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Abstract

Inspired by the paper Greenhalgh et al. [5] we investigate a class of two dimen-
sional stochastic differential equations related to susceptible-infected-susceptible
epidemic models with demographic stochasticity. While preserving the key fea-
tures of the model considered in [5], where an ad hoc approach has been utilized
to prove existence, uniqueness and non explosivity of the solution, we consider an
encompassing family of models described by a stochastic differential equation with
random and Hölder continuous coefficients. We prove the existence of a unique
strong solution by means of a Cauchy-Euler-Peano approximation scheme which
is shown to converge in the proper topologies to the unique solution.

Key words and phrases: two dimensional susceptible-infected-susceptible epidemic
model, Brownian motion, stochastic differential equation
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1 Introduction

Susceptible-infected-susceptible (SIS) epidemic model is one of the most popular
models for how diseases spread in a population. In such a model an individual starts off
being susceptible to a disease and at some point of time gets infected and then recovers
after some time becoming susceptible again. The literature of such mathematical models
is very rich: for probabilistic/stochastic models one may look for instance at Allen [2],
Allen and Burgin [3], A. Gray et al. [4], Hethcote and van den Driessche [6], Kryscio and
Lefvre [8], McCormack and Allen [10] and Nasell [12]. We also refer the reader to the
detailed account presented in Greenhalgh et al. [5] for an overview on both deterministic
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and stochastic models.
The focus of the present paper is on the model presented in [5]. One of its distinguishing
features is the nature of the births and deaths that are regarded as stochastic processes
with per capita disease contact rate depending on the population size. Contrary to many
other previously proposed models, this stochasticity produces a variable population size
which turns out to be a reasonable assumption for slowly spreading diseases.
From a mathematical point of view, the SIS model proposed in [5] amounts at the
following two dimensional stochastic differential equation for the vector (St, It) where St

and It stand for the number of susceptible and infected individuals at time t, respectively:







dS =
[

−λ(N)SI
N

+ (µ+ γ)I
]

dt+
√

λ(N)SI
N

+ (µ+ γ)I + 2µSdW3

dI =
[

λ(N)SI
N

− (µ+ γ)I
]

dt+
√

λ(N)SI
N

+ (µ+ γ)IdW4.
(1.1)

Here, N := S+ I denotes the total population size while µ, γ and λ : [0,+∞[→ [0,+∞[
are suitably chosen parameters. The system (1.1) is driven by the two dimensional cor-
related Brownian motion (W3,W4) resulting from a certain application of the martingale
representation theorem (see Section 2.1 below for technical details). The system (1.1) is
then shown to be equivalent to the triangular system

{

dI =
[

λ(N)
N

(N − I)I − (µ+ γ)I
]

dt+
√

λ(N)
N

(N − I)I + (µ+ γ)IdW4

dN =
√
2µNdW5

(1.2)

where now the second equation, the so-called square root process (see for instance the
book by Mao [9] for the properties of this process), is independent of the first one. To
prove the existence of a solution to the first equation in (1.2) the authors resort to The-
orem 2.2 in Chapter IV of Ikeda and Watanabe [7] while for the uniqueness they need
to construct a localized version of Theorem 3.2, Chapter IV in [7]. The equation for
I in (1.2) exhibits random (for the dependence on the process N) and Hölder continu-
ous (for the presence of the square root in the diffusion term) coefficients resulting in a
stochastic differential equation for which the issue of the existence of a unique solution
has not been addressed in the literature yet.
Our aim in the present paper is to propose a more general approach allowing for the
investigation of a richer family of models characterized by the same distinguishing fea-
tures of the model analyzed in [5].
The paper is articulated as follows: In Section 2 we present a general review using the
exposition in the book by Allen (see [1]) of a two-state dynamics leading to a Fokker-
Planck partial differential equation and its associated stochastic system. This is followed
by Section 2.1 where we consider the more specific situation of a bio-demographic model
like the one presented in [5]. Our idea is to embed the rather special system of SDE’s of
the model in a slightly more encompassing class, like the one in (3.9) below, in order to
establish a general proof of strong existence and uniqueness. Our technique relies on the
construction of an explicit approximating sequence of stochastic processes (inspired by
the work of Zubchenko [13]) in such a way that all the relevant features of the solution
appear to be directly constructed from scratch. In Section 3 we give a detailed proof
of existence and uniqueness of the SDE (3.9). We would like to point out that systems
of SDE’s with non-Lipschitz or Hölder coefficients exhibit non-standard difficulties as
far as general results for existence and uniqueness are concerned. This model conforms
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to the aforementioned difficulties and that is what has motivated us in approaching the
problem. Our idea has been to how we could encase the model proposed in [5] within
a more general framework , thus bypassing some of the computations done there, and
hopefully allowing for larger class of models to be treated.

2 A general two-state system

In this section we review the construction of a general two-state system presented in
the book by Allen ([1]). The model will then be made concrete through the assumptions
contained in the paper by Greenhalgh et al. ([5]) and this will lead to the class of
stochastic differential equations investigated in the present manuscript.

S1(t) S2(t)
5

6

1 2 3 4

7 8

Figure 1: A two-state dynamical process

We begin by considering a representative two-state dynamical process which is illus-
trated in Figure 1. Let S1(t) and S2(t) represent the values of the two states of the system
at time t. It is assumed that in a small time interval ∆t, state S1 can change by −λ1, 0
or λ1 and state S2 can change by −λ2, 0 or λ2, where λ1, λ2 ≥ 0. Let ∆S := [∆S1,∆S2]

T

be the change in a small time interval ∆t. As illustrated in Figure 1 , there are eight
possible changes for the two states in the time interval ∆t not including the case where
there is no change in the time interval. The possible changes and the probabilities of
these changes are given in Table 1. It is assumed that the probabilities are given to
O((∆t)2). For example, change 1 represents a loss of λ1 in S1 with probability d1∆t,
change 5 represents a transfer of λ1 out of state S1 with a corresponding transfer of λ2

into state S2 with probability m12∆t and change 7 represents a simultaneous reduction
in both states S1 and S2. As indicated in the table, all probabilities may depend on
S1(t), S2(t) and the time t. Also notice that it is assumed that the probabilities for the
changes are proportional to the time interval ∆t.
It is useful to calculate the mean vector and covariance matrix for the change ∆S =
[∆S1,∆S2]

T fixing the value of S at time t. Using the table below,

E[∆S] =
9
∑

j=1

pj∆S(j) =

[

(−d1 + b1 −m12 +m21 +m22 −m11)λ1

(−d2 + b2 +m12 −m21 +m22 −m11)λ2

]

∆t
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Table 1: Possible changes in the representative two-state system with the corresponding
probabilities

Change Probability

∆S(1) = [−1, 0]T p1 = d1(t, S1, S2)∆t
∆S(2) = [1, 0]T p2 = b1(t, S1, S2)∆t
∆S(3) = [0,−1]T p3 = d2(t, S1, S2)∆t
∆S(4) = [0, 1]T p4 = b2(t, S1, S2)∆t
∆S(5) = [−1, 1]T p5 = m12(t, S1, S2)∆t
∆S(6) = [1,−1]T p6 = m21(t, S1, S2)∆t
∆S(7) = [−1,−1]T p7 = m11(t, S1, S2)∆t
∆S(8) = [1, 1]T p8 = m22(t, S1, S2)∆t

∆S(9) = [0, 0]T p9 = 1−∑8
j=1 pj

E[∆S(∆S)T ] =

9
∑

j=1

pj(∆S(j))(∆S(j))T

=

[

(d1 + b1 +ma)λ
2
1 (−m12 −m21 +m22 +m11)λ1λ2

(−m12 −m21 +m22 +m11)λ1λ2 (d2 + b2 +ma)λ
2
2

]

∆t

where we set ma := m12 + m21 + m11 + m22. Notice that the covariance matrix is set
equal to E(∆S(∆S)T )/∆t because E(∆S)(E(∆S))T = O((∆t)2). We now define

µ(t, S1, S2) = E[∆S]/∆t and V (t, S1, S2) = E[∆S(∆S)T ]/∆t (2.1)

and we denote by B(t, S1, S2) the symmetric square root matrix of V . A forward Kol-
mogorov equation can be determined for the probability distribution at time t + ∆t
in terms of the distribution at time t. If we write p(t, x1, x2) for the probability that
S1(t) = x1 and S2(t) = x2, then referring to Table 1 we get

p(t +∆t, x1, x2) = p(t, x1, x2) + ∆t

10
∑

i=1

Ti (2.2)

where

T1 = p(t, x1, x2)(−d1(t, x1, x2)− b1(t, x1, x2)− d2(t, x1, x2)− b2(t, x1, x2))

T2 = p(t, x1, x2)(−ma(t, x1, x2))

T3 = p(t, x1 + λ1, x2)d1(t, x1 + λ1, x2)

T4 = p(t, x1 − λ1, x2)b1(t, x1 − λ1, x2)

T5 = p(t, x1, x2 − λ2)b2(t, x1, x2 − λ2)

T6 = p(t, x1, x2 + λ2)d2(t, x1, x2 + λ2)

T7 = p(t, x1 + λ1, x2 − λ2)m12(t, x1 + λ1, x2 − λ2)

T8 = p(t, x1 − λ1, x2 + λ2)m21(t, x1 − λ1, x2 + λ2)

T9 = p(t, x1 + λ1, x2 + λ2)m11(t, x1 + λ1, x2 + λ2)

T10 = p(t, x1 − λ1, x2 − λ2)m22(t, x1 − λ1, x2 − λ2).
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Now, expanding out the terms T3 through T10 in second order Taylor polynomials around
the point (t, x1, x2), it follows that

T3 ≈ pd1 + ∂x1(pd1)λ1 + 1/2∂2
x1x2

(pd1)λ
2
1

T4 ≈ pb1 −
∂(pb1)

∂x1
λ1 +

1

2

∂2(pb1)

∂x2
1

λ2
1

T5 ≈ pb2 −
∂(pb2)

∂x2
λ2 +

1

2

∂2(pb2)

∂x2
2

λ2
2

T6 ≈ pd2 −
∂(pd2)

∂x2

λ2 +
1

2

∂2(pd2)

∂x2
2

λ2
2

T7 ≈ pm12 +
∂(pm12)

∂x1
λ1 −

∂(pm12)

∂x2
λ2 +

1

2

2
∑

i=1

2
∑

j=1

(−1)i+j ∂
2(pm12)

∂xi∂xj

λiλj

T8 ≈ pm21 −
∂(pm21)

∂x1

λ1 +
∂(pm21)

∂x2

λ2 +
1

2

2
∑

i=1

2
∑

j=1

(−1)i+j ∂
2(pm21)

∂xi∂xj

λiλj

T9 ≈ pm11 +
∂(pm11)

∂x1
λ1 +

∂(pm11)

∂x2
λ2 +

1

2

2
∑

i=1

2
∑

j=1

(−1)i+j ∂
2(pm11)

∂xi∂xj

λiλj

T10 ≈ pm22 −
∂(pm22)

∂x1
λ1 −

∂(pm22)

∂x2
λ2 +

1

2

2
∑

i=1

2
∑

j=1

(−1)i+j ∂
2(pm22)

∂xi∂xj

λiλj

Substituting these expressions into (2.2) and assuming that ∆t, λ1 and λ2 are small,
then it is seen that p(t, x1, x2) approximately solves the Fokker-Planck equation

∂p(t, x1, x2)

∂t
= −

2
∑

i=1

∂

∂x1
[µi(t, x1, x2)p(t, x1, x2)]

+
1

2

2
∑

i=1

2
∑

j=1

∂

∂xi∂xj

[

2
∑

k=1

bik(t, x1, x2)bjk(t, x1, x2)p(t, x1, x2)

]

(2.3)

where µ = (µ1, µ2) and B = {bij}1≤i,j≤2. On the other hand, it is well known that
the probability distribution p(t, x1, x2) that solves equation (2.3) coincides with the
distribution of the solution at time t to the following system of stochastic differential
equations

dS = µ(t, S)dt+B(t, S)dW (t), S(0) = S0 (2.4)

where W is a two-dimensional standard Brownian motion and S0 is a given determin-
istic initial condition. The stochastic differential equation (2.4) describes the random
evolution of the two-state system S related to the changes described in Table 1.

2.1 The Greenhalgh et al. [5] model

We now specialize the general model introduced in the previous section to the case
investigated in Greenhalgh et al. [5] (where the process (S1, S2) is denoted as (S, I)).
The values of the parameters in Table 1 are chosen as follows:
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Table 2: Probabilities in Greenhalgh et al.’s paper

Change Probability

∆S(1) = [−1, 0]T µS1∆t
∆S(2) = [1, 0]T µN∆t
∆S(3) = [0,−1]T µS2∆t
∆S(4) = [0, 1]T 0

∆S(5) = [−1, 1]T λ(N)S1S2

N
∆t

∆S(6) = [1,−1]T γS2∆t
∆S(7) = [−1,−1]T 0
∆S(8) = [1, 1]T 0

∆S(9) = [0, 0]T 1−∑8
j=1 pj

where N := S1+S2, λ : [0,+∞[→ [0,+∞[ is a continuous monotone increasing function
and µ and γ are positive constants. We refer to the paper [5] for the biological inter-
pretation of these quantities. Now, according to Table 2 the vector µ and matrix V in
(2.1) read

µ(t, S1, S2) =

[

−λ(N)S1S2

N
+ (µ+ γ)S2

λ(N)S1S2

N
− (µ+ γ)S2

]

and

V (t, S1, S2) =

[

a b
b c

]

where to ease the notation we set

a :=
λ(N)S1S2

N
+ (µ+ γ)S2 + 2µS1

b := −λ(N)S1S2

N
− γS2

c :=
λ(N)S1S2

N
+ (µ+ γ)S2.

Therefore,

B(t, S1, S2) = V (t, S1, S2)
1
2 =

1

d

[

a+ w b
b c+ w

]

with

w :=
√
ac− b2 and d :=

√
a+ c+ 2w.

We are then lead to study the following two dimensional system of stochastic differential
equations







dS1 =
[

−λ(N)S1S2

N
+ (µ+ γ)S2

]

dt+ a+w
d

dW1 +
b
d
dW2

dS2 =
[

λ(N)S1S2

N
− (µ+ γ)S2

]

dt+ b
d
dW1 +

c+w
d
dW2

(2.5)
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where W = (W1,W2) is a standard two dimensional Brownian motion. We observe that
by construction

(

a + w

d

)2

+

(

b

d

)2

= a.

Therefore, by the martingale representation theorem (see for instance Theorem 3.9 Chap-
ter V in [11]) there exists a Brownian motion W3 such that the first equation in (2.5)
can be rewritten as

dS1 =

[

−λ(N)S1S2

N
+ (µ+ γ)S2

]

dt+

√

λ(N)S1S2

N
+ (µ+ γ)S2 + 2µS1dW3

Similarly, since

(

b

d

)2

+

(

c+ w

d

)2

= c

by the martingale representation theorem there exists a Brownian motion W4 such that
the second equation in (2.5) can be rewritten as

dS2 =

[

λ(N)S1S2

N
− (µ+ γ)S2

]

dt+

√

λ(N)S1S2

N
+ (µ+ γ)S2dW4.

This implies that the system (2.5) is equivalent to







dS1 =
[

−λ(N)S1S2

N
+ (µ+ γ)S2

]

dt+
√

λ(N)S1S2

N
+ (µ+ γ)S2 + 2µS1dW3

dS2 =
[

λ(N)S1S2

N
− (µ+ γ)S2

]

dt+
√

λ(N)S1S2

N
+ (µ+ γ)S2dW4.

(2.6)

We remark that by construction the Brownian motions W3 and W4 are now correlated.
Moreover, if we notice that the drift of the first equation in (2.5) is the opposite of the
one in the second equation in (2.5), recalling that N = S1 + S2 we may write

dN =
a+ b+ w

d
dW1 +

b+ c + w

d
dW2

and, exploiting the definitions of a, b, c, d and w, we conclude as before that there exists
a Brownian motion W5 such that

dN =
√

2µNdW5. (2.7)

Hence, instead of studying the system (2.5), the authors in [5] study the equivalent
system

{

dS2 =
[

λ(N)
N

(N − S2)S2 − (µ+ γ)S2

]

dt+
√

λ(N)
N

(N − S2)S2 + (µ+ γ)S2dW4

dN =
√
2µNdW5

(2.8)

where the Brownian motions W4 and W5 are correlated. In the system (2.8) the equation
for N does not depend on S2 and it belongs to the family of the square root processes
([9]). Once the equation for N is solved, the equation for S2 contains random (for
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the presence of N) Hölder continuous coefficients. Moreover, due to the presence of
the square root in the diffusion coefficient of S2, the authors of [5] consider a modified
version of the first equation in (2.8) to make the coefficients defined on the whole real
line. They consider

dS2(t) = ā(t, N(t), S2(t))dt+ ḡ(t, N(t), S2(t))dW4(t) (2.9)

where

ā(t, y, x) =















0 for x < 0
λ(y)x

y
(y − x)− (µ+ γ)x for 0 ≤ x ≤ y

(

1 + µ+γ

λ(y)

)

ā
(

t, y, y
(

1 + µ+γ

λ(y)

))

for x > y
(

1 + µ+γ

λ(y)

)

and

ḡ(t, y, x) =















0 for x < 0
√

λ(y)x
y

(y − x) + (µ+ γ)x for 0 ≤ x ≤ y
(

1 + µ+γ

λ(y)

)

0 for x > y
(

1 + µ+γ

λ(y)

)

The existence of a unique non explosive strong solution to equation (2.9) is obtained
through a localization argument in terms of stopping times and comparison inequalities
to control the non explosivity of the solution. In the next section we will consider a class
of stochastic differential equations, which includes equation (2.9), allowing for more
general models where the existence of a unique non explosive strong solution is proved
via a standard Caychy-Euler-Peano approximation method.

3 Main theorem

Motivated by the discussion in the previous sections, we are now ready to state and
prove the main result of our manuscript. We begin by specifying the class of coefficients
involved in the stochastic differential equations under investigation.
Let g : [0,+∞[×R× R → R be a function of the form

g(t, y, x) =
√

−x2 + α(t, y)x+ β(t, y) (3.1)

where α, β : [0,+∞[×R → R are measurable functions satisfying the condition

α(t, y)2 + 4β(t, y) ≥ 0 for all (t, y) ∈ [0,+∞[×R. (3.2)

We observe that condition (3.2) implies that

−x2 + α(t, y)x+ β(t, y) ≥ 0 if and only if r1(t, y) ≤ x ≤ r2(t, y)

where we set

r1(t, y) :=
α(t, y)−

√

α(t, y)2 + 4β(t, y)

2

and

r2(t, y) :=
α(t, y) +

√

α(t, y)2 + 4β(t, y)

2
.
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Now, we define

ḡ(t, y, x) :=







0 if x < r1(t, y)
g(t, y, x) if r1(t, y) ≤ x ≤ r2(t, y)
0 if x > r2(t, y)

(3.3)

The function ḡ will be the diffusion coefficient of our stochastic differential equation.

Assumption 3.1 There exist a positive constant M such that

|α(t, y)| ≤ M(1 + |y|) and |β(t, y)| ≤ M(1 + |y|) (3.4)

for all (t, y) ∈ [0,∞[×R. Moreover, there exists a positive constant H such that

|ḡ(t, y1, x1)− ḡ(t, y2, x2)| ≤ H(
√

|y1 − y2|+
√

|x1 − x2|) (3.5)

for all t ∈ [0,∞[ and y1, y2, x1, x2 ∈ R.

We observe that assumption (3.4) implies the bound

|ḡ(t, y, x)| ≤ max
x∈R

|ḡ(t, y, x)|

=

√

α(t, y)2

4
+ β(t, y)

≤ M(1 + |y|)

for all t ∈ [0,∞[ and y ∈ R. Here the constant M may differ from the one appearing in
(3.4); we will adopt this convention for the rest of the paper. We also remark that by
construction inequality (3.5) for y1 = y2 is satisfied with a constant H =

√

|α(t, y1)|.

We now introduce the drift coefficient of our SDE. We start with a measurable function
a : [0,+∞[×R× R → R with the following property.

Assumption 3.2 There exists a positive constant M such that

|a(t, y, x)| ≤ M(1 + |y|+ |x|) (3.6)

for all t ∈ [0,∞[ and x, y ∈ R. Moreover, there exists a positive constant L such that

|a(t, y1, x1)− a(t, y2, x2)| ≤ L(|y1 − y2|+ |x1 − x2|) (3.7)

for all t ∈ [0,∞[ and y1, y2, x1, x2 ∈ R.

Then, we set

ā(t, y, x) :=







a(t, y, r1(t, y)) if x < r1(t, y)
a(t, y, x) if r1(t, y) ≤ x ≤ r2(t, y)
a(t, y, r2(t, y)) if x > r2(t, y)

(3.8)

Observe that by construction also the function ā satisfies Assumption 3.2.
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We now consider the following one dimensional stochastic differential equation

dXt = ā(t, Yt, Xt)dt+ ḡ(t, Yt, Xt)dW
2
t , X0 = x ∈ R (3.9)

where {Yt}t≥0 is the unique strong solution of the stochastic differential equation

dYt = m(t, Yt)dt+ σ(t, Yt)dW
1
t , Y0 = y ∈ R. (3.10)

Here {(W 1
t ,W

2
t )}t≥0 is a two dimensional correlated Brownian motion defined on a com-

plete filtered probability space (Ω,F ,P, {Ft}t≥0) where the filtration {Ft}t≥0 is generated
by the process {(W 1

t ,W
2
t )}t≥0. Strong solutions are meant to be {Ft}t≥0-adapted.

Regarding equation (3.10), the coefficients m and σ are assumed to entail existence and
uniqueness of a strong solution {Yt}t≥0 such that

E
[

sup
t∈[0,T ]

|Yt|2
]

is finite for all T > 0.

Equations (3.9) and (3.10) describe a class of equations which includes equations (2.9)
and (2.7) as a particular case.

Remark 3.3 If r1(t, y) = r2(t, y) for all (t, y) ∈ [0,∞[×R, which is equivalent to say
that α(t, y)2 + 4β(t, y) = 0, then the diffusion coefficient ḡ is identically zero and the
drift coefficient becomes ā(t, y, x) = a(t, y, α(t, y)/2). Therefore, in this particular case
the SDE (3.9) takes the form

dXt = a(t, Yt, α(t, Yt)/2)dt, X0 = x

whose solution is explicitly given by the formula

Xt = x+

∫ t

0

a(s, Ys, α(s, Ys)/2)ds.

Theorem 3.4 (Strong existence and uniqueness) Let Assumption 3.1 and Assump-
tion 3.2 be fulfilled. Then, the stochastic differential equation (3.9) possesses a unique
strong solution {Xt}t≥0.

Proof. To ease the notation we consider the time-homogeneous case and hence
we drop the explicit dependence on t from all the coefficients.
We fix an arbitrary T > 0 and prove existence and uniqueness of a solution for the SDE

Xt = x+

∫ t

0

ā(Ys, Xs)ds+

∫ t

0

ḡ(Ys, Xs)dW
2
s , X0 = x. (3.11)

on the time interval t ∈ [0, T ]. The proof for the existence is rather long and proceeds as
follows: using a Cauchy-Euler-Peano approximate solutions technique we define, associ-
ated to a partition ∆n of [0, T ] a stochastic process Xn. We will, at the beginning, prove
a convergence result for Xn in the space L1([0, T ]×Ω), then we will prove a convergence
result for Xn in the space C[0, T ] with the norm of the uniform convergence and this
will eventually yield the result.
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Existence: We consider a sequence of partitions {∆n}n≥1 of the interval [0, T ] with
∆n ⊆ ∆n+1. Each partition ∆n will consist of a set of Nn + 1 points {tn0 , tn1 , ..., tnNn

}
satisfying

0 = tn0 < tn1 < · · · < tnNn
= T.

We denote by ‖∆n‖ := max0≤k≤Nn−1 |tnk+1 − tnk |, the mesh of the partition ∆n, and
assume that limn→∞ ‖∆n‖ = 0. In the sequel, we will write tk instead of tnk when the
membership to the partition ∆n will be clear from the context.
For a given partition ∆n we construct a continuous and {Ft}t≥0-adapted stochastic
process {Xn

t }t∈[0,T ] as follows: for t = 0 we set Xn
t = x while for t ∈]tk, tk+1] we define

Xn
t := Xn

tk
+ ā(Ytk , X

n
tk
)(t− tk) + g(Ytk , X

n
tk
)(Wt −Wtk). (3.12)

It is useful to observe that, denoting ηn(t) = tk when t ∈]tk, tk+1], we may represent Xn
t

in the compact form:

Xn
t = x+

∫ t

0

ā(Yηn(s), X
n
ηn(s))ds+

∫ t

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s . (3.13)

Step one: E|Xn
ηn(t)

| is uniformly bounded with respect to n and t

We begin with equation (3.12). Using the triangle inequality and upper bounds for ā
and ḡ we get

E[|Xn
tk+1

|] ≤ E[|Xn
tk
|] + E[|ā(Ytk , X

n
tk
)(tk+1 − tk)|]

+E[|ḡ(Ytk , X
n
tk
)(Wtk+1

−Wtk)|]
≤ E[|Xn

tk
|] +M |tk+1 − tk|E [1 + |Ytk |] +M |tk+1 − tk|E

[

|Xn
tk
|
]

+ME
[

(1 + |Ytk |)|Wtk+1
−Wtk |

]

≤ (1 +M‖∆n‖)E[|Xn
tk
|] +M |tk+1 − tk|E [1 + |Ytk |]

+
M

2

(

E
[

(1 + |Ytk |)2
]

+ E
[

|Wtk+1
−Wtk |2

])

≤ (1 +M‖∆n‖)E[|Xn
tk
|] +M‖∆n‖ sup

t∈[0,T ]

E [1 + |Yt|]

+
M

2
sup

t∈[0,T ]

E
[

(1 + |Yt|)2
]

+
M

2
|tk−1 − tk|

≤ (1 +M‖∆n‖)E[|Xn
tk
|] +M‖∆n‖ sup

t∈[0,T ]

E [1 + |Yt|]

+
M

2
sup

t∈[0,T ]

E
[

(1 + |Yt|)2
]

+
M

2
‖∆n‖

≤ (1 +M‖∆n‖)E[|Xn
tk
|] + M

2
sup

t∈[0,T ]

E
[

(1 + |Yt|)2
]

+ ε.

Here we used the fact that ‖∆n‖ tends to zero as n tends to infinity and that supt∈[0,T ] E [1 + |Yt|]
is finite: we can therefore choose n big enough to make

M‖∆n‖ sup
t∈[0,T ]

E [1 + |Yt|] +
M

2
‖∆n‖
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smaller than a given positive ε. Comparing the first and last terms of the previous chain
of inequalities we get for all k ∈ {0, ..., Nn − 1}

E[|Xn
tk+1

|] ≤ (1 +M‖∆n‖)E[|Xn
tk
|] + M

2
sup

t∈[0,T ]

E
[

(1 + |Yt|)2
]

+ ε

which by recursion implies

E[|Xn
tk
|] ≤ γk

1 |x|+
γk
1 − 1

γ1 − 1
γ2

≤ γNn

1 |x|+ γNn

1 − 1

γ1 − 1
γ2

where for notational convenience we set

γ1 := 1 +M‖∆n‖ and γ2 :=
M

2
sup

t∈[0,T ]

E
[

(1 + |Ytk |)2
]

+ ε.

Since ηn(t) is a step function in [0, T ] with values {t0, t1, ..., tNn
}, the previous estimate

for k ∈ {0, ..., Nn − 1} entails the boundedness of the function [0, T ] ∋ t → E[|Xn
ηn(t)

|].
We now obtain an estimate for E[|Xn

ηn(t)
|] which is also uniform with respect to n. Using

the triangle inequality in (3.13) we can write

E[|Xn
ηn(t)|] ≤ |x|+ E

[∣

∣

∣

∣

∣

∫ ηn(t)

0

ā(Yηn(s), X
n
ηn(s))ds

∣

∣

∣

∣

∣

]

+E

[∣

∣

∣

∣

∣

∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣

∣

∣

∣

∣

]

. (3.14)

For the first expected value on the right hand side above we employ the assumptions on
ā:

E

[∣

∣

∣

∣

∣

∫ ηn(t)

0

ā(Yηn(s), X
n
ηn(s))ds

∣

∣

∣

∣

∣

]

≤ E

[
∫ t

0

|ā(Yηn(s), X
n
ηn(s))|ds

]

≤ ME

[
∫ t

0

(1 + |Xn
ηn(s)|+ |Yηn(s)|)ds

]

= M

∫ t

0

E[|Xn
ηn(s)|]ds+M

∫ t

0

E
[

1 + |Yηn(s)|
]

ds

≤ M

∫ t

0

E[|Xn
ηn(s)|]ds+MT sup

t∈[0,T ]

E [1 + |Yt|] .

Using the Itô isometry and the assumptions on ḡ we can treat the second expected value
as follows:

E

[∣

∣

∣

∣

∣

∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣

∣

∣

∣

∣

]

≤



E





∣

∣

∣

∣

∣

∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣

∣

∣

∣

∣

2








1
2

≤
(
∫ t

0

E[|ḡ(Yηn(s), X
n
ηn(s))|2]ds

)
1
2

12



≤ M

(
∫ t

0

E[(1 + |Yηn(s)|)2]ds
)

1
2

≤ M
√

T sup
t∈[0,T ]

E[(1 + |Yt|)2].

Plugging the last two estimates in (3.14) gives

E[|Xn
ηn(t)|] ≤ |x|+ E

[∣

∣

∣

∣

∣

∫ ηn(t)

0

ā(Yηn(s), X
n
ηn(s))ds

∣

∣

∣

∣

∣

]

+E

[∣

∣

∣

∣

∣

∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣

∣

∣

∣

∣

]

≤ |x|+M

∫ t

0

E[|Xn
ηn(s)|]ds+MT sup

t∈[0,T ]

E [1 + |Yt|]

+M
√

T sup
t∈[0,T ]

E[(1 + |Yt|)2]

= G +M

∫ t

0

E[|Xn
ηn(s)|]ds

where

G := |x|+MT sup
t∈[0,T ]

E [1 + |Yt|] +M
√

T sup
t∈[0,T ]

E[(1 + |Yt|)2].

By the Gronwall inequality (we proved before that t → E[|Xn
ηn(t)

|] is a non negative,

bounded and measurable function) we conclude that

E[|Xn
ηn(t)|] ≤ GeMt ≤ GeMT (3.15)

which provides the desired uniform bound (with respect to n and t) for E[|Xn
ηn(t)

|].

Step two: E[|Xn
t −Xn

ηn(t)
|] tends to zero as n tends to infinity, uniformly with respect

to t ∈ [0, T ]

We proceed as in step one. Recalling the identity (3.13) we can write

E[|Xn
t −Xn

ηn(t)|] = E

[∣

∣

∣

∣

∫ t

ηn(t)

ā(Yηn(s), X
n
ηn(s))ds+

∫ t

ηn(t)

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣

∣

∣

∣

]

≤
∫ t

ηn(t)

E[|ā(Yηn(s), X
n
ηn(s))|]ds+ E

[∣

∣

∣

∣

∫ t

ηn(t)

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣

∣

∣

∣

]

≤ M

∫ t

ηn(t)

E[(1 + |Xn
ηn(s)|+ |Yηn(s)|)]ds

+

(

E

[

∣

∣

∣

∣

∫ t

ηn(t)

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣

∣

∣

∣

2
])

1
2

≤ M(t− ηn(t))

(

GeMT + sup
t∈[0,T ]

E[1 + |Yt|]
)
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+

(
∫ t

ηn(t)

E[|ḡ(Yηn(s), X
n
ηn(s))|2]ds

)
1
2

≤ M(t− ηn(t))

(

GeMT + sup
t∈[0,T ]

E[1 + |Yt|]
)

+M
√

t− ηn(t)
√

sup
t∈[0,T ]

E[(1 + |Yt|)2]

≤ M
√

‖∆n‖
(

GeMT + sup
t∈[0,T ]

E[1 + |Yt|] +
√

sup
t∈[0,T ]

E[(1 + |Yt|)2]
)

.

Here, in the third equality, we utilized the uniform upper bound (3.15). We have there-
fore proved that

E[|Xn
t −Xn

ηn(t)|] ≤ M
√

‖∆n‖
(

GeMT + sup
t∈[0,T ]

E[1 + |Yt|] +
√

sup
t∈[0,T ]

E[(1 + |Yt|)2]
)

=: M1

√

‖∆n‖

This in turn implies that E[|Xn
t −Xn

ηn(t)
|] tends to zero as n tends to infinity, uniformly

with respect to t ∈ [0, T ].

Step three: {Xn}n≥1 is a Cauchy sequence in L1([0, T ]× Ω).

We need to prove that for any ε > 0 there exists nε ∈ N such that

E

[∫ T

0

|Xn
t −Xm

t |dt
]

< ε for all n,m ≥ nε.

We have:

Xn
t −Xm

t =

∫ t

0

[

ā(Yηn(s).X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))

]

ds

+

∫ t

0

[

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))

]

dW 2
s

We now aim to apply the Itô formula to the stochastic process {Xn
t −Xm

t }t∈[0,T ] for a
suitable smooth function that we now describe.
Consider the decreasing sequence of real numbers {ah}h≥0 defined by induction as follows:

a0 = 1 and for h ≥ 1

∫ ah

ah−1

1

u
du = h.

It is easy to see that ah = e−
h(h+1)

2 and therefore that limh→+∞ ah = 0. Define the
function Φh(u) for u ∈ [0,∞) such that Φh(0) = 0, Φh(u) ∈ C2([0,∞[) and

Φ′′
h(u) =











0, 0 ≤ u ≤ ah

a value between 0 and 2
hu
, ah < u < ah−1

0, u ≥ ah−1

(3.16)
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with
∫ ah−1

ah

Φ′′
h(u)du = 1.

Integrating Φ′′
h we get

Φ′
h(u) =











0, 0 ≤ u ≤ ah

a value between 0 and 1, ah < u < ah−1

1, u ≥ ah−1

(3.17)

Finally we choose θh(u) = Φh(|u|). Then, we have:

θh(X
n
t −Xm

t ) =

∫ t

0

θ′h(X
n
s −Xm

s )
[

ā(Yηn(s).X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))

]

ds

+

∫ t

0

θ′h(X
n
s −Xm

s )
[

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))

]

dW 2
s

+
1

2

∫ t

0

θ′′(Xn
s −Xm

s )
[

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))

]2
ds

=: I1(θh) + I2(θh) + I3(θh)

Since for any h ≥ 0 and u ∈ R we have by construction that |u| − ah−1 ≤ θh(u), we can
write

E[|Xn
t −Xm

t |] ≤ ah−1 + E[θh(X
n
t −Xm

t )]

= ah−1 + E[I1(θh) + I2(θh) + I3(θh)]

= ah−1 + E[I1(θh)] + E[I3(θh)]. (3.18)

Let us now estimate E[|I1(θh)|]:

E[|I1(θh)|] = E

[∣

∣

∣

∣

∫ t

0

θ′h(X
n
s −Xm

s )
[

ā(Yηn(s).X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))

]

ds

∣

∣

∣

∣

]

≤ E

[
∫ t

0

|θ′h(Xn
s −Xm

s )| · |ā(Yηn(s).X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|ds

]

≤ E

[
∫ t

0

|ā(Yηn(s).X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|ds

]

≤ L

∫ t

0

E[|Xn
ηn(s) −Xm

ηm(s)|]ds+ L

∫ t

0

E[|Yηn(s) − Yηm(s)|]ds

In the second inequality we utilized the bound |θ′h(u)| ≤ 1 which is valid for all h ≥ 0
and u ∈ R. By means of the estimate obtained in step two we can write

E[|Xn
ηn(s) −Xm

ηm(s)|] ≤ E[|Xn
ηn(s) −Xn

s |] + E[|Xn
s −Xm

s |] + E[|Xm
s −Xm

ηm(s)|]
≤ M1(

√

‖∆n‖+
√

‖∆m‖) + E[|Xn
s −Xm

s |].

Similarly we get

E[|Yηn(s) − Yηm(s)|] ≤ E[|Yηn(s) − Ys|] + E[Ys − Yηm(s)|]
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≤ C(
√

‖∆n‖+
√

‖∆m‖)

where the last inequality is due to well known estimates for strong solutions of stochastic
differential equations. Combining the last two bounds we conclude that

E[|I1(θh)|] ≤ L

∫ t

0

E[|Xn
ηn(s) −Xm

ηm(s)|]ds+ L

∫ t

0

E[|Yηn(s) − Yηm(s)|]ds

≤ TL(M1 + C)(
√

‖∆n‖+
√

‖∆n‖) + L

∫ t

0

E[|Xn
s −Xm

s |]ds. (3.19)

We now treat E[I3(θh)]; by the assumption (3.5) and properties of θh we get:

E[I3(θh)] =
1

2
E

[
∫ t

0

θ′′h(X
n
s −Xm

s )(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))

2ds

]

≤ H2

2
E

[
∫ t

0

θ′′h(X
n
s −Xm

s )
(√

|Xn
ηn(s)

−Xm
ηm(s)|+

√

|Yηn(s) − Yηm(s)|
)2

ds

]

≤ H2
E

[
∫ t

0

θ′′h(X
n
s −Xm

s )
(

|Xn
ηn(s) −Xm

ηm(s)|+ |Yηn(s) − Yηm(s)|
)

ds

]

≤ H2
E

[
∫ t

0

2

h|Xn
s −Xm

s | |X
n
s −Xm

s |ds
]

+H2‖θ′′h‖E
[
∫ t

0

(|Xn
ηn(s) −Xn

s |+ |Xm
ηm(s) −Xm

s |)ds
]

+H2‖θ′′h‖E
[
∫ t

0

(|Yηn(s) − Ys|+ |Ys − Yηm(s)|)ds
]

≤ 2H2T

h
+ ‖θ′′h‖TH2(M1 + C)(

√

‖∆n‖+
√

‖∆n‖). (3.20)

Here ‖θ′′h‖ denotes the supremum norm of θ′′h while in the last inequality we used the
same bound to obtain inequality (3.19). Now, let us fix ε > 0. For this ε let h be
such that 0 < ah−1 < ε and 2H2T

h
< ε. With this h being so chosen and fixed, ‖θ′′h‖ is

bounded. Then, there exists nε ∈ N such that

(M1 + C)(T + ‖θ′′h‖TH2)(
√

‖∆n‖+
√

‖∆n‖) < ε

for all n,m ≥ nε. We can now insert estimates (3.19) and (3.20) in (3.18) to obtain

E[|Xn
t −Xm

t |] ≤ ah−1 + E[I1(θh)] + E[I3(θh)]

≤ ah−1 + TL(M1 + C)(
√

‖∆n‖+
√

‖∆n‖) + L

∫ t

0

E[|Xn
s −Xm

s |]ds

+
2H2T

h
+ ‖θ′′h‖TH2(M1 + C)(

√

‖∆n‖+
√

‖∆n‖)

≤ 3ε+ L

∫ t

0

E[|Xn
s −Xm

s |]ds.

By Gronwall’s inequality we conclude then that

E[|Xn
t −Xm

t |] ≤ 3eLtε ≤ 3eLT ε,
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for all n,m ≥ nε and all t ∈ [0, T ]. Hence,

E

[
∫ T

0

|Xn
t −Xm

t |dt
]

=

∫ T

0

E[|Xn
t −Xm

t |]dt

≤ T sup
t∈[0,T ]

E[|Xn
t −Xm

t |]

≤ 3TeLT ε.

The claim of step three is proved.

Step four: {Xn}n≥1 is a Cauchy sequence in L1(Ω;C([0, T ])).

We know that {Xn}n≥1 is a Cauchy sequence in L1([0, T ]×Ω) which is a complete space.
We can therefore conclude that there exists a stochastic process X ∈ L1([0, T ]×Ω) such
that

lim
n→∞

E

[
∫ T

0

|Xn
t −Xt|dt

]

= 0.

From Step two we can also deduce that

lim
n→∞

E

[
∫ T

0

|Xn
ηn(t) −Xt|dt

]

= 0.

Hence, there exists a subsequence (we keep the same indexes though for easy notations)
such that

lim
n→∞

Xn
t (ω) = lim

n→∞
Xn

ηn(t)(ω) = Xt(ω) dt× dP-almost surely.

Since the process {Xn
t }t∈[0,T ] is {Ft}t∈[0,T ]-adapted for any n ∈ N and almost sure con-

vergence preserves measurability, we deduce that {Xt}t∈[0,T ] is also {Ft}t∈[0,T ]-adapted.
To prove the continuity of {Xt}t∈[0,T ] we need to check the convergence in the uniform
topology, i.e. we need to estimate E

[

supt∈[0,T ] |Xn
t −Xm

t |
]

.
As before we employ the representation (3.13):

E

[

sup
t∈[0,T ]

|Xn
t −Xm

t |
]

≤ E

[

sup
t∈[0,T ]

∫ t

0

|ā(Yηn(s), X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|ds

]

+E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣

∣

∣

∣

]

≤
∫ T

0

E[|ā(Yηn(s), X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|]ds

+E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣

∣

∣

∣

2
]

1
2

=: J1 + J2

To treat J1 we proceed as before; using inequality (3.19) we obtain

J1 =

∫ T

0

E[|ā(Yηn(s), X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|]ds

17



≤ L

∫ T

0

E[|Xn
ηn(s) −Xm

ηm(s)|]ds+
∫ T

0

E[|Yηn(s) − Yηm(s)|]ds (3.21)

≤ TL(M1 + C)(
√

‖∆n‖+
√

‖∆n‖) + L

∫ T

0

E[|Xn
s −Xm

s |]ds.

Since we proved in Step three that {Xn}n≥1 is a Cauchy sequence in L1([0, T [×Ω) and
by assumption ‖∆n‖ tends to zero as n tends to infinity, we can find n and m big enough
to make the last row of the previous chain of inequalities smaller than any positive ε.
We now evaluate J2. Invoking the Doob maximal inequality and Itô isometry we can
write

J2 = E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣

∣

∣

∣

2
]

1
2

≤ 2E

[

∣

∣

∣

∣

∫ T

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣

∣

∣

∣

2
]

1
2

= 2E

[
∫ T

0

|ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))|2ds

]

1
2

≤ 2HE

[
∫ T

0

(√

|Xn
ηn(s)

−Xm
ηm(s)|+

√

|Yηn(s) − Yηm(s)|
)2

ds

]

1
2

≤ 2
√
2HE

[
∫ T

0

|Xn
ηn(s) −Xm

ηm(s)|+ |Yηn(s) − Yηm(s)|ds
]

1
2

= 2
√
2H

(
∫ T

0

E[|Xn
ηn(s) −Xm

ηm(s)|] + E[|Yηn(s) − Yηm(s)|]ds
)

1
2

.

If we now observe that the last member above is equivalent to (3.21), we can proceed as
before and conclude that for any ε > 0 there exists nε ∈ N such that

E

[

sup
t∈[0,T ]

|Xn
t −Xm

t |
]

< ε for all n,m ≥ nε.

This proves that {Xn}n≥1 is a Cauchy sequence in L1(Ω;C([0, T ]) and thus

lim
n→∞

E

[

sup
t∈[0,T ]

|Xn
t −Xt|

]

= 0

where {Xt}t∈[0,T ] is the stochastic process obtained in Step three. Moreover, we can find
a subsequence (we keep the same indexes though for easy notations) such that

lim
n→∞

sup
t∈[0,T ]

|Xn
t (ω)−Xt(ω)| = 0 dP-almost surely.

Since the processes {Xn
t }t∈[0,T ] are continuous by construction for each n ∈ N, we de-

duce that the process {Xt}t∈[0,T ] is also continuous being a uniform limit of continuous
functions.

18



Step five: The stochastic process {Xt}t∈[0,T ] solves equation (3.9).

Finally we show that

P

(

X(t) = x+

∫ t

0

ā(Ys, Xs)ds+

∫ t

0

ḡ(Ys, Xs)dW
2
s for all t ∈ [0, T ]

)

= 1.

This in turn will be proven by showing that

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣

∣

∣

∣

]

= 0

In fact, the equality

Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

= Xt −Xn
ηn(t) +

∫ t

0

ā(Yηn(s), X
n
ηn(s))− ā(Ys, Xs)ds

+

∫ t

0

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Ys, Xs)dW

2
s

implies

sup
t∈[0,T ]

∣

∣

∣

∣

Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣

∣

∣

∣

≤ sup
t∈[0,T ]

|Xt −Xn
ηn(t)|+

∫ T

0

|ā(Yηn(s), X
n
ηn(s))− ā(Ys, Xs)|ds

+ sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Ys, Xs)dW

2
s

∣

∣

∣

∣

.

If we take the expectation and use the technique utilized in Step four to bound the terms
in the right hand side of the previous inequality we get

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣

∣

∣

∣

]

= lim
n→∞

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣

∣

∣

∣

]

≤ lim
n→∞

(

E

[

sup
t∈[0,T ]

|Xt −Xn
ηn(t)|

]

+ E

[
∫ T

0

|ā(Yηn(s), X
n
ηn(s))− ā(Ys, Xs)|ds

]

)

+ lim
n→∞

E

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Ys, Xs)dW

2
s

∣

∣

∣

∣

]

= 0.

Uniqueness: We use a standard approach. Let {Xt}t∈[0,T ] and {Zt}t∈[0,T ] be two strong
solutions of equation (3.9). Setting,

δt := Xt − Zt =

∫ t

0

[ā(Ys, Xs)− ā(Ys, Zs)]ds+

∫ t

0

[ḡ(Ys, Xs)− ḡ(Ys, Zs)]dW
2
s (3.22)
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we get by the Itô formula

θh(δt) =

∫ t

0

θ′h(δs)[ā(Ys, Xs)− ā(Ys, Zs)]ds

+

∫ t

0

θ′h(δs)[ḡ(Ys, Xs)− ḡ(Ys, Zs)]dW
2
s

+
1

2

∫ t

0

θ′′h(δs)[ḡ(Ys, Xs)− ḡ(Ys, Zs)]
2ds

where {θh}h≥0 is the collection of functions defined in Step three. Using the assumptions
on ā and ḡ and the bounds |θ′h(u)| ≤ 1 and |θ′′h(u)| ≤ 2

hu
we get

E[θh(δt)] ≤ E

[∫ t

0

θ′h(δs)[ā(Ys, Xs)− ā(Ys, Zs)]ds

]

+
tH2

h

≤ L

∫ t

0

E[|δs|]ds+
tH2

h

If we let h → ∞, the function θh approaches the absolute value function; hence, Gron-
wall’s inequality and sample path continuity imply that {Xt}t∈[0,T ] and {Zt}t∈[0,T ] are
indistinguishable.
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