space is defined by

Ck,α
δ (X,E) = xδCk,α(X,E).

The notation above is used for other GL(2n)-invariant subbundles of (TX)⊗r ⊗ (T ∗X)⊗s

as well, or under the existence of some fixed ACH metric, for its O(2n)-invariant subbundles.

Furthermore, if there is some fixed ACH almost Hermitian structure (introduced in Section 4.3),

the notation can also be used for U(n)-invariant subbundles of (TCX)⊗r ⊗ (T ∗
C
X)⊗s.

Definition 4.4. For δ ∈ (0, 1], an ACH metric g on X with conformal infinity γ ∈ Ck,α
H is said

to be of class Ck,α
δ if g is locally Ck,α in X and it can be expressed as

g = gθ,γ + σ, σ ∈ Ck,α
δ (X, Sym2 T ∗X),

where gθ,γ is the model metric (4.3) pulled back by an admissible collar neighborhood diffeomor-

phism Φ: U → ∂X× [0, ε)x and extended arbitrarily to the whole X . The set of all ACH metrics

on X of class Ck,α
δ is denoted by Mk,α

δ .

Remark 4.5. By “extended arbitrarily to the whole X” in the above definition, we mean that

gθ,γ, originally defined in U \ ∂X , is extended to a Ck,α Riemannian metric

χ1gθ,γ + χ2h

on X , where h is another Ck,α Riemannian metric on X and {χ1, χ2 } is a smooth partition of

unity on X subordinate to { U , X \ U ′ }, U ′ being an open neighborhood of ∂X that is contained

and relatively compact in U . The same expression will be used several times in the sequel. When

we say that the extension is simultaneously done for all γ in a subset of Ck,α
H , we mean that the

extension as above is made with γ-independent h and {χ1, χ2 }.

On any bounded strictly pseudoconvex domain Ω in a Stein manifold, the Cheng–Yau metric

[9] is an ACH metric of class Ck,α
1 for any k and α, if X is taken to be the square root of Ω in

the sense of Epstein–Melrose–Mendoza [10]. This is because, if we express the metric in terms

of a Kähler potential log(1/ϕ), then ϕ has polyhomogeneous expansion at the boundary that

involves only logarithmic singularity, as shown by Lee and Melrose [20]. (For the same reason,

the Bergman metric on any bounded strictly pseudoconvex domain in Cn is also an ACH metric

of class Ck,α
1 for any k and α, owing to the result of Fefferman [11].)

Finally, we introduce the notion of smooth families of elements of Mk,α
δ .

Definition 4.6. A family of ACH metrics gγ ∈ Mk,α
δ parametrized by the conformal infinity

γ ∈ U of each gγ , where U is an open set of Ck,α
H , is smooth if gγ can be expressed as

gγ = gθ,γ + σγ ,

where gθ,γ and σγ have the following properties:

(i) gθ,γ is the model metric (4.3) pulled back by a γ-independent admissible collar neigh-

borhood Φ and extended to the whole X simultaneously for all γ ∈ U .
(ii) σγ belongs to Ck,α

δ for all γ, and the mapping γ 7→ σγ is smooth.

4.3. ACH almost Hermitian structures. As above, let X be a compact smooth manifold-

with-boundary of dimension 2n whose boundary ∂X is equipped with a contact distribution H .

Let g be an ACH metric on X . We set up our terminology regarding extensions of the conformal

infinity γ into almost complex structures compatible with g, emphasizing the parallelism with

the previous subsection.
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Again, we start with a standard model on ∂X × (0, ε)x. For γ ∈ Ck,α
H and a contact form θ,

the almost complex structure Jθ,γ is defined as follows. Let {Z1, . . . , Zn−1 } be a local frame

of the CR holomorphic tangent bundle T 1,0∂X ⊂ HC, which is the i-eigenbundle of γ, and let

{Z1, . . . , Zn−1 } be its complex conjugate. Let T denote the Reeb vector field of θ. We set

Jθ,γ

(

1

2
x∂x

)

= x2T, Jθ,γ(x
2T ) = −1

2
x∂x,

Jθ,γ(xZα) = ixZα, Jθ,γ(xZα) = −ixZα, α = 1, . . . , n− 1.

This is in fact compatible with the model metric gθ,γ given by (4.3). Alternatively, we can

say that Jθ,γ is the almost complex structure whose holomorphic tangent bundle is spanned by

{Z0,Z1, . . . ,Zn−1 }, where

Z0 =
1

2
x∂x + ix2T and Zα = xZα, α = 1, . . . , n− 1.

Definition 4.7. An ACH almost Hermitian structure with conformal infinity γ ∈ Ck,α
H is a pair

(g, J) comprising a Riemannian metric g and a compatible almost complex structure J that is

asymptotic to (gθ,γ , Jθ,γ) for some contact form θ, in the sense that there exists a diffeomorphism

Φ from an open neighborhood U of ∂X ⊂ X to ∂X× [0, ε)x such that the following are satisfied:

(i) Φ|∂X is the identity map on ∂X , where ∂X × { 0 } ⊂ ∂X × [0, ε) is identified with ∂X .

(ii) Both |g − Φ∗gθ,γ |Φ∗gθ,γ and |J − Φ∗Jθ,γ |Φ∗gθ,γ uniformly tend to zero as x→ 0.

We call such Φ an admissible collar neighborhood diffeomorphism of an ACH almost Hermitian

structure (g, J) with respect to θ.

Definition 4.8. An ACH almost Hermitian structure (g, J) with conformal infinity γ ∈ CH is

said to be smooth up to the boundary when, for some θ, if T is the Reeb vector field of θ and

Φ: U → ∂X × [0, ε)x is some admissible collar neighborhood diffeomorphism with respect to θ,

then the components of (Φ−1)∗g and those of (Φ−1)∗J with respect to { x∂x, x2T, xY1, . . . , xY2n−2 }
are smooth up to the boundary.

Remark 4.2 implies that Definitions 4.7 and 4.8 remain equivalent if we replace “for some

contact form θ” with “for any contact form θ.”

The notions of ACH almost Hermitian structures of class Ck,α
δ and smooth families thereof

are introduced just like those of ACH metrics.

Definition 4.9. For δ ∈ (0, 1], an ACH almost Hermitian structure (g, J) on X is said to be of

class Ck,α
δ if g and J are locally Ck,α in X and they can be expressed as

{

g = gθ,γ + σ, σ ∈ Ck,α
δ (X, Sym2 T ∗X),

J = Jθ,γ + ψ, ψ ∈ Ck,α
δ (X,End(TX)),

where gθ,γ and Jθ,γ are the model metric and the model almost complex structure given above,

pulled back by an admissible collar neighborhood diffeomorphism Φ and extended arbitrarily to

the whole X . The set of all ACH almost Hermitian structures on X of class Ck,α
δ is denoted by

M̃k,α
δ .

We note that the extended (gθ,γ , Jθ,γ) in the above definition does not need to be an almost

Hermitian structure on X ; gθ,γ and Jθ,γ can be independently extended, and even the extension

of Jθ,γ allow not to be an almost complex structure.
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Definition 4.10. A family of ACH almost Hermitian structures (gγ , Jγ) ∈ M̃k,α
δ parametrized

by the conformal infinity γ ∈ U , where U is an open set of Ck,α
H , is smooth if gγ and Jγ can be

expressed as

gγ = gθ,γ + σγ and Jγ = Jθ,γ + ψγ

where:

(i) gθ,γ and Jθ,γ are the model metric and the model almost complex structure pulled back

by a γ-independent admissible collar neighborhood Φ and extended to the whole X

simultaneously for all γ ∈ U .
(ii) σγ ∈ Ck,α

δ and ψγ ∈ Ck,α
δ for all γ, and the mappings γ 7→ σγ and γ 7→ ψγ are both

smooth.

4.4. The Fredholm theorem. Our proof of Theorem 1.1 will be made possible by the following

Fredholm theorem.

Suppose that E is a vector bundle over an almost Hermitian manifold (X, g, J) of the form

(TCX)⊗r⊗(T ∗
C
X)⊗s, or its U(n)-invariant subbundle, or the direct sum of such bundles. A linear

differential operator P : Γ(E) → Γ(E) is called geometric of order m if Pu is given by a universal

expression “of orderm” in terms of the Ehresmann–Libermann connection ∇, that is, as the sum

of contractions of tensor products of ∇lu, ∇l′−2R, ∇l′−1N , ∇l′−1T , and g, g−1, where l ≤ m

and l′ (which can be different from factor to factor) satisfies l′ ≤ m − l. If k ≥ m and (g, J) is

an ACH almost Hermitian structure of class Ck,α
ν for some ν ∈ (0, 1], then any geometric linear

differential operator P : Γ(E) → Γ(E) of order m naturally defines a bounded operator

Ck,α
δ (X,E) → Ck−m,α

δ (X,E)

for an arbitrary δ ∈ R. (This definition can be readily generalized to differential operators

between different vector bundles, but we do not need to do so in this paper.)

Note that every vector bundle E of the type described above is expressed as E = F ×U(n) V ,

where F is the unitary frame bundle over X and V is some U(n)-representation. Then the

representation V simultaneously defines the vector bundle, which we express by the same symbol

E, over all almost Hermitian manifolds. In particular, we have the bundle E defined over CHn,

and this is needed to state the next theorem.

Another ingredient that we need is the notion of indicial roots associated with any geometric

linear differential operator P , which does not depend on (X, g, J) but only on the universal

expression of P . We refer the reader to [24, Section 1] for the definition. Although [24] considered

geometric operators associated with ACH metrics rather than ACH almost Hermitian structures,

the definition of the indicial roots there applies to our case without any change. Let ΣP ⊂ C be

the set of indicial roots; then,

RP := min
s∈ΣP

|Re s− n| ≥ 0

is called the indicial radius of P .

Theorem 4.11. Let X be equipped with an ACH almost Hermitian structure of class Ck,α
ν for

some ν ∈ (0, 1]. Let P : Γ(X,E) → Γ(X,E) be a formally self-adjoint geometric elliptic linear

differential operator of order m, and assume that it satisfies, on CHn,

(4.6) ‖u‖L2 ≤ C‖Pu‖L2, u ∈ domP ⊂ L2(CHn, E)

for some constant C > 0, where domP denotes the domain of the maximal closed extension of

P as an unbounded operator L2 → L2. Then, for k ≥ m, the bounded operator

P : Ck,α
δ (X,E) → Ck−m,α

δ (X,E)
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is a Fredholm operator of index zero if n−RP < δ < n+RP , where RP is the indicial radius of

P . Moreover, the kernel of P within this range of δ equals the L2 kernel ker(2) P .

Versions of this theorem are given by Roth [26, Proposition 4.15] and by Biquard [2, Propo-

sition I.3.5]. The expositions in these two references are restricted to certain second-order op-

erators, but they are straightforwardly extended to general geometric operators associated with

ACH metrics. Theorem 4.11 is more general than that, for it concerns geometric operators as-

sociated with ACH almost Hermitian structures. The modification to the proof is minor, but it

may not be totally trivial. We illustrate it in the following sketch of the proof.

Note that we omit the proof of the assertions on the Fredholm index of P and that the kernel

equals ker(2) P . We can follow [2, pp. 34–35] or [19, pp. 50–56] for this part.

Sketch of the proof of the Fredholm property in Theorem 4.11. The assumption (4.6) implies that

the operator P defines an isomorphism Hm(CHn, E) → L2(CHn, E), where Hm(CHn, E) is the

L2-Sobolev space of exponent m, as (more or less) discussed in [26, Proposition 4.8], [2, Sections

I.2.B and I.2.C]. Let P−1 : L2 → Hm be the inverse. Then, the boundary asymptotic behavior

of the Green kernel of P (i.e., the Schwartz kernel of P−1) on CHn can be determined using the

indicial polynomial of P , and we conclude that P also defines an isomorphism Ck,α
δ → Ck−m,α

δ

in the range n− RP < δ < n+ RP . The proof of this fact is basically given in [26, Proposition

5.9], [2, Proposition I.2.5]; see also [19, Chapter 5].

Next we want to introduce the ACH version of boundary Möbius charts. The idea is essentially

given in [26, Section 2.4], and also in [2], in the beginning of the proof of the Fredholm property

in Proposition I.3.5. For the AH case, see Lemma 6.1 in [19].

For this, we identify CHn with the Siegel upper-half space { (z, w) ∈ Cn−1 × C | Imw > |z|2 },
which we write X0. We equip X0 = { Imw ≥ |z|2 } with the square-root smooth structure: we

set r = Imw − |z|2, t = Rew and x =
√

r/2, by which (x, z, t) is a smooth global coordinate

system on X0. The complex hyperbolic metric and the standard complex structure on X0 are

denoted by g0 and J0, respectively.

We take coordinate neighborhoods in X near ∂X modelled on open neighborhoods of (0, 0) ∈
X0 such that (g, J) is close to (g0, J0) on them. Compared to the arguments in [26] and [2], we

make two minor adjustments here: an estimate for J is given, which is straightforward, and εν is

used instead of ε, which is due to our definition of ACH metrics/almost Hermitian structures. Let

a smooth boundary defining function x̃ ofX be fixed, and for ε > 0, we set Uε = { 0 ≤ x̃ < ε } and
Uε = { 0 ≤ x̃ ≤ ε }. Then, for each point q ∈ ∂X , we can take a diffeomorphism Φq : Uq → V1,

where Uq is an open neighborhood of q in X and

Vρ = { (x, z, t) | x < ρ, |z| < ρ, |t| < ρ2 } ⊂ X0,

such that Aε = {Uq }q∈∂X covers Uε and

‖(Φq)∗g − g0‖Ck,α(V1) < Cεν , sup
V1

|((Φq)∗g)
−1| < C,

‖(Φq)∗J − J0‖Ck,α(V1) < Cεν

are satisfied, where the constant C > 0 is independent of q ∈ ∂X and of ε > 0. The norms on

the left-hand sides are defined via g0.

For any section u ∈ Ck,α
δ (X,E) supported in Uq, we can establish an estimate of Pu −

P̊qu, where we define P̊q by “implanting” P of CHn onto Uq, as follows. The argument here

corresponds to [26, Proposition 4.14] and [2, Equation (3.7)], and [19, Equation (6.5)] in the AH

case.
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In order to define P̊qu, we need to introduce an identification of the bundles E|Uq
and E|V1 .

Let {Z0,Z1, . . . ,Zn−1 } be some fixed unitary frame of T 1,0CHn over V1. Then each (Φq)∗Zi is a

section of TCX = T 1,0X⊕T 1,0X over Uq, and we write its projection to the first summand asW 0
i .

We then apply the Gram–Schmidt process to {W 0
0 ,W

0
1 , . . . ,W

0
n−1 } to obtain a unitary frame

{W0,W1, . . . ,Wn−1 }. If we write E = F ×U(n) V , then by the frame {W0,W1, . . . ,Wn−1 },
any section of E|Uq

can be seen as a function with values in V . We define Ψqu as the section of

E|V1 given by the same function with respect to the frame {Z0,Z1, . . . ,Zn−1 }.
Using this identification, the operator P̊q acting on sections of E|Uq

is defined by

P̊qu = Ψ−1
q (P (Ψqu)).

Then it can be shown that

‖Pu− P̊qu‖Ck−m,α
δ

(Uq)
≤ Cεν‖u‖Ck,α

δ
(Uq)

,

where C > 0 does not depend on q ∈ ∂X or ε > 0.

At this point, we need to look back and re-examine our construction of the family Aε =

{Uq }q∈∂X . The construction of Aε can be carried out so that there exists N ∈ N, which is

independent of ε, with the following property:

For any ε > 0, there is a finite subfamily A′
ε = {Uqλ }λ∈Λ of Aε such that Uε/2

is covered by {Φ−1
qλ

(V1/2) }, and, for any p ∈ Uε, the number of λ ∈ Λ for which

p ∈ Uqλ is at most N .

In the AH case, this is discussed in [19, p. 47] by referring to its Lemma 2.2, and the same

argument applies to our case as well. We take a subfamily A′
ε having the property above for a

particular ε that is specified later, and, instead of writing Φqλ , Uqλ , and P̊qλ , we simply write

Φλ, Uλ, and P̊λ, respectively.

Let ϕ : V1 → [0, 1] be a smooth bump function that equals 1 in V1/2 and 0 outside V3/4. Let

ϕλ = Φ∗
λϕ, which is supported in Uq. Moreover, let ϕ0 : X → [0, 1] be a smooth bump function

supported in X \ Uε/4 that equals 1 in X \ Uε/2. We set

χλ =
ϕλ

√

ϕ2
0 +

∑

λ∈Λ

ϕ2
λ

and χ0 =
ϕ0

√

ϕ2
0 +

∑

λ∈Λ

ϕ2
λ

.

Then, {χ2
λ }λ∈Λ ∪ {χ2

0 } is a smooth partition of unity subordinate to the covering {Uλ }λ∈Λ ∪
{X \ Uε/4 } of X . We also have

‖χλ‖Ck,α < C and ‖χ0‖Ck,α < C

for some C > 0 that is independent of ε, and ∇χλ ∈ Ck−1,α
1 (and ∇χ0 ∈ Ck−1,α

1 , which is

obvious). See also similar arguments that can be found in the proof of [26, Proposition 4.15],

the proof of the Fredholm property of [2, Proposition I.3.5], and [19, p. 47] in the AH case.

In order to prove that P is a Fredholm operator, it suffices to show that Q1Pu = u + K1u

and PQ2u = u +K2u for some bounded operators Q1, Q2 and compact operators K1, K2. We

construct such Q1 and Q2 using the approach of [2].

Take a parametrix Q0 for P restricted to sections supported in X \ Uε/4. We define the

bounded operator Q : L2 → Hm, which is also a bounded operator as Ck−m,α
δ → Ck,α

δ for

n−RP < δ < n+RP , by

Qu =
∑

λ∈Λ

χλP̊
−1
λ (χλu) + χ0Q0(χ0u).
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Then, if we write Q0P = I +K0, we obtain

QPu = u+
∑

λ∈Λ

χλP̊
−1
λ (P − P̊λ)(χλu)−

∑

λ∈Λ

χλP̊
−1
λ ([P, χλ]u)− χ0Q0([P, χ0]u) + χ0K0(χ0u).

We write

Su =
∑

λ∈Λ

χλP̊
−1
λ (P − P̊λ)(χλu), T u = −

∑

λ∈Λ

χλP̊
−1
λ ([P, χλ]u)− χ0Q0([P, χ0]u),

Ku = χ0K0(χ0u),

so that QP = I + S + T +K.

The third operator K is obviously compact as an operator Ck,α
δ → Ck,α

δ . The second operator

T is continuous as Ck,α
δ → Ck+1,α

δ′ , where δ′ is taken so that δ < δ′ < min(δ + 1, n+RP ). One

can show that Ck+1,α
δ′ →֒ Ck,α

δ is a compact embedding (see [19, Lemma 3.6 (d)] for the AH

case), and hence T is also compact as an operator Ck,α
δ → Ck,α

δ .

The first term, Su, has an estimate

‖Su‖Ck,α
δ

≤ Cεν‖u‖Ck,α
δ
.

Therefore, if we take a sufficiently small ε, the operator norm of S becomes less than 1 and

therefore I + S is invertible. We set Q1 = (I + S)−1Q and K1 = (I + S)−1(T + K) to get

Q1Pu = u+K1u, where K1 is compact. The other statement can be proved similarly. �

We need to specify the indicial radius of the operator (3.6).

Lemma 4.12. The indicial roots of the operator PS : Γ(X,∧2
aH) → Γ(X,∧2

aH) given by (3.6) are

n±
√
n2 + 2n+ 5 and n±

√
n2 + 8, and hence, its indicial radius is

√
n2 + 8.

Proof. Although the indicial roots are introduced in [24] by using the polar coordinates associated

with the representation CHn = PSU (n, 1)/U(n), they are computable by expressing PS (on

CHn) in the Siegel upper-half space coordinates. See the discussion following [24, Proposition

1.4].

LetX0 = { (z, w) ∈ Cn−1 × C | Imw > |z|2 } and set r = Imw−|z|2, t = Rew, and x =
√

r/2.

Then, the complex hyperbolic metric, normalized so that Ric = −(n+ 1)g, is

g =
1

2

(

4
dx2

x2
+
θ2

x4
+

2

x2

n−1
∑

α=1

dzαdzα

)

,

where θ = 1
2 (dt+ i

∑n−1
α=1(z

αdzα − zαdzα)). We define the frame {Z0,Z1, . . . ,Zn−1 } of T 1,0 by

Z0 =
1

2
x∂x + 2ix2∂t, Zα = x(∂zα + izα∂t), α = 1, . . . , n− 1

so that

g
ij

=











1, i = j = 0,

1/2, i = j = 1, . . . , n− 1,

0, i 6= j.
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Then, the Christoffel symbols are given as follows (cf. [25, Equation (5.2)]):

Γ0
00 = −1, Γ0

00
= 1, Γ0

α0 = 0, Γ0
α0 = 0,

Γγ
00 = 0, Γγ

00
= 0, Γγ

α0 = −δ γ
α , Γγ

α0 = 0,

Γ0
0β = 0, Γ0

0β
= 0, Γ0

αβ = 0, Γ0
αβ = 1

2δαβ ,

Γγ
0β = − 1

2δ
γ

β , Γγ

0β
= 1

2δ
γ

β , Γγ
αβ = 0, Γγ

αβ = 0.

By using these, we can show that, if we omit the terms involving derivatives of A in the directions

of t and zα, zα (which do not contribute to the indicial polynomial),

∇0∇0
A0α =

1

4
(x∂x + 1)(x∂x − 3)A0α + (tangential derivatives),

∇γ∇σA0α =
1

4
hγσ(x∂x − 3)A0α − h[α|σA0|γ] + (tangential derivatives),

∇0∇0
Aαβ =

1

4
x∂x(x∂x − 2)Aαβ + (tangential derivatives),

∇γ∇σAαβ = −1

4
hγσ(x∂x − 2)Aαβ + (tangential derivatives).

Consequently,

∇k∇kA0α =
1

4
((x∂x)

2 − 2nx∂x + (2n− 1))A0α + (tangential derivatives),

∇k∇kAαβ =
1

4
((x∂x)

2 − 2nx∂x + (4n− 4))Aαβ + (tangential derivatives)

and hence,

PSA0α = −1

4
((x∂x)

2 − 2nx∂x − (2n+ 5))A0α + (tangential derivatives),

PSAαβ = −1

4
((x∂x)

2 − 2nx∂x − 8)Aαβ + (tangential derivatives).

This implies that the indicial roots are the roots of s2 − 2ns− (2n+ 5) and s2 − 2ns− 8; hence

the claim. �

5. Deformation of Kähler-Einstein structures

Again, let X be a compact smooth manifold-with-boundary of dimension 2n whose boundary

∂X is equipped with a contact distribution H . Let α ∈ (0, 1) be arbitrarily fixed.

In order to prove Theorem 1.1, we must recall the gauge-fixing technique employed by Roth

[26] and Biquard [2]. We use the approach of [2, Section I.1.C] here (compare with [26, p. 31]).

The following condition is imposed in addition to Ric(g̃) = −(n + 1)g̃, where g is some fixed

Einstein ACH metric of class C2,α
δ with Ric(g) < 0 and δg is the divergence operator:

(5.1) δgg̃ +
1

2
d trg g̃ = 0.

This is known to be a slice condition for the action of diffeomorphisms [2, Proposition I.4.6],

meaning that the mapping

(5.2) (a neighborhood of (0, g) in C3,α
δ (X,TX)× { g̃ ∈ g + C2,α

δ satisfying (5.1) }) → g + C2,α
δ

defined by (ξ, g̃) 7→ Fl∗ξ g̃ is a homeomorphism near (0, g). In view of the diffeomorphism in-

variance of the Einstein equation, it is reasonable to solve the equation under (5.1), which is
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equivalent [2, Lemme I.1.4] to solving

(5.3) Ê = Êg(g̃) := Ric(g̃) + (n+ 1)g̃ + δ∗g̃

(

δg g̃ +
1

2
d trg g̃

)

= 0.

Once (5.3) is solved “locally uniquely,” the discussion above implies that the original Einstein

equation has a locally unique solution up to the diffeomorphism action.

The linearization of Ê under the change of g̃ is the linearized gauged Einstein operator PÊ =

∇∗
g∇g − 2R̊g (half of it, strictly speaking) mentioned in the introduction. If ker(2) PÊ = 0, then

Theorem 4.11 implies that PÊ is also an isomorphism between some appropriate function spaces,

which makes the implicit function theorem applicable. This is the outline of the argument of

[26] and [2], and that of Graham and Lee [15] in the AH case.

Now suppose that (g, J) ∈ M̃2,α
δ is such that Ric(g) < 0. The same argument for proving

that (5.2) is a local homeomorphism can be used to show that the mapping

(a neighborhood of (0, (g, J)) in C3,α
δ (X,TX)× { (g̃, J̃) ∈ (g, J) + C2,α

δ satisfying (5.1) })
→ (g, J) + C2,α

δ

defined similarly is a local homeomorphism near (0, (g, J)). Therefore, Theorem 1.1 follows once

we solve the system

(5.4) Ê = 0, S = 0

locally uniquely.

In order to carry this out, we need a preliminary approximate solution to (5.4).

Lemma 5.1. Let (g, J) be any ACH almost Hermitian structure of class C2,α
δ . Then (g, J) is

automatically an approximate solution of (5.4) in the sense that

Êg(g) = O(xδ) and S = O(xδ),

where x is an arbitrary boundary defining function of X.

Proof. The claim on Ê is essentially proved in [2, Section I.4.B] (see also [26, p. 32]). What

is considered there is a particular g, smooth up to the boundary, that is associated with an

arbitrarily given γ ∈ C2,α
H , and it is shown that Ê = O(x). A general g ∈ M2,α

δ is different from

such a metric by an element of C2,α
δ , and hence Ê is O(xδ).

We can take a similar approach to show S = O(xδ). Any (g, J) ∈ M̃2,α
δ can be expressed as

g = gθ,γ + σ and J = Jθ,γ + ψ, where σ ∈ C2,α
δ and ψ ∈ C2,α

δ , for the model metric gθ,γ and the

model almost complex structure Jθ,γ . Recall that, if {Zα } is a local frame of T 1,0∂X and T is

the Reeb vector field for θ, then

Z0 =
1

2
x∂x + ix2T, Zα = xZα, α = 1, . . . , n− 1

span the holomorphic tangent bundle for Jθ,γ .

The connection coefficients Γ and the torsion of the Ehresmann–Libermann connection ∇ of

(gθ,γ , Jθ,γ) with respect to {Z0,Zα } are computed below, and we will see that S = O(x) for

(gθ,γ , Jθ,γ). Then the difference between Γ and Γ(g,J) is expressed in terms of σ, ψ and the

connection ∇. By the way they are expressed, we can conclude that the difference between the

tensor S for those two almost Hermitian structures is O(xδ), thereby showing S = O(xδ) for

(g, J).
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Recall the Tanaka–Webster connection of the compatible almost CR structure γ in the sense

defined in [23, Proposition 3.1], which we write ∇̂. The first structure equation is∗

dθγ = θβ ∧ ω̂ α
β − Â γ

α θα ∧ θ + 1

2
N̂γ

αβ
θα ∧ θβ .

We can check that the Ehresmann–Libermann connection of (gθ,γ , Jθ,γ) is given by the following

coefficients with respect to the frame {Z0,Zα,Z0,Zα }:
Γ0

00 = −1, Γ0
00

= 1, Γ0
α0 = 0, Γ0

α0 = 0,

Γγ
00 = 0, Γγ

00
= 0, Γγ

α0 = −δ γ
α , Γγ

α0 = ix2Â γ
α ,

Γ0
0β = 0, Γ0

0β
= 0, Γ0

αβ = ix2Âαβ , Γ0
αβ = 1

2hαβ ,

Γγ
0β = ix2Γ̂γ

0β − 1
2δ

γ
β , Γγ

0β
= −ix2Γ̂γ

0β + 1
2δ

γ
β , Γγ

αβ = xΓ̂γ
αβ , Γγ

αβ = xΓ̂γ
αβ .

Therefore, we obtain Nγ
0β = ix2Â γ

β , Nγ
αβ = xN̂γ

αβ , and T = 0. This implies that S = O(x)

for (gθ,γ , Jθ,γ). �

We introduce here one more technical tool, which is the projection to the space of almost

complex structures.

Let (V, b) be a real 2n-dimensional vector space with inner product, and J(V,b) the set of

linear complex structures of V compatible with b. The orthogonal group O(V, b) acts properly on

End(V ) by conjugation, and hence J(V,b) is, being an orbit of the action, a closed submanifold; the

tangent spaces of J(V,b) are given by the infinitesimal action of O(V, b) at each point. The space

End(V ) carries the distance defined by the Hilbert–Schmidt inner product, and in a neighborhood

of J(V,b) in End(V ), the nearest point projection onto J(V,b) is well-defined and smooth.

The definition of the above nearest point projection can be extended to the manifold setting.

Let (X, g) be a Riemannian manifold, and suppose that a smooth section ϕ of End(TX) point-

wisely sufficiently close to J(TxX,gx) is given. Then the projection of ϕ can be taken pointwisely,

and one obtains a smooth almost complex structure on X compatible with g, which we write

πg(ϕ).

Proof of Theorem 1.1. Take any family (gγ , Jγ) of ACH almost Hermitian structures of class

C2,α
δ smooth in γ ∈ U such that (gγ0 , Jγ0) = (g, J). This is possible as follows for instance. We

express (g, J) as g = gθ,γ0+σ and J = Jθ,γ0+ψ with respect to an admissible collar neighborhood

diffeomorphism Φ. Then we define gγ = gθ,γ + σ near ∂X , and extend it to the whole X by a

partition of unity, so that the extended gγ is C2,α-close to g. Likewise, we define ϕγ = Jθ,γ + ψ

near ∂X and extend by a partition of unity to X . Then we use the nearest point projection with

respect to gγ to define Jγ = πgγ (ϕγ).

The family (gγ , Jγ) uniformly satisfy Ê = O(xδ) and S = O(xδ) by Lemma 5.1. Note that

n−RPS
< δ < n+RPS

by Lemma 4.12, and also that n−RPÊ
< δ < n+RPÊ

because RPÊ
= n

(see the discussion following [24, Proposition 1.4]).

Let ∧2
aH be the bundle of 2-forms that are anti-Hermitian with respect to the almost complex

structure J . We define the mapping

Q : U × V1 × V2 → C0,α
δ (X, Sym2 T ∗)⊕ C0,α

δ (X,∧2
aH),

where V1 is a small neighborhood of 0 ∈ C2,α
δ (X, Sym2 T ∗) and V2 is a small neighborhood of

0 ∈ C2,α
δ (X,∧2

aH), as follows (U , V1, and V2 will be, when needed, made smaller without notice

∗Here we use the opposite sign and a different order of indices for the CR Nijenhuis tensor compared to [23],

for compatibility with our convention (2.2).
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in the sequel). For (γ, τ, χ) ∈ U × V1 × V2, we first define g(γ,τ) = gγ + τ . Then we define

J(γ,τ,χ) = πg(γ,τ)
(Jγ +χ), for which (g(γ,τ), J(γ,τ,χ)) is again an ACH almost Hermitian structure

of class C2,α
δ . Finally, we set

Q(γ, τ, χ) = (Êgγ (g(γ,τ)), Sg(γ,τ)
(J(γ,τ,χ))).

The mapping Q is smooth in γ, τ , and χ.

We now use Theorem 4.11. The linearization of Êgγ (g(γ,τ)) at (γ0, 0, 0) with respect to

the second parameter τ is PÊ , and it is an isomorphism as a mapping C2,α
δ → C0,α

δ , because

ker(2) PÊ = 0 by the assumption. Likewise, the linearization of Sg(γ,τ)
(J(γ,τ,χ)) at (γ0, 0, 0) with

respect to the third parameter χ is PS , and it is an isomorphism as a mapping C2,α
δ → C0,α

δ ,

because ker(2) PS = 0, which is obvious from (3.6). Consequently, the linearization of Q at

(γ0, 0, 0) with respect to the second and the third parameters is in a form
(

PÊ 0

∗ PS

)

,

and this is an isomorphism as a mapping C2,α
δ ⊕ C2,α

δ → C0,α
δ ⊕ C0,α

δ . By the implicit function

theorem, if U is sufficiently small, for each γ ∈ U there exists only one (τ, χ) in an appropriate

neighborhood of (0, 0) ∈ V1×V2 for which Q(γ, τ, χ) = 0 is satisfied, or equivalently, Êgγ (g(γ,τ)) =

0 and Sg(γ,τ)
(J(γ,τ,χ)) = 0. �

6. Approximate solutions of higher order

We turn to the proof of Theorem 1.2. Some part of the theorem is already shown by the

author in [23]. Specifically, we use the following version, proved in [22] (see also [25, Theorem

2.5]).

Theorem 6.1 (Matsumoto [22, Theorem 2.1]). Let X be a manifold-with-boundary whose bound-

ary is equipped with a contact distribution H, and let γ ∈ CH . Then, there exists an ACH metric

g on X, with conformal infinity γ, that is smooth up to the boundary satisfying

(6.1) Ric(g) = −(n+ 1)g +O(x2n).

Up to the action of diffeomorphisms of X that restricts to the identity on the boundary, such an

ACH metric is unique modulo O(x2n) ambiguity.

It is known that, by identifying a neighborhood of ∂X in X with ∂X × [0, ε)x by an appro-

priately chosen admissible collar neighborhood diffeomorphism Φ, we can further normalize g in

such a way that ∂/∂x is orthogonal to the level sets of x (Guillarmou–Sá Barreto [16, Section

3.2]). Under this additional normalization condition, the metric g is unique modulo O(x2n) am-

biguities, and the proof of Theorem 6.1 shows that the expansion of g in x up to the (2n− 1)-st

order has a local formula in terms of the Tanaka–Webster connection of (γ, θ). In this sense, the

expansion of g is locally determined by the geometry of the boundary.

Therefore, in order to show Theorem 1.2, it suffices to prove the following. Let Zα and Zα

(α = 1, . . . , n− 1) be as in the beginning of Section 4.3.

Proposition 6.2. Let X be a compact manifold-with-boundary of dimension 2n whose boundary

is equipped with a contact distribution H, and g be an ACH metric that is smooth up to the

boundary satisfying Ric(g) = −(n + 1)g + O(x2n), whose conformal infinity is denoted by γ ∈
CH . Let an open neighborhood of ∂X and ∂X × [0, ε)x be identified by an admissible collar

neighborhood diffeomorphism Φ with which g is normalized in the sense described above. Then,
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in a neighborhood of ∂X, there exists an almost complex structure J , for which (g, J) is an ACH

almost Hermitian structure with conformal infinity γ that is smooth up to the boundary satisfying

S = O(x2n).

Moreover, such J is uniquely determined modulo O(x2n) ambiguity, and the components of J with

respect to the frame { x∂x, x2T,Z1, . . . ,Zn−1,Z1, . . . ,Zn−1 }, if expanded in x, have coefficients

up to the (2n−1)-st order given by certain universal expressions in terms of the Tanaka–Webster

local invariants of (γ, θ).

In order to prove this proposition, we will use the pointwise nearest point projection πg to

the submanifold of compatible linear complex structures introduced in the previous section. The

following observation is useful in the proof.

Lemma 6.3. Let (V, b) be a real 2n-dimensional vector space with inner product, and J the set of

linear complex structures of V compatible with b. Let f : End(V ) → End(V ) and g : End(V ) →
Sym2 V ∗ be defined by

f(ϕ) = ϕ2 + id, g(ϕ) = b(ϕ·, ϕ·)− b(·, ·),
with which we have J = (f, g)−1(0, 0). Then, in a neighborhood U of J in End(V ), there exists

a constant C > 0 for which

dist(ϕ,J ) ≤ C(|f(ϕ)| + |g(ϕ)|).

Proof. We may assume that V = R2n and b is the standard inner product. Then we can write

f(ϕ) = ϕ2+I and g(ϕ) = ϕt ϕ−I, where I is the identity matrix. Moreover, since J is compact,

it suffices to argue locally.

First, let F = (f, g) : End(V ) → End(V )⊕ Sym2 V ∗, and we want to show that the kernel of

(dF )J at each J ∈ J agrees with the tangent space TJJ . The kernel of (dF )J is given by

Jϕ+ ϕJ = 0, Jt ϕ+ ϕt J = 0,

which is equivalent to that Jϕ being anti-Hermitian and skew-symmetric (note that Jt = −J).
On the other hand, the tangent space of J is given by the infinitesimal action of the orthogonal

group, which implies TJJ = {XJ − JX | X ∈ o(2n) }. If we set ϕ = XJ − JX , then Jϕ =

X +JXJ , which is the anti-Hermitian part of X . Therefore, TJJ also consists of all those ϕ for

which Jϕ is a skew-symmetric anti-Hermitian matrix.

We fix a point J ∈ J . Then, near J , we can take a smooth local coordinate system ξ =

(ξ′, ξ′′) of End(V ) for which J is defined by ξ′ = 0. Using these coordinates, and by identifying

End(V )⊕ Sym2 V ∗ with RN , we can write

F (ξ′, ξ′′) = F (0, ξ′′) +Aξ′′ξ
′ +O(|ξ′|2) = Aξ′′ξ

′ +O(|ξ′|2),
with a smooth family Aξ′′ of matrices of full rank. Therefore we have |F (ξ′, ξ′′)| ≥ c|ξ′| for some

c > 0, which implies that |F (ϕ)| ≥ c′ dist(ϕ,J ) near J for some c′ > 0. �

Proof of Proposition 6.2. For notational simplicity, let (g0, J0) = (gθ,γ , Jθ,γ). In a sufficiently

small neighborhood of ∂X , πg(J0) is defined. We set J1 = πg(J0); then S = O(x). Actually,

by Lemma 5.1, any almost complex structure J for which (g, J) is an ACH almost Hermitian

structure that is smooth up to the boundary satisfies S = O(x).

Then, we shall argue inductively. Supposing that (g, Jl) is an ACH almost Hermitian structure

with conformal infinity γ that is smooth up to the boundary for which S = O(xl) is satisfied,

where 1 ≤ l ≤ 2n− 1, we construct Jl+1 satisfying S = O(xl+1). In addition, we will show that
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the coefficients of the components of Jl+1 with respect to { x∂x, x2T,Zα,Zα } expanded in x are,

up to the l-th order, given in terms of the Tanaka–Webster local invariants.

Let Jl be given for some l ≥ 1. We truncate the Taylor expansions of the components of Jl
so that all the components becomes polynomials in x of degree (at most) l − 1. The resulting

section of End(TX), defined only near ∂X , is denoted by J trc
l . Let us write

Jl = J trc
l + xlϕ+O(xl+1),

where ϕ is a section of End(TX) whose components with respect to { x∂x, x2T,Zα,Zα } are

constant in x, and similarly, we write Jl+1, which is to be determined, as

Jl+1 = J trc
l + xlψ +O(xl+1).

Moreover, we can decompose each of ϕ and ψ by symmetry/skew-symmetry with respect to g0
and Hermitianity/anti-Hermitianity with respect to J0. We symbolize these decompositions as

S/∧ and H/aH, respectively, and we express ϕ and ψ as ϕ = ϕSH + ϕSaH + ϕ∧H + ϕ∧aH and

ψ = ψSH + ψSaH + ψ∧H + ψ∧aH .

We first want to show that the almost Hermitian requirements J2
l+1 = −I and g(Jl+1·, Jl+1·) =

g(·, ·) imply that ψSH , ψSaH , and ψ∧H must agree with the corresponding components of ϕ. To

see this, we write Jl+1 = Jl + xlχ+ O(xl+1), i.e., χ = ψ − ϕ. Then

J2
l+1 = J2

l + xl(J0χ+ χJ0) +O(xl+1),

and this means that χSH and χ∧H must vanish. Likewise, we write

g(Jl+1V, Jl+1W ) = g(JlV, JlW ) + xl(g0(J0V, χW ) + g0(χV, J0W )) +O(xl+1),

and this implies that χSaH and χ∧H must vanish. Note that these computations also show that

the contribution of χ∧H to J2
l+1 and g(Jl+1·, Jl+1·) is only O(xl+1). By this, we can even say that

J trc
l +xl(ϕSH +ϕSaH +ϕ∧H +ψ∧H) satisfies the almost Hermitian requirements modulo O(xl+1),

no matter what ψ∧H is.

Similar computations using Jl = J trc
l +xlϕ+O(xl+1) show that ϕSH , ϕSaH , and ϕ∧H are given

in terms of the Tanaka–Webster local invariants as follows. Since

J2
l = (J trc

l )2 + xl(J0ϕ+ ϕJ0) +O(xl+1),

−(J0ϕ+ϕJ0) should agree with the xl-coefficient of (J trc
l )2, which is obviously written in terms

of the Tanaka–Webster invariants. Hence, ϕSH and ϕ∧H are given by such invariants. The other

equality

g(JlV, JlW ) = g(J trc
l V, J trc

l W ) + xl(g0(J0V, ϕW ) + g0(ϕV, J0W )) +O(xl+1)

implies that ϕ∧H is given like so.

Now we want to introduce a skew-symmetric anti-Hermitian part in a unique way by the

requirement S = O(xl+1). We set

J ′
l = πg(J

trc
l + xl(ϕSH + ϕSaH + ϕ∧H)) and Jl+1 = πg(J

trc
l + xl(ϕSH + ϕSaH + ϕ∧H +A)),

where A is skew-symmetric anti-Hermitian with respect to (g0, J0). In view of Lemma 6.3, the

terms introduced by applying πg here are both O(xl+1), and hence, we have Jl+1 = J ′
l + xlA+

O(xl+1). Then, the computation in the proof of Lemma 4.12 shows that the tensor S for Jl+1 is

given as follows (in terms of S′, which is S for J ′
l ):

S0α = S′
0α − 1

4
(l2 − 2nl − (2n+ 5))xlA0α +O(xl+1),

Sαβ = S′
αβ − 1

4
(l2 − 2nl− 8)xlAαβ +O(xl+1).
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Since l2−2nl−(2n+5) and l2−2nl−8 are never zero, A is uniquely determined by the requirement

that S = O(xl+1). The construction of J ′
l implies that the expansion of S′ is expressed in terms

of the Tanaka–Webster local invariants up to l-th order, and hence so is A. �

7. A discussion on general second-order functionals

We here establish a partial characterization of our functional E to give some justification for

our choice. The most general reasonable choice of functionals is given by the integral of a linear

combination of complete contractions of tensor products of the form

(R
ijkl

)⊗m1 ⊗ (R
ijkl

)⊗m2 ⊗ (R
ijkl

)⊗m3 ⊗ (Nijk )
⊗m4 ⊗ (N

ijk
)⊗m5 ⊗ (T

ijk
)⊗m6 ⊗ (T

ijk
)⊗m7 .

If we require that the Euler–Lagrange equation is a second-order partial differential equation,

then the integrand must be a linear combination of

R = R i j
i j , R j i

i j , |N |2, NijkN
jik, |T |2, |τ |2, δ = ∇iτi .

Because of (2.11b), we have R j i
i j = R + δ −NijkN

jik, and (2.12) implies that the integral of δ

equals that of −|τ |2. Hence, we may exclude R j i
i j and δ from the list. Moreover, because the

difference between the Levi-Civita and the Ehresmann–Libermann connections is given in terms

of N and T , the Riemannian scalar curvature of g equals 2R plus a linear combination of |N |2,
NijkN

jik, |T |2, |τ |2. We can also reasonably omit R, because its integral is invariant under a

change of J .

Rather than |N |2 and NijkN
jik, we prefer to use the squared norms of (Nsym)ijk = N(ij)k and

(Nskew)ijk = N[ij]k , which is possible by the relations |N |2 = |Nsym|2+ |Nskew|2 and NijkN
jik =

|Nsym|2 − |Nskew|2. Thus, the list becomes

|Nsym|2, |Nskew|2, |T |2, |τ |2.
We call the integral of any linear combination of these four quantities a second-order functional

of almost complex structures compatible with a given Riemannian metric g. Let

E(a,b,c,d) =
∫

(a|Nsym|2 + b|Nskew|2 + c|T |2 + d|τ |2)dVg .

Then, the functional E is E(1,1,0,1/2).
Our partial characterization of E is the following.

Proposition 7.1. A second-order functional E(a,b,c,d) has Euler–Lagrange equation whose lin-

earization equals 1
2∆∂ if and only if

a = 1 + s, b = 1− 3s, c = s, d =
1

2
− 2s

for some s ∈ R.

To show Proposition 7.1, let us write

E• =

∫

|•|2dVg

for • = Nsym, Nskew, T , τ , and

d

dt
E•[Jt]

∣

∣

∣

∣

t=0

=

∫

((Ė•)ijAij + (Ė•)ijA
ij
)dVg

as in Section 3. Then, a computation akin to the proof of Proposition 3.1 gives the following

formulae (actually (7.1d) is already given there).
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Lemma 7.2. Under the notation above,

ĖNsym

ij = i

(

−1

4
(∇k + τk)Nkij +

1

4
(∇k + τk)(Nskew)ijk +

1

2
(Nsym)[i|klT

kl
|j]

)

,(7.1a)

ĖNskew
ij = i

(

1

4
(∇k + τk)Nkij +

3

4
(∇k + τk)(Nskew)ijk +

1

2
(Nskew)[i|klT

kl
|j]

)

,(7.1b)

ĖT
ij = i

(

−(∇k + τk)T
kij

+Nkl[iT
kl

j] − 1

2
N[i|kl T

kl
|j]

)

,(7.1c)

Ėτ
ij = i

(

∇[iτj] −
1

2
Nkij τ

k +
1

2
T k

ij τk

)

.(7.1d)

Next, recall from (2.15) and (2.16) that, under the Kähler-Einstein assumption,

Ṅk
ij = 0, Ṅk

ij
= 0, Ṅk

ij
= −i∇

[i
Ak

j]
,

Ṫ k
ij = −i∇kAij , Ṫ k

ij
= 0, Ṫ k

ij
= 0.

As a consequence of the first line, we also have

(Ṅsym)
k
ij = 0, (Ṅsym)

k
ij
= 0, (Ṅsym)

k
ij
= − i

4
(∇kA

ij
+∇

i
Ak

j
),

(Ṅskew)
k
ij = 0, (Ṅskew)

k
ij
= 0, (Ṅskew)

k
ij
=
i

4
(∇kA

ij
−∇

i
Ak

j
+ 2∇

j
Ak

i
).

Using these formulae, we can now compute the linearizations of Ė•.

Lemma 7.3. The linearizations of Ė• at Kähler-Einstein structures are given by

ËNsym

ij = −1

8
∇k∇kAij −

3

8
λAij +

1

8
∇[i∇kAj]k,

ËNskew

ij = −3

8
∇k∇kAij −

1

8
λAij −

5

8
∇[i∇kAj]k,

ËT
ij = −∇k∇kAij ,

Ëτ
ij = ∇[i∇kAj]k,

where Ric(g) = λg.

Because of Lemma 7.3 and (3.6), the linearized Euler–Lagrange equation of the functional

E(a,b,c,d) equals 1
2∆∂ when

−1

8
a− 3

8
b − c = −1

2
, −3

8
a− 1

8
b = −1

2
,

1

8
a− 5

8
b+ d = 0.

The solutions are (a, b, c, d) = (1+ s, 1− 3s, s, 1/2− 2s), s ∈ R; hence, we obtain Proposition 7.1.

Among the one-parameter family E(1+s,1−3s,s,1/2−2s), it seems that there is no special reason

to choose E = E(1,1,0,1/2), apart from the simplicity of the expression of the functional.
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